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Abstract 

Commercially pure aluminum with random texture was prestrained either by rolling or by 

uniaxial compression, and then tested in uniaxial tension to study the transients in flow stress, 

work hardening and r-value induced by the strain-path change. New experimental results are 

reported on the variation of the r-value and the permanently reduced work hardening subsequent 

to the strain-path change. A continuum plasticity model was developed that can reproduce the 

observed behavior. The model applies a second-order “delayed pointer” tensor to represent the 

microstructural anisotropy and was implemented into the finite element software LS-DYNA. The 

model was calibrated to the experimental data, and a simulation of early strain localization 

subsequent to an orthogonal strain-path change was compared to strain fields measured by a 

digital image correlation technique. 
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1. Introduction 

1.1. Microstructure and mechanical behavior after strain-path changes 

The overall plastic anisotropy in metals induced by the imposed deformation may originate from 

different sources and at various length scales. These scales are traditionally referred to as 

(Peeters et al., 2001): a micro-scale defined by slip system activity, a meso-scale defined by 

development of a dislocation substructure composed of regions with low and high dislocation 

density, and a macro-scale of plastic anisotropy due to a crystallographic texture development.  

In metal forming operations, material points are often subjected to multi-path loading resulting in 

complex strain paths. For example during deep drawing operations, following the material point 

that flows from the flange area to the die cavity, the strain mode changes from pure shear to 

biaxial tension (Esche et al., 2000). Another example is the ECAP process in which the 

orientation of the specimen changes between consecutive passes (Seipp et al., 2012; Sivaraman 

and Chakkingal, 2008; Yapici et al., 2007). Gradual or sudden deviation from proportional strain 

paths during deformation is for some materials, especially those with high stacking-fault energy, 

associated with extra hardening or softening and a transient stress and hardening-rate response 

can be observed. This is caused by the induced plastic anisotropy originating from previous 

strain paths. 

It is still an open question whether transient responses to strain path changes are solely due to the 

heterogeneous dislocation substructure, like cells and dislocation walls formed during the 

previous strain-paths, i.e. anisotropy on the mesoscopic level, or if it is rather due to the nature of 

dislocations themselves and their interaction on the slip system level, i.e. anisotropy on the 

microscopic level. It was concluded by many authors that arrangement into cell walls is 

necessary for the transient to occur (Bate et al., 2007; Eardley et al., 2003; Jensen and Hansen, 

1990; Li and Bate, 1991; Li et al., 2004; Wilson, 1994). On the contrary, Vincze et al. (2005) 

observed during low temperature experiments that low carbon steel showed pronounced 

Bauschinger effect together with a stress plateau even though no heterogeneous dislocation 

distribution was formed. It was thus concluded that structural features like cell dissolution are 

not responsible for, but merely correlated to, the observed transient hardening-rate stagnation. 

One can thus conclude that the cellular dislocation structure plays an important role at least in 

metals in which it is formed.  
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The typical representative and perhaps the most sensitive material to strain-path changes is IF 

steel, for which this phenomenon has been the subject of intensive experimental research since 

pioneered by Garofalo and Low (1955), and aluminum alloys. A review of the major works on 

these metals can be found in Barlat et al. (2003). Metals with low stacking-fault energy, where 

the effect of the changes in the strain paths is less pronounced, were studied as well (Hutchinson 

et al., 1976; Lamba and Sidebottom, 1978a, b; Li et al., 2006; Sakharova et al., 2008; Schmitt et 

al., 1991; Zandrahimi et al., 1989). Recently, the influence of the strain-path changes on de-

twinning in hexagonal metals was studied in zirconium (Proust et al., 2010) and beryllium 

(Brown et al., 2012; Sisneros et al., 2010). 

From the continuum mechanics point of view, any abrupt strain-path change can be quantified by 

one scalar parameter introduced by Schmitt et al. (1985), which serves as a measure of the strain-

path change. This parameter is related to the scalar product of the plastic deformation rate tensors 
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Monotonic loading is represented by the value cos 1  , strain reversal by cos 1   . The value 

cos 0   represents an orthogonal sequence of deformation modes, because the deformation rate 

tensors make an angle of 90°. When the value of cos  is close to 1, 0 or -1, the strain-path 

change is called pseudo-monotonic, pseudo-orthogonal and pseudo-reverse, respectively. Note, 

for instance, that for strain-path changes given by the sequence of rolling and uniaxial tension in 

the rolling plane, one can, in theory, cover a range of Schmitt angles  0 ,120    (see 

Appendix A and Fig. 13). 

In the case of reverse or pseudo-reverse tests, the Bauschinger effect (Bauschinger, 1881) 

normally occurs. It refers to a decrease of yield strength after reloading, followed by a transition 

zone characterized by work-hardening stagnation. This process is sometimes called the macro 

Bauschinger effect (Brown and Stobbs, 1971; Hu et al., 1992). Between yielding and work-

hardening stagnation, there is a range of 1-2% strain of very high work hardening (Barlat et al., 

2003; Wilson et al., 1990). This is also referred to as the micro-Bauschinger effect (Hu et al., 

1992).  
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The cross-hardening effect, which is strongest during orthogonal strain-path changes, refers to 

the increase of the yield strength typically followed by a softening zone and resumption of work-

hardening. After a sufficiently large pre-deformation, the work-softening can lead to instability, 

because the subsequent increase in work hardening may be insufficient to compensate the 

geometrical softening, and the result is very early strain localization and necking (Li and Bate, 

1991). The influence of strain-path changes on ductility and formability has been the subject of 

many studies (Ghosh and Backofen, 1973; Hutchinson et al., 1976; Hutchinson and Davis, 1983; 

Laukonis, 1979; Laukonis and Ghosh, 1978; Li and Bate, 1991; Lloyd and Sang, 1979; Wagoner 

and Laukonis, 1983; Wilson et al., 1990; Zandrahimi et al., 1989). To our knowledge, only few 

simulations have been performed with the aim to study strain localization after a strain-path 

change (see e.g. Hoc et al. (2001); Yoshida and Kuroda (2012); Franz et al. (2013),(Butuc et al., 

2010; Butuc et al., 2011; da Rocha et al., 2009)). Korbel and Martin (1988) used a photographic 

technique to detect localized necking after strain-path change. The digital image correlation 

(DIC) technique has become increasingly popular for revealing the strain field in mechanical 

experiments (Benallal et al., 2008; De Codes et al., 2011; Rastogi, 2000; Roux et al., 2008; 

Sutton et al., 2000).  

Peeters et al. (2000) assumed that strain-path changes in IF steels introduced only transient 

changes in the stress-strain curves, which vanish after a certain strain, from which the stress-

strain curves tend to follow the behavior of the monotonic curve of the new deformation mode. 

However, while changes in work hardening are transient, the flow stress can be influenced 

permanently (Li and Bate, 1991; Sun and Wagoner, 2013; Wilson et al., 1990; Zandrahimi et al., 

1989). This is referred to as permanent softening (Brown, 1977; Wilson et al., 1990). Even when 

this transient behavior vanishes after a certain strain and follows the behavior dictated by the 

new strain path, it can influence the formability in a negative manner by bringing on earlier 

strain localization. It is thus important that such mechanical behavior upon strain-path changes is 

included in constitutive models. 

1.2. Models 

From the modeling point of view, transients related to strain-path changes have been approached 

either by phenomenological continuum plasticity theory with the intention to mimic 

microstructural changes by introducing additional internal variables, or by using physically-
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based models taking advantage of the crystal plasticity framework, Peeters et al. (2000), 

Holmedal et al. (2008). While crystal plasticity models are computationally demanding when 

applied in finite element simulations on industrial scale, the additional computational cost paid in 

continuum plasticity models for implementing the constitutive relations required for capturing 

strain-path changes is low. On the other hand, when building multiscale modelling frameworks, 

polycrystal plasticity models enable transfer of physical parameters determined by micro-scale 

models, e.g. at the atomistic or molecular level (Roters et al., 2010).  

 

In continuum plasticity models, the plastic anisotropy of a material at any instance is represented 

by the shape of the yield function, which in the case of a quadratic yield locus can be written in 

the form 

    : : Y    Σ X Σ X   (2) 

where Σ  is a stress tensor depending on the formulation applied, e.g. Cauchy, second Piola-

Kirchhoff or Mandel stress, X  is the backstress tensor,  is a fourth-order tensor representing 

the yield locus,   is the effective stress and Y  is the yield stress. There are two ways to 

incorporate the effect of strain-path changes on the flow stress and the hardening rate in the 

continuum plasticity framework. One group of models tries to modify the shape of the yield 

locus, i.e. by changing the tensor  by either rotating or distorting it (Baltov and Sawczuk, 

1965; Barlat et al., 2011; Barlat et al., 2013; Barthel et al., 2008; Choi et al., 2006; Feigenbaum 

and Dafalias, 2007; Francois, 2001; Ishikawa, 1997; Ishikawa and Sasaki, 1998; Levkovitch and 

Svendsen, 2007b, a; Noman et al., 2010; Pietryga et al., 2012). The yield surface distortion 

during both proportional and non-proportional strain paths was also observed experimentally 

(Khan et al., 2009; Khan et al., 2010a, b; Pandey et al., 2013). The fourth-order tensor  is 

modified according to an evolution equation. In order to take the effect of strain-path changes 

into account,  is usually additively split into the parts parallel and orthogonal to the current 

plastic flow direction. Note, however, that high-exponent anisotropic yield loci cannot be 

expressed in the form of Eq. (2).  

Recently, a more general distortion of any type of isotropic or anisotropic yield locus was 

introduced by Barlat et al. (2011) as an alternative to kinematic hardening. This model was 
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implemented numerically by Lee et al. (2012). The model was first used in applications, taking 

into account orthogonal hardening, by Barlat et al. (2013), employing the model of Rauch et al. 

(2011) to modify the yield stress Y . Later this was incorporated into extra distortion of the yield 

locus by Ha et al. (2013). Some enhancements to the anisotropic hardening model were recently 

presented by Barlat et al. (2014).  

The other group of models modifies the yield stress Y , while keeping the shape of the yield 

locus, as defined by , constant. This was proposed by Teodosiu and Hu (1995) and later re-

formulated for robust handling of continuous strain-path changes (Wang et al., 2008; Wang et 

al., 2006). At yielding, the effective stress   can then be written as 

 0 R f      (3) 

where 0  is the initial yield stress, R  is the isotropic hardening and the scalar f  represents 

the contribution from persistent dislocation structures. Modeling of directional hardening caused 

by evolution and reorientation of planar dislocation structures formed during monotonic loading 

is carried out by evolution of the fourth-order tensor , describing the anisotropic contribution 

of directional dislocation structures to the flow stress. In theory the arithmetic operations 

involving the fourth-order tensor  make this rather complex model computationally expensive 

(more than 50 scalar equations to solve) but in practice this can be avoided and implemented 

quite efficiently in a simplified manner (Haddag et al., 2007).  

The Teodosiu-Hu model involves several material parameters, and mechanical testing and 

inverse modeling are required to identify these parameters. Strategies for the parameter 

identification and sensitivity analysis were treated by Haddadi et al. (2006). Despite of the 

model’s complexity, it has become very popular (Boers et al., 2010; Bouvier et al., 2005; da 

Rocha et al., 2009; Flores et al., 2007; Oliveira et al., 2007; Thuillier et al., 2010). A texture-

based anisotropic yield surface was incorporated by Hiwatashi et al. (1997), Li et al. (2003) and 

Reis et al. (2002), while strain-rate and temperature sensitivity was included by Uenishi and 

Teodosiu (2004). The model by Rauch et al. (2011), combined with the kinematic hardening, 

was adopted also in this framework by Carvalho-Resende et al. (2013). A comparison of the 

Teodosiu-Hu model and the model proposed by Levkovitch and Svendsen (2007b) was done by 
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Van Den Boogaard and Van Riel (2009) and Clausmeyer et al. (2009). The thermodynamic 

consistency of these models has been discussed recently by Shi and Mosler (2013).  

With respect to results presented in the current paper, it is important to note that the Teodosiu-Hu 

model predicts transients that fade out and do not affect permanently the work hardening during 

subsequent monotonic loading. 

1.3. Aim of the article 

In this study, the transients in flow stress, work hardening and r-value after a strain-path change 

are studied for an as-cast, commercially pure aluminum with random texture. The material was 

pre-strained either by rolling or uniaxial compression before testing in uniaxial tension. The 

aluminum with random texture was chosen for two major reasons: firstly, to avoid a complex 

calibration of texture induced anisotropy; secondly, the as-cast material allowed machining of 

thick uniaxial tensile samples for Bauschinger tests, while at the same time sheets could be cut 

carefully by spark ignition. Aluminum has a weaker cross-hardening effect than the IF steels and 

for sufficiently low prestrains necking subsequent to the strain-path change can be avoided, 

allowing measurements of the r-value variation and subsequent work hardening in a controlled 

manner. 

The experiments revealed several features related to the imposed strain-path changes, i.e. 

Bauschinger effect with stress plateau occurring after the strain-path reversal, overshoot of the 

flow stress, transient variation of the r-value and permanent reduction of the hardening after 

orthogonal strain-path changes for various prestrains. To capture these phenomena, the plasticity 

model recently proposed and briefly described in Holmedal et al. (2010) and Manik et al. (2012) 

was further developed by introducing two new transient work-hardening terms. Conceptually, 

the new model is similar to the one by Teodosiu and Hu (1995) in the way that rapid 

expansion/shrinkage of the yield surface handles the effects of strain-path changes, but it uses 

only second-order tensors, and the interpretation of the model and its parameters is straight-

forward. The paper presents the mathematical formulation of the novel continuum plasticity 

model, a semi-implicit algorithm for temporal integration and the parameter identification from 

experimental data obtained from the strain-path change tests. The model was implemented in the 

finite element software LS-DYNA and applied in finite element simulations of strain localization 

subsequent to an orthogonal strain path change. The numerical results are compared to 
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experimentally obtained force-elongation curves and strain fields acquired by a digital image 

correlation technique.  

The experimental study is described in Section 2, while the model formulation is presented in 

Section 3. The parameter identification is explained in Section 4 and the results compared with 

the experimental data. The finite element simulations are presented in Section 5 and validated 

against experimental results. Section 6 contains a discussion of the proposed constitutive model 

and the results obtained in the study, whereas the main conclusions are presented in Section 7. 

 

2. Experimental study 

2.1. Material 

In the present work, the investigated material was commercially pure, as-cast aluminum 

AA1050. This is a well-known material exhibiting pronounced cross-hardening effect during 

orthogonal strain-path changes as well as a plateau due to the stress stagnation after reverse tests 

with medium prestrain. The effects provoked by the strain-path changes are less pronounced in 

this material than in the low carbon steel, which is, however, an advantage when trying to avoid 

early localization.  

Plates with dimensions 110×200 mm
2
 and thickness 2.950±0.006 mm were cut by electrical 

discharge machining from the as-cast cylindrical billet with diameter 220 mm. The plates were 

cut in the axial and radial directions, making sure to avoid the center and the outermost parts of 

the billet. They were subsequently homogenized at 600°C/4h with a ramp of 100°C/h and 

subsequent cooled in air.  

 

2.2. Experimental procedures 

In this work, abrupt strain-path changes were introduced by a two-step sequence consisting of: a) 

prestraining by rolling followed by uniaxial tension in the transverse direction; and b) 

prestraining by uniaxial compression followed by uniaxial tension.  

Rolling was made on a two-high laboratory rolling mill. The plates were rolled down to three 

different thicknesses of 2.880±0.003 mm, 2.706±0.011 mm and 2.630±0.012 mm, giving three 
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different prestrains. After the respective prestraining, 7, 12 and 12 tensile samples were cut from 

the middle part of the plates and tested by uniaxial tension carried out using a servo-hydraulic 

MTS 810 testing machine. The shortest delay between the rolling and the tensile testing was 10 

min, the longest delay was 400 days. All the samples were rolled, stored and tested at room 

temperature. A constant crosshead speed of 2 mm/min was applied in all cases. The tensile 

specimens cut from the pre-rolled plates were flat and both longitudinal and transverse 

extensometers with gauge length of 25 and 12 mm, respectively, were used. The width and 

parallel length of the specimens were 12 mm and 30mm, respectively. 

Since the aluminum was tested in the as-cast and homogenized condition, it was expected to 

have random texture and isotropic behavior. To check this assumption, some preliminary tensile 

tests were carried out at    0°, 45° and 90° with respect to the longitudinal direction of the 

billet and are plotted in Fig. 1. The r-values are listed in the figure caption and within the 

experimental precision they are close to unity. Five parallel tests were performed for the 0° 

direction while one test was carried out for the 45° and 90° directions. It transpires that the 

curves are on top of each other, thus supporting the assumption of isotropic behavior.   

 

Fig. 1: True stress   and hardening rate /d d   plotted against true strain   from uniaxial 

tensile tests at 0°, 45° and 90° with respect to the longitudinal direction of the billet. The 

corresponding r-values of these tests were measured as 1.06, 1.11 and 0.95 for 0°, 45° and 90° 

respectively. 
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Referring to Hosford (2010), the yield surface calculated by the full-constraint Taylor model 

(Taylor, 1938) for an FCC material with initial random texture can be very well fitted by the 

high-exponent Hershey yield function (Hershey, 1954) with exponent 8m  . Adopting this 

criterion, the effective prestrain due to the rolling can be calculated as  1.089ln /i ft t  , see 

Appendix A for details. For orthogonal strain-path changes, the rolling down to three different 

thicknesses corresponds to the effective prestrains of 5.0 0.2  %, 9.3 0.4  % and 12.8 0.5 % , 

respectively. The absolute error in the effective prestrain was calculated by the error propagation 

due to the uncertainty in the both initial and final thickness of the plates. In the following, these 

prestrains will be referred to by their mean value, i.e. prestrain of 5%, 9.3% and 12.8%.  

After orthogonal strain-path changes following a sufficiently large prestrain (for AA1050 

aluminum greater than ~9% of effective strain), strain localization occurred at the very beginning 

of the second path. To study in more detail the strain localization after the orthogonal strain-path 

change, DIC was applied for the uniaxial tension tests on the samples with prestrain of 9.3%. 

The specimens were decorated with white and black paint to obtain a speckle pattern. During the 

tensile tests, a digital camera with resolution 1000×2050 pixels was used to acquire pictures with 

a frame rate of 5 Hz. The two-dimensional strain field was reconstructed by a software 

developed by Fagerholt (2012). 

The Bauschinger tests were performed at room temperature using cylindrical specimens with 

diameter of 7 mm in the gauge area and an extensometer with 10 mm gauge length. These 

samples were made from the as-cast cylindrical billet and subjected to the same homogenization 

procedure as the plates used to make the flat specimens. During the Bauschinger tests, the 

samples were first pre-compressed to 1%, 2% or 4.4% strain, followed by tension at a constant 

crosshead speed of 2 mm/min in a MTS 810 servo hydraulic testing machine. For each prestrain, 

2 tests were carried out. No significant buckling of the specimens was observed during the 

compression.  

2.3. Recovery effects 

Due to practical reasons, e.g. the machining the tensile specimens and the mounting in the testing 

machine, it is not possible to introduce uniaxial tension as a second strain path without any delay 

after the rolling as a first strain path. Since one has to account for some delay between the two 
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strain paths, recovery of the dislocation substructures, built up during the first strain path, can 

occur. If the recovery of the strength of the pre-formed substructures causing the anisotropy is 

pronounced within a short time after the first strain path, one should introduce the time as an 

additional variable into the model.  

Fig. 2a defines the overshoot   in a tensile test after prestraining, where the dashed curve is 

the monotonic stress-strain curve, while the normalized overshoot is defined as / ref   with 

ref  being the flow stress at a strain equal to the prestrain in monotonic tension. The normalized 

overshoot / ref   for the three different average prestrains as a function of the time delay 

between rolling and tensile testing is plotted in Fig. 2b. The shortest time delay was 10 min and 

the longest was one year. At a prestrain 12.8%, / ref   is reduced from about 0.13 to 0.10 as 

the time delay is increased from 10 min to one year. The recovery seems to be even slower when 

smaller prestrains were applied.  

 

 

(a) (b) 

Fig. 2: (a) Definition of the overshoot Δ  and the reference flow stress ref  after an orthogonal 

strain-path change. (b) The normalized overshoot Δ / ref   of the flow stress due to orthogonal 

strain-path changes after various time delays for three different prestrains. 
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2.4. Experimental results 

The results of orthogonal strain-path changes introduced by the sequence of rolling followed by 

uniaxial tension in the transverse direction for three prestrain levels are shown in Fig. 3. The 

effective stress-strain curves and the work-hardening rates are presented in Fig. 3a, while more 

details of the transient cross-hardening effect and the permanent softening are shown in Fig. 3b. 

Fig. 2b indicates a certain increase in the scatter of the data with increase of the prestrain. A 

reason for this lies in the heterogeneity of the strength and orientation of the dislocation 

substructures formed at larger prestrains. The experimental curves plotted in Fig. 3 were chosen 

as the representative ones.  

  

(a) (b) 

Fig. 3: (a) Effective stress   vs. effective plastic strain   after orthogonal strain-path changes 

for prestrains of 5%, 9.35% and 12.8% plotted together with the monotonic curve. Hardening 

rates /d d   are shown by dashed curves. (b) More detailed picture of the transient cross effect 

and permanent softening.  

 

A characteristic overshoot of the stress at the very beginning of the second strain path is clearly 

observed at all prestrains tested. It is then followed by rapid decrease in work hardening. The 

three prestrains tested show three different behaviors of the work hardening. While for 5% 

prestrain, the work hardening decreases monotonically until the onset of the diffuse necking at a 

strain ~30%, there is an inflexion point at about 1-2% strain after the beginning of the uniaxial 
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tension for prestrains 9.3% and 12.8%. At a prestrain of 9.3%, the condition of uniform 

deformation in the whole sample remains valid during uniaxial tension until the final diffuse 

neck occurs. This happened, similarly as for both the monotonic curves and that with a prestrain 

of 5%, at a strain about 30%. However, in the case of 12.8% prestrain, the Considère criterion is 

reached before the inflexion point. From this point on, the true stress-true strain curve calculated 

based on the assumption of the uniform deformation is not correct (this part of the curve is 

marked long-dashed).  

The strain field obtained by DIC in a tensile test with 9.3% prestrain by rolling is shown in Fig. 4 

for three strain levels. The strain shown in the figure is the effective von Mises strain, here 

defined as 2 22
1 2 1 23VM       . Fig. 4A clearly illustrates that incipient diffuse necking 

occurs at reloading in tension, but due to the increasing work-hardening rate, the diffuse neck is 

not able to develop further. Thereafter the whole sample deforms rather uniformly, see Fig. 4B 

and Fig. 4C, until the necking again occurs at an engineering strain of ~25%. One can, however, 

still observe local variations in strain throughout the specimen.  

For the tensile tests with an effective prestrain of 5% by rolling, the r-value was evaluated based 

upon data from two extensometers measuring both the strain   along the tension direction and 

the width strain w . The thickness strain t  was obtained based on the assumption of volume 

conservation as t w     . The elastic part of the strain was very small and corrections were 

not required for this soft material. By fitting the data for w  versus t  by a sixth-order 

polynomial the r-value was then estimated as /w tr d d  . The evolution of the r-value in 

tension after 5% prestrain by rolling is plotted in Fig. 5. Results are shown for all parallel tests. It 

is evident from the figure that the r-value exhibits a transient evolution due to the strain-path 

change but saturates at unity for large tensile strains.  

The results from the Bauchinger tests, in which the cylindrical specimen was first compressed to 

prestrain of 1%, 2% or 4.4% and then loaded in tension, are presented in Fig. 6. The Bauschinger 

effect is clearly seen for all three prestrain levels. While the reloading curves approach the 

monotonic stress-strain curve for the two lower prestrains, a permanently lower flow stress is 

obtained for the higher prestrain of 4.4%. The initial plateau of reduced work hardening is 
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clearly seen at the largest prestrain, but is less pronounced at the two smaller ones. The 

permanent softening after a strain-path change will be accounted for in the continuum plasticity 

model proposed in the following. 

 
   

 
 

A  B  C  

Fig. 4: Strain maps of the reduced section of the tensile specimen evaluated at engineering strain 

of 0.024 (A), 0.09 (B) and 0.2 (C) after prestrain to 9.3% in rolling. The effective von Mises 

strain is shown as a convenient measure of the 2D strain field extracted by the DIC.  
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Fig. 5: Measured r-values plotted against the true strain   during the tensile tests after 

orthogonal strain-path changes with a prestrain of 5% by rolling. 

 

Fig. 6: Experimental results of the reverse strain-path change introduced by the sequence 

compression – tension, with 1%, 2% and 4.4% prestrain, together with the monotonic stress-

strain curve. 
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3. The model formulation 

The modelling framework is continuum plasticity with a yield surface and a co-rotational 

formulation with associated hardening, where standard isotropic and kinematic hardening rules 

are adopted. The sudden expansion or contraction of the yield surface subsequent to strain path 

changes is controlled by the “delayed pointer”, i.e. a second-order tensor representing the 

microstructural response, with evolution as described in Section 3.4.  A new model for modified 

hardening due to strain path changes is suggested and explained in Section 3.5. The algorithm 

used for the numerical implementation into FEM is outlined in Appendix B. 

 

3.1. The yield function 

In the present work, the classical rate-independent, hypo-elastic plastic formulation was 

employed. In this formulation, the energy is only approximately conserved in a closed elastic 

deformation cycle but assuming small elastic strains, the error is insignificant (Belytschko et al., 

2000). In order to assure applicability of the proposed model for anisotropic materials, the 

corotational stress formulation is adopted to satisfy the principle of material-frame indifference. 

Thus, all the constitutive equations are expressed in a coordinate system that rotates with the 

material element. This makes the relations invariant to superposed rigid body rotations.  

The corotational Cauchy stress tensor σ̂  and the corotational deformation rate tensor D̂  are 

defined by 

 ˆˆ ,T T σ R σR D R DR   (4) 

where σ  is the Cauchy stress tensor, D  is the deformation rate tensor, and R  is the rotation 

tensor that can be obtained from the deformation gradient F  by polar decomposition; i.e. 

F RU . Here U  is the symmetric, right stretch tensor, whereas R  is orthogonal. The 

corotational deformation rate tensor  D̂  can be additively decomposed into elastic and plastic 

deformation rate tensors as 

 ˆ ˆ ˆe p D D D   (5) 

The relation between stress rate and elastic deformation rate is written as 
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  
ˆ ˆ ˆ: :ˆ ˆˆ e pD

Dt
  

σ
D D D   (6) 

where ˆ  is the fourth-order tensor of elastic moduli. In the corotational formulation, ˆ  can be 

anisotropic but elastic isotropy is assumed here for the aluminum AA1050, and ˆ  is defined by 

Young’s modulus E   and Poisson’s ratio  .  

The proposed model follows the concept of the original Teodosiu-Hu model (Teodosiu and Hu, 

1995), where the response to the strain-path changes is reflected by extra expansion/shrinkage of 

the yield surface, i.e. by modifying the yield stress Y . The yield condition is written in the form 

 

ˆ ˆ( ) ( ) 0

ˆ ˆˆ

Y

Y o r

f

R S S

 



  

 

  

S S

S σ X   (7) 

where Ŝ  is the corotational overstress tensor, X̂  is the corotational backstress tensor and R 

embodies the initial yield stress and the isotropic hardening. The scalars oS  and rS  represent the 

extra strength contribution due to the built-up anisotropy during the earlier straining in the 

orthogonal and reverse directions, respectively. The effective stress with respect to the backstress 

is defined by the yield function as ˆ( )  S . 

The plastic anisotropy resulting from the crystallographic texture is reflected by the yield 

function ˆ( ) S  which is an arbitrary admissible positive, convex and homogeneous function of 

degree one of Ŝ . In the current study, the isotropic, high-exponent Hershey yield function 

(Hershey, 1954) is used 

   2 3 3 1

1/

1 2
ˆ ˆ ˆ ˆ ˆ ˆ

2
ˆ1

 

m
m m m

S S S S S S
         

  
S   (8) 

where 1 2 3
ˆ ˆ ˆ, ,S S S  are the principal values of Ŝ . This is a reasonable choice since the as-cast and 

homogenized aluminum AA1050 was shown to exhibit isotropic behavior. The exponent m  is 

not considered as a fitting parameter. It reflects the crystallographic structure of the modeled 

material by setting its value to 8 for FCC and 6 for BCC materials (Barlat, 1987). 

The associated flow rule is adopted here giving the plastic strain rate tensor as 
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 ˆ
ˆ

p f






D
S

  (9) 

where   is the plastic multiplier governing the magnitude of the plastic flow. The plastic 

multiplier is then defined by the loading/unloading conditions in Kuhn-Tucker form 

 0, 0, 0f f      (10) 

 

3.2. Isotropic hardening 

The present model is not restricted to any particular hardening rule, and two isotropic hardening 

terms iR  with i=1,2 are included allowing a very precise fit. One term will be sufficient in many 

applications. In the present work, the extended Voce hardening rule (Voce, 1948) is used for 

these two isotropic contributions to the hardening 

 , , 1,2
Δi i

i

sat

i i
i R R

R

R R
R h h i




     (11) 

where sat

iR  and Δ
iR  are fitting parameters, and  0 0iR   are the initial values of the isotropic 

hardening terms. The parameter sat

iR  is the saturation value of hardening term iR , while Δ
iR  

gives the strain scale of the saturation process. Eq. (11) has analytical solutions  

 1 exp , 1,2
Δ

i

sat

i i

R

R R i




  
     

  
  

  (12) 

where 
0

t

dt    is the effective plastic strain. In the special case of isotropic hardening, i.e., in 

absence of other hardening terms, the total hardening can be written as 
2

0 1 ii
R R R


  , where 

0R  is the yield stress. 

3.3. Kinematic hardening 

The backstress tensor is modeled by employing a nonlinear Armstrong-Frederick type of 

evolution rule (Armstrong and Frederick, 1966). In a similar way as for the extended Voce rule, 

the extended form of the Armstrong-Frederick rule was used as 
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with initial values  ˆ 0  i X 0  of the kinematic hardening terms; sat

iX  and Δ
iX  are fitting 

parameters; dev
Ŝ is the deviatoric part of Ŝ . Two terms are required because of the fast initial 

variation of the r-value as seen in Fig. 5 and the initial rapid hardening after the reverse strain-

path change revealed in Fig. 6. The parameter sat

iX  governs the saturation value of ˆ
iX , while 

Δ
iX  defines the strain scale of the saturation process. 

3.4. The “Delayed Pointer”, orthogonal and reverse hardening 

In order to capture the essence of the straining history, similarly as in the Teodosiu-Hu model, 

the second-order, dimensionless tensor P , denoted the “delayed pointer” tensor, is employed 

evolving according to an evolution equation expressed in the corotational frame as 

  ˆ ˆ,
1ˆ ˆ ˆ

Δ
P P

P




  P h h N P  (14) 

where ˆ TP R PR  is the corotational delayed pointer tensor; ˆ ˆ/ˆ p pN D D  is the normalized 

plastic strain rate tensor, and Δ P  is a parameter. In the original paper of Teodosiu and Hu 

(1995), P̂  is associated with the existence of planar directional persistent dislocation 

substructure formed during the previous straining. Considering the ongoing discussion initiated 

by Vincze et al. (2005) questioning the sole responsibility of the heterogeneous dislocation 

substructures for the mechanical response after strain-path changes, P̂  is given a more general 

meaning in this article. The magnitude and direction of P̂  relate to the strength and the 

alignment of the pre-built anisotropic structure, respectively, on both the slip system and 

mesoscopic levels. It thus does not refer exclusively to the directionality of planar dislocation 

walls, but rather to complex anisotropic contributions originating from both the microscopic (or 

slip system) and mesoscopic (or dislocation substructures) levels. 

For well-annealed materials, the initial value of P̂  is justified to be zero. During the monotonic 

loading, P̂  is pointing in the direction N̂  of the recent (plastic) strain path and increasing in 

magnitude towards unity. It saturates at a strain scale given by the parameter Δ P . If after some 
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prestrain, a continuous or rapid strain-path change is introduced by changing the direction of N̂ , 

P̂  will be attracted towards N̂  as dictated by Eq. (14). To monitor the degree of strain-path 

change, the angle   is introduced as 

  
ˆ:

os
ˆ

ˆ
c  

P N

P
  (15) 

It is noted that   is basically the Schmitt angle characterizing the strain-path change between the 

current strain direction N̂  and the “delayed pointer” direction P̂ . 

A rapid transient isotropic expansion and shrinkage was modeled in Teodosiu and Hu (1995) by 

employing a fourth-order tensor representing the directionality of the dislocation structure. The 

present model is similar but simpler. The extra strength due to the orthogonal and pseudo-

orthogonal strain-path change is modeled here by a scalar oS  as introduced in Eq. (7). The 

evolution of the scalar quantity oS  is given, similarly to Eq. (14), as 

 
0

ˆ sin
,  , 

Δo

sat
sato o

o S S o o

o

S S
S h h S q R







  

P
  (16) 

The constant oq  relates the maximum extra strength contribution to the isotropic hardening R  

and Δ o  represents a strain scale for the transient cross hardening to take place. The initial value 

of oS  is zero. Subsequent to the strain-path change oS  rapidly saturates towards ˆ sinsat

oS P , 

but softening will occur due to the rotation and/or change of magnitude of P̂  given by the strain 

scale Δ P  such that normally Δ ΔP o  . Eventually P̂  rotates into the same direction as the 

current N̂ , and the contribution from oS  vanishes. 

During reverse strain-path changes, a combination of several contributions can be responsible for 

the final shape of the stress-strain curve. Initially, right after the reloading, the hardening rate 

reaches very high values during a very small strain increment, followed by a very low hardening 

rate and stress stagnation taking place on a distinctly longer strain scale. Eventually, the 

hardening rate recovers and increases, so that the stress-strain curve tends towards the monotonic 

one. Sometimes, permanent softening can occur as a result of the transient changes in the 
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hardening. Similarly as for an orthogonal strain-path change, the induced anisotropy built-up 

during the prestrain contributes by an additional strength rS  when reversal or pseudo-reversal of 

the strain-paths is made. This contribution is modeled here in a similar fashion as for the cross 

hardening in Eq. (16), as 

 
 ˆmin : ,0

, ,
Δ

ˆ

r r

sat

r r sat

r S S r r

r

S S
S h h S q R



 
  

P N
  (17) 

In analogy with Eq. (16), the constant rq  relates the maximal strength contribution due to the 

reverse strain-path change to the isotropic hardening, Δ r  controls the strain scale for rS  to 

saturate towards the attractor  min ˆ ,0ˆ:sat

rS P N . The initial value of rS  is zero. Assume that P̂  

is close to N̂  before the reversal of the strain-path takes place. Since ˆ ˆ ˆ: cosP N P , then 

 ˆ ˆmin : ,0 0P N . Note that the latter applies for any strain-path change for which 90   . On 

the other hand, any strain-path change with 90    has a reverse element. Then 

 ˆ ˆmin : ,0 0P N , making the attractor in Eq. (17) positive. The contribution from rS  vanishes 

when the material adapts to the new deformation mode, i.e. as P̂  returns towards the actual 

strain path N̂ . 

3.5. Transient hardening due to the strain-path change 

As reported in several papers (Li and Bate, 1991; Wilson et al., 1990; Zandrahimi et al., 1989) 

and as observed here for the aluminum AA1050, strain-path changes can, beside the transient 

effects, produce also persistent changes. If not only the flow stress but also the hardening rate is 

transiently changed due to the change in the strain path, this will cause a permanent effect on the 

flow stress. By using the ingredients of the model described above, i.e. isotropic hardening, 

kinematic hardening and extra contribution to isotropic hardening due to the orthogonal and 

reverse strain-path changes, it is implicitly assumed that stress-strain curves will eventually catch 

up with the monotonic reference tensile curve. In order to model the materials exhibiting 

permanent softening, the original model is extended by adding two additional contributions to 

the work hardening rate. This will cause the stress-strain curves, after a strain-path change, to 
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deviate from the monotonic curve. The common interpretation is that the pre-formed anisotropic 

substructure causes not only the extra strength contribution after a strain-path change ( oS  and rS  

terms), but also directly influences the subsequent work hardening.  

It is suggested that the orthogonal element of a strain-path change will cause reduction of the 

work hardening given as 

 ˆ sintr

o oh k   P   (18) 

while the reverse element lowers the hardening rate as 

  min ˆ : ,0ˆtr

r rh k P N   (19) 

After the effect of the strain-path change vanishes and P̂  rotates towards actual strain path N̂ , 

the contributions in Eqns. (18) and (19) fade out and the hardening rate returns back to that of 

monotonic straining. However, some strain is required to re-establish the hardening rate. The 

total isotropic hardening rate Rh  can then be expressed as  

 
2

1
i

tr tr

R R o r

i

h h
dR

d
h h

 

      (20) 

Note that for materials not exhibiting permanent softening during orthogonal or reverse strain-

path changes, contributions from tr

oh  and tr

rh  would be zero.  

4. Parameter identification 

For the calibration of the model a stand-alone implementation for calculations along single strain 

paths was made, allowing mixed prescription of components of the velocity gradient and stress 

components. Hence, all the strain paths of the tensile tests, including r-value variations could be 

predicted. To minimize the influence of aging, all test results used in the calibration of the model 

were obtained from tests with about one hour delay between the first and the second strain paths.  

The model in its present form has all together 16 parameters (see Table 1). However, only 7 of 

them control the transient effects caused by substructural changes of the microstructure. This 

number further reduces down to 5 for materials not exhibiting permanent softening. The 

extended Voce rule involves 5 fitting parameters, whereas the extended Armstrong-Frederick 

rule has 4 model parameters.  
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Table 1: Model parameters 

Isotropic hardening Kinematic hardening 

0R  

[MPa] 

1

satR  

[MPa] 

1
Δ R  

[—] 

2

satR  

[MPa] 

2
Δ R  

[—] 

1

satX  

[MPa] 

1
Δ X  

[—] 

2

satX  

[MPa] 

2
Δ X  

[—] 

14 76 0.34 28.4 0.025 3 0.067 3 0.003 

Transient effects 

 Δ P  

[—] 

Δ o  

[—] 

Δ r  

[—] 

oq  

[—] 

rq  

[—] 

ok  

[MPa] 

rk  

[MPa] 

 

 0.05 0.0004 0.01 0.16 0.2 115 1000  

 

The model parameters were identified from the monotonic tensile test, the Bauschinger tests and 

the orthogonal strain-path change tests. In the first step, the monotonic tensile test was used to fit 

the parameters 0R ,  1

satR , 
1

Δ R , 2

satR  and 
2

Δ R  of the extended Voce rule by the least squares 

method. In the second step, the stress-strain curves from the Bauschinger tests and the r-values 

from the orthogonal strain-path change tests were used to approximately adjust the parameters of 

the extended Armstrong-Frederick rule, namely 1

satX , 
1

Δ X , 2

satX  and 
2

 Δ X , without fitting the 

transient reverse hardening causing the stress plateau and the permanent softening, i.e. 0rS  . In 

the third step, the parameters of the isotropic hardening rule had to be refitted for each set of the 

kinematic hardening parameters in order to get the monotonic curve correctly described. To this 

end, the least squares method was applied by minimizing the residual function 

  
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     (21) 

where  k k    is the experimentally obtained true stress at a true strain k  in the monotonic 

tensile test, and k  runs over the measured points. In the fourth step, the transient hardening 

obtained from the Bauschinger tests and the orthogonal strain-path change tests was fitted. First, 

the parameter Δ P  controlling the rate of the substructure rebuilding, modeled by the evolution 

of the P̂  tensor, was assumed. Subsequently, the parameters Δ r , rq  and Δ o , oq  were found to 
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get a best possible fit of both the transient reverse and orthogonal hardening, respectively. This 

was repeated for other values of parameter Δ P  until the best fit was obtained. The parameters 

controlling permanent softening ok  and rk  were adjusted simultaneously. Steps two to four were 

repeated until a satisfactory calibration was obtained. The resulting model parameters used are 

listed in Table 1. 

The modeled stress-strain response after orthogonal and reverse strain-path changes are 

compared with the experimental data in Fig. 7. As can be seen, the proposed model can capture 

well both the overshoot of the flow stress after orthogonal strain-path change (Fig. 7a) and the 

stress plateau due to the strain-path reversal (Fig. 7b). The permanent softening effect is 

accounted for and governed by the Eqns. (18) and (19). For materials that do not exhibit any 

permanent softening, the variables ok  and rk  controlling the change of the hardening rate due to 

the strain-path change should be set to zero.  

  

(a) (b) 

Fig. 7: (a) Comparison of the modeled and experimental effective stress-strain curves for (a) 

orthogonal strain-path changes introduced by the sequence rolling – uniaxial tension in 

transverse direction, after 5%, 9.3% and 12.8% of effective prestrain, and (b) reverse strain-path 

change introduced by the sequence compression – tension, with 1%, 2% and 4.4% prestrain, 

together with the monotonic stress-strain curve.  
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Fig. 8: Comparison of the modeled and measured r-values against true strain   during the tensile 

tests after orthogonal strain-path changes with a prestrain of 5% by rolling.  

 

The modeled transient change of the r-value during the tensile test after an orthogonal strain-path 

change with prestrain of 5% is shown in Fig. 8. The agreement with the experimental data is 

good. From the modeling point of view, the r-value reaches an increased value after the 

orthogonal strain-path change due to the distortion or shift of the yield locus caused by the first 

strain path. In the presented model, this is assumed to be caused by a combined effect of yield 

locus expansion and shift governed by the isotropic and kinematic hardening rules. Since two 

transients with different scales were observed experimentally, the extended Armstrong-Frederick 

rule defined by Eq. (13) was employed to model the kinematic hardening. It should also be 

noted, looking at the Bauschinger tests in Fig. 7b, that the strain scale for the micro-Bauschinger 

effect, i.e. the very high hardening rate between the yielding and the hardening stagnation, is 

very similar to that of the initial rapid change of the r-value after the orthogonal strain-path 

change. It may thus be anticipated that there is a common mechanism controlling the 

reorganization of the pre-built dislocation substructures at the very moments after instant strain-

path changes. It seems that after any kind of instant strain-path change, orthogonal or reverse, the 

pre-formed dislocation substructures, e.g. pile-ups, are very unstable and will disappear within a 

very short strain. This process takes most probably place within the cell or subgrain interiors 

resulting in a very small mean-free path for moving dislocations (Hu et al., 1992). In the model, 
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this is reflected by employing the extended Armstrong-Frederick kinematic rule containing two 

transients: a short one causing a rapid shift of the yield locus at very small strain, and a long, 

classical one, modeling the macro-Bauschinger effect itself, lasting during a much longer strain 

scale. The second strain path is thus always initiated by a rapid shift of the yield locus. In cases 

of orthogonal strain-path changes, this enables to model the fast transient change of the r-value, 

and superposed by the contribution from the extra strength oS , the stress overshoot followed by 

softening can be captured. For the strain-path reversal, the micro-Bauschinger effect, as well as 

the characteristic plateau, can be modeled qualitatively by superposing the contribution from the 

extra strength rS .  
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5. Finite element analysis 

The continuum plasticity model was implemented as a user-defined material subroutine into the 

finite element software LS-DYNA, using the semi-implicit integration algorithm, as described in 

some detail in Appendix B. The explicit solver of LS-DYNA was used in the simulations.  

The flat tensile specimen used in the tensile tests subsequent to rolling was meshed by quadratic 

8 node solid elements with nodal rotations, i.e. 6 DOF per node, using selectively reduced 

integration. Four elements were used through the specimen thickness, 20 along the width and 50 

along the gauge length. It was checked against an analytical solution that this discretization 

ensured a converged result. Mass scaling was used in the simulations, and it was checked 

carefully that the solution remained quasi-static. 

In order to simulate the uniaxial tension being the second strain path subsequent to the rolling, all 

internal variables were conveniently initialized by values obtained by the stand-alone code, 

rather than first running an FEM simulation of the first strain path. 

The force vs. engineering strain curves from the subsequent tension tests are plotted in Fig. 9 for 

the cases with prestrains of 9.3% and 12.8%. Good agreement is found between the experiments 

and the simulations. In particular, the premature necking in the test with the largest prestrain is 

captured accurately, while for the lower prestrain only incipient necking is observed as in the 

experiments. The FEM model could be run on an ordinary 2.7MHz PC in less than 20 minutes. 

The predicted strain field in the test with 9.3% prestrain is shown in Fig. 10. The strain 

localization observed from the DIC analysis at a tensile strain of ~2%, see Fig. 4A, corresponds 

to the simulation of the strain field at the same engineering strain in Fig. 10A. The strain 

localization in the experiment is in the form of two crossed bands, but not crossing each other in 

the centre of the specimen as in the simulation. However, at least qualitatively, the simulated and 

experimental results are similar. 
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(a) (b) 

Fig. 9: Comparison of the measured and simulated force vs. engineering strain during uniaxial 

tension for samples with effective prestrain of (a) 9.3% and (b) 12.8% due to the rolling.  

 

  
 

 

 

 

A  B  C  

Fig. 10: The effective von Mises strain is shown for the finite element simulation of the uniaxial 

tension at engineering strains of 2.4% (A), 9% (B) and 20% (C) after prestrain to 9.3% in rolling. 
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6. Discussion  

It is interesting to plot the tests in a Kocks-Mecking plot to see the work hardening 

characteristics. In Fig. 11, the plots are shown for 7 tests for the case of prestrains between 8.7% 

and 9.6% (Fig. 11a) and for 6 tests with prestrains between 11.1% and 12.8% (Fig. 11b) and the 

corresponding model predictions. In these diagrams, the normalized work-hardening rate   is 

plotted against the effective strain  , where   

 
1d

d




 
   (22) 

Diffuse necking is expected to occur as   falls below unity, which is equivalent to the 

Considère criterion. From this point on, the experimental stretching becomes unstable and even 

though the conversion formulas are applied and the curves are plotted, one should keep in mind 

that the experimental curves are not strictly valid when  <1, then only the model results are 

valid. In the tensile tests a necking region spreads out similar as a Lüders band making the test 

non-uniform so that true stress and strain cannot be precisely predicted. This takes place very 

soon after yielding for two of the tests with prestrains 9.1% and 9.2%, shown as the red curves in 

Fig. 11a.  However, the interval of strains for which 1   is in this case very narrow (Fig. 11a) 

and the diffuse necking did not proceed beyond this early stage, i.e. after a small further 

elongation the work hardening is restored and the test continues by stable uniform straining (see 

also Zandrahimi et al. (1989)). On the other hand, for all the tests with prestrains larger than 

11.1%, the decrease in the hardening rate after yielding did not enable restoration of a stable 

straining, which is indicated by the quantity   staying below unity. It can be seen from the 

model results that the work hardening catches up with the monotonic curve as the transient fades 

out. However, the stress at this point is lower, so that the stress-strain curve remains shifted a 

certain strain increment as compared to the monotonic one. Note that since the tensile tests are 

limited by the necking strain this model behavior cannot be validated. It might be that the 

experimental curves would converge at larger strains.  
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(a) (b) 

Fig. 11: Plots of normalized work-hardening rate vs. effective strain for the monotonic curve and 

for prestrains (a) 9.3% and (b) 12.8%. Experimental curves are grey or red for tests for which the 

Considère criterion was reached at a very early stage after yielding. Black lines represent model 

predictions. 

 

It can be seen from both the DIC and simulation results that the localized strains become 

distributed throughout the whole parallel section of the specimen, and due to sufficient 

subsequent increase of the hardening, quasi-uniform deformation was re-established at a strain of 

0.09, cf. Fig. 4B and Fig. 10B. This type of behavior can only be captured when the transient 

behavior after a strain-path change is accounted for in the plasticity model.  

In interstitial free steels, where the softening following an orthogonal strain path change is more 

pronounced, irreversible necking instability makes direct measurement of the material response 

during the transient challenging. The weaker effect in aluminum enables experiments without 

instability and reliable measurements at low pre-strains or subsequent to the re-establishment of 

the uniform deformation mode. True stress and strain, but also the r-value variation, can then be 

calculated from the test and allows probing the transient response of the metal. From Fig. 5, two 

distinct r-value transients with different strain scales can be seen. The r-value first changes 

rapidly from an average value of about 2.3 down to about 1.2 within a true tensile strain of 2-3%. 

After that, the change is much slower. The r-values reach the value of the monotonic straining 

equal to unity before the final necking occurs. Similar transient behavior of the r-value was 

  

    


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observed for steel by Hutchinson and Davis (1983), but their measurements are less precise, 

since the they were made in the post-necking region.  

For the two smallest prestrains the curves tend towards the monotonic curve as the transient 

fades away. However, for the largest prestrain a smaller stress level is reached within the largest 

strain before necking occurs. The aluminum AA1050 exhibits permanent softening, as observed 

by others as well (Li and Bate, 1991; Wilson et al., 1990; Zandrahimi et al., 1989). Quoting Li 

and Bate (1991): “The strain hardening rate following a strain-path change is markedly less than 

that for monotonic straining, at a given flow stress, over large deformation intervals.” Similarly 

as concluded by Wilson et al. (1990), the permanent softening at the total strain of 0.25 is about 

5% of the monotonic flow stress. 

The delayed pointer is a second-order tensor representing a memory of earlier strain paths. Both 

its magnitude and direction are changing as it is somehow trying to follow the current strain 

direction. If a strain-path is reversed, the delayed pointer will make the shortest way through the 

origin by first decreasing its magnitude to zero, and then increase it again, but now pointing in 

the opposite direction. On the other hand, if the path change is into an orthogonal direction the 

delayed pointer will partly rotate and partly change its magnitude during the transient. The 

magnitude and direction of the delayed pointer are thus assumed to represent the changing 

microstructure during non-proportional loading and its influence on the flow stress. The source 

of the microstructural effects can be for example build-up of aligned dislocation structures or 

latent hardening phenomena, but the proposed model is phenomenological and does not model 

these aspects in detail.         

In the proposed model and other models of the same family as the Teodosiu-Hu model, the yield 

surface expands or shrinks in a shape invariant way. However, this is a simplification as the 

shape of the yield surface in general is changing. Experimental precise measurements at strains 

near the point of instant path change, Khan et al. (2010a, b), show that the yield surface in the 

early transient is heavily distorted. At larger strain increments away from the point of path 

change, the experimental work would be very challenging, because then a new experiment is 

required for each point on the locus and it becomes a challenge to filter out the scatter. Such 

experiments would contribute to an improved understanding of the transients but are beyond the 
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scope of this work. The model proposed here provides a simplified approximation where the 

yield surface is not distorted. 

Subsequent to an orthogonal strain path change the yield surface is rapidly expanded in the 

proposed model, thereby contributing with the correct amount of stress increase in the new 

orthogonal direction. Alternatively the shape of the yield surface can be distorted during the 

prestrain. This will correspond to the crystal plasticity model by Peeters et al. (2000) and 

Holmedal et al. (2008). In principle this can be obtained by a yield surface like the one proposed 

by Barlat et al. (2011). Whether the yield surface should be pre-distorted rather than rapidly 

expanded or shrunk subsequent to the strain-path change, can be sorted out by double strain-path 

change experiments like those recently reported by Vincze et al. (2013) and Barlat et al. (2014). 

This behavior might be material dependent. Probably some combination of the HAH and the 

Teodosiu-Hu type of approaches can provide an even better description of the strain-path change 

responses. Anyhow, the model proposed here represents a reasonable compromise regarding 

model complexity and prediction power in many applications.  

 

7. Conclusions 

Commercially pure, as-cast and homogenized aluminum AA1050 was prestrained either by 

rolling or by uniaxial compression and strain-path change tests were performed to study cross-

hardening and Bauschinger transients of the flow stress. In addition, a transient variation of the r-

value and a permanent reduction of the hardening subsequent to the strain-path changes were 

observed.  

A recent continuum plasticity model, proposed originally by Holmedal et al. (2010), was 

modified to account for the experimental observations: the effects of the orthogonal and reverse 

strain-path changes, the permanent reduction of hardening, and the transient variation of the r-

value. The constitutive model was implemented as a user-defined material subroutine in the 

finite element code LS-DYNA. The implementation has high computational efficiency as the 

anisotropy is represented by second-order tensors. The model was capable of reproducing the 

overshoot of the flow stress, the transient variation of the r-value and the permanent reduction of 



33 

 

the hardening due to cross hardening for various prestrains, as well as the Bauschinger effect and 

the stress plateau typically occurring after strain-path reversals in commercially pure aluminium. 

The strain localization took place after orthogonal strain-path changes for prestrains larger than 

about 9% for the given material. Using the DIC technique to measure the displacement field, it 

was observed in one case that diffuse necking was interrupted and uniform deformation was re-

established. Finite element simulations using the proposed plasticity model provided a strain 

distribution in the sample in good agreement with the DIC observations and correctly described 

the diffuse necking process after the strain-path change. Thus the proposed model may be a good 

candidate among the continuum plasticity models to be applied in large-scale finite element 

analyses of forming processes.  
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Appendix A 

The isotropic, high-exponent Hersey yield function (Hershey, 1954; Hosford, 1972) is defined as 

    
1/

1 2 2 3 3 1

1
 

2

m
m m m

      
 

            
 

σ   (23) 

where σ  is the deviatoric Cauchy stress tensor and 1 2 3, ,      are the principal deviatoric 

stresses. In the case of plane strain compression, the deviatoric Cauchy stress σ  and the plastic 

strain rate tensor pD  can be expressed as 

 1 1

1 0 0 1 0 0

0 0 0 , 0 0 0  

0 0 1 0 0 1

p pD

   
  



  
   
      

σ D   (24) 

where 1 0pD   is the major principal plastic strain rate. Combining Eqns. (23) and (24) gives 
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    
1/

1

1 1 2
m

m    σ   (25) 

By applying the yield condition 

   Y   σ   (26) 

where   is the effective stress and Y  is the yield stress, the effective plastic strain rate   can 

be obtained from the plastic work rate as 

 :p pW    σ D   (27) 

Substituting Eqns. (24)–(26) into Eq. (27) gives 

  
1/  

1

12 2  
m

m pD


     (28) 

Note that for 2m   and 4m  , Eq. (28) gives the classical von Mises effective plastic strain rate 

12 / 3  p

VM D  . The functional dependence of 
1/ pD  on m  is plotted in Fig. 12. The Tresca 

yield function corresponding to the cases 0m   and m  leads to 
1 1/ pD   for plane strain 

compression. It is interesting to note that the maximum value of 
1/ pD  corresponds to 

2.767m   for which the Hershey yield surface surrounds the greatest volume in stress space for 

a given value of the yield stress Y .  

 

Fig. 12: Functional dependence of the ratio 1/ pD  on the exponent m  in the high-exponent 

Hershey yield surface. 
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To derive the Schmitt angle, let us assume that the first strain path is by plane strain compression 

given by the plastic strain rate tensor 
1

p
D  as 

 
 

1/
1

1 1

1 0 0 1 0 0
1 2

0 0 0 0 0 0  
2

0 0 1 0 0 1
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  

 
 


 




D   (29) 

where 2
3

:p p

VM  D D  is the Von Mises effective plastic strain rate. If this is followed by 

uniaxial tension at an angle   with respect to the rolling direction, the plastic strain rate tensor 

2

p
D  can be, for a given r -value, expressed as (similar as Holmedal et al. (2008) for the case of 

m=2) 
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D   (30) 

The Schmitt angle according to Eq. (1) for such a strain-path change, is equal to 

 
 

2

3 1 2 cos 2
arccos  

4 1

r

r r




  
  

  
  (31) 

By doing the sequence of rolling and uniaxial tension in the rolling plane, one can, in theory, 

cover a range of Schmitt angles  0 ,120    (see Fig. 13). However, for an isotropic material 

having r-values very close to 1, the Schmitt angles are limited between 30° and 90°.  
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Fig. 13: Schmitt angle   as a function of the angle   between uniaxial tension and rolling 

directions for r-values indicated in the figure.  

 

Appendix B 

A semi-implicit return map algorithm was developed for temporal integration of the rate 

constitutive equations (see e.g. Moran et al. (1990) and Belytschko et al. (2000)) and the 

proposed continuum plasticity model was implemented as a user-defined material subroutine in 

the finite element code LS-DYNA. The implementation is valid for explicit finite element 

methods.  

The stress ˆ
nσ  and the internal variables ˆ

nP , ,
ˆ

i nX , nR , ,i nR , ,o nS  and ,r nS  are assumed to be 

known at time step n . Let us denote the collection of internal variables as q̂  and their plastic 

moduli as ĥ , so that ˆˆ q h  represents the evolution equation for q̂ . Given the strain increment 

1 1 1
ˆˆΔ Δn n nt  ε D , where 1nt   is the time increment, the purpose of the constitutive integration 

algorithm is to compute the stress 1nσ  and the collection of internal variables 

 1 1 , 1 , 1 , 11 , 1, , , , ,ˆ ˆˆ
nn n i n i n o n r nR R S S     q P X  at the time step 1n  while satisfying the yield 

condition 
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    1 1 1 1 1 , 1 , 11
ˆˆ ˆ 0ˆ,n n n nn n o n r nf f R S S             σ σ Xq   (32) 

where 1 , 1

2

1

ˆ ˆ
n i ni 

X X . The algorithm starts with calculating the elastic predictor of the stress 

as 

 1 1
ˆˆ ˆ ˆ:Δtrial

n n n  σ σ ε   (33) 

and checking whether the yield criterion for this trial stress is violated. If one obtains 

 1 1
ˆˆ , 0trial trial

n n nf f  σ q , then the trial step is purely elastic and the update at time step 1n  is 

done simply as 

 1 1 1
ˆ ˆˆ ,trial

n n n n   σ σ q q   (34) 

On the other hand, if  1 1
ˆˆ , 0trial trial

n n nf f  σ q , then the step is elastic-plastic and a plastic 

corrector has to be determined in order to achieve consistency according to Eq. (32).  

Before the return map algorithm is initiated, the normal to the yield surface  ˆ ˆˆ ˆ, /n n n nf  n σ q σ  

and the plastic hardening moduli ˆ
nh  are computed using the state variables ˆ

nσ  and ˆ
nq  at time 

step n . The updated stress 1
ˆ

nσ  and internal variables 1
ˆ

nq at time step 1n  are then given by 

 1 1 1 1 1
ˆ ˆˆ ˆ ˆˆ ˆ : ,trial

n n n n n n n n        σ σ n q q h   (35) 

It is seen that this algorithm is implicit in the plastic parameter 1n  , while the plastic flow 

direction ˆ
nn  and the hardening moduli ˆ

nh , evaluated at the previous time step n , are kept 

constant during the iterations. This semi-implicit stress update scheme is an efficient and robust 

algorithm allowing simple implementation of complex constitutive models but the strain 

increments should not be too large. This makes the algorithms particularly suited for explicit 

finite element methods where time steps are usually very small, thus limiting the strain 

increments.  

Combination of Eqns. (32) and (35) provides a nonlinear equation for 1Δ  n  which is solved by 

employing the Newton procedure. The equation  1 0nf     is linearized in iteration ( )k  as 
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where we have used the notation  ( ) ( )

1 1Δk k

n nf f   , and from which increment ( )

1

k

n 
 is used to 

update the 1Δ n   in iteration ( 1)k   as 

 ( 1) ( ) ( )

1 1 1Δ Δk k k
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where ( )

1

k

n 
 is estimated as 
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  (38) 

The iteration process continues until 

 
( 1)

1

( 1)

1

k

n

k

n

f












   (39) 

where a typical value of the tolerance   is 610 ; ( 1)

1

k

n


  being the current value of the effective 

stress with respect to the back stress. At the end of the iteration process, the plastic parameter 

1Δ n   is obtained, and the stress and the internal variables can be updated according to Eq. (35).  
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