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On the equivalence and impact on stability of

impedance modelling of power electronic converters

in different domains
Atle Rygg, Marta Molinas, Chen Zhang and Xu Cai

Abstract—Small-signal analysis of power electronic converters
and systems is often carried out by impedance-based methods. At
the core of these methods lies the impedance modelling, which can
either be obtained through analytical calculations, simulations or
measurements. The impedance models can be obtained into two
main domains - the dq-domain and the sequence domain. In
the dq-domain the impedance model is a 2x2 matrix, while in
the sequence domain it is composed by the positive and negative
sequence impedance. Recently, a third domain called the modified
sequence domain was defined as an extension to the sequence
domain, but also with clear similarities to the dq-domain. The
objective of this paper is to unambiguously relate to each other
the impedances in these three domains, and to show how this
equivalence translates into their respective stability assessments.
It is also proven that the sequence domain impedance has the
same marginal stability condition as the dq-domain impedance
matrix.

The three-phase Voltage Source Converter is used as an
example converter in this paper, as its impedance model in
all three domains is well established and reported by previous
research. The results in this paper shows that the modified
sequence domain model can be derived from the dq-domain model
(and vice versa), and that the stability analysis will be identical
in these two domains. It is also shown how the original sequence
domain model can be derived from the two other models through
a model reduction. However, a small discrepancy between the two
Nyquist plots is observed in the presence of components such as
phase lock loop or DC-link control.

Keywords—dq-domain, Impedance Modeling, Power Electronic
Systems, Sequence Domain, Stability Analysis.

I. INTRODUCTION

Impedance models of power electronic converters are useful
for control dynamics and stability studies, as well as for
harmonic resonance analysis. Previous works have derived
models of e.g. three-phase Voltage Source Converters (VSC)
[1]-[4], Modular Multilevel Converters [5] [6] and single-phase
VSCs [7]-[9]. Some examples of applications of impedance-
based models for small signal stability analysis can be found
in [10]-[16].

The two-level three-phase VSC is a widespread converter
technology utilized in a many applications as well as power
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Fig. 1: Illustration of the transformation of models presented
in the paper. Benchmark analytical models are indicated by
references, while the relevant equation numbers are indicated
below the arrows

levels. Impedance modeling of the three-phase VSC is nor-
mally performed in either the dq-domain or in the sequence
domain. The dq-domain was first applied in [17], and the
resulting impedance model is a 2x2 matrix that relates the
d-and q-axis voltages to the corresponding currents. Examples
of of dq impedance model applications can be found in the
three-phase VSC is performed in e.g. [3][4][18][19].

Sequence domain analysis is the other main approach to
obtain an impedance model. The method is presented in [20],
and a widely applied model is derived in [1].

Recently, a third domain called the Modified Sequence
Domain was introduced for obtaining an impedance model
which combines the dq-and sequence domains. It has been
shown that the dq-impedance matrix is equivalent to a 2x2
modified sequence domain impedance matrix where the pos-
itive and negative sequence are shifted by two times the
fundamental frequency [21]. The analytical VSC-model in the
modified sequence domain was derived in [2]. Application of
the modified sequence domain to low frequency interactions in
wind farms is performed in [22], while a VSC-HVDC system
is analyzed in [23].

The contribution of the present paper is on the method for
relating analytical impedance models in the dq-domain to their
respective equivalents in the sequence domain. The methodol-
ogy is illustrated in Fig. 1. The dq-model is first transformed
into the modified sequence domain by the linear transformation
(12) derived in section III. The modified sequence domain
matrix can be used to obtain the original sequence domain
impedances by another transformation. A frequency shift is
also required in this step. This is achieved by the relations
(16) or (18) derived in section IV. Note that this procedure is
not reversible, i.e. the modified sequence domain impedance
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ZL
p (s) =

KmVdc [Hi(s− jω1)− jKd]Gi(s) + sL

1− (C1

2 ejφc1 + [Hi(s− jω1)− jKd]
I1
2 e

jφi1) · TPLL(s− jω1)Gv(s)
KmVdc

V1

ZL
n (s) =

KmVdc [Hi(s+ jω1) + jKd]Gi(s) + sL

1− (C1

2 e−jφc1 + [Hi(s+ jω1) + jKd]
I1
2 e

−jφi1) · TPLL(s+ jω1)Gv(s)
KmVdc

V1

(1)

matrix cannot be obtained from the original sequence domain
impedances.

The presented methodology is general and extends a pre-
vious work by the same authors [21]. In the present paper
additional expressions are derived, and the method is applied
to the three-phase VSC as an example. The objective of this
example is to establish an unambiguous relation between the
analytical dq-model in [3] with the modified sequence domain
model in [2], and also the sequence domain model in [1].

II. IMPEDANCE MODELS OF THE THREE-PHASE VSC

The three-phase VSC is used as an example converter for
the presented methodology. A schematic of the converter and
the control system is given in Fig. 2. Gv and Gi represent
the combined effect of transducer delay, lowpass filter and
Analog-to-Digital conversion for voltage and current measure-
ment, respectively. The delay due to Pulse-Width-Modulation
(PWM) is also included in these transfer functions in the same
way as in [1]. The output filter is simplified to the series
inductor L in order to be consistent with the modeling in [1]
and [2]. Details of the Phase Lock Loop (PLL) and the current
controller are given in Fig. 3. The basic synchronous reference

frame PLL is considered with HPLL(s) =
(

kp,pll +
ki,pll

s

)

1
s .

The current controller applies a PI-controller Hi(s) = kp+
ki

s
with decoupling term Kd. A constant dc-link voltage Vdc is
assumed in the modeling in the same way as the reference
models listed in the next paragraph.

The following three impedance models will be used as basis
for the comparison in this paper:

A The sequence domain model from [1]
B The dq-domain model from [3]
C The modified sequence domain model from [2]

These three models are now presented in separate sub-
sections along with a brief discussion on their respective
impedance domains.

A. Impedance Model by Harmonic linearization in the se-
quence domain

Sequence domain impedances are widely adopted for sta-
bility analysis and harmonic resonance analysis. In the present
paper this domain will also be referred to as the original
sequence domain, in order to clearly distinguish from the mod-
ified sequence domain. By applying harmonic linearization, a
subsystem can be characterized by its positive and negative
sequence impedance defined as [20]:
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Fig. 2: Grid-connected converter with PLL and current con-
troller
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Fig. 3: PLL (upper) and current controller (lower)

Zp(s) =
Vp(s)

Ip(s)

Zn(s) =
Vn(s)

In(s)
(2)

where subscripts p and n denotes positive and negative
sequence, respectively. The analytical model of the grid-
connected VSC with dq-domain current controller was derived
in [1]. This model is given in (1). Superscript L indicates that
this is the load subsystem (e.g. the VSC in Fig. 2), whereas the
Thevenin grid equivalent is the source subsystem. Km is the
modulator gain, while I1e

jφi1 = Id0+ jIq0 is the fundamental
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Z
L
dq(s) = (Z−1

out +GidGdel([−Gci +Gdei]G
i
PLL +Gd

PLL]K)−1 · (I +GidGdel[Gci −Gdei]K)

Y
L
dq(s) = (I +GidGdel[Gci −Gdei]K)−1 · (Z−1

out +GidGdel([−Gci +Gdei]G
i
PLL +Gd

PLL]K) (3)

Y
L
pn(s) =

[

Yp(s) Jn(s)
Jp(s) Yn(s)

]

Yp(s) =
1− KmVdc

V1
Gv(s+ jω1)TPLL(s)(

I1
2 Hi(s)e

jφi1 + C1

2 ejφc1)

(s+ jω1)L+KmVdcGi(s+ jω1)Hi(s)

Yn(s) =
1− KmVdc

V1
Gv(s− jω1)TPLL(s)(

I1
2 Hi(s)e

−jφi1 + C1

2 e−jφc1)

(s− jω1)L+KmVdcGi(s− jω1)Hi(s)

Jp(s) =

KmVdc

V1
Gv(s− jω1)Gv(−jω1)

2TPLL(s)(
I1
2 Hi(s)e

−jφi1 + C1

2 e−jφc1)

(s− jω1)L+KmVdcGi(s− jω1)Hi(s)

Jn(s) =

KmVdc

V1
Gv(s+ jω1)Gv(jω1)

2TPLL(s)(
I1
2 Hi(s)e

jφi1 + C1

2 ejφc1)

(s+ jω1)L+KmVdcGi(s+ jω1)Hi(s)
(4)

(stationary) current in the specific operation point. Similarly,
C1e

jφc1 = Cd0 + jCq0 is the fundamental (stationary) duty
cycles provided from the current controller. The angles φi1 and
φc1 are referred to the fundamental phase A terminal voltage.
The transfer function TPLL in (1) is derived in [1] as:

TPLL(s) =
V1HPLL(s)

1 + V1HPLL(s)
(5)

where V1 is the amplitude of the fundamental (stationary)
terminal voltage in the specific operation point.

Note that the voltage feed-forward (Kf (s) in [1]) is omitted
since it is not included in [3] or [2], and the objective of the
present paper is to compare these three impedance models,
from the stability point of view.

B. Impedance Model in the dq-domain

The following model can be used to describe the small-
signal dynamics of a power electronic system in the dq-domain
[17]:

[

Vd(s)
Vq(s)

]

= Zdq(s)

[

Id(s)
Iq(s)

]

=

[

Zdd(s) Zdq(s)
Zqd(s) Zqq(s)

] [

Id(s)
Iq(s)

]

(6)

The analytic impedance model in dq-domain for the grid-
connected converter in Fig. 2 has been derived in e.g. [3] and
[4]. The model in [3] is used as basis for comparison in the
present paper, and is given in (3).

The variables in (3) are generally a function of the Laplace
operator s, but s is omitted in order to have a more com-
pact representation. The model is composed by the following

transfer functions and matrices:

Gid = −Vdc

[

sL −ω1L
ω1L sL

]

−1

Zout =

[

sL −ω1L
ω1L sL

]

Gd
PLL =

TPLL(s)

V1

[

0 −Cq0

0 Cd0

]

Gdei =

[

0 −Kd

Kd 0

]

Gi
PLL =

TPLL(s)

V1

[

0 Iq0
0 −Id0

]

Gci =

[

Hi(s) 0
0 Hi(s)

]

(7)

Note that the nomenclature in [3] has been slightly modified
in order to adapt with the nomenclature in [1]. Specifically,

GPLL(s) in [3] is equal to
TPLL(s)

V1
in [1]. Also, the output

filter resistance is neglected to be consistent with [1]. A small
difference in the modeling between [1] and [3] lies in the
representation of measurement filter and transducer delay. In
[3] the delay transfer matrix Gdel and the filter transfer matrix
K in [3] are acting on the dq-domain current and voltages,
while in [1] the corresponding transfer functions Gv(s) and
Gi(s) are acting directly on the phase (abc) signals. This will
result in some differences in the resulting impedance model,
see Appendix B for more details. In order to minimize the
differenes between the models, the following assumption is
made:

Gdel(s) ·K(s) = Gv(s)I = Gi(s)I (8)

where I is the 2x2 identity matrix. Consequently, the delay
and filter transfer functions for current and voltage in [1] are
assumed equal: Gi = Gv .

C. Impedance Model in the Modified sequence domain - a
bridge between dq-and sequence domain

The term modified sequence domain was introduced in [21]
as an extension to the well established harmonic linearization
in the sequence domain [20]. The same domain has been
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applied by others in [2],[22]-[24]. It is also remarked that the
2x2 modified impedance domain matrix has similarities to the
method involving complex transfer matrices in [25], especially
concerning the definition of dq unsymmetric systems. Other
works relating the dq and sequence domains to each other can
be found in [26] and [27].

The modified sequence domain extends the original se-
quence domain by letting the terminal equivalent also include
the coupling between s + jω1 and s − jω1. This coupling is
caused by e.g. PLL, DC-link dynamics and control, power con-
trollers and synchronous machine rotor saliency. The coupling
is formally defined as dq unsymmetric systems in [25] and as
mirror frequency coupling in [21]. See appendix C for more
details. The impedance matrix Zpn is capturing the coupling
as follows:

[

Vp(s+ jω1)
Vn(s− jω1)

]

= Zpn(s)

[

Ip(s+ jω1)
In(s− jω1)

]

=

[

Zpp(s) Zpn(s)
Znp(s) Znn(s)

] [

Ip(s+ jω1)
In(s− jω1)

]

(9)

where subscript p denotes positive sequence, and subscript
n denotes negative sequence. It is seen from the definition that
the off-diagonal elements Zpn and Znp are a direct measure
of the above mentioned coupling. Note that the voltages and
currents are referred to s+ jω1 and s− jω1, while the matrix
itself is referred to s. This choice is made in order to obtain the
linear transform derived in section III. It is remarked that the
matrix Zpn(s) is referred to the dq-domain, since s = 0 leads
to positive sequence components at fundamental frequency.
Consequently, a frequency shift is needed when relating the
modified sequence domain matrix to the original sequence
domain impedances defined in (2). This frequency shift is
discussed in section IV.

In [2] the admittance matrix of the grid-connected converter
was derived in the modified sequence domain. The model is
repeated in (4).

Note that the frequency was referred to the positive sequence
in the original publication [2], and that the substitution s → s+
jω1 is applied to all elements in (4) in order to be compatible
with the definition used in the present paper (9). The notation is
similar to the model in [1] with the following exceptions. The
current controller decoupling term Kd is neglected in [2]. Also,
the transfer function TFPLL(s) in [2] is equal to V1TPLL(s)
in [1]. Finally, in order to be consistent with [1], the modulator
gain Km is assumed to be a pure gain, while all dynamics are
assumed to be included in Gv(s) and Gi(s).

III. RELATION BETWEEN IMPEDANCE MODELS IN dq-
AND MODIFIED SEQUENCE DOMAIN

By combining Parks transform with the symmetric compo-
nents transform the following relations can be derived [21]:

[

Vp(s+ jω1)
Vn(s− jω1)

]

=

√
3√
2

[

1 j
1 −j

] [

Vd(s)
Vq(s)

]

[

Ip(s+ jω1)
In(s− jω1)

]

=

√
3√
2

[

1 j
1 −j

] [

Id(s)
Iq(s)

]

(10)

The relation between dq-domain and modified sequence
domain impedance matrices can then be found by combining
(6), (9) and (10):

[

Vp(s+ jω1)
Vn(s− jω1)

]

= Zpn(s)

[

Ip(s+ jω1)
In(s− jω1)

]

√
3√
2

[

1 j
1 −j

] [

Vd(s)
Vq(s)

]

= Zpn(s)

√
3√
2

[

1 j
1 −j

] [

Id(s)
Iq(s)

]

[

Vd(s)
Vq(s)

]

=

[

1 j
1 −j

]

−1

Zpn(s)

[

1 j
1 −j

] [

Id(s)
Iq(s)

]

(11)

The last relation can be written with matrix notation as:

Zdq = A−1
Z ZpnAZ

Zpn = AZZdqA
−1
Z

AZ =
1√
2

[

1 j
1 −j

]

(12)

where the transformation matrix AZ is unitary since its
inverse is equal to its complex conjugate transpose. It is
known from linear algebra that eigenvalues are invariant when
multiplied with unitary matrices as in (12). Consequently, a
stability analysis by e.g. the Generalized Nyquist Criterion
will be identical in the dq-domain and the modified sequence
domain. This is verified by simulations in Fig. 7.

The linear impedance transform in (12) has been applied
to the analytical dq-domain model in (3), and the derivation
is presented in appendix B. The result is then a modified
sequence domain matrix. Note that the admittance is con-
sidered instead of the impedance in order to be compatible
with [2]. This result is compared with the modified sequence
domain analytical model (4), and the following equivalence
was established:

AzY
L
dq(s)A

−1
z = Y

L
pn(s) (13)

Note that a few minor differences in notation and assump-
tions were identified in order to reach this result, as discussed
in appendix B. Hence, the model in [2] has been derived based
on the dq-model from [3]. This completes the first step in the
methodology from Fig. 1.

IV. RELATION BETWEEN IMPEDANCE MODELS IN

ORIGINAL AND MODIFIED SEQUENCE DOMAIN

This section explains the second step in the methodology
in Fig. 1. The main assumption in this section is that the grid
equivalent does not contain the coupling between s+ jω1 and
s− jω1. By the definitions in [25] the grid is then assumed dq
symmetric. In other words, ZS

pn = ZS
np = 0, where superscript

S denotes the source subsystem (i.e. the grid equivalent).
This is a widely applied assumption, and will simplify the
expressions significantly. In [21] the more general expressions
taking into account dq asymmetry in both subsystems were
derived.

The impedance Zp is obtained by assuming positive se-
quence shunt current injection Iinj,p in the interface point



5

1( ) ( )L L
np pZ s I s jw+

1( )nV s jw-

1( )S
nI s jw- 1( )L

nI s jw-

1( )pV s jw+

1( )S
pI s jw+ 1( )L

pI s jw+

,inj pI

1( ) ( )L L
pn nZ s I s jw-

( )L
nnZ s( )S

nnZ s

( )L
ppZ s( )S

ppZ s

Fig. 4: Illustration of equations (14) needed to obtain the model
reduction from modified to original sequence domain (16)

between source and load subsystem [21]. This gives the
following set of equations:

Vp(s+ jω1) = ILp (s+ jω1)Z
L
pp(s) + ILn (s− jω1)Z

L
pn(s)

Vn(s− jω1) = ILp (s+ jω1)Z
L
np(s) + ILn (s− jω1)Z

L
nn(s)

Vp(s+ jω1) = ISp (s+ jω1)Z
S
pp(s)

Vn(s− jω1) = ISn (s− jω1)Z
S
nn(s)

ISn (s− jω1) = −ILn (s− jω1)

ZL
p (s+ jω1) =

Vp(s+ jω1)

ILp (s+ jω1)
(14)

A circuit is presented in Fig. 4 to illustrate (14) A similar set
of equations can be used to also obtain the negative sequence
impedance ZL

n (s− jω1). Solving these two sets of equations
gives:

ZL
p (s+ jω1) = ZL

pp(s)−
ZL
pn(s)Z

L
np(s)

ZS
nn(s) + ZL

nn(s)

ZL
n (s− jω1) = ZL

nn(s)−
ZL
np(s)Z

L
pn(s)

ZS
pp(s) + ZL

pp(s)
(15)

The next step is to shift the frequency axis in order to be
compatible with (2). This is done by substituting s → s −
jω1 for ZL

p , and s → s + jω1 for ZL
n . The resulting original

sequence domain impedance is then:

ZL
p (s) = ZL

pp(s− jω1)−
ZL
pn(s− jω1)Z

L
np(s− jω1)

ZS
nn(s− jω1) + ZL

nn(s− jω1)

ZL
n (s) = ZL

nn(s+ jω1)−
ZL
np(s+ jω1)Z

L
pn(s+ jω1)

ZS
pp(s+ jω1) + ZL

pp(s+ jω1)
(16)

Models obtained by these relations are referred to as ac-
curate models in the original sequence domain [28]. It is
proven in appendix D that this model has the same marginal
stability condition as the dq and modified sequence domain
models. An important and undesirable property in (16) is that
parts of the source (grid) subsystem impedance appears in the
expression for the load (converter) subsystem impedance. This
appears counter-intuitive as one would expect the converter
impedance model to only depend on the converter parameters
and the system operation point. This apparent contradiction
is a consequence of the effect referred to as mirror frequency
coupling in [21] and dq unsymmetric systems in [25]. Note that
the effect vanishes in case the off-diagonal elements in Z

L
pn are

zero. A simplified and more applicable version of (16) can be
derived if one of the two following assumptions are satisfied:

• The grid is relatively strong, i.e. the term |ZS
nn(s)| is small

compared with |ZL
nn(s)|, and |ZS

pp(s)| is small compared

with |ZL
pp(s)|

• The converter is close to dq symmetric, i.e. ZL
pn(s) ≈

ZL
np(s) ≈ 0

The simplified expressions are then:

Z
L
p (s) ≈

ZL
pp(s− jω1)Z

L
nn(s− jω1)− ZL

pn(s− jω1)Z
L
np(s− jω1)

ZL
nn(s− jω1)

Z
L
n (s) ≈

ZL
pp(s+ jω1)Z

L
nn(s+ jω1)− ZL

np(s+ jω1)Z
L
pn(s+ jω1)

ZL
pp(s+ jω1)

(17)

By observing that both numerators in (17) are the determi-
nant DL

pn of Zpn, the expressions can be written as:

ZL
p (s) ≈

DL
pn(s− jω1)

ZL
nn(s− jω1)

=
1

Y L
pp(s− jω1)

ZL
n (s) ≈

DL
pn(s+ jω1)

ZL
pp(s+ jω1)

=
1

Y L
nn(s+ jω1)

(18)

where Y L
pp and Y L

nn are the diagonal elements in the matrix

Y
L
pn = (ZL

pn)
−1. Equation (18) completes the methodology

in Fig. 1 as the original sequence impedances are obtained
from the modified sequence domain matrix. If these equations
are used, the model is referred to as a reduced model in the
original sequence domain [28].

The simplified relation (18) can be verified for the three-
phase VSC analytical models by comparing the diagonal
elements in (21) with the expressions derived in [1] given
in (1). By visual inspection it is concluded that these two
expressions complies with (18). The only exception is the
argument of the filter transfer functions Gv(s) and Gi(s), this
is due to the different modeling discussed in section II-B and
appendix B. It is therefore concluded that the sequence domain
impedance model derived in [1] has been obtained based on
the dq-model from [3].

V. IMPEDANCE MODELS COMPARISON

A. Comparison of matrix impedance models

In addition to the dq- and modified sequence domain
impedance models extensively discussed in this paper, a few
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other related models are proposed in recent research:

• Phasor-based 2x2 impedance matrix [29]
• Modified sequence domain based transfer matrix includ-

ing also DC-terminals [23]
• Modified sequence domain impedance matrix referred to

phase domain frequency [30]

In [29] an impedance model based on phasors is derived, and
the equivalence with the dq- and modified sequence domain
matrix is proven. The previous work by the same authors
[23] extends the modified sequence domain definition to also
include DC-terminals. This is useful when analyzing systems
where an AC/DC converter is the interface between AC- and
DC- power systems.

In [30] a sequence domain impedance matrix is derived
that is slightly different than the modified sequence domain
matrix. Actually, the modified sequence domain matrix is an
intermediate step in their derivation, as can be seen by equation
(31) in [30]. The final step is to frequency shift the elements in
the matrix, e.g. equations (32)-(34) in [30]. Consequently, the
matrix elements are all referred to the phase domain frequency
and not to the dq-domain frequency.

When comparing all 2x2 matrix based impedance models,
there is no obvious practical benefit with one method or the
other as:

• The analytical models are very similar, and equally chal-
lenging to derive. The exception is the dq-domain model,
see the discussion below.

• The procedure for establishing the matrices from fre-
quency sweeps is close to identical

• Methods for stability analysis and the associated interpre-
tation are equal

A small disadvantage with the dq-domain impedance model
compared with the other models is the fact that the magni-
tude of its off-diagonal elements is normally larger than the
other models. This makes interpretation and stability analysis
more challenging, as neglecting the off-diagonal elements for
simplicity may not be possible.

However, a small advantage with the dq-domain impedance
model is that the analytical models are normally easier to
derive than the other domains. In the authors’ opinion, a
good approach is to derive models in the dq-domain, and
then transform them into the modified sequence domain when
performing the stability analysis.

B. Comparing SISO vs. MIMO impedance models

Interpretation of the different elements in the modified se-
quence domain impedance matrix is more challenging than the
original sequence impedance due to the off-diagonal elements.
The off-diagonal elements can be viewed as a measure of the
mirror frequency coupling in the system. A large magnitude is
equivalent to a strong coupling. When the magnitude is small,
modified and original sequence domain impedances are close
to identical. Contributors to off-diagonal elements are e.g. PLL,
DC-link dynamics and synchronous machine saliency.

In most cases, a rough indication of the stability can
be obtained by considering the diagonal elements only. By

applying the reduced model (18), it is clear that the diagonal
elements in the modified sequence domain admittance matrix
equals the original sequence domain admittance. Consequently,
considering the diagonal elements only is a valid approach for
simplified analysis. For example, a negative real part in the
diagonal elements indicates potential for stability issues.

A challenge with the 2x2 impedance matrices in the dq-and
sequence domains is that they are referred to a certain refer-
ence frame, typically the local terminal voltage. As different
matrices are referred to different reference frame in the system,
basic circuit operations such as series connection is not directly
applicable. They will require a coordinate transformation in
order to align them to the same global reference frame to be
able to apply the rules for series or parallel combination of
impedances. This is elaborated in [31].

Identify components 

in the system with 

MFC

Find the associated 

frequency ranges 

where the coupling is 

significant

Analyze the system 

with original 

sequence domain 

impedance

Find the critical 

frequency range for 

stability issues

Is there significant 

coupling in the critical 

frequency range?

Sequence domain 

impedance can be 

used with confidence

Matrix impedance 

models are required 

for better accuracy

NOYES

Fig. 5: Proposed method for evaulating when original sequence
domain impedances give same stability analysis results as
matrix impedance models

C. Methods to evaluate accuracy of SISO impedance models

Several methods are derived in previous works for evaluating
the error in neglecting off-diagonal elements of 2x2 impedance
matrices:

• ACindex in [19] based on the dq-domain impedance
matrix

• Decoupling norm ǫ in [32]
• Diagonal dominance based criteria in [23]

All these norms are based on the minor-loop gain matrix
L = ZSYL. This is required for an accurate estimate of the
error, due to the coupling between source and load impedance
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given by (16). Relating the above three methods to the modi-
fied sequence domain yields:

ACindex,pn = | (Lpp − Lnn)
2

4LnpLpn
| > 1

ǫpn =
1

2

(

Lpp − Lnn −
√

(Lpp − Lnn)2 + 4LnpLpn

)

(19)

The diagonal dominance based criteria is satisfied if the
matrix is either row or column dominant, i.e.:

EITHER |Lpp| − |Lpn| > 0 , |Lnn| − |Lnp| > 0

OR |Lpp| − |Lnp| > 0 , |Lnn| − |Lpn| > 0 (20)

The method from [19] has been redifined in the modified
sequence domain in (19). All variables in (19) and (20) are
a function of s. ACindex,pn and ǫpn have similar structure,
but the advantage of ǫpn is that it directly expresses the
resulting error in the Nyquist plot as a function of frequency
(both magnitude and angle). The advantage with the diagonal
dominance method is that the expressions are simpler. The
method is also more conservative. A drawback with this
method is that no phase angles are taken into account, so it is
considered less accurate.

The three methods are equally challenging to apply, since
the minor loop gain matrix Lpn needs to be computed.
Therefore, none of the methods apply if the system is modeled
by original sequence domain impedance only. In addition, both
source and load subsystems are evaluated together, hence is it
not possible to evaluate the error by considering one subsystem
independently.

A method which is simpler to apply, and which does not
require evaluation by matrix impedance models, is proposed
in Fig. 5. The frequency ranges associated with Mirror Fre-
quency Coupling (MFC) can be identified based on the system
data. The frequency ranges associated with stability issues is
estimated based on the original sequence domain analysis. If
there is no MFC in the critical frequency range for stability
issues, one can conclude that the reduced models in the original
sequence domain are accurately predicting the stability and
stability margin.

D. Equivalence validation

A comparison of original sequence domain impedance mod-
els is presented in this section. The system in Fig. 2 is
analyzed with the parameter values given in Appendix A.
Average converter model is applied in the frequency sweep
simulations as this will give best match between the sweep
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and corresponding analytic equations. It is remarked that the
grid impedance Zth is relatively large, with short circuit ratio
equal to 3.

The following five approaches are compared in Fig. 6:

• The original sequence domain analytical model (1)
• The dq-domain analytical model (3) transformed by (12)

and (16), i.e. the accurate model in the original sequence
domain.

• The dq-domain analytical model (3) transformed by (12)
and (18), i.e. the reduced model in the original sequence
domain.

• Frequency sweep simulation used to obtain the dq-
impedance, then transformed by (12) and (16)

• Frequency sweep simulation used to directly obtain the
sequence domain impedance

The dq impedance sweep is obtained by the methodology
explained in [33]. The results of this validation case study in-
dicate that all five approaches arrive at very similar impedance
plots, in both magnitude and angle. The only notable difference
is seen in the positive sequence impedance between 20 and
40 Hz. The model in (1) gives identical result as the reduced
model (18), and this is expected since their analytic expressions
are the same. The accurate model (16) gives identical results
as the model obtained by the two frequency sweeps. This is
also expected since the frequency sweeps takes into account
the coupling between s+ jω1 and s− jω1 in the same way as
(16). However, the small discrepancy by applying (18) instead
of (16) is close to negligible. It has been verified that all plots
are identical if the grid impedance Zth is zero, but this plot is
omitted due to space constraints.

VI. IMPACT OF ACCURACY OF IMPEDANCE MODELLING

FOR STABILITY ANALYSIS

Impedance models are often used to perform stability analy-
sis through the Nyquist Criterion (NC) or Generalized Nyquist
Criterion (GNC) [34]. How to obtain the Nyquist curves in the
three domains is explained in [21]. Although the Nyquist plots
were compared between the three domains in a previous work
[21], it is repeated here in light of the analytical expressions
derived. It was proven in [21] that the dq-domain and modified
sequence domain always give the exact same Nyquist plots.
This is a property of the transform in (12). However, applying
the original sequence domain gives slightly different results.

The Nyquist plot comparison is presented in Fig. 7. Each
domain has two eigenvalue curves. It is clear that the dq- and
modified sequence domain matrices give the exact same result,
and a very small difference is seen when the original sequence
impedance is applied (1). Even if the original sequence domain
model correctly accounts for the frequency coupling inside
each subsystem, it does not fully capture the coupling between
the subsystems. This will impact the stability analysis, but in
this specific case analysis the difference is negligible. Based on
initial empirical experience it seems that the original sequence
domain can be used in stability analysis with confidence, but
additional research is needed to strengthen this statement.
Furthermore, in the opinion of the authors, the convenience
of having two independent single-input-single-output models
(2) in contrast to a 2x2 matrix (6) can generally justify a small
discrepancy in the stability analysis.

VII. CONCLUSIONS

This paper has demonstrated how impedance models in
different domains can be derived from each other. More
specifically, the dq-model and modified sequence domain
model can be related by a linear transform, while the original
sequence domain model can be obtained from the modified
sequence domain matrix. The presented relations are generally
applicable for all converters and systems, while the three-phase
VSC has been used as an example in this paper. The impedance
models from [1], [2] and [3] have been related to each other
by the proposed method.

The dq- and modified sequence domain matrix are equiva-
lent in terms of stability and eigenvalues. It is also proven that
the original sequence domain has the same marginal stability
condition as the matrix models if the accurate models are used
(16). However, when using the reduced models (18), some
information may be lost. More specifically, it was shown that
the reduced models are not fully capturing the system-level
coupling between s+jω1 and s−jω1. Such coupling is caused
by e.g. PLL, DC-link voltage controller and synchronous
machine saliency. While these aspects can impact the stability
analysis result, the deviation is expected to be small in most
cases.
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APPENDIX

A. Parameter values used in simulations

Vth= 690 V LL-RMS Sbase = 1 MW
fn= 50 Hz L = 227 µH
Lth= 505 µH Rth = 15.7 mΩ

kp = 2.42 · 10−4 p.u./A ki= 0.0726 p.u./(As)
kp,pll = 0.1775 rad/(V s) ki,pll = 8.88 rad/(V s2)
Vdc= 1127 V Gi(s) = Gv(s) = 1

1+5·10−4s

I∗

d = Id0 = 100 A I∗

q = Iq0 = 100 A

Kd = 1.27 · 10−4 p.u./A

TABLE I: Parameter values applied in the simulation case
study

B. Transforming the dq-model into modified sequence domain

By applying the impedance transform (12) to the dq-model (3), an
analytical model in the modified sequence domain is derived in (21).

Before comparing (21) with (4), the following assumptions are
made:

• Gv(s) = Gi(s), in order to adapt with [3]
• The PWM-delay is integrated into Gv similar to [1] and [3].

The parameter Km is then a constant gain, and is set equal to
1 to be consistent with [3].

• The filter and delay transfer function Gv(s) is close to unity at
fundamental frequency

• The current controller decoupling term Kd is set to zero in [2].

A final difference betweeen (21) and (4) is the argument in the
filter and delay transfer functions Gi(s) and Gv(s). They are acting
on dq-domain signals in [3], and on abc-signals in [2] and [1].
Consequently, Gv and Gi in [2] will not have the same response in
the off-diagonal elements in Zpn in the two models. If this modeling
choice is disregarded, the following equivalence can be established
by visual comparison:

Ypn,transf (s) = Y
L
pn (22)

In other words, the model derived in [2] is obtained by transforming
the model in [3] through (12).

C. dq symmetric systems and mirror frequency decoupled
systems

In [25] a system was defined as dq symmetric if the following
condition is satisfied:

Zdd = Zqq Zdq = −Zqd (23)

It can be shown that (23) is equivalent to Zpn = Znp = 0
by applying (12). This property was defined as mirror frequency
decoupled system in [21], as there is no coupling between s + jω1

and s− jω1. Hence, a dq symmetric system is the same as a mirror
frequency decoupled system. It was shown in [21] that in a dq
symmetric system the original sequence domain impedance model
has the same Nyquist plot as the dq-domain impedance matrix.
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D. Marginal stability equivalence proof

Consider the minor loop gain in the modified sequence domain
when the source subsystem is MFD:

Lpn = Z
S
pnY

L
pn =

[

ZS
pp 0
0 ZS

nn

] [

Y L
pp Y L

pn

Y L
np Y L

nn

]

(24)

where ”(s)” is omitted from all variables to save space. The eigen-
values of Lpn are given by the equation

det(λI− Lpn) = 0 (25)

According to GNC, the marginal stability condition is given by
λ = −1, as the Nyquist Curve then passes exactly through the critical
point (−1, 0). Inserting this into (25) gives the following expression
after some calculations:

DL +DS + Z
S
ppZ

L
nn + Z

S
nnZ

L
pp = 0 (26)

where DL and DS are the determinants of ZL
pn and Z

S
pn, respectively.

Using the accurate model in the original sequence domain (16), we
find the eigenvalues directly as the ratio of source and load impedance
since both matrices are decoupled:

λp =
ZS

pp

ZL
pp −

ZL
pnZL

np

ZS
nn+ZL

nn

λn =
ZS

nn

ZL
nn −

ZL
npZ

L
pn

ZS
pp+ZL

pp

(27)

Setting λp and λn equal to −1 and expanding gives:

−Z
L
ppZ

S
nn − Z

L
ppZ

L
nn + Z

L
pnZ

L
np = Z

S
ppZ

S
nn + Z

S
ppZ

L
nn

−Z
L
nnZ

S
pp − Z

L
nnZ

L
pp + Z

L
npZ

L
pn = Z

S
nnZ

S
pp + Z

S
nnZ

L
pp (28)

By comparing (26) with (28) we see that the expressions are
identical. Hence, it is proven that the stability analysis in the modified
sequence domain predicts marginal stability if and only if the analysis
by accurate models in the original sequence domain predicts marginal
stability.

In [28] a similar proof is derived for a more general system where
the source subsystem has non-zero off-diagonal elements.
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