
A workflow for Diffraction/Scattering
Computed Tomography using the
XRDtoolkit.
Presenting the easy to use Python module for

online XRD processing.

Amund Hov

Master of Science in Physics and Mathematics

Supervisor: Ragnvald H. Mathiesen, IFY
Co-supervisor: Olof Svensson, ESRF

Veijo Honkimaki, ESRF

Department of Physics

Submission date: September 2013

Norwegian University of Science and Technology

Abstract

We present an easy to use data analysis framework for X-ray diffraction
data. It is aimed at users and scientists for online analysis at the beam line
or offline anywhere. As an example application we present and demonstrate
a workflow for Diffraction/Scattering Computed Tomography data, covering
all steps from detector tilt calibration to sinogram assembly, filtering and
reconstruction. Finally we discuss the effects of sample self-absorption on
quantitative analysis and propose some solutions that could be investigated
in further work.

ii

Foreword

The work for this master thesis which is the final requirement for the Mas-
ter’s degree of Technical Physics at the Institute of Physics at the Norwegian
University of Science and Technology was started during the summer of 2012
as I stayed three months at the ESRF as an intern.

The work has consisted of planning and implementing a module in python for
providing the necessary functions and methods for analysing X-ray diffrac-
tion experiments. As a demonstration of the module’s capability an experi-
ment was done at the the end of june. The experiment was performed with
a dummy sample specially prepared for Diffraction/Scattering Computed
Tomography as done by ID15. Finally the last two months have been spent
on the presentation of the work in this thesis.

Before continuing I would like to thank my supervisor at NTNU Ragnvald
Mathiesen and Veijo Honkimaki for providing me with the opportunity
to return to the ESRF in march of 2013 as the final part of my master
program.

Many thanks goes also to beamline scientist Marco di Michiel as operator
of ID15. His suggestions for samples and help with the practical execution
of the experiment itself is very much appreciated.

I owe Simon Jacques my gratitude for the use of some of the valuable beam-
time, but also for their encouragement and interest in the data processing i
was doing.

In addition i would like to extend my thanks to Jerome Kieffer, Olof Svens-
son, Claudio Ferrero and the rest of the ESRF software group for their
feedback and suggestions on the software technical side.

Finally I would like to thank Natouk Kurdjian for her support and un-
derstanding while writing this report - as well as for keeping me fed.

ii

Contents

Glossary v

1 Introduction 1

1.1 Motivation . 1

2 X-ray diffraction and Tomography 3

2.0.1 Synchrotron radiation 5

2.1 Computed tomography . 6

2.1.1 Absorption tomography 7

2.1.2 Phase contrast tomography 7

2.2 Diffraction/Scattering tomography 8

2.2.1 Reverse analysis . 10

3 Data analysis 11

3.0.2 The method of least squares 11

3.0.3 Estimates of variance 12

3.1 Reconstruction algorithms . 13

3.2 Sinogram correction . 16

3.2.1 Deinterlacing . 16

3.2.2 Rotation center . 17

3.2.3 Bragg peak filtering 17

3.3 Sample self-absorption correction 21

3.3.1 Acceleration of absorption correction 22

3.3.2 Zero order approximation 25

4 xrdtoolkit 27

4.1 The framework . 27

4.1.1 Dependencies . 27

4.1.2 File handling . 28

4.1.3 The common tables 29

4.1.4 The sample class . 29

4.1.5 Testing . 30

4.1.6 Installation . 30

iii

4.2 xrdtoolkit scripts . 30
4.2.1 xrdtoolkit-calibrate . 32
4.2.2 xrdtoolkit-integrate 33
4.2.3 xrdtoolkit-assemble . 34
4.2.4 xrdtoolkit-reconstruct 37
4.2.5 xrdtoolkit-average . 38

5 Experiment 39
5.1 Setup . 39
5.2 Sample preparation . 40
5.3 Data collection . 42
5.4 Data reduction . 44

6 Results 45
6.1 Sinogram reconstruction . 47
6.2 Performance . 54

6.2.1 xrdtoolkit-average . 54
6.2.2 xrdtoolkit-calibrate . 54
6.2.3 xrdtoolkit-integrate 54
6.2.4 xrdtoolkit-assemble . 55

7 Discussion and conclusion 57
7.1 experiment . 57
7.2 Corrections . 57

7.2.1 Possible contamination 58
7.3 The toolkit . 58
7.4 Script performance . 59
7.5 Further work . 59

Appendices 62

A Detector coordinate systems 62

B Batch processing of Diffraction/Scattering Computed To-
mography data 64

C The xrdtoolkit module 69

D The xrdtoolkit script files 93

iv

Glossary

CPU Central Processing Unit. 28

Diffraction/Scattering Computed Tomography Term coined by Bleuet[4]
to disambiguate from the technique of Diffraction contrast Computed
Tomography (XRD-CT) as performed by e.g. Ludwig et al.[13]. iv, 1,
8, 9, 21, 23, 25, 34, 42, 57, 58, 64

ESRF European Synchrotron Radiation Facility. 43

FEM Finite Element Method. 7

GIL Global Interpreter Lock. 34

GPU Graphics Processing Unit. 28, 55

v

vi

Chapter 1

Introduction

1.1 Motivation

When doing X-ray diffraction experiments it is often necessary to perform
several steps of data reduction and analysis in order to evaluate a result. In
some cases data could even be found to be completely useless upon analysis
after the experiment has concluded. Online analysis at the beamline can be
useful in such cases, but for this to be feasible the software used must be
easy to operate and reasonably fast.

Furthermore, users of X-ray radiation are not necessarily specialists in nei-
ther X-ray diffraction or scientific computing. It would be useful for sy-
chrotrons and other facilities to be able to provide their users not only their
data, but also the tools to process them. The python modules proposed for
this thesis would be a modest attempt at starting to covering some of these
use cases.

Its aim is to be easy to install, use and extend for users and scientist having
to process x-ray diffraction data in the line of their research. To that end we
have spent considerable time making sure that the software is independent
of the computing infratructure of the ESRF, easy to operate and reasonably
fast.

Chapter 2 gives a short introduction to X-ray diffraction and tomography,
with a focus on the exciting new technique of Diffraction/Scattering Com-
puted Tomography .

In chapter 3 we establish the necessary theory underlying our least squares
fitting, estimation of uncertainties, sinogram reconstruction and sinogram
correction filters. Finally we discuss the problem of sample self-absorption in
Diffraction/Scattering Computed Tomography and propose some solutions

1

to try for later work.

In chapter 4 we start to present the software that was written over the course
of the spring and summer before finaly in chapter 5 and 6 we describe our
experiment and the results we obtained there.

At last we discuss the performance of our workflow and what might be
expanded upon in further work.

2

Chapter 2

X-ray diffraction and
Tomography

X-rays are able to penetrate bulk material that are otherwise opaque at
optical wavelengths. Systems using coupled X-ray sources and detectors
are therefore common in a lot of dfferent applications ranging from security
and customs checkpoints for looking inside packaging, clothing and other
materials in search of contraband and illegal objects, to medical imaging
of the human body, industrial applications such as non-destructiv tesing
and of course materials research. In this chapter we will concern ourselves
with X-ray scattering and absorption and how it is exploited in computed
tomography.

Assuming neglegible effects from dynamical diffraction theory the interac-
tion of X-ray with matter can be viewed as a series of scattering and ab-
sorption events. As a beam of X-rays passes through matter its intensity
is thus reduced as radiation is absorbed by the atoms or scattered in other
directions. Normally we describe this attenuation by its mass attenuation
coefficient (µ/ρ) where ρ is the material density. In general the coefficient is
a function of beam energy and chemical composition and combines a range
of different physical processes, each of which have a certain probability to
occur governed by their scattering cross sections σ.

Photoelectric absorption. The energy of the photon is sufficient
to eject an electron from the scattering atom. Remaining energy is
converted to kinetic energy of the electron.

Rayleigh scattering. The electric field of the radiation couples with
that of the electrons and is deflected in all possible directions without
any change in energy. The process is said to be elastic.

Compton scattering makes the photon impart some of its energy

3

and momentum to a weakly bound electron. The photon is both
shifted in energy and direction.

Pair production. At energies above 1.02 MeV (twice the rest mass
of the electron) the photons have enough energy to produce a virtual
electron-positron pair. Alone the photon cannot produce this pair
due to momentum considerations (a electron-posittron annihilation
requires two photons to carry momentum), but close to a nucleus it
can interact with virtual photons of the coulomb field imparting some
momentum.

Of these only rayleigh scattering produces coherent radiation. With co-
herency we mean that there is a fixed relationship between the phase of
incoming and outgoing radiation. This means that when summing up the
contributions from multiple scattering centers the combined intensity is a
vector sum; the individual waves can interfere with another in a construc-
tive and/or destructive manner. Significant effects only present themselves
when the wavelength of the radiation is comparable to the repetition dis-
tance in the scattering geometry. Typical interatomic distance is of the order
of 1Å with repeating units every 10Å in a typical crystalline solid. When
a large number of scattering atoms are arranged in a diffracting geometry
the result are sharp peaks of high intensity punctuated by large regions of
destructive interference. These peaks are called bragg peaks and occur only
when the path difference of each scattering center is a whole multiple of the
wavelength. This is called the bragg condition.

Amorphous materials, such as liquids and glasses exhibit only short-range
order and scatter X-rays over a wide range of 2θ angles. This means the
bragg condition is seldom satisfied and there are noe bragg peaks, but a
smoothly oscillating scattering intensity. Instead the amorphous phase is
described by its pair distribution function which is a measure of the prob-
ability to find an atom in the vicinity of another as a function of radial
distance.

Returning to our discussion about attenuation, it will be useful to decompose
the attenuation coefficient into two parts

µeff = µabs + µscat (2.1)

where µabs represents all effects which would absorb radiation and keep it
in the sample and µscat refers to radiation that is lost to the direct beam,
but which can be recorded coming from the sample at some angle 2θ. To
relate the intensity of our beam before and after passing through a sample
we postulate that the attenuation at a point is directly proportional to the

4

beam intensity and attenuation coefficient, that is, the change in intensity
dI when passing through a slice of thickness dx is

dI = −I(x)µ(x)dx.

The solution to this ordinary differential equation is known as the Beer-
Lambert law and is given by

I = I0 exp(−
∫
µdx) (2.2)

for a monochromatic, narrow beam.

2.0.1 Synchrotron radiation

Whenever charges are accelereated they give of radiation. Synchrotron ra-
diation referes to the radiation produced when charges are accelerated in a
direction normal to their velocity, that is, when they are made to change
direction. In a synchrotron this effect is exploited to generate bright beams
of radiation which can be used to probe materials.

In simple terms the operation of a synchrotron is as follow. Bunches of
electrons are produced and subsequently accelereated by a linear acceler-
ator (LINAC). The bunches are typically further accelerated in a smaller
synchrotron before being injected into the storage ring.

The storage ring has been evacuated for air and can hold the charges for ex-
tended periods of time, usually hours, while giving off synchrotron radiation.
In fact, the ring is not really a ring, but a sequence of segments connected
by sections where bending magnets direct the charges to the next segment.
It is at these bending sections that radiation is produced. In addiation 3rd
generation synchrotrons typically employ devices called wigglers and undu-
lators which forces the electrons to accelerate up and down on parts of the
otherwise straight segments. The force with which the electrons are

Relativistic collimation of beam. Strong relativistic effect (γ >> 1). In the
reference system of the electron it is accelerated up and down, radiating
with power distributed like the idealized dipol antenna. Due to the large
lorentz factor γ the synchrotron ring is contracted in the direction of travel.
Equivalently, in the laboratory system, the radiated beam is elongated in
the direction of travel, collimating it in the plane of the ring.

Synchrotron facilities are big, complex and expensive machines, but the
unique properties of its radiation more than pays for it, as is evident by

5

their commonplace in the world. The benefits of Synchrotron radiation can
be summarised as

• Coherent radiation

• Low emittance The electron beam is confined leading to a concen-
trated x-ray beam, high brightness.

• High luminosity. High photon count, enabling shorter exposures
and/or better statistics.

• Flexbility White beam can be used for max luminosity, or tuned to
desired wavelength using crystal monochromators.

In addiation the pulsed operation with electron bunches enables one to freeze
the sample in time at the nanosecond, much like the operation of a flash on
a camera affords high-speed photography.

The work for this master thesis was performed at the ID15A[2] beamline
at the European Synchrotron Radiation Facility in Grenoble. This par-
ticular beamline specialises in high-energy and high-resolution, ultra fast
µ-tomography. High-energy in this context refers to radiation in the range
30 − 500 keV, which is quite exotic considering X-rays are said to be hard
(highly penetrating) from 10 keV onwards. A collection of monochromators,
slits and refractive lenses allow tuning the wavelength and shaping the beam
for each experiment.

2.1 Computed tomography

Computed tomography is a quite recent technique enabled by modern com-
putation which has found great use in medicine and industry since it allows
non-invasive characterisation of bulk materials in three dimensions. Other
techniques for studying the chemical and structural properties of materials
generally requires either preparing the sample by slicing and polishing, pos-
sibly damaging the microstructure, or they are restricted to look at global
features and surfaces.

Computed tomography can be used for characterisation of materials on a
wide range of scales depending on the nature of the material and properties
to be studied. On the very small end, µ-tomography is useful in materials
science where the relation between micro-structure and macroscopic prop-
erties often is essential.

Finally, using synchrotron radiation which have near perfect parallel and
monochromatic beams, the reconstructions are free from geometrical or

6

hardening effects and can be used quantitively as there is a direct corre-
spondence between the reconstruction and corresponding physical property
in the material[15]. The reconstructed volume can then be used to perform
local characterisation or as input for Finite Element Method (FEM)-routines
to solve for mechanical, thermal and other properties of the material.

2.1.1 Absorption tomography

Since the refractive index of most materials is virtually equal to unity at
X-ray energies one usually works with the assumption that the beam follow
straight lines in the sample. The attenuation in the material depends on
material density and composition. In hospitals large machines producing
X-ray radiation irradiate the body from different angles and records the
attenuation as the beam travels through it. Having recorded the attenuation
from different angles reconstruction algorithms are used to compute the
density inside the body which would produce the registered pattern. There
are several methods for doing the reconstructions which we describe briefly
in the analysis section.

2.1.2 Phase contrast tomography

With the highly coherent radiation afforded by synchrotron facilities it has
become possible to record the difference in phase that X-rays xperience
when passing through a sample. Phase contrast tomography can provide
extra contrast in materials which are not that absorptive or which provide
poor absorption contrast. Internal structures of micro-sized fossils have been
studied in this manner.

The sample is assumed to consists of phases with refractive indices

ni = 1− δi + iβi. (2.3)

A plane monochromatic wave

exp(i
2π

λ
z)

traveling in free space will be modified to

exp(i ni
2π

λ
z)

when made to travel in the phase corresponding to ni. Written out this
leads to the the following xpression for the amplitude

exp(i(1− δi)
2π

λ
z) exp(−βi

2π

λ
z).

7

The first part is a pure retardation (−δ) of the phase as it travels in the
material compared to the virtually free propagation in air. The second part
is a attenuation of the beam which in intensity corresponds to

| exp(−βi
2π

λ
z)|2 = exp(−βi

4π

λ
z). (2.4)

Equation 2.4 gives us a direct relation to Beer-Lambert’s law 2.2 that we
used in absorption tomography. The relation to the attenuation coefficient
is thus

µ = β
4π

λ
. (2.5)

The phase retardation δ is essentially proportional to electron density (p.
30− 31)[6].

2.2 Diffraction/Scattering tomography

The combination of diffraction/scattering and tomography is a very recent
development made possible by advances in X-ray optics which enables prob-
ing samples with micro- or even nano-focused beams.

Unlike absorption and phase contrast tomography our signal is not the di-
rect beam, but the scattered or diffracted part that we defined for µscat in
equation 2.1. The technique is sensitive to the local crystalline structure of
the sample, so one could say that it provides 2θ or d-spacing contrast. This
makes it particularily suited for studying complex, poorly ordered materials
composed of various amorphous and poly-crystalline phases. Furthermore,
no a-priori knowledge is required for analysis.

We still use a 2D-area detector to record the data, but since the diffraction
patterns from different locations in the sample would be overlapping we
need to scan the sample with a pencil-beam one projection at a time. The
resolution of the final reconstruction is then directly associated with the size
of the probe. If a resolution of 100x100 is desired for instance, the beam
should not be much larger than one hundredth of the sample size. To record
one slice in a Diffraction/Scattering Computed Tomography experiment it is
necessary to perform a full scan across the sample for each projection which
can take hours depending on the available flux and how well the sample
is diffracting. The large amount of data is not a problem for storage in
these modern times, but it means loading and processing the data can be
cumbersome.

In contrast the typical resolution of a absorption contrast tomograph is
dependent on the effective pixel size of the imaging detector and a full 3D

8

volume can be reconstructed after a 180◦ scan of the sample. In certain
ultra fast tomography setups this can be done in less than a second.

However, the Diffraction/Scattering Computed Tomography probe can eas-
ily be combined with for instance fluorescence enabling simultaneous multi-
modal tomography.

Assuming that each voxel provides the same scattering power for each angle
we can reuse the principles of absorption tomography after an azimuthal
integration of the diffraction pattern. In practice this requires that the
crystallites in the sample be much smaller than the probe size so that a sta-
tistically meaningful number of them are available at different orientations
in the volume. This in effect puts a practical limit on the technique for
poly-crystalline samples.

Figure 2.1: Overview of the data reduction workflow. A series of diffraction
images taken with a 20482 resolution is reduced to a stack of
density tomograms through several steps: First azimuthal in-
tegration, then assembly of sinograms from selected phase or
region of interest and finally reconstruction of the assembled
sinograms.

A demonstration of feasability of the technique for medical imaging was
done by Kleuker et al.[12] in 1998 using a sample of soft tissue with bones,
muscle and fat. But already the the technique has been applied to various
samples such as Portland cements [18], pigments [7], teeth [8] and catalyst
bodies [14].

The name itself was coined by Álvarez-Murga, Bleuet and Hodeau [4] to
distinguish it from techniques such as diffraction computed tomography as
perfomed by Ludwig et al. Parts of this section are based on their paper

9

“Diffraction/scattering computed tomography for three-dimensional char-
actierization of multi-phase crystalline and amorphous materials”, and the
reader is encouraged to read their paper in full for a thorough treatment of
the technique and its advantages compared to more traditional imaging and
characterisation techniques. Its most attractive feature is perhaps the abil-
ity to perform in-situ analysis in 3D combined with the power of diffraction
based techniques.

2.2.1 Reverse analysis

If the sinograms are properly corrected for air scattering and normalized
so that the levels outside the field-of-view of the object are consistent it
is possible to do what is called reverse analysis. Instead of fitting single
peaks and doing reconstructions from there as we have done one performs
reconstructions on (r, ω)2θ for each and every 2θ angle. This then explains
each contribution to this scattering angle as a function of the voxel (x, y)
in sample. Another way to look at this is to look at all the contributions
(x, y)2θ, which is in effect a reconstructed powder 1D pattern at the voxel
level.

The quality of the 1D patterns extracted from reverse analysis can be good
enough to perform crystallographic analysis [5]. This opens up all sorts
of possibilities to use established diffraction techniques such as rietvald re-
finement, pair distribution function analysis and le Bail fitting on a voxel
level or averaged over a region of interest, something which can not be done
through X-ray diffraction tehcniques or computed tomography alone. A nice
example of this is the paper “Non-invasive imaging of the crystalline struc-
ture within a human tooth” by Egan et al. which uses reverse analysis to
map variations in lattice parameters, preferred orientations, organic content,
chemical composition and other parameters.

10

Chapter 3

Data analysis

This chapter presents the theory and methods used in the software section.
First we introduce the method of least squares which is the most common
method of solving optimisation problems. Then we go through different
strategies of reconsctructing tomographs from a set of projections.

Finally we discuss corrections for improving the quality of our sinograms
and the effect of sample self-absorption.

3.0.2 The method of least squares

In the method of least squares one tries to fit a series of observations
{y0, . . . , yn} to a model A(c0, . . . , cm) by minimizing their squared error.
The observations are modeled as stochastic variables

yi = A · c+ εi

where c is the vector of model parameters to be estimated and εi is the
observational error. There needs to be at least as many observations n
as there are parameters m. If the variance-covariance matrix Σy of the
observations is known one can write the generalized distance between model
and observations as

S = (y −A · c)ᵀΣy(y −A · c)

The estimator that best minimizes this is given by

ĉ = minc(S) = Σc ·AᵀΣ−1
y · y (3.1)

where

11

Σc = (Aᵀ ·Σ−1
y ·A)−1 (3.2)

is the estimated variance-covariance matrix of the parameters ĉ. The ordi-
nary least squares estimator

ĉ = AᵀΣ−1
y · y

most commonly cited is recovered by setting all off-diagonal elements of ΣC

to zero and all variances equal unity (the identity matrix). A special case
called weighted least squares is obtained when all off-diagonal elements (the
covariances) are set to zero. The inverted matrix is then

Σ−1
c =

1/σ2

0 0 0 . . . 0
0 1/σ2

1 0 . . . 0
...

...
...

...
0 0 0 . . . 1/σ2

i

weighting each observation in the regression according to its uncertainty
where lower variance leads to higher weights. This is the form we have used
in our peak fitting and calibration routines.

3.0.3 Estimates of variance

For a lot of our methods we use diffraction images subtracted for dark cur-
rent. We can model the stocasthic process of registering photons on the
detector as a poisson process. The uncertainty of such a process is given by

∆I =
√
n

. We modify this to

∆I =
√
n+ 1

for our use since an uncertainty of 0 for n = 0 is not helpful when using the
inverse uncertainty as weights in the weighted least square regression.

Each corrected image is then the combination of two poisson processes and
must be combined using Gauss’ law of propagation of uncertainty. Suppose
we have a function S(c) where the variance-covariance matrix Σc is known.

Defining the jacobian

J = (
∂s

∂c1
,
∂s

∂c2
, . . .)

12

the propagated uncertainty is given by

(∆S)2 = J ΣcJ
ᵀ. (3.3)

For the background subtraction S = nimg − ndark and

(∆S)2 = (∆nimg)
2 + (∆ndark)

2 = nimg + ndark + 2

which we modify to

(∆S)2 = nimg + ndark + 1

.

When dark current counts are not provided or in the case of an integrated
profile were all the original counts would have to be taken into account we
fall back to a constant bias being the median value of the background image.
In our code this has been hand-coded for the Perkin-Elmer detector, which
should be extended for other detectors.

3.1 Reconstruction algorithms

x̂

ŷ

(x, y)

(r cosω, r sinω)

r
ω

Figure 3.1: Coordinate system of rays going through the sample at an angle
ω and displacement r.

First we define our coordinate system as we rotate and scan the sample. We
assume that the sample is fixed and aligned to the coordinate axes x̂ and
ŷ as in figure 3.1. Assuming that we rotate about the center of the object,

13

the rays penetrate the object with their normal vector r̂ forming an angle ω
with the x-axis. In the figure we have hilighted one of these rays which has
been translated a distance r from the center of the object.

The equation of the line l can be written on vector form as

l : r · ((x, y)− (r cos θ, r sin θ) = 0

since any segment on the line should be normal to the translation vector r.
Writing out r = (r cos θ, r sin θ

(r cos θ, r sin θ) · ((x, y)− (r cos θ, r sin θ) = 0

which implies that

(r cos θx− r2 cos2 θ) + (r sin θy − r2 sin2 θ) = 0

. Collecting terms

rx cos θ + ry sin θ = r2(cos2 θ + sin2 θ)

and due to the identity cos2 θ + sin2 θ ≡ 1

x cos θ + y sin θ = r (3.4)

Figure 3.2: Rays passing through sample f(x, y) at differnt angles and their
profile f(0,ω) displayed.

14

Figure 3.2 shows the profile of two rays as they pass through the center of
the sample f(x, y) at some angles ω1 and ω2. The projection of f(x, y) along
the ray is given by the line integral

p(r, ω) =

∫
l∈(r,ω)

f(x, y)dl (3.5)

where l takes us through all the coordinates (x, y) of the line. Using our
relation in 3.4 we can rewrite this to

p(r, ω) =

∫ +∞

−∞

∫ +∞

−∞
δ(x cos θ + y sin θ − r)f(x, y)dxdy (3.6)

This equation is called the Radon transform of f(x, y) and is the mapping
between the cartesian system (x, y) of the sample and the parameters space
(r, ω) of the sinogram system. If one had a perfect knowledge of the pro-
jected values one could in theory perform the inverse radon transform on
the sinogram to recover f .

By the projection of a sample one usually means all the line integrals p(r)ω
for a fixed angle. The fourier slice theorem[6] tells us that there is a direct
correspondence between the fourier transform of the projection p(r)ω and
the fourier transform of the original function f(x, y) or more specifically that

F{p(r)ω} = F{f(r cosω, r sinω)}.

Each fourier transformed projection thus corresponds to a line in the fourier
spectrum of the function f(x, y). The fourier method of reconstruction
builds on this fact. If one uses all the projections to paint the fourier spec-
trum of the original function and interpolates the missing values one can
simply perform the inverse fourier transform to do the reconstruction. This
is intuitively appealing, and fast, but interpolation can lead to a large ar-
tifacts, especially the interpolation of phases can be problematic. However,
the method remains a nice option as a quick initial solution for feeding into
iterative methods such as SART.

Another method influenced by the fourier slice theorem is the filtered back-
projection. Backprojection refers to summing all the projections (r, ω) that
includes the pixel in question. This will include all the relevant contribu-
tions, but overemphasize the contribution from the closest pixels, and what
you end up with is a very blurry version of the original function.

The filtered backprojection method explores the connection between the
radon transform and the fourier transform showing that the function f(x, y)
can be reconstructed by performing backprojection, but with a filter on
the projections applied in fourier-space. Normally the filter is the ramp

15

function |R| which increses with frequency. In practice noise considerations
make other filters that cuts off the high frequencies more usable.

Lastly there are the algebraic methods which sets up the sinogram as a
discrete linear system of simultaneous equations

p = M · x

where p are all the measured projections from the sinogram, x is the recon-
structed function f(x, y) and M is the projection matrix that described the
relationship of the radon transform. The system is then solved in the least
square sense of minimizing the quadratic error. The system of equations
is usually to large to be inverted directly so an iterative approach is taken
where blocks of the projection matrix are solved one at the time. When the
shape of these blocks coincide with projections in the sinogram the method
is known as SART, or “Simultaneous algebraic reconstruction technique”.
This is the method we have depended on in conjunction with the Filtered
Backprojection algorithm (FBP.

3.2 Sinogram correction

This section describes the filters implemented in xrdtoolkit/tomo.py for
correcting sinograms assembled by peak fitting. The code itself is listed in
appendix C.3.

3.2.1 Deinterlacing

Figure 3.3: When the sample is scanned up and down alternately there
might be a slight shift between even and odd rows due to timing
differences in the acquisition. Here the effect has been exagger-
ated for illustration.

16

In order to save time when performing the experiment, scans are performed
both going up and down. Subtle timing differences can give shifts in the
projections after flipping back every other line in the sinogram. This effect
is shown exaggerated in figure 3.3. The de-interlacing filter attempts to find
this shift and applies the inverse to every odd row. The procedure is as
follows:

• We split the sinogram into two parts. One with the even rows and
another with the odd.

• We cross-correlate the two images through the relation (f ? g)(t) =
F−1{F ∗G} and use the coordinates of the maximum as inital shift.

• We construct a cost function with the correlation coefficient with the
initial shift applied to th odd rows and refine the shift by optimization.

• The sinogram is reassembled with the refined shift applied to the odd
rows.

3.2.2 Rotation center

Reconstruction algorithms usually assume the center of rotation to be run-
ning down the center of the sinogram. If this is not the case then artifacts
are introduced.In practice it can be difficult to center the scan accurately
when doing the experiment so we shift the sinograms after the fact.

The method we use is to correlate the first and last projections which are
spaced 180◦ apart from each other. When the sinogram is perfectly centered
the relation

p(r, ω) = p(−r, ω + π)

since we are in a parallel ray geometry. After flipping the last projection we
correlate them as we did with the subsinograms in the de-interlacing filter
and find find the shift that makes overlap best. The rotation center needs
to be shifted half of that.

3.2.3 Bragg peak filtering

For some orientations large crystallites or pollutants will be highly diffract-
ing completely saturating the signal compared to poly-crystalline and amor-
phous phases of the sample. We encountered this problem in our dummy
sample as can be see on some of the reconstructions in our results.

17

Figure 3.4: Integrated powder profile (blue) and fitted peak (red). At the
left edge the contributions from a bragg peak causes a negativ
area for the center peak in the least square fit.

The diffracting peaks may cause very high or very low values in the sinogram
depending on the location of the peak relative to the gaussian which is fitted.
If the bragg peak is not overlapping with the gaussian it will be fitted to
the linear background with a very high positive or negative slope, while the
gaussian function will try to compensate with a large negative area as shown
in figure 3.4.

Figure 3.5: Integrated powder profile (blue) and fitted peak (red).

If the bragg peak coincides with the peak being fitted our signal is dominated
and a artificially high value is found 3.5.

The problem with large values in the sinogram is that they are backprojected
in the reconstructed image as dark or bright streaks which masks otherwise
sensible values. This means that even if we are not able to remove the
bragg peak from the diffractogram used to assemble our sinogram we can at
least improve the reconstruction by reassigning the value to something less

18

extreme.

We have developed a simple filtering procedure that works directly on the
sinogram. Qualitatively this has worked satisfactory without manual user
input as demonstrated in figure 6.8 in our results section.

Figure 3.6: Typical histogram of sinogram with bragg spots. The positive
part has been shaded and annotated with mean and median.
The bragg spots are not to scale, but far off-figure, skewing the
arithmetic mean.

Initially we tried an approach using the sobel filter in the ω direction looking
at big changes from one angle to another. This brings out the spots really
well, but as an edge detector it does not mark the outliers themselves, only
their edges. Instead we ended up with adaptive thresholding which mean
selecting values which are much larger than the local median. The Numpy
modules in python already provides such a function threshold adaptive

defined by

pixel > [median(blocksize)− const]

where the median is performed in a block with blocksize×blocksize num-
ber of elements about the candidate pixel. We want to make the constant
term so big that we do not select any values in the sinogram itself, but small
enough that we include all the values which are caused by bragg spots. To
do this we consider a hypothetical sinogram with a histogram as drawn in
figures 3.6 and 3.7. Since the bragg spots may have very high or very low
values we split the procedure in two, considering high and low parts of the
sinogram separately. For some angles 2θ we found that the assembled sino-
grams were biased with negative values due to the assumption of a gaussian
diffraction peak on linear background. For instance when the background

19

Figure 3.7: Typical histogram of sinogram with bragg spots. The negative
part has been shaded and annotated with mean and median.
The bragg spots are not to scale, but far off-figure, skewing the
arithmetic mean.

followed a exponential decay the gaussian fit would compensate and even go
negative when there was not a big signal. In order to be robust against a
bias such as this we use the global median as a measure of the zero level in
the sinogram and split the histogram based on this value.

The bragg spots may be of different orders of magnitude, so we want to
use the median for our constant in the adaptive threshold routine. In some
extreme cases we saw that values which were clearly supposed to be caught
in the filter did not get above the treshold on account of the very skewed
arithmetic mean. The median is more robust to outliers and so will give us
a value closer to the actual sinogram in the histogram.

To control the number of points that we select in the filter we scale the
median by a number that we have chosen to call the upper and lower
sensitivity coefficients. They simply serve to scale the threshold value
beyond the values making up the sinogram. For our sinograms we found a
lower sensitivity of 1.5 and higher sensitivity of 0.2 to give good results, so
these serve as defaults, but can be changed at will when calling the filter
function.

Having made a decision about which pixels to mask we need to find some
better suited values to replace them with. If we look at the uncorrected
sinograms in figure 6.8 we can clearly see that the bragg spots appear as
horizontal lines, usually no more than one pixel in height and a few pixels
in width. We can therefore be fairly certain that the values just above and
below the one we are looking to replace are not affected by bragg peaks,

20

but can be used. The projections on the immediate left and right on the
other hand, are most likely suffering from the same diffracting condition and
should under no circumstance be used.

In the end we chose to use a 2D median filter with the following footprint

as a compromise between getting enough values to be robust while not sam-
pling too far away from the current location.

As a fail-safe there is a configurable tolerance for the high and low part. If
the filter finds that more than for instance 5% of the values are too bright or
too dark the filter panics and should do nothing for that part except write a
warning to the user. The motivation for doing this is that a sinogram which
has had a significant part replaced by that of the median filter described
above will lose a lot of information. Since Diffraction/Scattering Computed
Tomography sinograms already are low in resolution this is a situation that
needs to be avoided.

3.3 Sample self-absorption correction

In Diffraction/Scattering Computed Tomography we have particular prob-
lem with absorption in the sample. Our signal is in effect the the line integral
of µscat from equation 2.1 which we defined as the attenuation of the beam
due to scattering effects. These are the rays we are regisering on the diffrac-
tion detector. However voxels further along the gauge volume see a reduced
beam intensity, which is not due to µscat alone, but also µabs. In addition,
any radiation that is scattered in the gauge volume is further attenuated
as it exits the sample.In order to perform quantitive tomography, we really
need to correct for this self-absorption if the sample contains any heavier
elements.

Looking at figure 3.8 we will try to derive an expression for the effective line
integral that we will record on the detector.

When performing our reconstructions we are already assuming that scatter-
ing from different depths in the sample contribute to the same pattern on
the detector, meaning the gauge volume is considered point-like. When the
sample-size is much smaller than the sample-detector distance this is a fair
approximation.

21

Figure 3.8: Illustration of ray (r, ω) scattered at point point t towards detec-
tor at the two azimuthal angles in the plane. T is the length that
would be traversed by the beam in transmission tomography.

The scattered intensity at a point t along the path should be proportional to
the density at that point. If the intensity of the beam was originally I0 we
know due to Beer-Lambert that the intensity seen by the scattering point is

I = I0 exp(−
∫ t

0
µ(t′)dt′).

To get the corrected value at the detector we would need to perform the line
integral ∫ T

t
µ(l(t′))dl(t′)).

where l(t′) is the line from the point t′ to the detector. In theory we could cal-
culate these integrals using a reconstructed volume from absorption contrast
tomography covering the necessary region and scale accordingly. However it
means that a proper correction involves integrating over no less than three
variables 2θ, φ, t for each and every diffraction image (rω). A brute force
solution is clearly not compatible with online-analysis.

3.3.1 Acceleration of absorption correction

The fundamental difficulty in the absorption correction problem is the num-
ber of “nested” integrals when calculating the corrected projection values.
However if we can decrease the number of operations necessary for integrat-
ing each path through the sample that might at least help some.

We propose using an octree-based approach for accelerating the integration
of attenuation in the sample. The octree is a commonly used acceleration
structure in the video game and visualisation industries. In computer science
literature the process of sampling and integrating from such a volume is

22

called “Volume ray casting” and it has been the subject of much research
lately as the basis for next-generation rendering. High-performance solutions
are likely to be available. The octree is at heart a hierarchical representation
where the further up in the hierarchy you go the larger regions are covered.
Figure 3.9a shows an example absorption slice after it has been split into a
hierarchical grid. Weingartner et. al.[17] describes in their paper how a split
and merge procedure can be used to segment an image into homogeneous
regions. In summary adjecent cells in the hierarchy are merged together
if satisfy some homogeinity parameter. Figure 3.9b shows how the result
might look when the parameter has been set to a suitable scale.

(a) Absorption slice once split procedure
has built an octree covering every
pixel.

(b) Hierarchical representation of ab-
sorption slice after merge procedure.
Each square contains the average of
the corresonding region.

The structure only needs to be built once, and can then be used for all
projections in the experiment, since we need to cover the whole sample
due to the azimuthal dependency anyway. The time spent building the
acceleration structure should thus be neglegible.

The power of the structure is that it allows us to skip large homogenous
regions, and provides a simple mechanism to tune performance against pre-
cision. In addition, the resolution of a typical absorption sinogram is on
the order of 2K pixels, or the resolution of the detector, whereas the slow
1D-scanning of the Diffraction/Scattering Computed Tomography technique
makes it unpractical to go above a few hundred pixels per slice. The split-
merge procedure naturally reduces the data of the absorption contrast vol-
ume and the octree hierarchy makes it efficient to query. This is shown in
figure 3.10a where we only need to sample when entering a new cell and
homogenous regions are covered by larger cells up the hierarchy.

23

(a) Sampling through a slice of the ab-
sorption volume by querying the oc-
tree representation. Each dot marks
the .

(b) Snapshot of the absorption routine as
it steps through the sample and accu-
mulates the contributions as a func-
tion of 2θ. The stapled line repre-
sents the distance still to be stepped
through.

Method 3.1 Pseudocode of the self-absorption correction using an octree
for volume ray casting. The attenuation() function is assumed to implement
volume ray casting using the given octree volume.

Input: octree volume , (r, θ)
Output: flat field

ACC ← 0
LUT ← constructLookUpTable()
repeat

STEP along t
ACC ← ACC ∗ attenuation(t,octree volume)
for all pixels in detector do

(2θ, ϕ)← LUT(pixel)
flat field(2θ, ϕ)← ACC * attenuation(t, 2θ, ϕ,octree volume)

end for
until end of sample

24

Figure 3.11: Illustration of different paths taken through the sample when in
incoming ray is scattered at different points in the interior. The
scattering angles are all equal and in the far-field approximation
the rays will converge in a ring on the detector.

3.3.2 Zero order approximation

An alternative to doing the full self-absorption correction as suggested above
we can make some simplifications in order to at least try to solve a zero-order
approximation of the problem.

The expression we found for the recorded intensity including self-absorption
was

∝
∫ T

0
ρ(t) exp(−

∫ t

0
µ(t′)dt′) exp(−

∫ T

t
µ(l(t′))dl(t′))dt

We start of by assuming a roughly spherical and homogenous sample. If we
further assume that the total path length as seen in figure 3.11 are all equal
to T then we can eventually separate the factors so that

∝ exp(−
∫ T

0
µ(t′)dt′)

∫
ρ(t)dt.

This last assumption should hold pretty well in the case of small-angle scat-
tering as the paths taken out of the sample are not too different.

The first term in the last equation is simply the projected value from the
absorption sinogram, so a zero order absorption correction could involve
simply using the absorption sinogram as a flat field for the Diffraction/S-
cattering Computed Tomography sinogram. This does not even require a
reconstruction of the absorption volume since we use the projected values.

In practice this would involve registering the sinograms that they are aligned
and match the same region. This may be problematic unless care is taken
to note the alignment when performing the experiment. It is expected some
form of correlation routine might be able to align the sinograms, but since

25

our sample was not really absorbing, software routines for this was not tested
nor developed.

26

Chapter 4

xrdtoolkit

4.1 The framework

In this chapter we describe the software developed for processing X-ray
diffraction data, and how it has been applied in practice with a computed
tomography workflow. At the core is the python module xrdtoolkit which
contains routines and functions for

• Atomic cross sections.

• Sample mass attenuation by stoichiometry

• Performing file IO.

• Peak fitting.

• Detector tilt calibration.

• Azimuthal regrouping/integration of diffraction patterns.

• Averaging of images.

With these operations covered the toolkit can already be useful since most
workflows perform detector tilt calibration and integration as first steps of
the data reduction.

4.1.1 Dependencies

As is usually the case, common problems already have solutions. One of
the motivations for choosing Python as the implementation language was
the adoption it has seen in the scientific computing community lately. The
numpy and scipy [3] libraries cover a lot of what is needed for scientific
computing such as linear algebra, signal and image analysis, various solvers

27

and integrators and so on, making it in many instances a drop-in replacement
for Matlab scripts commonly used by scientists. An added benefit is that
this software is licenced freely for modification and use. These routines are
for the most part wrappers around efficient C or Fortran code so you do
not necessarily have to sacrifice performance for the convenience of using a
high-level programming language.

At the ESRF this combination of python and numpy has been adopted by
the software group. One of their active developments, pyFAI [11] provides
fasth azimuthal integration of diffraction data as a python module. It can be
made to run on the Graphics Processing Unit (GPU)or Central Processing
Unit (CPU)using OpenCL and OpenMP and bundles with detector calibra-
tion functionality. In xrdtoolkitwe have used its integration functionality.
For X-ray fluorescence there is the PyMca package, also based on python
and developed by the software group at the ESRF. We briefly used their
interactive peak fitting dialog when looking for regions of interests in the
powder profiles.

4.1.2 File handling

By default we store datasets in the hdf5 format. This is a hierarchical con-
tainer for datasets where you reference each resource by a path. For example
the toolkit will place all its output datasets in the group /xrdtoolkit/. This
makes it possible to store datasets that relate to each other in a single file
and to keep things tidy and organized.

After performing the data reduction steps as illustrated in figure 2.1 on the
dummy sample data, our results file sinogram.h5 has the following structure

xrdtoolkit

fitted peaks

[datasets with peaks]...

sinogram

sinogram corrected

reconstructed

The h5py python module provides easy access to the datasets, compatible
with numpy arrays and for all intents and purposes it operates like a python
dictionary.

Working with diffraction data you can encounter a variety of file formats.
We support quite a few of them through the use of the fabio module. In
files.py we have abstracted access to files and sequence of files so that it
is possible to simply pass a list of filepaths to our generator

from x r d t o o l s import f i l e s
for image in f i l e s . ImageSequence (f i l e P a t h s) :

28

#do something wi th the image

to iterate over every image. The ImageSequence generator even supports
multiframe EDF files and the fastReadData functionality in fabio for efficient
reading.

4.1.3 The common tables

Included in the xrdtoolkittoolkit are a collection of tables tabulating infor-
mation such as absorption edges, atomic mass and so on. For a complete
overview issue the following in an interactive python shell:

from x r d t o o l k i t import common
common . XrayTable

To use any of the properties you index XrayTable as a dictionary with the
atomic number of the element you need. As an example, to get the atomic
mass of carbon you would write

from x r d t o o l k i t import common
common . XrayTable [common . Elements [’C ’]] [’ AtomicMass ’]

Finally common.Constants contains some of the most common physical con-
stants.

4.1.4 The sample class

The sample class is provided as a starting point and can currently be used
to compute the mass attenuation coefficient. To get the mass attenuation
of water for 40 keV X-rays as an example simply do the following

from x r d t o o l k i t import sample
water sample = sample . Sample (1 , 0 .999868 , ’H2O ’ , 0)
water sample . mass attenuat ion (’ 40 ’)

−> 0.27340376617108358
print (water sample)

−> Thickness : 1cm
−> Density : 0 .999868 g/cmˆ3
−> Compound : (’H2O ’ , {(’H ’ , 1) : 2 , (’O ’ , 8) : 1})
−> Chi : 0

29

4.1.5 Testing

The module has support for unit testing and already provides a few tests to
make sure essential calculations match those of the reference implementation
by Veijo in matlab[10].

To run the tests go to the project directory and type

:~$ python setup.py test

The test files themselves serve as further examples of how to use the python
module.

4.1.6 Installation

Scripts for setting up xraylib for use and development are provided. In
theory all you should need to do if you have system-wide access is

:~$ git clone https://github.com/amundhov/xrdtoolkit.git

:~$ cd xrdtoolkit

:~$./install.sh or ./develop.shp

The python library dependencies are maintained in requirements.txt and
can be parsed by standard python package tools such as pip and distutils.
More information is available in the code repository itself.

4.2 xrdtoolkit scripts

The scripts described here all builds on the functionality of the python
module and makes it available to run on the command line.

For example usage of the scripts we refer the reader to appendix A where we
have listed some example code for doing process level parallelisation with
the xrdtoolkitscripts. The scripts themselves also provide an overivew of the
accepted options through the --help option.

30

Figure 4.1: Overview of the software stack from supporting python libraries
to files for batch processing.

31

4.2.1 xrdtoolkit-calibrate

The xrdtoolkit-calibrate script attempts to find the detector tilt and beam
position on the detector without any user input. It uses the diffraction pat-
tern As optons it accepts one or more darkcurrent images to be subtracted,
detector binning mode, initial conditions for tilt and origin, detector distance
and limits on radial distance.

The script builds on the f2w.py submodule which contains azimuthal inte-
gration code due to Veijo. The integration code can split the integration
into a number of sectors. These sectors are compared against each other in
trying to make the diffraction rings appear perfectly circular, which would
mean that the correct tilt and origin has been found.

In working with the code we found some errors in the way that the stopping
criteria was calculated. The vector c = [c1, c2] gives us the change in origin
or angle that was done for the current iteration. We define then the distance

s =
√
c2

1 + c2
2

and let our stopping criteria be

stp =
s

∆s
< 0.001.

that is, when our step is less than a percent of the uncertainty of the step.
The jacobi vector

J = (
∂s

∂c1
,
∂s

∂c2
) =

(
c1√
c2

1 + c2
2

,
c2√
c2

1 + c2
2

)

32

and Σc is provided by the least squares regression in f2w.py. The uncer-
tainty ∆s is now given by equation 3.3.

A final modification we made was to make the calibration routine start with
only searching the origin when starting. The justification for this is that tilt
angles usually are very small and so do not need to be considered until the
very end of the search, whereas the position of the origin may be far from
the center of the detector. In a few cases the tilt angles were observed to
converge towards very high angles of what was probably a local minima when
optimizing angles and origin simultaneously. Instead we lock optimization
of tilt until the stopping criteria goes below 1, at which point, we hope, the
beam origin is sufficiently close for full optimisation to converge on a good
geometry.

The detector geometry is written to disk in the file format required by pyFAI.

4.2.2 xrdtoolkit-integrate

The xrdtoolkit-integrate script is a wrapper around pyFAI for performing
azimuthal integration on a series of diffraction images. It requires the ge-
ometry file produced by xrdtoolkit-calibrate or from its own calibration
routines. To specify the files to be calibrated you give it the prefix of the path
that contains your diffraction images, for instance /mnt/data/.../EXPERIMENT/dummy
will match every file in the EXPERIMENT directory starting with file name

33

dummy . It will attempt to parse the filename to extract the experiment
parameters that each file belongs to. E.g. the file dummy 0 0 50.edf will
be interpreted as having index [0, 0, 50] in a three dimensional parameter
space, and stored accordingly in a volume of diffractograms. The dimen-
sions of the resulting dataset is inferred automatically after parsing all the
matching files. If there are any multiframe EDF files they will be treated as
a separate dimension. This might sound complicated, but as long as the
diffraction image indices are given at the end of the file name separated by
underscores the script should do the right thing. For tomography data this
means assembling a stack of sinograms/diffractograms.

If the dark current is given as a stack of images it will check to see if they
match the number of frames in the files to be integrated. If that is the case
the diffraction images to be integrated will be corrected by the correspoind
dark current image in the series.

It was immediately apparent that loading all the diffraction data for integra-
tion would take a considerable amount of time. In order to hide this latency
from the user we use one python thread for loading the diffraction images
into a queue and another one to performing the integration using pyFAI.
This is known as the consumer-producer pattern. In the most common ime-
plementation of Python only one thread can execute in the python context
at a time due to what is know as the Global Interpreter Lock (GIL). Almost
every action performed by the python interpreter requires that it holds the
GIL, but luckily threads will release the lock when entering external pieces
of code. This is the case pyFAI which means we can benefit from threading
despite the GIL.

4.2.3 xrdtoolkit-assemble

The xrdtoolkit-assemble script is particular to our Diffraction/Scattering
Computed Tomography workflow. It takes a list of diffractograms and a
list of regions of interests and performs peak fitting on regions of interest
to assemble sinogram. If given more than one diffractogram the srcipt will
construct a stack with each sinogram as slices. Our reconstruction script can
later reconstruct a volume from the stack of sinograms. The peaks to be
fitted are assumed to be constant in shape and position over all projections
with only the area varying. We can then write our model as a set of equations

yi = c0 + c1xi + c2fi(xi − x0, σ) (4.1)

where yi is the signal that we are reading from the diffractogram, c0 and c1

are coefficients for our linear background, c2 is the area of our peak and xi
is our x variable, or channel number. Our peak function f defaults to the

34

Figure 4.2: Illustration of process from visual inspection of diffractograms
in e.g. Dawn, specification of interesting peaks and eventual
assembly of sinograms by xrdtoolkit-asemble. The sinogram.h5
file also gets written the fitted peaks for reference.

35

gaussian function. However, if the peak is very narrow a better fit is obtained
if we define the guassian through its cumulative distribution function erf

f(xi − x0, σ) =
erf
(
xi+∆x/2−x0√

2σ

)
− erf

(
xi+∆x/2−x0√

2σ

)
∆x

(4.2)

Figure 4.3: Example data fitted to a gaussian curve on a linear background.
The bars represent counts in the integrated diffraction data. The
shaded area shows the section which is within the FWHM of the
fitted gaussian curve.

To convert between FWHM and σ we can use the following relation for
gaussian peaks.

gaussian : FWHM = 2
√

2ln2σ ≈ 2.3548σ. (4.3)

In matrix form our system can be written as

y = A · c (4.4)

with

36

A = [ones(n),x, f(x− x0, σ)] . (4.5)

Since A does not depend on anything but the peak shape we can reuse the
the matrix for all our peak fitting. The system 4.4 we solved in equation 3.1
so our solution is given by

ĉ = Σc ·AᵀΣ−1
y · y.

For uncertainty we use the signal and dark current as we discussed in section
3.0.2. Every observation yi is independent, so the covariances in Σ−1

y are
all zero. For further performance gains we can perform the multiplication
elementwise instead of by matrix multiplication.

For the sinogram the value we use in the end is c2 which corresponds to the
area of our peak function. In addiation we store all the signals and fitted
peaks in a separate dataset in the same sinogram file, which can be useful
for explaining value in the sinogram.

4.2.4 xrdtoolkit-reconstruct

xrdtoolkit-reconstruct is a pretty straight forward script. It takes sinograms
assembled by xrdtoolkit-assemble, performs sinogram filtering as discussed
in section 3.1 and does the reconstruction slice for slice. For the filters it
is possible to disable each one individually. The reconstruction is first done
with the filtered backprojection method before going through one iteration

37

of SART, however the number of iterations can be increased if desired. The
script places the reconstructions in a separate group in the hdf5 file of the
sinogram, along with the corrected sinograms for reference.

4.2.5 xrdtoolkit-average

The xrdtoolkit-average script is a very thin wrapper around the files.averageImages()
method in the toolkit. Its principal arguments are what kind of averaging
method that should be used (mean or median), and whether multiframe files
should be flattened before averaging or if average should be taken across the
each file preserving the number of frames in the outpuf file.

38

Chapter 5

Experiment

5.1 Setup

To test the tools that had been developed

Figure 5.1: Overview of experimental hutch. The sample (b) is mounted the
diffractormeter (a) which is free to rotate and translate. The
beam is scattered by the sample and registered on the detetcor
(d). A beam stop (c) prevents the direct beam which is not
scattered by the sample from burning out the detector.

39

Only a small fraction of the X-rays are scattered by the sample, especially
micrometer and nanometer sized samples. Most of the beam goes straight
through and would completely saturate the diffraction detector, or most
likely destroy it. A set of beam stops are therefore used to

1. Stop the direct beam from reaching the detector.

2. Reduce the amount of background noise registered on the diffraction
detector from air scattering between sample and detector.

To demonstrate the tomography workflow we wanted to prepare a sample
that would produce a nice and clear diffraction pattern, with nice and even
Debye-Scherrer rings. This rules out metals or anything with too big crys-
talline grains or preferred orientations that induces texture in the diffraction
rings. Previously ID15 has used a mixture of glass spheres and wax for test-
ing the DSCT setup and knew its characteristics, so we opted for the same
composition.

Initial attempts at filling micrometer capillaries with wax proved difficult.
Since the sample was going to be rotated horizontally it was important that
there were no loose parts that would change position or deform under gravity.
A capillary with only glass spheres was therefore out of the question. Luckily
we found that the cohesive force of the wax was enough to keep itself and
the glass spheres fixed in place without any other support.

5.2 Sample preparation

For the glass spheres we used a mixture of 106− 125µm glass microspheres
(GP0116) produced by Whitehouse Scientific Ltd. Using a scalpel we placed
a small edge knife of spheres on a piece of aluminium folded as in figure 5.2
below.

The sharp fold in the bottom of the foil was intended to keep the glass
spheres in a single line and provide a gradient for the melting wax to flow
down. After a gentle shake to make the spheres settle wax was added to the
top of the aluminium slide and put in a oven at 90 ◦C. After being baked for
a few minutes we examined the unfolded aluminium foil in a microscope at
2x−5x magnification. As the reader can see in figure 5.3 the wax successfully
wet the glass forming a nice wax linewith embedded spheres. Finally a few
spheres were extracted with a scalpel and assembled on the edge of a cut
tailor’s pin. The low volume to surface ratio meant that the wax provided
enough cohesive force to keep the glass spheres attached to the pin and
fixed without bending under the effect of gravity. No change was seen in
the sample from the time it was made until the experiment was performed a
couple of weeks later, making us confident that the sample would stay intact

40

Figure 5.2: Illustration of aluminium foil used as a slide to mix wax and the
micrometer glass spheres. The sharp fold held the spheres in a
line while a small gradient made sure the wax flowed down and
covered the spheres.

Figure 5.3: Aluminium foil with line of wax at 6x magnification. Several
glass spheres can be seen contained within the wax in addition
to a single sphere on the foil at the top.

41

during the experiment. The pin was already fed through a metal cylinder
suitable for mounting on the goniometer and fixed with another piece of
wax.

Figure 5.4: Image of dummy sample fixed to the end of a cut tailor’s pin.
The red rectangle show the approximate region where the tomo-
graphic scan was made. The reflecting material to the right of
the rectangle is a piece of aluminium foil left over from sample
preparation.

5.3 Data collection

The beam was aligned by beamline scientist Marco Di Michiel to be suitable
for both absorption contrast imaging and Diffraction/Scattering Computed
Tomography by using slits to shape the beam into a box-profile of 2.5µm
for the pencil beam. The monochromators were tuned to give a beam with
energy 46.45 keV.

The prepared sample was mounted on the goniometer and rotated so that
the rotation axis ẑ of the diffractometer (a) in figure 5.1 aligned with the the

42

sample. This way the spatial extent of the sample as it rotates is minimised.
Using the FReLoN imaging detector developed at the European Synchrotron
Radiation Facility (ESRF)the sample was measured to occupy 253µm. We
decided to scan ±150µm (300µm) to be sure to not clip off the sample at
any point during data collection. While the original intention was to collect
absorption data as well as diffraction data, to see how our zero-order self-
absorption correction would perform. The imaging detector showed virtually
no contrast however, except around the edges of the glass spheres, so we
switched to the pencil-beam without doing the absorption data.

Figure 5.5: Illustration of scanning pattern where data is collected alternat-
ing going up and down as the sample is rotated. For each scan
the sample is rotated through an angle ∆ω.

The sample was measured in a continuous scan along the r̂ axis with a
velocity so that the probe would cover a distance of 2.5µm and generate
121 diffraction images with a 100 ms exposure. The sample was scanned as
illustrated in figure 5.5 going up and down with a stepwise rotation of the
sample in between in order to save time. A total of 90 projections were
chosen, with a final one at 180◦ to make it possible to calculate the true
rotation center of the sample. To increase the sensitivity of the images the
Perkin-Elmer area detector was set to the (2, 2) binning mode. Even in this
mode and with the detector fairly close at 180 mm we still had enough radial
resolution in our diffraction pattern to perform subsequent peak fitting. The
dark current is aqcuired in the same way as a full scan, with 121 dark current
frames in series. The motivation behind this is that the Perkin-Elmer has
some memory of preceding frames when doing the readout so there is some
change in the response of the detector as the scan progresses. When the
signal is small this effect can be significant, so performing the azimuthal

43

integration one needs make sure to use the correct dark current.

During collection we discovered that part of the detector was not shielded
properly from scatter before the sample. Luckily this was outside the small-
angle scattering that we used for our reconstructions. However a misplaced
flashlight used to illuminate the sample during alignment was left in the
path of some of the amorphous scatter from our glass phase and cast a
shadow on the detector. Monitoring the detector readouts we also observed
the occasional saturated spots in the some of the diffraction images. We
can recognise some of these as isolated sharp, peaks in the integrated data
shown in figure 6.2.

5.4 Data reduction

A series of 12 images were taken of the CeO2 reference for detector tilt
calibration in addition to another series of 12 images for dark current. Both
were averaged intra-frame using xrdtoolkit-average. Since the detector
was positioned so that the beam origin was far off to one of the corners we
did a quick inspection of the calibration image to provide an initial estimate
for the calibration script.

After calibration we proceeded with the data reduction as epxlained in ap-
pendix A

44

Chapter 6

Results

We now present the results that were obtained from our data collection.
Figures 6.1a and 6.1b show the kind of diffraction conditions we were faced
with. The region depicted is less than a quarter of the full detector.

(a) Selected small angle diffraction im-
age with bragg spots completely sat-
urating the detector (maximum value
registered).

(b) Clean diffraction image showing a
diffuse glow of the amorphous glass
phase without the rings of the wax
phase.

After azimuthal integration of the diffraction images we start to see patterns
emerg in the powder profile as is evident in stack plots 6.2, 6.3a and 6.3b.
That the broad scattering contributions corresponds to amorphous glass is
evident from their reconstructions in figure 6.4 and 6.7 even though the
latter is a bit influenced by the overlapping

45

Figure 6.2: Stacked plot of azimuthally integrated diffraction patterns in the
same small-angle region as shown in figures 6.1a and 6.1b.

(a) Integrated profile of selected projec-
tions. The two narrow peaks belong
to the wax phase and overlap with
broad scattering from the amorphous
glass.

(b) Amorphous glass phase as can be
seen on the tail of the complete
small-angle region of figure 6.2.

46

Peak center FWHM [channel] Fit width [FWHM]

254.88 81.72 2.0 pyMCA
83.96 4.82 - (3.0) DAWN
92.86 3.50 2.5 DAWN
97.80 43.77 2.0 pyMCA

Table 6.1: Regions of interest passed to xrdtoolkit-assemble. The peaks
were either fitted using DAWN’s gaussian peak fit or pyMCA’s
gaussian fit corrected with internal background. The fit width
parameter is used by the sinogram assembly script to determine
how many samples should be included in the least square fitting;
It defaults to include 3 times the FWHM of the peak.

6.1 Sinogram reconstruction

The regions that we chose to investigate and assemble are given in table 6.1.
Their resulting sinograms

Significant streaking is clear in the case of peaks 254.88, 92.86 and 97.80.
However they are all strongly reduced after being filtered and reconstructed
again without bragg spots.

In order to get a clearer picture of which values are being masked by our
bragg spot filter we have compiled all the sinograms into one figure 6.8 along
with the mask that decides which projections will be discarded. In the case
where there are no bragg spots, peak 92.86 quite a few spots are still masked.

47

(a) (b)

(c) (d)

Figure 6.4: Sinograms and reconstructions of amorphous glass phase around
channel 254, before and after diffracting spots have been re-
moved by our filter as described in 3.2.3.

48

(a) (b)

(c) (d)

Figure 6.5

49

(a) (b)

(c) (d)

Figure 6.6

50

(a) (b)

(c) (d)

Figure 6.7: Sinograms and reconstructions of broad peak centered on chan-
nel 97.80 before and after going through our sinogram filters.

51

Figure 6.8: Performance of our thresholding filter 3.2.3. First column (left)
shows sinograms as output by xrdtoolkit-assemble. Second col-
umn (middle) is the mask generated with default sensistivity
and tolerances and (right) is the original sinogram with masked
values set to 0.

52

Figure 6.9: Labeling of glass phase from channel 254.88. Reconstruction
was thresholded (left), then morphologically opened and labeled
(right) by the get disc parameters() method in image.py

In figure 6.9 we see the glass phase from channel 254.88 after it has been
thresholded and automatically labeled by the get disc parameters(). The
two spherical shapes were found to cover 1817 and 269 pixels . The result-
ing shapes look nicely circular. Assuming perfect circles they correspond
to diameters 18.5 and 48.1 respectively. As our resolution is 2.5µm this
corresponds to 46.2µm and 120.2µm.

The get disc parameters() procedure is implemented in xrdtoolkit/image.py

and works by first thresholding the sinogram according to

pixel > median(image) + image.std() ∗ 0.85.

The median value of the reconsctruction is assumed to be close to the null-
level so we define any pixel that exceeds this value by more than 0.85 stan-
dard deviations as part of the sphere. In order to remove isolated pixels and
separate the spheres we perform morphological opening on the thresholded
image a number of times until desired result is obtained (default= 5). The
spheres in the picture are now separated and can be labeled by numpy’s
ndimage.label() method and summed individually.

53

6.2 Performance

In this section we decribe the performance of the scripts developed for xrd-
toolkit. All benchmarks were performed on a dedicated machine scisoft11.
scisoft11 has eight hyperthreaded cores running at 3.30 GHz which means
it can service up to 16 threads of execution. Experimental data were mounted
over NFS on the internal network.

6.2.1 xrdtoolkit-average

To test the performance of xrdtoolkit-average we asked it to perform median
filtering on a series of 51 frames having a resolution of 2048 × 2048. At
number of runs were made in order to make sure the dataset was in caches
and we obtained consistent number. Three runs were then averaged to give
a running time of 40 seconds.

At the time we were using numpy’s array() method to assemble the out-
putarray. The computations were done in a list comprehension which allo-
cates memory on the fly. This is not very efficient so we switched over to
pre-allocating the final buffer and set each sub-computation manually in a
for loop. At the same time we made sure not to promote data types to
float if we were given less demanding data types 1. These alterations led
to a run time of 11 seconds using the same setup as above. This is still not
very fast, but nearly all the time is now spent in the median() method of
numpy.

6.2.2 xrdtoolkit-calibrate

The time needed to make a calibration is very dependent on each individual
geometry. In some degenerate cases the origin of the beam might not be
found even in a 100 iterations. For very off-center beams it is essential
to specify an approximate initial position. As this was our case we gave
xrdtoolkit-calibrate the initial coordinates (300, 300) mm) and obtained a
good geometry after 73 seconds and . . . iterations.

6.2.3 xrdtoolkit-integrate

During profiling it was found that our integration script was continuously
writing to disk to update the dataset each time a new diffraction image was
integrated. This lead to a lot of overhead in the write method of h5py.

1Our edf files are typically stored as 16-bit unsigned integers.

54

disable-threads disable-gpu disable thread
& gpuyes no yes no

coalesced 42.66 33.85 51.36 33.85 37.50

multiple writes 63.93 52.09 103.0 59.09 56.70

Table 6.2: Final benchmark of xrdtoolkit-integrate performed with local
storage on 10 files with 75 frames each. All figures are in sec-
onds.

Integrating 750 frames the original script would call this method 751 times,
once for each frame and once when closing the file. After coalescing all the
writes so that it only touched the file at the end we reduced the number of
calls to 1 and time spent in the write method from 20.7s to 0.06s. For this
particular case that time was almost half of the total execution time. The
effect of coalesced write is summarized in table 6.2.

In general this change meant that we could perform 14.6 frames per second
(68.6 ms per frame) instead of 9.05 with multiple writes.

After compiling this table it became clear that our file buffer was not large
enough when dealing with multi-frame edf files. As default we had used
a few images, but with edf files containing 75 frames the buffer would get
starved while reading the next 75 frames. We set the size of the new buffer
so that at least two files would fit, regardless if they contained single or
multiple frames. With this IO was no longer a bottleneck as local storage
managed to keep the buffer filled at all times. GPUutilisation at this point
was approaching 80% as reported by nvidia-smi, while there was still one
python thread saturing one thread of execution. We are now possibly limited
by overhead in python when invoking pyFAI. In a test run of 89×81 = 7209
frames we now obtained 16.6 frames per second, or 60.2 ms per frame.

6.2.4 xrdtoolkit-assemble

For testing the performance of xrdtoolkit-assemble we passed it a peak file
with 9 gaussian peaks to fit. With the --flip and sinogram dimensions
of 91 × 121 it took a total of 1 minute and 28 seconds, or 9 seconds per
sinogram.

55

56

Chapter 7

Discussion and conclusion

7.1 experiment

We have demonstrated that the xrdtoolkit module is capable of running a
Diffraction/Scattering Computed Tomography workflow giving sensible re-
sults. The diameters we found for the glass spheres of 46.2µm and 120.2µm
are consistent with the sieve fraction 106 − 125µm. The smaller sphere is
likely a cross-section of a sphere towards the edge where the effective size is
smaller.

Assembling the sinograms by peak fitting enabled us to separate phases, even
with changing background and with broad amorphous scattering overlapping
with the wax phase.

7.2 Corrections

Parameters of filters and were used with their default values, to demonstrate
their ability to work witout user input. With some manual tweaking even
higher quality reconstructions should be possible. While we can see qual-
itatively that the sinograms have improved by applying the de-interlacing
filter it would be interesting to investigate what effect each of the centering,
de-interlacing and bragg filter have on the reconstructions in isoloation.

We have shown in figures 6.4 through 6.7 that when there are a limited
amount of large crystalline grains in the sample it is possible and sufficient
to perform bragg peak filtering at the sinogram level. Usually each crys-
tallite is only in a diffracting orientation through a small angle, so adjecent
projections in the sinogram can be used to recover a sensible value and hence
preventing bragg peaks from being backprojected and masking whole lines

57

in the reconstruction. Moreover our filter was able to identify the majority
of the anamalous projections.

For samples where some of the crystalline material matches the size of the
probe another approach is likely needed. There has been some work in sepa-
rating the contributions of bragg peaks from amorphous and poly-crystalline
scattering by Voltoline et al. [18]. This is rather more robust, however this
method work on the raw diffraction data, making it rather slow and neces-
sary to redo all of the data reduction steps to evaluate the results.

7.2.1 Possible contamination

The bragg spots in sinogram 6.4(b) follow sinusoids that we managed to
fit to equation 3.4. They are apparent as two lines in the topmost mask
of the bragg peak filter in figure 6.8. This means that the disturbance
corresponds to two fixed points (x, y) in the sample. We can even see this in
the reconstruction 6.4(d) where the backprojected streaks seem to converge
in two points on either side of the smaller sphere. It is possible that some
of the aluminium foil we see in figure 5.4 has been included in our scanned
area, which would account for the intense bragg diffraction we have seen.

7.3 The toolkit

Alvarez-Murga notes that Diffraction/Scattering Computed Tomography is
rather simple experiment and fairly easy to handle for non-expert users.
Making the processing and analysis of the experimental data easy to do
should be a priority as well, since the ability to perform in-situ 3D-resolved
studies of complex materials will be of great interest to a broad community
of researchers.

The Diffraction/Scattering Computed Tomography workflow we have pre-
sented is largely automated and should with some documentation be fairly
easy to use to non-expert users. However, the calibration script still has
some problems converging to a correct detector geometry if the beam origin
is far from the center of the detector and no initial conditions or calibration
limits are specified. This is currently the biggest obstacle to an unsuper-
vised, complete analysis.

Batch-files were created to automatically average darkcurrent and integrate
directories of diffraction data. The only argument to these batch files were
the locations of the detector calibration file, peak file and the location of
the directories containing diffraction data to be integrated. Each beamline
could help by providing batch scripts that are specific to their particular

58

types of experiment and file layout.

For the dummy experiment described in this thesis there was no need for
automated scripts for batch processing, as it was only a single slice with one
directory of data. Howevever, the batch processing enabled easy integration
of xrd-data as they were collected for Simon Jacques who used the same
setup immediately following our experiment and collected data for multiple
days. In the end several terabytes of data was processed resulting in more
than 4 gigabytes of reduced 1D diffraction patterns.

7.4 Script performance

The time to properly calibrate for detector tilt is very variable since it is
a non-linear process. For good geometry only a few iterations might be
needed, while for very off-center beams the search for origin may require
many iterations. In this case the time spent searching can be minimized
by providing closer initial conditions on the command line. The calibration
time also heavily depends on the resolution,binning mode of the detector
and calibration limits.

As we have seen in our benchmarks the azimuthal integration is more than
fast enough to keep up with acquisition when the exposure is on the order
of 100 ms. The time taken to average the dark current is surprisingly high
due to the poor performance of numpy’s median filter and ends up taking a
significant amount of time. This is why we have implemented a crude queue
system in the batch processing which performs the averaging and integration
in parallel. Replacing the median function should bring a lot savings. The
python module Bottleneck have an alternative implementation which is
already 2.57 times faster for 1000× 1000 images.

7.5 Further work

For the future of xrdtoolkitwe should look how it relates to other software.
We do not aim to provide any graphical interface, plotting or as this is al-
ready provided by a several projects. Our framework of choise has been
DAWN which provides a very nice and powerful interface for visualization
and data exploration, with slicing and good controls for color-mapping hav-
ing been very useful.

Parts of the module could be integrated in a number of different frameworks:

1. ImageJ[16]. The image processing suite. Corrections and filtering of
sinograms could be made more interactive by making them available

59

as plugins for ImageJ. It uses Jython just like DAWN, so Python code
can be used directly.

2. pyMCA is another Python based solution where calculations and
filters could be integrated.

3. DAWN provides a mechanism for linking together workflows in a
workbench and exhange data seamlessly with Python scripts, so this
seems a promising direction for providing access to the xrdtoolkit-
scripts in a graphical interface integrated with data exploration.

4. pyFAI Exchange of utility functions?

It would be useful to be able to refine the wavelength in experiments. pyFAI
already has method for refining wavelengths from a collection of PONIfiles
using constrained least squares, so given a couple of calibrations at different
distances can already be done.

Another consideration is the implementation of NX-classes to conform with
the Nexus format. The Nexus format is a specification for metadata built
on top of hdf5 which more and more scientific software is following. For
instance is it possible to make DAWN use a dataset for plotting the diffrac-
tograms as a function of 2θ instead of channel numbers that we have used
in this thesis.

The 2θ values are already included as dataset when integrating using xrdtoolkit-
integrate. All that is needed is some attribute following the nexus format
to specify that this should be used for the x-axis when plotting.

60

Appendices

61

Appendix A

Detector coordinate systems

Here we attempt to explain the relation between detector tilt coordinates as
they are used in f2w.py, fit2D [9] and pyFAI [11].

The ingration routine in f2w.py due to Veijo Honkimaki uses projected
angles α and β in radians to calculate the effective radial distance of each
pixel in the diffraction image. The modified distance is given by

R′ = R(1− a · y − b · x)

where a and b are directly proportional to α and β.

pyFAI allows us to specify the detector tilt in fit2D notation, which we have
chosen to do. The coordinates here are ξ and ϕ0 which defines a tilt-plane
rotated ϕ0 degrees from the x-axis with a tilt of ξ degrees.

Doing the coordinate transformation we get

R′ = R(1− a · r sinϕ− b · r cosϕ).

with our new angles

a = ξ sinϕ0 (A.1)

b = ξ cosϕ0 (A.2)

The trigonometric identity cos2 ϕ0 + sin2 ϕ0 ≡ 1 then leads us to

a sinϕ0 + a cosϕ0 = ξ

.

Using this equation and

ϕ0 = tan−1 a

b

62

we write the detector geometry for use with pyFAI. The code doing the
conversion is listed in D.3

63

Appendix B

Batch processing of
Diffraction/Scattering
Computed Tomography data

This appendix lists bash-scripts used for batch processing of experimental
data for the Diffraction/Scattering Computed Tomography workflow as de-
scribed in this report. It uses the built-in job control facilities in bash to
provide process-level parallelisation.

Once the calibration file (e.g. calibration.poni) has been written by
xrdtoolkit-calibrate and specified in the header of integrate.sh one
can simply invoke the script with the paths of the directories where your
diffraction images are saved. In our case we write

:~$./integrate.sh ../data/xrd/xrdtomo/dummyA1_*

The integrated data is then put into a separate folder diffractograms which
can be visualised and explored using for instance DAWN [1]. The averaged
dark currents are put in the darkcurrent/ directory ready for reuse.

Once integration is done you need to specify regions of interest for xrdtoolkit-assemble
to produce sinograms. The script accepts files on the following format:

Listing B.1: dummy A1.peak

p o s i t i o n fwhm f i t w i d t h
83 .96 4 .82 # from DAWN
92.86 3 .50 2 .5 # from DAWN
97.80 43 .77 2 .0 # from pyMCA with I n t e r n a l background . Row 32
254.88 81 .72 2 .0 # from pyMCA with I n t e r n a l background .

The header on the first line needs to specify the names of the columns that

64

follow. At least position and fwhm needs to be specified. The function shape
is assumed to be gaussian if not given. For simple peaks it is sufficient to do
the peak fitting in DAWN. The format DAWN uses when exporting peaks
is the same as above. After creating the peak specification file and changing
the name in the header of assemble.sh it is sufficient to invoke it with

:~$./assemble.sh

to perform peak fitting on all the available diffractograms. The xrdtoolkit-assemble
script will skip any sinograms that have already been assembled. In addition
to all the sinograms it will also attach all the fitted peaks along with the
signal it used for the least square fitting so that the user can inspect and
verify that the peaks are a good match.

For our dummy sample this is the resulting directory structure after batch
processing has completed

results

assemble.sh

average dark.sh

calibration.poni

integrate.sh

peaks dummyA1

darkcurrent/

DARK dummyA1 151.h5

diffractograms/

DIFFTOMO-dummyA1 151.h5

sinograms/

SINOGRAM-dummyA1 151.h5

If we had more slices they would each have its own .h5 results file in the
sinograms/ directory.

Listing B.2: xrdtoolkit/examples/batch processing/integrate.sh

1 #!/ bin / bash
2
3 NR JOBS=1
4 PONI FILE=’180mm. poni ’
5
6 [−d d i f f r a c t o g r a m s] | | mkdir d i f f r a c t o g r a m s
7
8
9 trap c o n t r o l c SIGINT

10
11 c o n t r o l c ()
12 # run i f user h i t s cont ro l−c

65

13 {
14 echo −en ”\n∗∗∗ Ouch ! Ex i t ing ∗∗∗\n”
15 exit $?
16 }
17
18 # Sta r t p a r a l l e l l averag ing o f dark curren t
19 . / average dark . sh $@ &
20
21 for d i r in ”$@” ; do
22 name=$ (basename $d i r)
23 dark=darkcurrent /DARK $name . h5
24
25 while [! −f $dark] ; do
26 # Wait f o r dark curren t to be averaged
27 echo $name ’ wa i t ing for ’ $dark
28 s l e e p 10
29 done
30
31 d i f f r a c tog ram=d i f f r a c t o g r a m s /DIFFTOMO−$name . h5
32 i f [! −f $d i f f r a c tog ram] ; then
33 echo ”$name −− I n t e g r a t i n g d i f f r a c t i o n pat t e rns ”
34 x rd t oo l k i t−i n t e g r a t e −p $PONI FILE −−data−path $d i r /$name −−dark darkcurrent /DARK $name . h5 −o $d i f f r a c tog ram −−t imings
35 f i
36 done

Listing B.3: average dark.sh

1 #!/ bin / bash
2
3 NR JOBS=2
4
5 [−d darkcurrent] | | mkdir darkcurrent
6
7 c o n t r o l c ()
8 # run i f user h i t s cont ro l−c
9 {

10 echo −en ”\n∗∗∗ Ouch ! Ex i t ing ∗∗∗\n”
11 exit $?
12 }
13
14 count=0
15 for d i r in ”$@” ; do
16 name=$ (basename $d i r)
17 dark=darkcurrent /DARK $name . h5

66

18 i f [! −f $dark] ; then
19 x rd to o l k i t−average $d i r /DARK ∗ . ed f −o $dark &
20 f i
21 l e t count+=1
22 [[$ ((count%NR JOBS)) −eq 0]] && wait # Limit to NR JOBS concurrent j o b s
23 done

Listing B.4: assemble.sh

1 #!/ bin / bash
2
3 # Constructs sinograms from a l i s t o f i n t e g r a t e d d i f f r a c t i o n pa t t e rn s
4 # (d i f f r a c t o g rams) .
5
6 NR JOBS=2
7
8 PEAK FILE=$1 #’ peak 730 . dat ’
9 DO FLIP=true

10
11 [−d sinograms] | | mkdir s inograms
12
13 trap c o n t r o l c SIGINT
14
15 c o n t r o l c ()
16 # run i f user h i t s cont ro l−c
17 {
18 echo −en ”\n∗∗∗ Ouch ! Ex i t ing ∗∗∗\n”
19 exit $?
20 }
21
22 count=0
23 for d i f f r a c tog ram in ”$@” ; do
24 echo $d i f f r a c tog ram
25 basename=$ (basename $d i f f r a c tog ram . h5)
26 name=SINOGRAM−$ (echo $basename | sed s /DIFFTOMO−//)
27 args=”−o sinograms /$name $d i f f r a c tog ram . h5”
28 i f [$DO FLIP] ; then
29 args=”−− f l i p $args ”
30 f i
31 echo ” Assembling $basename us ing $PEAK FILE”
32 x rd to o l k i t−assemble −−peak− f i l e $PEAK FILE $args &
33 l e t count+=1
34 [[$ ((count%NR JOBS)) −eq 0]] && wait # Limit to NR JOBS concurrent j o b s
35 done

67

36
37 wait

68

Appendix C

The xrdtoolkit module

Listing C.1: xrdtoolkit/ init .py

1 IMAGE PATH = ’ / entry / image ’ # de f a u l t path used by DAWN
2 AVERAGE DATA SET = ’ / x r d t o o l k i t / average ’
3 DARKCURRENT DATA SET = ’ / x r d t o o l k i t / darkcurrent ’
4 TWO THETA DATA SET = ’ / x r d t o o l k i t / two theta ’
5
6 # Ca l i b r a t i on
7 CALIBRATION IMAGE = ’ / x r d t o o l k i t / c a l i b r a t i o n i m a g e ’
8 CALIBRATION PROFILE = ’ / x r d t o o l k i t / c a l i b r a t i o n p r o f i l e ’
9

10 # DIf fractogram
11 DIFFRACTOGRAM DATA SET = ’ / x r d t o o l k i t / d i f f r a c tog ram ’
12
13 # Sinograms
14 SINOGRAM GROUP = ’ / x r d t o o l k i t / sinogram ’
15 SINOGRAM PEAK GROUP = ’ / x r d t o o l k i t / f i t t e d p e a k s ’
16 CORRECTED SINOGRAM GROUP = ’ / x r d t o o l k i t / s inogram cor rec t ed ’
17 RECONSTRUCTION GROUP = ’ / x r d t o o l k i t / r e cons t ruc t ed ’

Listing C.2: xrdtoolkit/image.py

1 from s c ipy . f f t p a c k import f f t , i f f t , f f t 2 , i f f t 2
2 from s c ipy import opt imize
3 from s c ipy import f f t p a c k
4 from s c ipy import ndimage
5
6 import numpy as np
7
8 def g e t d i s c p a r a m e t e r s (image , i t e r a t i o n s =5, std =0.85) :

69

9 image = image > np . median (image) + image . std ()∗ std
10
11 # Perform morpho log ica l opening o f image . This has the e f f e c t o f s epa ra t in g
12 # discs , turn ing them more s p h e r i c a l and removing o u t l i e r s .
13 image = ndimage . b inary open ing (image , i t e r a t i o n s=i t e r a t i o n s)
14 l a b e l s , c i r c l e s = ndimage . l a b e l (image)
15 # Ca lcu l a t e diameter o f each c i r c l e from i t s area , assuming p e r f e c t
16 # c i r c u l a r shapes .
17 area = [(l a b e l s == i) .sum() for i in xrange (1 , c i r c l e s +1)]
18 diameter = [np . s q r t (f loat (a) / np . p i) ∗ 2 .0 for a in area]
19
20 return dict ({ ’ area ’ : area , ’ diameter ’ : diameter , ’ c i r c l e s ’ : c i r c l e s , ’ l a b e l s ’ : l a b e l s })
21
22 # Code taken and adapted from
23 # h t t p s :// g i t hu b . com/eddam/python−e s r f / b l o b /master/ r o t a t i o n a x i s . py
24 # due to Emmanuelle Gou i l l a r t
25
26 def c o r r e l a t e i m a g e s (im1 , im2 , method=’ brent ’) :
27 shape = im1 . shape
28 f1 = f f t 2 (im1)
29 f1 [0 , 0] = 0
30 f2 = f f t 2 (im2)
31 f2 [0 , 0] = 0
32 i r = np . r e a l (i f f t 2 ((f 1 ∗ f 2 . conjugate ())))
33 t0 , t1 = np . unrave l index (np . argmax (i r) , shape)
34 i f t0 >= shape [0] / 2 :
35 t0 −= shape [0]
36 i f t1 >= shape [1] / 2 :
37 t1 −= shape [1]
38
39 median2 = np . median (im2)
40
41 def c o s t f u n c t i o n (s , im1 , im2) :
42 return − np . c o r r c o e f ([im1 [3 :−3 , 3 : −3] . r a v e l () ,
43 ndimage . s h i f t (im2 , (0 , s) , mode=’ nea r e s t ’ , cva l=median2) [3 : −3 , 3 : −3] . r a v e l ()]) [0 , 1]
44 i f method == ’ brent ’ :
45 newim2 = ndimage . s h i f t (im2 , (t0 , t1) , mode=’ nea r e s t ’ , cva l=median2)
46 r e f i n e = opt imize . brent (c o s t f u n c t i o n , args=(im1 , newim2) ,
47 brack =[−1, 1] , t o l =1.e−2)
48 return t1 + r e f i n e
49
50 def c o r r e l a t e p r o j e c t i o n s (proj1 , proj2 , method=’ brent ’) :
51 shape = pro j1 . shape
52 f1 = f f t (pro j1)

70

53 f1 [0] = 0
54 f2 = f f t (pro j2)
55 f2 [0] = 0
56 i r = np . r e a l (i f f t ((f 1 ∗ f 2 . conjugate ())))
57 (t0 ,) = np . unrave l index (np . argmax (i r) , shape)
58 i f t0 >= shape [0] / 2 :
59 t0 −= shape [0]
60
61 median2 = np . median (pro j2)
62
63 def c o s t f u n c t i o n (s , proj1 , pro j2) :
64 co s t = − np . c o r r c o e f ([proj1 , ndimage . s h i f t (proj2 , s , mode=’ nea r e s t ’ , cva l=median2)]) [0 , 1]
65 return co s t
66
67 i f method == ’ brent ’ :
68 newproj2 = ndimage . s h i f t (proj2 , (t0 ,) , mode=’ nea r e s t ’ , cva l=median2)
69 r e f i n e = opt imize . brent (c o s t f u n c t i o n , args=(proj1 , newproj2) ,
70 brack =[−1, 1] , t o l =1.e−5)
71
72 return t0 + r e f i n e

Listing C.3: xrdtoolkit/tomo.py

1 from skimage import f i l t e r as f i l t e r s
2 from s c ipy import ndimage
3
4 import numpy as np
5
6 import u t i l s , image
7
8 def s ino r emove bragg spot s (sinogram , b l o c k s i z e =5, t o l e r a n c e =0.05 , s e n s i t i v i t y l o w =1.5 , s e n s i t i v i t y h i g h =0.2) :
9 ””” I f va lue i s above some l o c a l thresho ld ,

10 r e p l a c e by median . Removes dodgy h i g h l i g h t s and shadows
11 r e s u l t i n g from bragg peaks from l a r g e c r y s t a l l i t e s
12 in d i f f r a c t i n g o r i e n t a t i o n s ”””
13
14 # Footpr in t f o r median va lue to r ep l a c e bragg spo t s .
15 # Usua l l y the spo t s are conta ined to one pro j e c t i on ,
16 # so we sample above and below fo r good va l u e s .
17 f o o t p r i n t = np . array (
18 [[False , True , Fa l se] ,
19 [True , True , True] ,
20 [False , False , Fa l se] ,
21 [True , True , True] ,

71

22 [False , True , Fa l se]])
23
24 # Only cons ider p i x e l s which d i f f e r from the l o c a l median by t h i s o f f s e t .
25 # Hi g h l i g h t s and shadows w i l l skew the a r i t hme t i c mean so use median .
26
27 median value = np . median (sinogram)
28 o f f s e t h i g h = np . median (sinogram [sinogram>median value])
29 o f f s e t l o w = np . median (sinogram [sinogram<median value])
30
31 u t i l s . debug pr int (median=median value , o f f s e t h i g h=o f f s e t h i g h , o f f s e t l o w=o f f s e t l o w)
32
33 mask low = ˜ f i l t e r s . t h r e sh o ld ada pt i v e (
34 sinogram ,
35 b l o c k s i z e ,
36 method=’ median ’ ,
37 o f f s e t=−s e n s i t i v i t y l o w ∗(o f f s e t l o w−median value) ,
38)
39 mask high = f i l t e r s . t h r e sho ld ada pt i v e (
40 sinogram ,
41 b l o c k s i z e ,
42 method=’ median ’ ,
43 o f f s e t=−s e n s i t i v i t y h i g h ∗(o f f s e t h i g h−median value) ,
44)
45 i f f loat (mask high .sum()) > t o l e r a n c e ∗ mask high . s i z e :
46 # Too many va l u e s marked as spo t s . I gnor ing h i l i g h t s .
47 print (’Found more than %s%% of va lue s as h i l i g h t s ’ % (t o l e r a n c e ∗ 100))
48 mask high = np . z e ro s (shape=sinogram . shape , dtype=bool)
49 i f f loat (mask low .sum()) > t o l e r a n c e ∗ mask low . s i z e :
50 # Too many va l u e s marked as spo t s . I gnor ing shadows .
51 print (’Found more than %s%% of va lue s as shadows ’ % (t o l e r a n c e ∗ 100))
52 mask low = np . z e ro s (shape=sinogram . shape , dtype=bool)
53
54 mask = mask low + mask high
55 # FIXME, only c a l c u l a t e va l u e s in mask .
56 median = ndimage . m e d i a n f i l t e r (sinogram , f o o t p r i n t=f o o t p r i n t)
57 r e t = sinogram . copy ()
58 r e t [mask==True] = median [mask==True]
59 return r e t
60
61
62 def s i n o d e i n t e r l a c e (sinogram) :
63 s i n o d e i n t e r l a c e d = sinogram . copy ()
64 s ino even = sinogram [: : 2 , . . .]
65 s ino odd = sinogram [1 : : 2 , . . .]

72

66 i f s i no even . shape > s ino odd . shape :
67 s h i f t = image . c o r r e l a t e i m a g e s (s ino even [: − 1 , . . .] , s ino odd)
68 else :
69 s h i f t = image . c o r r e l a t e i m a g e s (s ino even , s ino odd)
70
71 s i n o d e i n t e r l a c e d [1 : : 2 , . . .] = ndimage . s h i f t (sinogram [1 : : 2 , . . .] , (0 , s h i f t) , mode=’ nea r e s t ’)
72 return s i n o d e i n t e r l a c e d
73
74 def s i n o c e n t e r (sinogram) :
75 ””” Finds r o t a t i o n a x i s o f sinogram by us ing f i r s t and l a s t p r o j e c t i o n s
76 which are assumed to be 180 degree s apart . Last p r o j e c t i o n i s r eve r s ed and
77 c o r r e l a t e d with the f i r s t and the s h i f t e d image with r o t a t i o n a x i s in
78 cente r i s returned . ”””
79
80 pro j1 = sinogram [0 , . . .]
81 pro j2 = sinogram [−1 , : :−1]
82 s h i f t = image . c o r r e l a t e p r o j e c t i o n s (proj1 , pro j2)
83 return ndimage . s h i f t (sinogram , (0 ,− s h i f t) , mode=’ nea r e s t ’ , cva l=np . median (sinogram))

Listing C.4: xrdtoolkit/fit.py

1 import numpy as np
2
3 import u t i l s
4
5 SQRT2 = 1.41421356237309504880
6
7 GAUSSIAN = ’ gauss ian ’
8 DELTA = ’ d e l t a ’
9 GAUSS ERF = ’ e r f ’

10
11 def e r f (x) :
12 a1 = 0.254829592 ; a2 = −0.284496736
13 a3 = 1.421413741 ; a4 = −1.453152027
14 a5 = 1.061405429 ; p = 0.3275911
15
16 i f not type (x) == np . ndarray :
17 x = np . array (x)
18 s i gn = np . ones (x . shape)
19 s i gn [x<0] = −1
20 x = np . abs (x)
21
22 # A & S 7.1 .26
23 t = 1 . 0 / (1 . 0 + p∗x)

73

24 y = 1 .0 − (((((a5∗ t + a4)∗ t) + a3)∗ t + a2)∗ t + a1)∗ t ∗np . exp(−x∗x)
25
26 return s i gn ∗y
27
28
29 PEAK FUNCTIONS = {
30 GAUSSIAN : lambda x , x0 , sigma : 1 . 0 / (np . s q r t (2∗np . p i)∗ sigma)∗np . exp (−0.5∗((x−x0)/ sigma)∗∗2) ,
31 DELTA : lambda x , x0 : 1 i f x == x0 else 0 ,
32 GAUSS ERF : lambda x , x0 , sigma : 0 . 5∗ (e r f ((x+0.5−x0) / (SQRT2∗ sigma)) −
33 e r f ((x−0.5−x0) / (SQRT2∗ sigma)))
34 }
35
36 def g e t p e a k f u n c t i o n (p o s i t i o n =0, fwhm=1, shape=DELTA, ∗∗kwargs) :
37 i f shape == GAUSSIAN:
38 sigma = fwhm / 2.35482004503 # FWHM = 2 s q r t (2 ln (2)) sigma
39 i f fwhm < 10 :
40 # Few points , so we need to use proper quadrature
41 shape = GAUSS ERF
42 e l i f shape == DELTA:
43 return lambda x : PEAK FUNCTIONS[shape] (x , p o s i t i o n)
44
45 return lambda x : PEAK FUNCTIONS[shape] (x , po s i t i on , sigma)
46
47 def f i t p e a k i n t e n s i t y (s i gna l , peak , b i a s =1):
48 ”””
49 ”””
50
51 try :
52 a s s e r t (s i g n a l . shape == peak . shape)
53 except :
54 raise Exception (”Arguments must be compatible v e c t o r s . ”)
55
56 A = np . array ([np . ones (s i g n a l . s i z e) , np . arange (0 , s i g n a l . s i z e) , peak])
57 w = 1.0 / (s i g n a l+b ia s) # Use s i g n a l as squared error . dy ˜ s q r t (y)
58 B = A ∗ np . array ([w,w,w])
59
60 covC = np . l i n a l g . inv (np . dot (B,A.T))
61 c = np . dot (np . dot (covC , B) , s i g n a l)
62
63 print c
64
65 def t e s t s i g n a l (x , c , fun , rand =0):
66 s i g n a l =np . dot (np . array ([np . ones (len (x)) , x , fun]) . T, c)
67 s i g n a l = s i g n a l + rand∗np . random . normal (0 , 2 , s i g n a l . s i z e)

74

68 return s i g n a l
69
70 def t e s t (N=21 ,(xmin , xmax)=(−10 ,10) , c = [1 3 . 4 5 , 1 . 2 3 , 4 9 . 0] , peak width =2.2) :
71 x = np . l i n s p a c e (xmin , xmax ,N)
72 #c = np . array ([13 . 45 , 1 .23 , 4 9 . 0]) # Constant , s l o p e and peak magnitude
73 s i g n a l = t e s t s i g n a l (x , c , gauss ian (x , 0 , peak width) , 2)
74 peak = gauss ian (x , 0 , peak width)
75 f i t p e a k i n t e n s i t y (s i gna l , peak)

Listing C.5: xrdtoolkit/f2w.py

1 #
2 # f2w−package by V. Honkim\” ak i
3 #
4 # Copyright 2012 European Synchrotron Rat ia t i on F a c i l i t y
5 #
6 # Licensed under the Apache License , Version 2.0 (the ”License ”) ;
7 # you may not use t h i s f i l e excep t in compliance wi th the License .
8 # You may ob ta in a copy o f the License at
9 #

10 # ht t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
11 #
12 # Unless r e qu i r ed by a p p l i c a b l e law or agreed to in wr i t ing , so f tware
13 # d i s t r i b u t e d under the License i s d i s t r i b u t e d on an ”AS IS” BASIS ,
14 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or imp l i ed .
15 # See the License f o r the s p e c i f i c language governing permiss ions and
16 # l im i t a t i o n s under the License .
17
18 # example :
19 # >>> import ed f # or however you load the edf− f i l e s
20 # >>> import f2w # import the d e t e c t o r c l a s s e s
21 # >>> Det=f2w . Pixium () # ob j e c t f o r the Pixium de t e c t o r
22 # >>> p r i n t (Det) # . . . j u s t to see what parameters i t ho l d s
23 # >>> P=ed f . read (” p ix . ed f ”) # reading the 2d pa t t e rn from the edf− f i l e
24 # >>> Det . c a l i b r a t e (P, [1 0 , 1 3 0]) # c a l i b r a t i n g the cen ter and the t i l t us ing
25 # # a l l the data between 10mm < rad ius < 130mm
26 # >>> r ,A=Det . i n t e g r a t e (P, 1) # i n t e g r a t e s over the whole 2 p i
27 # >>> r ,A=Det . i n t e g r a t e (P,N) # i n t e g r a t e s N p i e s
28 #
29 import numpy as np
30 from numpy import zeros , pi , meshgrid , arange , sqrt , arctan2 , isnan , f l o o r , prod ,\
31 trunc , nonzero , d i f f , hstack , vstack , i n t , t ranspose ,\
32 l i n a l g , dot , s in , cos , cumsum , ones
33

75

34 import u t i l s
35
36 class Detector (object) :
37 T = []
38 R = []
39 dr = []
40 updated = False
41 ”””A gene ra l d e t e c t o r ob j e c t ”””
42 def i n i t (s e l f , ∗∗kwargs) :
43 for key in kwargs :
44 i f key in [’ d i s t anc e ’ , ’ t i l t ’ , ’ o r i g i n ’ , ’ b inning ’] :
45 s e l f . d i c t . update ({ ’ %s ’ % (key ,) : u t i l s . f l a t t e n (kwargs [key]) })
46 i f ’ b inning ’ in kwargs :
47 s e l f . p i x e l s i z e = l i s t (np . mult ip ly (s e l f . p i x e l s i z e , s e l f . b inn ing))
48 s e l f . p i x e l s = l i s t (np . d i v id e (s e l f . p i x e l s , s e l f . b inn ing))
49 def s e t d i s t (s e l f ,D) :
50 s e l f . d i s t a n c e = D; s e l f . updated = False ;
51 def s e t o r i g i n (s e l f , v) :
52 s e l f . o r i g i n = v ; s e l f . updated = False ;
53 def s e t t i l t (s e l f , v) :
54 s e l f . t i l t = v ; s e l f . updated = False ;
55 def s t r (s e l f) :
56 s = ’ Distance = ’ + repr (s e l f . d i s t a n c e) + ’mm\nOrigin

= ’ + repr (s e l f . o r i g i n) \
57 + ’mm\ nTi l t = ’ + repr (s e l f . t i l t) + ’ deg\ nPixe l s

= ’ + repr (s e l f . p i x e l s)\
58 + ’ \ nPix s i z e = ’ + repr (s e l f . p i x e l s i z e) + ’mm’
59 i f ’ b inning ’ in s e l f . d i c t :
60 s = s + ’ \nBinning mode = ’ + repr (s e l f . b inn ing)
61 return (s)
62 def c a l c r t (s e l f) :
63 i f (not s e l f . updated) :
64 r = pi /180.0/ s e l f . d i s t a n c e
65 a = s e l f . t i l t [0] ∗ r ; b = s e l f . t i l t [1] ∗ r ;
66 xv = arange (s e l f . p i x e l s [1]) ∗ s e l f . p i x e l s i z e [1]− s e l f . o r i g i n [1]
67 yv = arange (s e l f . p i x e l s [0]) ∗ s e l f . p i x e l s i z e [0]− s e l f . o r i g i n [0]
68 x , y = meshgrid (xv , yv)
69 s e l f . R = s q r t (x∗∗2+y∗∗2)∗(1.0−a∗y−b∗x) ; s e l f . T = arctan2 (y , x) ; s e l f . updated = True
70 s e l f . R . shape = prod (s e l f . R . shape) ; s e l f . T . shape = prod (s e l f . T . shape) ;
71 s e l f . Rind = s e l f . R . a r g s o r t (a x i s=None) ;
72 n = cumsum(ones (s e l f . Rind . shape)) ;
73 s e l f . dr = s q r t (s e l f . p i x e l s i z e [0] ∗ s e l f . p i x e l s i z e [1])
74 i = f l o o r (s e l f . R [s e l f . Rind] / s e l f . dr + 0 . 5)
75 s e l f . j i n d = 0 < d i f f (i) ;

76

76 s e l f . nR = i [s e l f . j i n d]∗ s e l f . dr ;
77 s e l f . d c j = d i f f (hstack ((0 , n [s e l f . j i n d])))
78 def i n t e g r a t e (s e l f , Im , n=1):
79 i f Im . shape != tuple (s e l f . p i x e l s) :
80 raise Exception (” D i f f r a c t i o n image does not match de t e c t o r r e s o l u t i o n . ”)
81 i f (not s e l f . updated) :
82 s e l f . c a l c r t () ;
83 Imc = Im [:] ; Imc . shape = prod (Imc . shape) ;
84 i f n>1:
85 R = s e l f . R [:] ; T = s e l f . T [:] ; dr = s e l f . dr ;
86 t p i = 2 .0∗ pi ; dp = t p i /n ; ip = i n t (f l o o r (T/dp+0.5)%n) ; A = ze ro s ([0 , n]) ;
87 for i in range (n) :
88 j = nonzero (ip == i) ; a = s e l f . p i e (Imc [j] ,R[j] , dr) ; M = a . shape [0] ; m = A. shape [0] ;
89 i f (m < M) :
90 A = vstack ((A, z e r o s ([M−m, n])))
91 a . shape = M; A [:M, i] = a ;
92 else :
93 A = ze ro s (s e l f . nR . shape) ; c = Imc [s e l f . Rind] . cumsum () [s e l f . j i n d] ;
94 A[0] = c [0] ; A [1 :] = d i f f (c) ; A = A/ s e l f . d c j ;
95 return (s e l f . nR ,A) ;
96
97 def p i e (s e l f , Im ,R, dr) :
98 mn = prod (Im . shape) ; j = R. a r g s o r t (a x i s=None) ; w = R[j] / dr ;
99 i r = i n t (w) ; w0 = 1.0+ i r−w; w1 = 1.0−w0 ; c0 = w0∗Im [j] ; c1 = w1∗Im [j] ;

100 i = isnan (Im [j]) ; w0 [i] = 0 ; w1 [i] = 0 ; c0 [i] = 0 ; c1 [i] = 0 ;
101 w0 = w0 . cumsum () ; w1 = w1 . cumsum () ; c0 = c0 . cumsum () ; c1 = c1 . cumsum () ;
102 i = nonzero (d i f f (i r)) ; m = i r [−1]+2; A = ze ro s ([m, 1]) ; C = ze ro s ([m, 1]) ;
103 ta = d i f f (hstack ((0 , c0 [i]))) ; t c = d i f f (hstack ((0 ,w0 [i]))) ; j = i r [i] ; A[j , 0] = ta ; C[j , 0] = tc ;
104 ta = d i f f (hstack ((0 , c1 [i]))) ; t c = d i f f (hstack ((0 ,w1 [i]))) ; j += 1 ; A[j , 0] += ta ; C[j , 0] += tc ;
105 j = nonzero (C) ; A[j] = A[j] /C[j] ; return (A) ;
106 def c a l i b r a t e (s e l f , Im , rg , drk=None) :
107 ”””
108 Im : Raw Image to use f o r c a l i b r a t i o n .
109 rg : Region (min , max) in mm to inc lude in c a l i b r a t i o n .
110 drk : I f provided , the dark cur rent image w i l l be subtracted
111 from the raw image and i t s var i ance added to the e r r o r s t a t i s t i c s .
112
113 N − number o f p i e s to i n t e g r a t e
114 db − covar iance matrix o f c , weighted f o r high q−counts and i n t e n s i t y s t a t i s t i c s
115 rg − Range [mm] to use f o r c a l i b r a t i o n
116 ”””
117
118 i f drk i s not None :
119 s e l f . b i a s = drk . mean ()

77

120 Im = Im . astype (’ f l o a t ’) − drk # Small n e ga t i v e va l u e s in uint16 causes under f low .
121 i t e r a t i o n s = 0 ; f u l l i t e r a t i o n s = 0 ;
122 D = s e l f . d i s t a n c e ; stp = 1 ; N = 36 ; dp = 2∗ pi /N; p = arange (N)∗dp−dp /2 ;
123 y = ze ro s ([N, 1]) ; z = ze ro s ([N, 1]) ; dy = ze ro s ([N, 1]) ; dz = ze ro s ([N, 1]) ;
124 sc = 2∗ pi /(s q r t (s e l f . p i x e l s i z e [0] ∗ s e l f . p i x e l s i z e [1]) ∗N) ;
125 while (0 . 001 < stp and f u l l i t e r a t i o n s < 2 0) :
126 r ,A = s e l f . i n t e g r a t e (Im ,N) ; i = nonzero ((rg [0] < r)∗ (r < rg [1])) [0] ; r = r [i , :] ; A = A[i , :] ;
127 d = d i f f (A[: , −1]) / d i f f (r) ; C = vstack ((A[:−1 ,−1] ,d , d∗ r [−1 :]∗∗2/D)) .T;
128 for j in range (N) :
129 w = sc ∗ r [: −1] / (A[:−1 , j]+ s e l f . b i a s) ; w[w<0] = 0 ;
130 Cs = (C∗w [: , [0 , 0 , 0]]) . T; db = l i n a l g . inv (dot (Cs ,C)) ;
131 b = dot (db , dot (Cs ,A[:−1 , j])) ; y [j] = b [1] / b [0] ; z [j] = b [2] / b [0] ;
132 c = hstack ((1 ,−y [j])) / b [0] ; c . shape = [1 , 2] ; dy [j] = dot (c , dot (db [[1 , 0] , :] [: , [1 , 0]] , c .T)) ;
133 c = hstack ((1 ,− z [j])) / b [0] ; c . shape = [1 , 2] ; dz [j] = dot (c , dot (db [[2 , 0] , :] [: , [2 , 0]] , c .T)) ;
134 d = d i f f (A[: , j]) / d i f f (r) ; C = vstack ((A[:−1 , j] , d , d∗ r [: −1]∗∗2/D)) .T;
135
136 y = y/dp ; z = z/dp ; dy = dy/dp ∗∗2 ; dz = dz/dp ∗∗2 ;
137
138 # Update o r i g i n
139 w = (1/ dy) ;
140 C = vstack ((cos (p) ,− s i n (p))) .T; Cs = (C∗w [: , [0 , 0]]) . T;
141 db = l i n a l g . inv (dot (Cs ,C)) ; c = dot (db , dot (Cs , y)) ;
142 stp = sum(c ∗∗2) ; q = c/ s q r t (stp) ; s tp = stp / dot (dot (q .T, db) , q) ; c . shape = 2 ;
143 s e l f . s e t o r i g i n (s e l f . o r i g i n − c) ;
144
145 # Update t i l t .
146 # Ti l t i s normal ly very smal l , so wai t u n t i l o r i g i n i s ra the r s t a b l e .
147 stp2=0
148 i f stp < 1 :
149 w = (1/ dz) ;
150 C = vstack ((cos (p) ,− s i n (p))) .T; Cs = (C∗w [: , [0 , 0]]) . T;
151 db = l i n a l g . inv (dot (Cs ,C)) ; c = dot (db , dot (Cs , z)) ;
152 stp2 = sum(c ∗∗2) ; q = c/ s q r t (stp2) ; stp2 = stp2 / dot (dot (q .T, db) , q) ; c . shape = 2 ;
153 s e l f . s e t t i l t (s e l f . t i l t − c ∗180/ p i) ;
154 f u l l i t e r a t i o n s += 1
155
156 stp = s q r t (stp+stp2)
157 i t e r a t i o n s += 1
158 print (” Step = { 0 : . 3 f }” . format (stp [0 , 0]))
159 print (’ I t e r a t i o n %s ’ % (i t e r a t i o n s ,))
160 print s e l f
161
162 class Pixium (Detector) :
163 ””” Pixium de t e c t o r ob j e c t ”””

78

164 def i n i t (s e l f , ∗∗kwargs) :
165 ””” Set up d e f a u l t geometry and
166 a l low i t to be ove r r iden in base i n i t ”””
167 s e l f . d i s t a n c e = 1000
168 s e l f . o r i g i n = [1 4 7 . 8 4 , 2 0 3 . 2 8]
169 s e l f . t i l t = [0 , 0]
170 s e l f . p i x e l s = [1920 , 2640]
171 s e l f . p i x e l s i z e = [0 . 1 5 4 , 0 . 1 5 4]
172 s e l f . b i a s = 3378.4108576774597 # Average dark curren t .
173 super (Pixium , s e l f) . i n i t (∗∗ kwargs)
174
175 class Perkin (Detector) :
176 ””” de t e c t o r ob j e c t ”””
177 def i n i t (s e l f , ∗∗kwargs) :
178 s e l f . d i s t a n c e = 1000
179 s e l f . o r i g i n = [2 0 4 . 8 , 2 0 4 . 8]
180 s e l f . t i l t = [0 , 0]
181 s e l f . p i x e l s = [2048 , 2048]
182 s e l f . p i x e l s i z e = [0 . 2 0 0 , 0 . 2 0 0]
183 s e l f . b i a s = 3378.4108576774597 # Average dark curren t .
184 super (Perkin , s e l f) . i n i t (∗∗ kwargs)
185
186 def g e t d e t e c t o r (name , ∗∗kwargs) :
187 ””” Detector name to ob j e c t t r a n s l a t i o n .
188 Based on s i m i l a r method in pyFAI . ”””
189 d e t e c t o r s = {” perk in ” : Perkin ,
190 ”pixium” : Pixium , }
191 name = name . lower ()
192 i f name in d e t e c t o r s :
193 return d e t e c t o r s [name] (∗∗ kwargs)
194 else :
195 raise Exception (’ Detector %s not known . ’ % (name ,))
196
197 class Ca l ib ra to r (object) :
198 def i n i t (s e l f , image , dark current , d e t e c t o r) :
199 s e l f . image = image
200 s e l f . d e t e c t o r = de t e c t o r
201 s e l f . da rk cur r ent = dark cur r ent
202
203 def c a l i b r a t e (s e l f , l i m i t s = [1 0 , 3 5 0]) :
204 ””” Ca l ib ra t e t i l t and o r i g i n o f d e t e c t o r us ing data in the i n t e r v a l
205 [@lower , @upper]mm with a value exceed ing @threshold .
206 I f p i x e l l i m i t s=True , lower and upper l i m i t s are g iven in p i x e l s . ”””
207 # FIXME de f a u l t l im i t s to f r a c t i o n o f d i f f r a c t i o n d e t e c t o r

79

208 #s e l f . image [s e l f . image<100] = 0
209 s e l f . d e t e c t o r . c a l i b r a t e (s e l f . image , l i m i t s , drk=s e l f . da rk cur r ent)
210
211 def s t r (s e l f) :
212 return str (s e l f . d e t e c t o r)

Listing C.6: xrdtoolkit/common.py

1 import p i c k l e
2 import numpy as np
3 from pkg re sour c e s import r e s o u r c e s t r i n g
4
5 class Bunch :
6 def i n i t (s e l f , ∗∗kwds) :
7 s e l f . add (∗∗kwds)
8 def add (s e l f , ∗∗kwds) :
9 s e l f . d i c t . update (kwds)

10 def r e p r (s e l f) :
11 return unicode (s e l f)
12 def u n i c o d e (s e l f) :
13 f o r m a t s t r = u” : %s \n” . j o i n (s e l f . d i c t . keys ())
14 f o r m a t s t r +=u” : %s \n”
15 return f o r m a t s t r % tuple (s e l f . d i c t . va lue s ())
16
17 #
18 # >>> import x r d t o o l k i t
19 # >>> x r d t o o l k i t . XrayTable . d type # l i s t a l l a v a i l a b l e f i e l d s
20 # >>> x r d t o o l k i t . Xraytab le [’ Densi ty ’] [1] # den s i t y o f Hydrogen
21 # >>> x r d t o o l k i t . Xraytab le [1] [’ Densi ty ’] # a l s o d en s i t y o f Hydrogen
22 #
23 # Please note t ha t numpy ’ s dot f unc t i on f o r matrix mu l t i p l i c a t i o n does no t
24 # work wi th s c i py sparse matr ices (such as the JumpMatrix) . Use jumpMatrix . dot (foo)
25 # ins t ead .
26
27 class XrayTable :
28 ””” XrayTable conta in s var i ous data r e l a t e d to
29 i n t e r a c t i o n s with X−rays f o r a range o f e lements . ”””
30
31 def i n i t (s e l f) :
32 s e l f . loaded = False
33
34 def l o ad (s e l f) :
35 s e l f . t a b l e = p i c k l e . l oads (r e s o u r c e s t r i n g (name , ’ data / xraytab l e . p i c k l e ’))
36

80

37 def g e t i t e m (s e l f , key) :
38 i f not s e l f . loaded :
39 s e l f . l o ad ()
40 i f not isinstance (key , int) :
41 raise IndexError (’ F i r s t index must be an atomic number ’)
42 i f key > s e l f . t a b l e . shape [0] or key < 1 :
43 raise IndexError (’ I n v a l i d atomic number ’)
44 return s e l f . t a b l e [key−1]
45
46 def r e p r (s e l f) :
47 ””” Give a l i s t i n g o f a v a i l a b l e data ”””
48 i f not s e l f . loaded :
49 s e l f . l o ad ()
50 return ’ \n ’ . j o i n (s e l f . t ab l e . dtype . names)
51
52 def s t r (s e l f) :
53 i f not s e l f . loaded :
54 s e l f . l o ad ()
55 return s e l f . r e p r ()
56
57 # Replace c l a s s by s i n g l e t o n ins tance
58 # Loads xray data once .
59 XrayTable = XrayTable ()
60
61 Elements = p i c k l e . l oads (r e s o u r c e s t r i n g (name , ’ data / e lements . p i c k l e ’))
62
63
64
65 Constants = Bunch(
66 c = 299792458 , # (m/s) speed o f l i g h t in vacuum (exac t)
67 mu = 4.0 e−7∗np . pi , # (N/Aˆ2) magnetic cons tant mu 0 (exac t)
68 Na = 6.0221415 e23 , # Avogadro cons tan t s
69 kB = 1.3806505 e−23, # (J/K) Boltzmann cons tant
70 h = 6.6260693 e−34, # (Js) Planck cons tant
71 G = 6.6742 e−11, # (mˆ3/ kg/ s ˆ2) g r a v i t a t i o n a l cons tant
72 e = 1.60217653 e−19, # (J) e l e c t r on v o l t
73 me = 510.998918 # e l e c t r on mass in keV
74)
75
76 Constants . add (
77 ep = 1/(Constants .mu∗Constants . c ∗∗2) , # (F/m) e l e c t r i c cons tant eps 0
78 hc = 1e7∗Constants . h∗Constants . c/ Constants . e , # (keV A) hc
79 re = Constants . c ∗∗2∗Constants . e/ Constants . me , # c l a s s i c a l rad ius o f e l e c t r on in A
80 i a = 2∗Constants . h/(Constants . e ∗∗2∗Constants .mu∗Constants . c)

81

1/ f ine−s t r u c t u r e
81)
82
83 def s t r t o z (s t r i n g) :
84 ’ ’ ’ Converts a s t r i n g o f s t o i ch i omet ry in to a d i c t i o n a r y
85 o f cor re spond ing atomic numbers and element count .
86 E.G H2O −> { (’H ’ : 1) : 2 , (’O ’ : 8) : 1 }

’ ’ ’
87 s t r i n g = s t r i n g . r e p l a c e (’ Air ’ , ’N4O ’)
88 return s t r t o z (s t r i n g)
89
90
91 def s t r t o z (s t r i n g) :
92 try :
93 return { int (s t r i n g) : 1 }
94 except ValueError :
95 # Not an i n t e g e r
96 (l e f tBracke t , r i ghtBracke t) = getmatchedparentheses (s t r i n g)
97 i f l e f t B r a c k e t != −1:
98 # s t r i n g i s o f form a(b) c
99 a z = s t r t o z (s t r i n g [0 : l e f t B r a c k e t])

100 b z = s t r t o z (s t r i n g [l e f t B r a c k e t +1: r i ghtBracket])
101
102 c = s t r i n g [r i ghtBracke t +1:]
103 f a c t o r = 1
104 i f len (c) :
105 try :
106 f a c t o r = int (c [0])
107 c = c [1 :]
108 except ValueError :
109 # No in t e g e r f o l l owed pa r en t h e s i s .
110 pass
111 c z = s t r t o z (c)
112 for element , count in b z . i tems () :
113 a z [element] = a z . get (element , 0) + f a c t o r ∗ count
114 for element , count in c z . i tems () :
115 a z [element] = a z . get (element , 0) + count
116 return a z
117 else :
118 # s t r i n g wi th on ly e lements and i n t e g e r s
119 r e s u l t = dict ()
120 while s t r i n g :
121 count = 1
122 i f len (s t r i n g) == 0 :

82

123 continue
124 i f len (s t r i n g) > 1 and s t r i n g [1] . i s l o w e r () :
125 e l = (s t r i n g [0 : 2] , Elements [s t r i n g [0 : 2]])
126 s t r i n g = s t r i n g [2 :]
127 else :
128 i f not s t r i n g [0] in Elements . keys () :
129 raise Exception (’ I n v a l i d element %s ’ % s t r i n g [0])
130 e l = (s t r i n g [0] , Elements [s t r i n g [0]])
131 s t r i n g = s t r i n g [1 :]
132 try :
133 count = int (s t r i n g [0])
134 s t r i n g = s t r i n g [1 :]
135 except (IndexError , ValueError) :
136 # No count g iven
137 pass
138
139 r e s u l t [e l] = r e s u l t . get (e l , 0) + count
140 return r e s u l t
141 raise Exception (’FIXME ’)
142
143 def getmatchedparentheses (s t r i n g) :
144 balance = 0
145 l e f t = s t r i n g . f i n d (’ (’)
146 index = l e f t
147 for char in s t r i n g [l e f t :] :
148 i f char == ’ (’ :
149 balance += 1
150 e l i f char == ’) ’ :
151 balance −= 1
152 i f balance == 0 :
153 return (l e f t , index)
154 index += 1
155 i f balance > 0 :
156 raise ValueError (’ Unmatched (p a r e n t h e s i s ’)
157 e l i f balance < 0 :
158 raise ValueError (’ Unmatched) p a r e n t h e s i s ’)
159 return (l e f t , index)

Listing C.7: xrdtoolkit/utils.py

1 import numpy as np
2 import optparse , os , time , i n s p e c t
3
4 import x rd t oo l k i t , f a b i o

83

5 from x r d t o o l k i t import f i l e s
6
7 def debug pr int (∗∗ kwargs) :
8 for name , var in kwargs . i t e r i t e m s () :
9 print (’%s = %s ’ % (name , var ,))

10
11 def s t r i p n o n e v a l u e s (d i c t i o n a r y) :
12 return dict ([(o , v) for o , v in d i c t i o n a r y . i tems () i f not (v == None or v ==

[None])])
13
14 def f l a t t e n (va l) :
15 i f type (va l) == dict :
16 return dict ([(o , f l a t t e n (v)) for o , v in va l . i tems ()])
17
18 i f hasattr (val , ’ i t e r ’) and len (va l) == 1 :
19 return va l [0]
20
21 i f hasattr (val , ’ i t e r ’) :
22 f l a t l i s t = []
23 for item in va l :
24 i f hasattr (item , ’ i t e r ’) :
25 f l a t l i s t . extend (f l a t t e n (item))
26 else :
27 f l a t l i s t . append (item)
28 return f l a t l i s t
29 else :
30 return [va l]
31
32 def convert (val , va l type) :
33 i f type (va l) == dict :
34 return dict ([(o , convert (v , va l type) ,) for o , v in va l . i tems ()])
35 i f hasattr (val , ’ i t e r ’) :
36 return [convert (o , va l type) for o in va l]
37 try :
38 return va l type (str (va l) . s t r i p ())
39 except ValueError :
40 return va l
41
42 class S c r i p t (object) :
43 def i n i t (s e l f) :
44 s e l f . usage = ”Usage : %prog <opt ions>”
45 s e l f . d e s c r i p t i o n=””
46 s e l f . t imings = []
47

84

48 def p a r s e r s e t u p (s e l f) :
49 par s e r = optparse . OptionParser (usage=s e l f . usage , d e s c r i p t i o n=s e l f . d e s c r i p t i o n)
50
51 par s e r . add opt ion (”−V” , ”−−v e r s i on ” , des t=” v e r s i o n ” , ac t i on=” s t o r e t r u e ” ,
52 help=” pr i n t v e r s i on o f the program and qu i t ” , metavar=”FILE” , d e f a u l t=False)
53 par s e r . add opt ion (”−v” , ”−−verbose ” ,
54 ac t i on=” s t o r e t r u e ” , des t=” verbose ” , d e f a u l t=False ,
55 help=” switch to debug/ verbose mode”)
56 par s e r . add opt ion (”−s ” , ”−−s i l e n t ” ,
57 ac t i on=” s t o r e t r u e ” , des t=” s i l e n t ” , d e f a u l t=False ,
58 help=” supre s s output to te rmina l . ”)
59 par s e r . add opt ion (”−t ” , ”−−t imings ” ,
60 ac t i on=” s t o r e t r u e ” , des t=” t imings ” , d e f a u l t=False ,
61 help=”Report execut ion t imes . ”)
62 s e l f . pa r s e r = par s e r
63
64 def parse (s e l f) :
65 (s e l f . opt ions , s e l f . a rgs) = s e l f . pa r s e r . p a r s e a r g s ()
66
67 @classmethod
68 def timed (c l s , fun) :
69 def wrapper (s e l f , ∗ args , ∗∗kwargs) :
70 s t a r t = time . time ()
71 fun (s e l f , ∗ args , ∗∗kwargs)
72 s e l f . t imings . append ((fun . name , time . time ()− s t a r t) ,)
73 return wrapper
74
75 def p r i n t t i m i n g s (s e l f) :
76 i f not s e l f . opt i ons . t imings :
77 return
78 print (”=== Execution time ===”)
79 for (i , j) in s e l f . t imings :
80 print (’%s : %.2 f s ’ % (i . r e p l a c e (’ ’ , ’ ’) . c a p i t a l i z e () , j))
81
82
83 def p r i n t v e r b o s e (s e l f , ∗ args , ∗∗kwargs) :
84 i f s e l f . opt i ons . verbose or not s e l f . opt i ons . s i l e n t :
85 i f ’ indent ’ in kwargs :
86 for i in xrange (0 , kwargs [’ indent ’]) :
87 print ” ” ,
88 for arg in args :
89 print arg ,
90 print

85

Listing C.8: xrdtoolkit/files.py

1 import os
2 import numpy as np
3
4 import f a b i o
5
6 import x r d t o o l k i t
7
8 EDF = ’ . ed f ’
9 HDF5 = ’ . h5 ’

10 IMAGE EXTENSIONS = [EDF, HDF5]
11
12 def matchImageFiles (path) :
13 ””” Return l i s t o f images s t a r t i n g with g iven path ”””
14
15 (d i r e c to ry , f i l e p r e f i x) = os . path . s p l i t (os . path . expanduser (path))
16 i f d i r e c t o r y == ’ ’ :
17 d i r e c t o r y = ’ . ’
18 f i l e n a m e s = [o for o in os . l i s t d i r (d i r e c t o r y) i f o . s t a r t s w i t h (f i l e p r e f i x) and os . path . s p l i t e x t (o) [1] in IMAGE EXTENSIONS]
19 return (f i l e p r e f i x , d i r e c to ry , f i l e n a m e s)
20
21 def saveDataset (f i l e h a n d l e , data , d a t a s e t=’ / entry / image ’) :
22 group = f i l e h a n d l e . r equ i r e g roup (os . path . dirname (d a t a s e t))
23 datase t = group . r e q u i r e d a t a s e t (
24 name=os . path . basename (d a t a s e t) ,
25 shape=data . shape ,
26 dtype=data . dtype
27)
28 datase t [:] = data
29
30 class ImageFi le :
31 def i n i t (s e l f , f i l e p a t h) :
32 s e l f . ex t ens i on = os . path . s p l i t e x t (f i l e p a t h) [1]
33 s e l f . f i l e p a t h = f i l e p a t h
34
35 def getNFrames (s e l f) :
36 i f s e l f . ex t ens i on == HDF5:
37 return 1
38 e l i f s e l f . ex t ens i on == EDF:
39 return f a b i o . open(s e l f . f i l e p a t h) . nframes
40
41 def getImage (s e l f , d a t a s e t=’ / entry / image ’) :
42 i f s e l f . ex t ens i on == HDF5:

86

43 import h5py
44 with h5py . F i l e (s e l f . f i l e p a t h) as f :
45 try :
46 s e l f . image = f [d a t a s e t] . va lue
47 except KeyError :
48 i f x r d t o o l k i t .IMAGE PATH not in f :
49 raise KeyError (’ Data s e t %s does not e x i s t ’ % (data se t ,))
50 else :
51 s e l f . image = f [x r d t o o l k i t .IMAGE PATH]
52 else :
53 import f a b i o
54 s e l f . image = f a b i o . open(s e l f . f i l e p a t h) . data
55 return s e l f . image
56
57 def saveImage (s e l f , image , d a t a s e t=’ / x r d t o o l k i t / image ’) :
58 i f s e l f . ex t ens i on == ’ . h5 ’ :
59 import h5py
60 with h5py . F i l e (s e l f . f i l e p a t h) as f :
61 saveDataset (f , image , d a t a s e t)
62 e l i f s e l f . ex t ens i on == ’ . ed f ’ :
63 import f a b i o
64 edf image = f a b i o . edf image . edf image ()
65 i f image . ndim == 3 :
66 edf image . setData (image [0])
67 for i in xrange (1 , image . shape [0]) :
68 edf image . appendFrame (data=image [i])
69 e l i f image . ndim > 3 :
70 raise RuntimeError (”Number o f dimensions g r e a t e r than 3 . ”)
71 else :
72 edf image . setData (image)
73 edf image . wr i t e (s e l f . f i l e p a t h)
74
75 def ImageSequence (f i l e p a t h s , d a t a s e t=x r d t o o l k i t .IMAGE PATH, group frames=False) :
76 i f a l l ([os . path . s p l i t e x t (f i l e n a m e) [1] == ’ . ed f ’ for f i l e n a m e in f i l e p a t h s]) :
77 edf image = f a b i o . edf image . edf image () . read (f i l e p a t h s [0])
78 nframes = edf image . nframes
79 i f nframes > 1 :
80 for f in f i l e p a t h s :
81 edf image = f a b i o . open(f)
82 i f group frames :
83 r e t = np . z e r o s ([ed f image . nframes] + edf image . dims)
84 for i in xrange (0 , edf image . nframes) :
85 r e t [i] = edf image . get frame (i) . data
86 y i e l d r e t

87

87 else :
88 for i in xrange (0 , ed f image . nframes) :
89 y i e l d edf image . get frame (i) . data
90 else :
91 for f in f i l e p a t h s :
92 y i e l d edf image . fastReadData (f)
93
94 else :
95 for f in f i l e p a t h s :
96 y i e l d ImageFi le (f) . getImage (d a t a s e t)
97
98
99 def averageImages (f i l e p a t h s , method=’ median ’ , f l a t t e n=False) :

100 ””” Load and average a l i s t o f images .
101 By d e f a u l t multi−frame f i l e s maintain t h e i r shape ,
102 that i s , frames are averaged a c r o s s f i l e s and not
103 over i n t e r n a l frames ”””
104 i f not hasattr (f i l e p a t h s , ’ i t e r ’) :
105 f i l e p a t h s = [f i l e p a t h s]
106 f i l e p a t h s = [f for f in f i l e p a t h s i f os . path . i s f i l e (f)]
107 i f len (f i l e p a t h s) == 0 :
108 raise Exception (”No v a l i d f i l e s to average ”)
109
110 img = ImageFi le (f i l e p a t h s [0]) . getImage ()
111 dtype = img . dtype
112 nframes = ImageFi le (f i l e p a t h s [0]) . getNFrames ()
113 image dims = tuple (img . shape)
114 image count = len (f i l e p a t h s)
115
116 e d f f i l e s = [f a b i o . open(path) for path in f i l e p a t h s]
117
118 i f not f l a t t e n :
119 r e s = np . z e ro s ((nframes ,) + image dims , dtype=dtype)
120 image stack = np . z e r o s ((image count ,) + image dims , dtype=dtype)
121 for i in xrange (0 , nframes) :
122 print ’ Averaging frame %s ’ % i
123 for j in xrange (0 , image count) :
124 i f nframes == 1 :
125 image stack [j] = e d f f i l e s [j] . data
126 else :
127 image stack [j] = e d f f i l e s [j] . get frame (i) . data
128 i f method == ’ median ’ :
129 r e s [i] = np . median (image stack , a x i s =0). astype (dtype)
130 e l i f method == ’mean ’ :

88

131 r e s [i] = np . mean(image stack , a x i s =0). astype (dtype)
132 else :
133 raise Exception (’METHOD NOT IMPLEMENTED’)
134 else :
135 image stack = np . array ([o for o in ImageSequence (f i l e p a t h s)])
136 i f method == ’ median ’ :
137 r e s = np . median (image stack , a x i s =0). astype (dtype)
138 e l i f method == ’mean ’ :
139 r e s = np . mean(image stack , a x i s =0). astype (dtype)
140 else :
141 raise Exception (’METHOD NOT IMPLEMENTED’)
142
143 return r e s . squeeze ()

Listing C.9: xrdtoolkit/sample.py

1 import common , c r o s s e c t i o n
2 import p i c k l e
3 import numpy as np
4
5 from common import Constants
6
7 class Sample :
8 f i e l d s = [’ t h i c k n e s s ’ , ’ d ens i ty ’ , ’ compound ’ , ’ ch i ’]
9 un i t s = (’cm ’ , ’ g/cmˆ3 ’ , ’ ’ , u ’ \u00B0 ’)

10 def i n i t (s e l f , th i cknes s , dens i ty , compound , ch i) :
11 ””” Sample with t h i c k n e s s in cm, dens i ty in g/cmˆ3
12 compound as a s t r i n g and sample ang le ch i in degree s ”””
13 s e l f . t h i c k n e s s = t h i c k n e s s
14 s e l f . d ens i ty = dens i ty
15 i f isinstance (compound , basestring) :
16 s e l f . compound = (compound , common . s t r t o z (compound))
17 else :
18 s e l f . compound = compound
19 s e l f . ch i = ch i
20 def u n i c o d e (s e l f) :
21 f o r m a t s t r = u” : %s%%s \n” . j o i n ([o . c a p i t a l i z e () for o in Sample . f i e l d s])
22 f o r m a t s t r +=u” : %s%%s \n”
23 return f o r m a t s t r % tuple (s e l f . a t t r i b u t e l i s t ()) % Sample . un i t s
24 def s t r (s e l f) :
25 return unicode (s e l f) . encode (’ ut f−8 ’)
26 def a t t r i b u t e l i s t (s e l f) :
27 return [getattr (s e l f , o) for o in Sample . f i e l d s]
28

89

29 # Computed q u a n t i t i e s o f compund
30
31 def mass attenuat ion (s e l f ,E) :
32 ””” Mass at t enuat ion c o e f f i c i e n t cmˆ2 gˆ−1. ”””
33 t o t a l c r o s s s e c t i o n , cumm density , t o ta l mas s = weighted (c r o s s e c t i o n . g e t c r o s s s e c t i o n) (s e l f ,E)
34 return t o t a l c r o s s s e c t i o n ∗(Constants . Na∗1e−24)/ to ta l mas s
35
36 def f o r m f a c t o r (s e l f , q) :
37 ””” Ca l cu l a t e s the form f a c t o r o f sample g iven
38 s c a t t e r i n g vec to r q = 4∗ pi ∗ s i n (Theta)/ lambda ”””
39 def i n t e r p o l a t e () :
40 ””” FIXME ”””
41 return 1
42 f o r m f a c t o r = weighted (i n t e r p o l a t e) (q)
43 return f o r m f a c t o r
44
45 def weighted (fun) :
46 ””” Decorator f o r c a l c u l a t i o n s which are to be weighted
47 accord ing to sample s to i ch i omet ry . Returns a func t i on
48 which c a l l s fun f o r each element in the sample . ”””
49 def wrapped fun (sample ,∗ args ,∗∗ kwargs) :
50 Z = [o [1] for o in sample . compound [1] . keys ()]
51 weights = sample . compound [1] . va lue s ()
52 r e s = 0
53 for i in xrange (0 , len (weights)) :
54 r e s += weights [i]∗ fun (z=Z [i] ,∗ args ,∗∗ kwargs)
55 return r e s
56 return wrapped fun

Listing C.10: xrdtoolkit/bxtal.py

1 from numpy import arc s in , array , cos , c ros s , exp , nonzero , ones , \
2 pi , s in , s q r t
3
4 def elcom (hkl , ver , ch i) :
5 ’ ’ ’ FIXME: d o c s t r i n g ’ ’ ’
6 y = c r o s s (ver , hkl) ; y /= s q r t (sum(y ∗∗2)) ;
7 z = array (hkl) ; z = z/ s q r t (sum(z ∗∗2)) ;
8 c = cos (p i ∗ ch i /180) ; s = s i n (p i ∗ ch i /180) ;
9 hz = z [0] ∗ c−y [0] ∗ s ; kz = z [1] ∗ c−y [1] ∗ s ; l z = z [2] ∗ c−y [2] ∗ s ;

10 hy = z [0] ∗ s+y [0] ∗ c ; ky = z [1] ∗ s+y [1] ∗ c ; l y = z [2] ∗ s+y [2] ∗ c ;
11
12 s11 = 7 . 6 8 ; s12 = −2.14; s44 = 1 2 . 6 ; sa = s11−s12−s44 /2 ;
13

90

14 s33 = s12+s44 /2+(hz∗∗4+kz∗∗4+ l z ∗∗4)∗ sa ;
15 s23 = s12+(hz∗∗2∗hy∗∗2+kz ∗∗2∗ky∗∗2+ l z ∗∗2∗ l y ∗∗2)∗ sa ;
16 s34 = 2∗(hz∗∗3∗hy+kz ∗∗3∗ky+l z ∗∗3∗ l y)∗ sa ;
17 return (s33 , s23 , s34) ;
18
19 def bw(hkl , ver , chi ,E,T,D) :
20 ’ ’ ’ FIXME: d o c s t r i n g ’ ’ ’
21 s33 , s23 , s34 = elcom (hkl , ver , ch i) ; d = 5.43/ s q r t (sum(array (hkl) ∗ ∗ 2)) ;
22 th = a r c s i n (6 . 1993/ (E∗d)) ; x = pi ∗ ch i /180 ; sx = s i n (x) ; cx = cos (x) ;
23 a = sx−(s23 ∗ sx+s34 ∗cx)/ s33 ; g = cos (x+th)∗ cos (x−th) ;
24 return(−E∗T∗(sx+g∗a)/ (D∗ s i n (th)) , th ∗180/ p i) ;
25
26 def t e f f (mu,T, th , ch i) :
27 ’ ’ ’ FIXME: d o c s t r i n g ’ ’ ’
28 c o s p l u s = abs (cos (p i ∗(th+ch i) / 1 8 0)) ; cos minus = abs (cos (p i ∗(th−ch i) / 1 8 0)) ;
29 s = ones (ch i . shape) ; p = ones (ch i . shape) ;
30 j = nonzero (abs (ch i) < 90−abs (th)) ; s [j] = −1; p [j] = exp(−mu∗T/ cos minus [j]) ;
31 te = p∗(1−exp(−mu∗T∗(1/ c o s p l u s+s / cos minus))) / (mu∗(1+ c o s p l u s ∗ s / cos minus)) ;
32 i = nonzero (abs (c o s p l u s+s ∗ cos minus)<1.0e−10); te [i] = T∗p [i] / c o s p l u s [i] ;
33 return (te ∗ c o s p l u s)
34
35 def r i n t (hkl , ver , chi ,E,T,D,mu) :
36 ’ ’ ’ FIXME: d o c s t r i n g ’ ’ ’
37 w, th = bw(hkl , ver , chi ,E,T,D) ;
38 t = t e f f (mu,T, th , ch i) ;
39 return (abs (w)∗ t /T) ;

Listing C.11: xrdtoolkit/crossection.py

1 from common import Constants , XrayTable
2 import numpy as np
3
4 def g e t c r o s s s e c t i o n (E, z) :
5 ’ ’ ’ Ca l cu la t e c r o s s s e c t i o n o f element with atomic number z ,
6 Energy i s in un i t s o f keV ’ ’ ’
7 i f z < 1 or z > 92 :
8 raise Exception (’Z i s out o f range ’)
9 i f not isinstance (E, np . ndarray) :

10 E = np . array (E)
11 logE = np . l og (E)
12 B = XrayTable [z] [’ Edge ’]
13 A = np . array ([logE ∗∗ i for i in xrange (0 , 4)])
14 c r o s s s e c t i o n = np . exp (np . dot (XrayTable [z] [’ Absorption ’] ,A))
15 Q = np . array ([B[i] <= E for i in xrange (0 , 5)] + [np . ones (E. shape , dtype=bool)])

91

16 Q[1 : 6] ∗= 1−Q[0 : 5]
17 c r o s s s e c t i o n [0 : 6] = XrayTable [z] [’ JumpMatrix ’] . dot (c r o s s s e c t i o n [0 : 6] ∗Q)
18 return np . array ([sum(c r o s s s e c t i o n) , XrayTable [z] [’ Density ’]∗ np . ones (E. shape) , XrayTable [z] [’ AtomicMass ’]∗ np . ones (E. shape)])
19
20 def k l e i n n i s h i n a (e0 , two theta , p o l a r i s a t i o n =0):
21 ’ ’ ’ Returns the k l e in−n i sh ina c r o s s e c t i o n in barns and f i n a l photon energy
22 given energy in keV , 2 theta in degree s and the l i n e a r s toke s p o l a r i s a t i o n .
23 ’ ’ ’
24 i f not isinstance (e0 , np . ndarray) :
25 e0 = np . array (e0)
26 ct = np . cos (np . deg2rad (two theta))
27 r2 = (Constants . re ∗1e−8)∗∗2 ∗ 1 e24
28 k = 1/(1+ e0∗(1− ct)/ Constants .me)
29 s = r2 ∗k∗∗2 ∗ (1/k+k−(1−p o l a r i s a t i o n)∗(1− ct ∗∗2))/2
30 return (s , e0∗k)
31
32 def thomson (two theta , p o l a r i s a t i o n =0):
33 ’ ’ ’ Returns thomson c r o s s e c t i o n in barns g iven
34 2 theta in degree s and the l i n e a r s toke s p o l a r i s a t i o n . ’ ’ ’
35 ct = np . cos (np . deg2rad (two theta))
36 r2 = (Constants . re ∗1e−8)∗∗2 ∗ 1 e24
37 return (r2 /2)∗(2−(1− ct ∗∗2)∗(1− p o l a r i s a t i o n))

92

Appendix D

The xrdtoolkit script files

Listing D.1: scripts/xrdtoolkit-assemble

1 #!/ usr / b in /env python
2
3 import numpy as np
4 import os , optparse , i t e r t o o l s , l o c a l e
5 import h5py , f a b i o
6
7 import x r d t o o l k i t
8 from x r d t o o l k i t import f2w , f i l e s , u t i l s , f i t
9

10 class Assembler (u t i l s . S c r i p t) :
11 def i n i t (s e l f , ∗∗kwargs) :
12 super (Assembler , s e l f) . i n i t ()
13 s e l f . usage = ” x rd to o l k i t−assemble <opt ions> d i f f r a c tog ram . h5”
14 s e l f . d e s c r i p t i o n = ”””
15 ”””
16 s e l f . peak = {}
17 s e l f . peak . update (kwargs)
18
19 def p a r s e r s e t u p (s e l f) :
20 super (Assembler , s e l f) . p a r s e r s e t u p ()
21
22 input group = optparse . OptionGroup (s e l f . parser , ” Input opt ions ”)
23 input group . add opt ion (”−−p o s i t i o n ” , des t=” p e a k p o s i t i o n ” ,
24 help=”Peak channel p o s i t i o n ”)
25 input group . add opt ion (”−−fwhm” , dest=”peak fwhm” ,
26 help=”Peak FWHM f u l l width at h a l f maximum”)
27 input group . add opt ion (”−− f i t −width” , des t=” f i t w i d t h ” ,

93

28 help=”Number o f FWHM to inc lude in peak f i t t i n g . [d e f a u l t 2] ”)
29 input group . add opt ion (”−−shape ” , des t=” peak shape ” ,
30 help=”Peak shape . [gauss ian | d e l t a] ” , d e f a u l t=’ gauss ian ’)
31 input group . add opt ion (”−−peak− f i l e ” , des t=” p e a k f i l e ” ,
32 help=”Exported peaks from DAWN. ” , metavar=”FILE”)
33 input group . add opt ion (”−−input−s e t ” , des t=” i n p u t s e t ” ,
34 help=’ Overr ide data s e t [d e f a u l t %s] . ’ % (x r d t o o l k i t .DIFFRACTOGRAM DATA SET,) ,
35 metavar=”STRING” , d e f a u l t=x r d t o o l k i t .DIFFRACTOGRAM DATA SET)
36 s e l f . pa r s e r . add opt ion (”−− f l i p ” , des t=” f l i p ” ,
37 ac t i on=” s t o r e t r u e ” , d e f a u l t=False ,
38 help=” Fl ip every other scan l i n e . ”)
39
40
41 output group = optparse . OptionGroup (s e l f . parser , ”Output opt ions ”)
42 output group . add opt ion (”−o” , ”−−out ” , des t=” o u t f i l e ” ,
43 help=”Output f i l e . ” , metavar=”FILE” , d e f a u l t=” sinogram . h5”)
44
45 s e l f . pa r s e r . add opt ion group (input group)
46 s e l f . pa r s e r . add opt ion group (output group)
47
48 @ut i l s . S c r i p t . timed
49 def parse (s e l f) :
50 super (Assembler , s e l f) . parse ()
51
52 s e l f . d o f l i p = s e l f . opt ions . f l i p
53
54 s tack s = len (s e l f . a rgs)
55 i f s t a ck s == 0 or not os . path . e x i s t s (s e l f . a rgs [0]) :
56 s e l f . pa r s e r . e r r o r (” Please s p e c i f y d i f f r a c t o g r a m s ”)
57
58 i f not a l l (os . path . e x i s t s (o) for o in s e l f . a rgs) :
59 s e l f . pa r s e r . e r r o r (”Could not read a l l f i l e s ”)
60
61 s e l f . p r i n t v e r b o s e (’ Loading s l i c e %s ’ % 0)
62 d i f f r a c tog ram = f i l e s . ImageFi le (s e l f . a rgs [0]) . getImage (s e l f . opt i ons . i n p u t s e t)
63 d a r k c u r r e n t p r o f i l e = f i l e s . ImageFi le (s e l f . a rgs [0]) . getImage (x r d t o o l k i t .DARKCURRENT DATA SET)
64 s e l f . input data = np . z e r o s ((s tacks ,)+ d i f f r a c tog ram . shape)
65 s e l f . d a r k c u r r e n t p r o f i l e = np . z e ro s ((s tacks ,)+ d a r k c u r r e n t p r o f i l e . shape)
66 s e l f . input data [0] = d i f f r a c tog ram
67 s e l f . d a r k c u r r e n t p r o f i l e [0] = d a r k c u r r e n t p r o f i l e
68
69 d i f f s e q = f i l e s . ImageSequence (s e l f . args , d a t a s e t=s e l f . opt ions . i n p u t s e t)
70 dark seq = f i l e s . ImageSequence (s e l f . args , d a t a s e t=x r d t o o l k i t .DARKCURRENT DATA SET)
71 for i in xrange (1 , s t a ck s) :

94

72 s e l f . p r i n t v e r b o s e (’ Loading s l i c e %s ’ % i)
73 s e l f . input data [i] = next (d i f f s e q)
74 s e l f . d a r k c u r r e n t p r o f i l e [i] = next (dark seq)
75
76 s e l f . output shape = s e l f . input data . shape [: −1]
77
78 s e l f . peaks = [{
79 ’fwhm ’ : s e l f . opt i ons . peak fwhm ,
80 ’ p o s i t i o n ’ : s e l f . opt ions . peak pos i t i on ,
81 ’ shape ’ : s e l f . opt ions . peak shape ,
82 ’ f i t w i d t h ’ : s e l f . opt i ons . f i t w i d t h
83 }]
84
85 s e l f . peaks [0] = u t i l s . s t r i p n o n e v a l u e s (s e l f . peak)
86 s e l f . peaks [0] = u t i l s . convert (s e l f . peak , f loat)
87
88 i f s e l f . opt i ons . p e a k f i l e :
89 # Replace peak l i s t wi th f i t s
90 # from dat f i l e expor ted in DAWN
91 s e l f . peaks = []
92 with open(s e l f . opt i ons . p e a k f i l e , ’ rb ’) as f :
93 try :
94 data = f . r e a d l i n e s ()
95 a s s e r t (len (data)>1)
96 header = data [0]
97 a s s e r t (’#’ in header)
98 data = data [1 :]
99 header = header [1 :] . s t r i p () . lower () . s p l i t ()

100 for p e a k l i n e in data :
101 p e a k l i n e = p e a k l i n e . s p l i t (’#’) [0]
102 # Convert f l o a t s wi th l o c a l e−aware a t o f
103 p e a k l i n e = map(l o c a l e . ato f , p e a k l i n e . s p l i t ())
104 peak = dict (zip (header , p e a k l i n e))
105 i f ’ shape ’ not in peak :
106 peak [’ shape ’] = f i t .GAUSSIAN
107 peak = u t i l s . s t r i p n o n e v a l u e s (peak)
108 i f ’ f i t w i d t h ’ in peak :
109 print peak [’ f i t w i d t h ’]
110 i f ’ p o s i t i o n ’ in peak and ’ fwhm ’ in peak :
111 s e l f . peaks . append (peak)
112 except :
113 s e l f . pa r s e r . e r r o r (”Could not parse peak f i l e %s ” % (s e l f . opt ions . p e a k f i l e ,))
114
115

95

116 s e l f . o u t f i l e = h5py . F i l e (s e l f . opt ions . o u t f i l e)
117 s e l f . s inogram group = s e l f . o u t f i l e . r equ i r e g roup (x r d t o o l k i t .SINOGRAM GROUP)
118 s e l f . peak group = s e l f . o u t f i l e . r equ i r e g roup (x r d t o o l k i t .SINOGRAM PEAK GROUP)
119
120
121 @ut i l s . S c r i p t . timed
122 def assemble s inograms (s e l f) :
123 for peak in s e l f . peaks :
124 s e l f . peak name = ’%s (%s ,%s) ’ % (peak [’ shape ’] , peak [’ p o s i t i o n ’] , peak [’ fwhm ’] ,)
125 i f s e l f . peak name in s e l f . s inogram group :
126 s e l f . p r i n t v e r b o s e (s e l f . peak name , ” a l r eady assembled ”)
127 continue
128
129 s e l f . s inogram = s e l f . s inogram group . r e q u i r e d a t a s e t (
130 name=s e l f . peak name ,
131 shape=tuple (s e l f . output shape) ,
132 dtype=” f l o a t 3 2 ”
133)
134 s e l f . p r i n t v e r b o s e (” Assembling ” , s e l f . peak name)
135 s e l f . f i t p e a k (peak)
136
137 def f i t p e a k (s e l f , peak) :
138 ””” Do weighted l e a s t squares f i t t i n g o f peak shape
139 to l i n e a r background us ing data in i n t e r v a l o f f our FWHM. ”””
140 i f ’ f i t w i d t h ’ in peak :
141 f i t w i d t h = peak [’ f i t w i d t h ’] / 2 . 0
142 else :
143 f i t w i d t h = 2
144 r min = int (np . round(peak [’ p o s i t i o n ’] − f i t w i d t h ∗peak [’ fwhm ’]))
145 r max = int (np . round(peak [’ p o s i t i o n ’] + f i t w i d t h ∗peak [’ fwhm ’]))
146 r = np . arange (r min , r max)
147
148 peak fun = f i t . g e t p e a k f u n c t i o n (∗∗ peak)
149
150 s inogram peaks = s e l f . peak group . r e q u i r e d a t a s e t (
151 name=s e l f . peak name ,
152 shape=tuple (s e l f . output shape) + (2 , r . s i z e ,) ,
153 dtype=” f l o a t 3 2 ”
154)
155
156 A = np . array ([np . ones (r . s i z e) , r , peak fun (r)])
157 darkcurrent = s e l f . d a r k c u r r e n t p r o f i l e [. . . , r min : r max]
158 i f len (s e l f . d a r k c u r r e n t p r o f i l e . shape) > 2 :
159 i f darkcurrent . shape [1] != s e l f . input data . shape [−2] :

96

160 s e l f . pa r s e r . e r r o r (” Darkcurrent frames does not match the number o f data frames ”)
161 nframes = darkcurrent . shape [1]
162 else :
163 darkcurrent = s e l f . d a r k c u r r e n t p r o f i l e [. . . , r min : r max]
164 darkcurrent . shape = (1 , 1 ,) + darkcurrent . shape
165 nframes = 1
166
167 ’ ’ ’ F i t peaks f o r sinogram . Last dimension i s assumed
168 to be the r a d i a l p r o f i l e ’ ’ ’
169 # Use temporary numpy array f o r assembly s ince we need r e v e r s e ::−1
170 # index ing f o r f l i p p i n g , which i s not a v a i l a b l e wi th h5py
171 # There would a l s o be a l o t o f overhead s ince h5py wr i t e s on update .
172 sinogram = np . z e r o s (s e l f . s inogram . shape)
173 for key in i t e r t o o l s . product (∗map(xrange , s e l f . input data . shape [: − 1])) :
174 # Key i t e r a t e s over a l l i n d i c e s in s t a c k o f sinograms
175 s i g n a l = s e l f . input data [key] [r min : r max]
176 # Index dark p r o f i l e . Stack number and frame number .
177 dark = darkcurrent [key [0] , key [−1] % nframes , . . .]
178 # Use s i g n a l+dark as squared error . dy ˜ s q r t (y) in po i sson s t a t i s t i c s
179 w = 1.0 / (s i g n a l+dark)
180 B = A ∗ np . array ([w,w,w])
181 covC = np . l i n a l g . inv (np . dot (B,A.T))
182 c = np . dot (np . dot (covC , B) , s i g n a l)
183 sinogram [key] = c [2]
184
185 s inogram peaks [key +(0 ,)] = s i g n a l
186 s inogram peaks [key +(1 ,)] = np . dot (A.T, c)
187
188 i f s e l f . d o f l i p :
189 rev = sinogram [. . . , 1 : : 2 , : : − 1] . copy ()
190 sinogram [. . . , 1 : : 2 , :] = rev
191 s e l f . s inogram [:] = sinogram
192
193
194 @ut i l s . S c r i p t . timed
195 def output (s e l f) :
196 s e l f . o u t f i l e . c l o s e ()
197
198 i f name == ’ ma in ’ :
199 l o c a l e . s e t l o c a l e (l o c a l e .LC NUMERIC, ’ ’)
200
201 assmbl = Assembler ()
202
203 assmbl . p a r s e r s e t u p ()

97

204 assmbl . parse ()
205 assmbl . assemble s inograms ()
206 assmbl . output ()
207 else :
208 pass
209 # I n i t i a l i z e assmbl wi th va l u e s from DAWN
210 # assmbl = Assembler (p o s i t i o n =. . , fwhm = . . . , shape=”gauss ian ”)

Listing D.2: scripts/xrdtoolkit-average

1 #!/ usr / b in /env python
2
3 import os , optparse
4 import numpy as np
5
6 import x r d t o o l k i t
7 from x r d t o o l k i t import f2w , f i l e s , u t i l s
8
9 class Averager (u t i l s . S c r i p t) :

10 def i n i t (s e l f) :
11 super (Averager , s e l f) . i n i t ()
12 d e s c r i p t i o n = ”””
13 Merge d i f f r a c t i o n images and wr i t e average to f i l e .
14 ”””
15 def p a r s e r s e t u p (s e l f) :
16 super (Averager , s e l f) . p a r s e r s e t u p ()
17
18 output group = optparse . OptionGroup (s e l f . parser , ”Output opt ions ”)
19 output group . add opt ion (”−o” , ”−−out ” , des t=” o u t f i l e ” ,
20 help=” F i l e to save averaged datase t ” , metavar=”FILE” , d e f a u l t=” averaged . h5”)
21 output group . add opt ion (”−−data−s e t ” , des t=” d a t a s e t ” ,
22 help=” Locat ion to save data s e t (hdf5 e t c) . ” , metavar=”STRING” , d e f a u l t=x r d t o o l k i t .AVERAGE DATA SET)
23 s e l f . pa r s e r . add opt ion group (output group)
24 s e l f . pa r s e r . add opt ion (”−−method” ,
25 des t=”method” , d e f a u l t=”median” ,
26 metavar=” [median] [mean] ” , help=”Choose between a r i thmet i c mean and median . ”)
27 s e l f . pa r s e r . add opt ion (”−− f l a t t e n ” , des t=” f l a t t e n ” ,
28 ac t i on=” s t o r e t r u e ” , d e f a u l t=False ,
29 help=”Average over frames in mult i f rame f i l e s . ”)
30
31 def parse (s e l f) :
32 super (Averager , s e l f) . parse ()
33
34 i f len (s e l f . a rgs) == 0 :

98

35 s e l f . pa r s e r . e r r o r (” Please prov ide some images to average . ”)
36
37 i f len (s e l f . opt i ons . d a t a s e t . s p l i t (’ / ’)) < 2 :
38 s e l f . pa r s e r . e r r o r (” Dataset should be on the form ’/ group name/ d a t a s e t ’ . ”)
39
40 @ut i l s . S c r i p t . timed
41 def average (s e l f) :
42 s e l f . image = f i l e s . averageImages (s e l f . args , method=s e l f . opt i ons . method , f l a t t e n=s e l f . opt ions . f l a t t e n)
43
44 @ut i l s . S c r i p t . timed
45 def output (s e l f) :
46 out = f i l e s . ImageFi le (s e l f . opt ions . o u t f i l e)
47 out . saveImage (s e l f . image , s e l f . opt i ons . d a t a s e t)
48
49
50 i f name == ’ ma in ’ :
51 avg = Averager ()
52
53 avg . p a r s e r s e t u p ()
54 avg . parse ()
55 avg . average ()
56 avg . output ()
57 avg . p r i n t t i m i n g s ()

Listing D.3: scripts/xrdtoolkit-calibrate

1 #!/ usr / b in /env python
2
3 import numpy as np
4 import os , optparse
5
6 import x r d t o o l k i t
7 from x r d t o o l k i t import f2w , f i l e s , u t i l s
8
9

10 try :
11 import pyFAI
12 except ImportError :
13 pyFAI = None
14
15 class Ca l i b ra t i on (u t i l s . S c r i p t) :
16 def i n i t (s e l f) :
17 super (Ca l ib ra t ion , s e l f) . i n i t ()
18 s e l f . usage = ’ Usage : %prog <opt ions> CALIBRATION IMAGE [DARK CURRENT1,DARK CURRENT2, . . .] ’

99

19 s e l f . d e s c r i p t i o n = ”””
20 XRD c a l i b r a t i o n rou t in e based on r ing shape .
21 ”””
22
23 def p a r s e r s e t u p (s e l f) :
24 super (Ca l ib ra t ion , s e l f) . p a r s e r s e t u p ()
25
26 s e l f . pa r s e r . add opt ion (”−−p i x e l s ” , des t=” p i x e l s ” ,
27 ac t i on=” s t o r e t r u e ” , d e f a u l t=False ,
28 help=” Orig in and c a l i b r a t i o n l i m i t s in p i x e l s i n s t ead o f mm. ”)
29 f i l e g r o u p = optparse . OptionGroup (s e l f . parser , ” F i l e opt ions ”)
30 f i l e g r o u p . add opt ion (”−o” , ”−−out ” , des t=” o u t f i l e ” ,
31 help=”Save c a l i b r a t i o n image a f t e r sub t ra c t i ng darkcurrent . ” , metavar=”FILE”)
32 f i l e g r o u p . add opt ion (”−−data−s e t ” , des t=” d a t a s e t ” ,
33 help=” Locat ion to save data s e t . ” , metavar=”STRING” , d e f a u l t=x r d t o o l k i t .CALIBRATION IMAGE)
34 f i l e g r o u p . add opt ion (”−p” , ”−−poni ” , des t=” p o n i f i l e ” ,
35 help=” F i l e to save de t e c t o r geometry . ” , metavar=”FILE” , d e f a u l t=”geometry . poni ”)
36
37 de tec to r g roup = optparse . OptionGroup (s e l f . parser , ” Detector opt ions ”)
38 de t ec to r g roup . add opt ion (”−D” , ”−−de t e c t o r ” , des t=” detector name ” ,
39 help=” Detector name” , d e f a u l t=None)
40 de tec to r g roup . add opt ion (”−−d i s t anc e ” , des t=” d e t e c t o r d i s t a n c e ” ,
41 help=” Detector d i s t anc e from sample” , metavar=” d i s t anc e [mm] ” , d e f a u l t=None)
42 de tec to r g roup . add opt ion (”−−binning ” , des t=” d e t e c t o r b i n n i n g ” , nargs =2, ac t i on=’ append ’ ,
43 help=”Number o f p i x e l s that de t e c t o r i s s e t to group . ” ,
44 metavar=”x y” , d e f a u l t=None)
45 de tec to r g roup . add opt ion (’−− t i l t ’ , des t=” d e t e c t o r t i l t ” , nargs =2, ac t i on=’ append ’ ,
46 help=”” ,
47 metavar=”a b [degree s] ” , d e f a u l t=None)
48 de tec to r g roup . add opt ion (’−−o r i g i n ’ , des t=” d e t e c t o r o r i g i n ” , nargs =2, ac t i on=’ append ’ ,
49 help=” I n i t i a l d e t e c t o r o r i g i n wrt beam” ,
50 metavar=”x y [mm] ” , d e f a u l t=None)
51
52 c a l i b r a t i o n g r o u p = optparse . OptionGroup (s e l f . parser , ” Ca l i b ra t i on opt ions ”)
53 c a l i b r a t i o n g r o u p . add opt ion (’−− l i m i t s ’ , des t=” l i m i t s ” , nargs =2, ac t i on=’ append ’ ,
54 metavar=” lower upper” , help=” Radial d i s t anc e [mm] to use f o r c a l i b r a t i o n . ” , d e f a u l t=None)
55
56 s e l f . pa r s e r . add opt ion group (f i l e g r o u p)
57 s e l f . pa r s e r . add opt ion group (de t ec to r g roup)
58 s e l f . pa r s e r . add opt ion group (c a l i b r a t i o n g r o u p)
59
60 def parse (s e l f) :
61 super (Ca l ib ra t ion , s e l f) . parse ()
62

100

63 i f len (s e l f . a rgs) == 0 :
64 s e l f . pa r s e r . p r i n t h e l p ()
65 s e l f . pa r s e r . e x i t ()
66
67 # Set up s e l f . d e t e c t o r
68 DETECTORKWARGS = {
69 ’ d i s t anc e ’ : s e l f . opt ions . d e t e c t o r d i s t a n c e ,
70 ’ b inning ’ : s e l f . opt ions . de t e c to r b inn ing ,
71 ’ o r i g i n ’ : s e l f . opt ions . d e t e c t o r o r i g i n ,
72 ’ t i l t ’ : s e l f . opt i ons . d e t e c t o r t i l t ,
73 }
74
75 i f s e l f . opt i ons . detector name i s not None :
76 DETECTORKWARGS = u t i l s . s t r i p n o n e v a l u e s (DETECTORKWARGS)
77 DETECTORKWARGS = u t i l s . f l a t t e n (DETECTORKWARGS)
78 DETECTORKWARGS = u t i l s . convert (DETECTOR KWARGS, f loat)
79 s e l f . d e t e c t o r = f2w . g e t d e t e c t o r (s e l f . opt ions . detector name , ∗∗DETECTORKWARGS)
80
81 i f s e l f . opt i ons . p i x e l s and ’ o r i g i n ’ in DETECTORKWARGS:
82 s e l f . d e t e c t o r . s e t o r i g i n (l i s t (np . mult ip ly (s e l f . d e t e c t o r . o r i g i n , s e l f . d e t e c t o r . p i x e l s i z e)))
83
84 else :
85 s e l f . pa r s e r . e r r o r (” s e l f . d e t e c t o r miss ing ”)
86
87
88 i f len (s e l f . a rgs) > 1 :
89 s e l f . da rk cur r ent = f i l e s . ImageFi le (s e l f . a rgs [0]) . getImage ()
90 s e l f . c a l i b r a t i o n i m a g e = f i l e s . ImageFi le (s e l f . a rgs [1]) . getImage ()
91 else :
92 s e l f . c a l i b r a t i o n i m a g e = f i l e s . ImageFi le (s e l f . a rgs [0]) . getImage ()
93 s e l f . da rk cur r ent = None
94
95 i f s e l f . opt i ons . o u t f i l e :
96 s e l f . p r i n t v e r b o s e (’−−−> Saving %s ’ % (s e l f . opt ions . o u t f i l e ,))
97 f = f i l e s . ImageFi le (s e l f . opt ions . o u t f i l e)
98 c a l = s e l f . c a l i b r a t i o n i m a g e . astype (’ i n t ’)− s e l f . da rk cur r ent
99 c a l [ca l <0] = 0 # Usua l l y c a l i b r a t i o n image i s uin16 , so i s prone to i n t e g e r under f low

100 f . saveImage (c a l . astype (s e l f . c a l i b r a t i o n i m a g e . dtype) , s e l f . opt ions . d a t a s e t)
101
102 s e l f . c a l i b r a t o r = f2w . Ca l i b ra to r (s e l f . c a l i b r a t i on image , s e l f . dark current , s e l f . d e t e c t o r)
103
104 s e l f .CALIBRATION KWARGS = {
105 ’ l i m i t s ’ : s e l f . opt ions . l i m i t s
106 }

101

107 s e l f .CALIBRATION KWARGS = u t i l s . s t r i p n o n e v a l u e s (s e l f .CALIBRATION KWARGS)
108 s e l f .CALIBRATION KWARGS = u t i l s . f l a t t e n (s e l f .CALIBRATION KWARGS)
109 s e l f .CALIBRATION KWARGS = u t i l s . convert (s e l f .CALIBRATION KWARGS, f loat)
110 i f s e l f . opt i ons . p i x e l s and ’ l i m i t s ’ in s e l f .CALIBRATION KWARGS:
111 s e l f .CALIBRATION KWARGS[’ l i m i t s ’] = l i s t (np . mult ip ly (s e l f .CALIBRATION KWARGS[’ l i m i t s ’] , s e l f . d e t e c t o r . p i x e l s i z e))
112
113 @ut i l s . S c r i p t . timed
114 def c a l i b r a t e (s e l f) :
115 s e l f . p r i n t v e r b o s e (”−−−> Ca l i b ra t i ng ”)
116 s e l f . c a l i b r a t o r . c a l i b r a t e (∗∗ s e l f .CALIBRATION KWARGS)
117 s e l f . p r i n t v e r b o s e (s e l f . c a l i b r a t o r)
118
119 i f pyFAI i s None and s e l f . opt i ons . p o n i f i l e :
120 s e l f . pa r s e r . e r r o r (”pyFAI needed f o r PONI f i l e ”)
121 e l i f pyFAI i s not None and s e l f . opt i ons . p o n i f i l e :
122 from pyFAI import geometry
123 g = geometry . Geometry ()
124
125 # conver to to f i t 2D t i l t p lane no ta t i on from pro j e c t e d t i l t ang l e s in f2w . py
126 alpha = s e l f . d e t e c t o r . t i l t [0] ∗ np . p i / 180
127 beta = s e l f . d e t e c t o r . t i l t [1] ∗ np . p i / 180
128 t i l t P l a n R o t a t i o n = np . arctan (alpha / beta)
129 t i l t = alpha ∗ np . s i n (t i l t P l a n R o t a t i o n) + beta ∗ np . cos (t i l t P l a n R o t a t i o n)
130
131 # Convert to degrees used by f i t 2D
132 t i l t P l a n R o t a t i o n = t i l t P l a n R o t a t i o n ∗ 180 .0 / np . p i
133 t i l t = t i l t ∗ 180 .0 / np . p i
134
135 s e l f . p r i n t v e r b o s e (” t i l t ” , t i l t)
136 s e l f . p r i n t v e r b o s e (” t i l t P l a n R o t a t i o n ” , t i l t P l a n R o t a t i o n)
137 g . setFit2D (s e l f . d e t e c t o r . d i s t ance ,
138 s e l f . d e t e c t o r . o r i g i n [1] / s e l f . d e t e c t o r . p i x e l s i z e [1] , # mm −> #
139 s e l f . d e t e c t o r . o r i g i n [0] / s e l f . d e t e c t o r . p i x e l s i z e [0] , # mm −> #
140 t i l t P l a n R o t a t i o n=t i l tP lanRota t i on ,

deg −> rad
141 t i l t=t i l t , # deg −> rad
142 pixe lX=s e l f . d e t e c t o r . p i x e l s i z e [0] ∗ 1 0 0 0 . 0 ,

mm −> um
143 pixe lY=s e l f . d e t e c t o r . p i x e l s i z e [1] ∗ 1 0 0 0 . 0)

mm −> um
144 s e l f . p r i n t v e r b o s e (”−−−> Writing geometry to ” , s e l f . opt ions . p o n i f i l e)
145 g . save (s e l f . opt ions . p o n i f i l e)
146
147 def output (s e l f) :

102

148 i f s e l f . opt i ons . o u t f i l e i s None :
149 return
150 i f s e l f . da rk cur r ent i s not None :
151 c a l i b r a t i o n p r o f i l e = s e l f . d e t e c t o r . i n t e g r a t e (s e l f . c a l i b r a t i o n i m a g e − s e l f . da rk cur r ent)
152 else :
153 c a l i b r a t i o n p r o f i l e = s e l f . d e t e c t o r . i n t e g r a t e (s e l f . c a l i b r a t i o n i m a g e)
154 f i l e s . ImageFi le (s e l f . opt ions . o u t f i l e) . saveImage (c a l i b r a t i o n p r o f i l e [1] , x r d t o o l k i t .CALIBRATION PROFILE)
155
156 i f name == ” main ” :
157 c a l = Ca l i b ra t i on ()
158 c a l . p a r s e r s e t u p ()
159 c a l . parse ()
160 c a l . c a l i b r a t e ()
161 c a l . output ()
162 c a l . p r i n t t i m i n g s ()

Listing D.4: scripts/xrdtoolkit-integrate

1 #!/ usr / b in /env python
2
3 import numpy as np
4 import os , sys , optparse
5 import i t e r t o o l s , threading , Queue
6 import h5py , f a b i o
7
8 import x r d t o o l k i t
9 from x r d t o o l k i t import f2w , f i l e s , u t i l s

10
11 try :
12 import pyFAI
13 except ImportError :
14 pyFAI = None
15
16 class I n t e g r a t o r (u t i l s . S c r i p t) :
17 def i n i t (s e l f) :
18 super (In t eg ra to r , s e l f) . i n i t ()
19 s e l f . d e s c r i p t i o n = ”””
20 I n t e g r a t e d i f f r a c t i o n images and assemble in to datase t .
21 Experiment parameters are assumed to be separated by underscore
22
23 E. g . NAME xxx yyy zzz . ed f
24
25 w i l l produce a data s e t with powder p r o f i l e s in dimensions x , y , z .
26 ”””

103

27 s e l f . usage=”Usage : <opt ions> −−data−p r e f i x=/mnt/ data / . . /EXPERIMENT . . . ”
28
29 s e l f . d i s a b l e t h r e a d s = False
30 s e l f . d i a b l e f a s t e d f = False
31 s e l f . d i s ab l e gpu = False
32
33 s e l f . i n t e g r a t i o n p o i n t s = 1500
34
35 def p a r s e r s e t u p (s e l f) :
36 super (In t eg ra to r , s e l f) . p a r s e r s e t u p ()
37
38 input group = optparse . OptionGroup (s e l f . parser , ” Input opt ions ”)
39 input group . add opt ion (”−−data−path” , des t=” data path ” ,
40 metavar=”/path/IMAGE xyz ” ,
41 help=” I n t e g r a t e f i l e s s t a r t i n g with t h i s path . ”)
42 input group . add opt ion (”−−dark−path” , des t=” dark path ” ,
43 metavar=”/path/DARK xyz ” , d e f a u l t=None ,
44 help=”Use darkcurrent f i l e s s t a r t i n g with t h i s path . ”)
45 input group . add opt ion (”−−dark” , des t=”dark” , d e f a u l t=None ,
46 help=” Darkcurrent image . ”)
47 input group . add opt ion (”−p” , ”−−poni t ” , des t=” p o n i f i l e ” ,
48 help=”Name o f poni f i l e with de t e c t o r geometry . ”)
49
50 output group = optparse . OptionGroup (s e l f . parser , ”Output opt ions ”)
51 output group . add opt ion (”−o” , ”−−out ” , des t=” o u t f i l e ” ,
52 help=” F i l e to save i n t e g r a t e d datase t . ” , metavar=”FILE” , d e f a u l t=” d i f f r a c tog ram . h5”)
53 output group . add opt ion (”−−data−s e t ” , des t=” d a t a s e t ” ,
54 help=” Locat ion to save data s e t . ” , metavar=”STRING” , d e f a u l t=x r d t o o l k i t .DIFFRACTOGRAM DATA SET)
55
56 s e l f . pa r s e r . add opt ion group (input group)
57 s e l f . pa r s e r . add opt ion group (output group)
58
59 # TODO make sure reshap ing the output f i l e i s done c o r r e c t l y
60 s e l f . pa r s e r . add opt ion (”−−d i sab l e−gpu” ,
61 ac t i on=” s t o r e t r u e ” , des t=” d i sab l e gpu ” ,
62 help=” Disab le GPU f o r i n t e g r a t i o n . ”)
63 s e l f . pa r s e r . add opt ion (”−−d i sab l e−f a s t−ed f ” ,
64 ac t i on=” s t o r e t r u e ” , des t=” d i s a b l e f a s t e d f ” ,
65 help=” Disab le f a s t read ing o f EDF data . ”)
66 s e l f . pa r s e r . add opt ion (”−−d i sab l e−threads ” ,
67 ac t i on=” s t o r e t r u e ” , des t=” d i s a b l e t h r e a d s ” ,
68 help=” Disab le threaded load ing o f f i l e s . ”)
69 s e l f . pa r s e r . add opt ion (”−−nbu f f e r ” , des t=” n b u f f e r s ” , d e f a u l t =2,
70 help=”Number o f f i l e s to b u f f e r when load ing f i l e s ”)

104

71 s e l f . pa r s e r . add opt ion (”−−po in t s ” , metavar=”POINTS” , des t=” i n t e g r a t i o n p o i n t s ” ,
72 help=”Number o f po in t s to keep r a d i a l l y . ”)
73
74 @ut i l s . S c r i p t . timed
75 def parse (s e l f) :
76 super (In t eg ra to r , s e l f) . parse ()
77
78 i f not s e l f . opt i ons . data path :
79 s e l f . pa r s e r . e r r o r (” Please s p e c i f y −−data−path”)
80
81 (da ta p r e f i x , da ta d i r e c to ry , s e l f . data names) = f i l e s . matchImageFiles (s e l f . opt i ons . data path)
82 s e l f . f i l e s = [os . path . j o i n (da ta d i r e c to ry , f i l e n a m e) for f i l e n a m e in s e l f . data names]
83
84 i f len (s e l f . data names) == 0 :
85 s e l f . pa r s e r . e r r o r (’No data f i l e s found s t a r t i n g with %s at %s ’ % (da ta p r e f i x , d i r e c t o r y))
86
87 i f s e l f . opt i ons . dark path i s not None :
88 (da rk pre f i x , da rk d i r e c to ry , dark names) = f i l e s . matchImageFiles (s e l f . opt ions . dark path)
89 i f len (dark names) == 0 :
90 s e l f . pa r s e r . e r r o r (’No dark f i l e s found s t a r t i n g with %s at %s ’ % (da rk pre f i x , d i r e c t o r y))
91 s e l f . p r i n t v e r b o s e (”−−> Averaging dark images ”)
92 s e l f . dark = f i l e s . averageImages ([os . path . j o i n (da rk d i r e c to ry , o) for o in dark names])
93
94 i f s e l f . opt i ons . dark and os . path . e x i s t s (s e l f . opt i ons . dark) :
95 s e l f . dark = f i l e s . ImageFi le (s e l f . opt i ons . dark) . getImage (x r d t o o l k i t .AVERAGE DATA SET)
96
97
98 i f s e l f . opt i ons . d i s ab l e gpu i s not None :
99 s e l f . d i s ab l e gpu = s e l f . opt ions . d i s ab l e gpu

100 i f s e l f . opt i ons . d i s a b l e t h r e a d s i s not None :
101 s e l f . d i s a b l e t h r e a d s = s e l f . opt ions . d i s a b l e t h r e a d s
102 i f s e l f . opt i ons . d i s a b l e f a s t e d f i s not None :
103 s e l f . d i s a b l e f a s t e d f = s e l f . opt ions . d i s a b l e f a s t e d f
104
105 s e l f . n b u f f e r s = s e l f . opt ions . n b u f f e r s
106
107 i f s e l f . opt i ons . i n t e g r a t i o n p o i n t s i s not None :
108 s e l f . i n t e g r a t i o n p o i n t s = s e l f . opt i ons . i n t e g r a t i o n p o i n t s
109
110 i f s e l f . opt i ons . p o n i f i l e and os . path . e x i s t s (s e l f . opt i ons . p o n i f i l e) :
111 s e l f . i n t e g r a t o r = pyFAI . load (s e l f . opt i ons . p o n i f i l e)
112 else :
113 s e l f . pa r s e r . e r r o r (”Need poni f i l e to s e t up Azimuthal i n t e g r a t o r . ”)
114

105

115 i f not ’ dark ’ in s e l f . d i c t :
116 s e l f . pa r s e r . e r r o r (”No darkcurrent provided ”)
117
118 i f len (s e l f . opt i ons . d a t a s e t . s p l i t (’ / ’)) < 2 :
119 s e l f . pa r s e r . e r r o r (” Dataset should be on the form ’/ group name/ d a t a s e t ’ . ”)
120
121 i n d i c e s = [[int (parm) for parm in os . path . s p l i t e x t (o) [0] . s p l i t (d a t a p r e f i x) [1] . s p l i t (’ ’)
122 i f parm i s not ’ ’]
123 for o in s e l f . data names]
124 ind i ce sT = np . array (i n d i c e s) .T
125
126 min ind i c e s = ind ice sT . argmin (a x i s =1)
127 max indices = ind ice sT . argmax (a x i s =1)
128
129 p a ram et e r i n t e rva l = np . array ([[ind i ce sT [i] [m in ind i c e s [i]] , i nd i ce sT [i] [max indices [i]]] for i in xrange (0 , ind i ce sT . shape [0])])
130 dimensions = [(i , j−i +1) for i , j in pa r amet e r i n t e rva l]
131
132 s e l f . nframes = f i l e s . ImageFi le (s e l f . f i l e s [0]) . getNFrames ()
133 dimensions = dimensions + [(0 , s e l f . nframes)]
134 dimensions = [(minVal , count) for minVal , count in dimensions

i f count > 1]
135 s e l f . parameter count = [count for minVal , count in dimensions]
136
137 i f s e l f . dark . ndim > 2 :
138 i f s e l f . dark . shape [0] != s e l f . nframes :
139 s e l f . pa r s e r . e r r o r (”Number o f darkcurrent frames does not match the d i f f r a c t i o n image (s) ”)
140 s e l f . d a r k p r o f i l e s h a p e = (s e l f . dark . shape [0] , s e l f . i n t e g r a t i o n p o i n t s)
141 else :
142 s e l f . d a r k p r o f i l e s h a p e = (s e l f . i n t e g r a t i o n p o i n t s ,)
143
144 s e l f . d imensions = len (dimensions)
145 s e l f . p r i n t v e r b o s e (’Number o f dimensions : ’ , s e l f . d imensions)
146
147
148
149 @ut i l s . S c r i p t . timed
150 def c r e a t e d a t a s e t (s e l f) :
151 s e l f . p r i n t v e r b o s e (”−−> Creat ing datase t ”)
152
153 s e l f . p r i n t v e r b o s e (”Data s e t s i z e : ” , tuple (s e l f . parameter count) + (s e l f . i n t e g r a t i o n p o i n t s ,))
154
155 s e l f . hd5 = h5py . F i l e (s e l f . opt ions . o u t f i l e)
156 group = s e l f . hd5 . r equ i r e g roup (os . path . dirname (s e l f . opt ions . d a t a s e t))
157 i f s e l f . opt i ons . d a t a s e t in group :

106

158 group [s e l f . opt ions . d a t a s e t] . r e s i z e (tuple (s e l f . parameter count) + (s e l f . i n t e g r a t i o n p o i n t s ,))
159 s e l f . d i f f r ac togram hd5 = group . r e q u i r e d a t a s e t (
160 name=os . path . basename (s e l f . opt ions . d a t a s e t) ,
161 shape=tuple (s e l f . parameter count) + (s e l f . i n t e g r a t i o n p o i n t s ,) ,
162 chunks=tuple (s e l f . parameter count) + (1 ,) ,
163 dtype=” f l o a t 3 2 ”
164)
165 s e l f . d i f f r a c tog ram = np . z e ro s (tuple (s e l f . parameter count) + (s e l f . i n t e g r a t i o n p o i n t s ,) , dtype=” f l o a t 3 2 ”)
166 s e l f . darkcurrent = group . r e q u i r e d a t a s e t (
167 name=x r d t o o l k i t .DARKCURRENT DATA SET,
168 shape=s e l f . d a r k p r o f i l e s h a p e ,
169 dtype=” f l o a t 3 2 ”
170)
171 s e l f . two theta = group . r e q u i r e d a t a s e t (
172 name=x r d t o o l k i t .TWO THETA DATA SET,
173 shape=(s e l f . i n t e g r a t i o n p o i n t s ,) ,
174 dtype=” f l o a t 3 2 ”
175)
176
177 @ut i l s . S c r i p t . timed
178 def i n t e g r a t e d a r k c u r r e n t (s e l f) :
179 s e l f . p r i n t v e r b o s e (”−−> I n t e g r a t i n g darkcurrent ”)
180 i f s e l f . dark . ndim > 2 :
181 s e l f . p r i n t v e r b o s e (” mu l t ip l e frames . ”)
182 i f s e l f . dark . shape [0] != s e l f . nframes :
183 s e l f . pa r s e r . e r r o r (”Number o f darkcurrent frames does not match the d i f f r a c t i o n image (s) ”)
184 d a r k c u r r e n t p r o f i l e = np . z e ro s ((s e l f . nframes , s e l f . i n t e g r a t i o n p o i n t s) , dtype=” f l o a t 3 2 ”)
185 (s e l f . two theta [:] , d a r k c u r r e n t p r o f i l e [0]) = s e l f . i n t e g r a t e (s e l f . dark [0 , . . .])
186 for i in xrange (1 , s e l f . nframes) :
187 d a r k c u r r e n t p r o f i l e [i] = s e l f . i n t e g r a t e (s e l f . dark [i , . . .]) [1]
188 else :
189 (s e l f . two theta [:] , d a r k c u r r e n t p r o f i l e) = s e l f . i n t e g r a t e (s e l f . dark)
190 # Save i n t e g r a t e d darkcurrent to f i l e f o r r e f e r ence only
191 s e l f . darkcurrent [:] = d a r k c u r r e n t p r o f i l e
192
193
194
195
196 @ut i l s . S c r i p t . timed
197 def i n t eg ra t e and as s emb l e (s e l f) :
198 i f s e l f . d i s a b l e t h r e a d s :
199 i=0
200 images = f i l e s . ImageSequence (s e l f . f i l e s)
201 for index in i t e r t o o l s . product (∗map(xrange , s e l f . parameter count)) :

107

202 s e l f . i n t e g r a t e s i n g l e f i l e (i , index , next (images))
203 i=i+1
204 return
205
206 s e l f . image queue = Queue . Queue (s e l f . nframes∗ s e l f . n b u f f e r s +1)
207 s e l f . f i n i s h e d = False
208 s e l f . abort = False
209
210 i n t g t h r e a d = thread ing . Thread (t a r g e t=in tg . i n t e g r a t e f i l e s)
211 load thread = thread ing . Thread (t a r g e t=in tg . l o a d f i l e s)
212
213 load thread . setDaemon (True)
214
215 i n t g t h r e a d . s t a r t ()
216 load thread . s t a r t ()
217
218 while (not s e l f . f i n i s h e d and not s e l f . abort) :
219 try :
220 i n t g t h r e a d . j o i n (2)
221 s e l f . p r i n t v e r b o s e (s e l f . image queue . q s i z e () , ” images in queue”)
222 except KeyboardInterrupt :
223 s e l f . abort = True
224
225 # Wait f o r i n t e g r a t i o n thread to f i n i s h in case o f a bo r t i ng .
226 i n t g t h r e a d . j o i n ()
227
228 def l o a d f i l e s (s e l f) :
229 for image in f i l e s . ImageSequence (s e l f . f i l e s) :
230 s e l f . image queue . put (image , b lock=True)
231
232
233 @ut i l s . S c r i p t . timed
234 def i n t e g r a t e f i l e s (s e l f) :
235
236 # load a l l dark−images in l i s t
237
238 i=0
239 for index in i t e r t o o l s . product (∗map(xrange , s e l f . parameter count)) :
240 i f s e l f . abort :
241 return
242 s e l f . i n t e g r a t e s i n g l e f i l e (i , index , s e l f . image queue . get ())
243 s e l f . image queue . task done ()
244 i += 1
245 s e l f . f i n i s h e d = True

108

246
247 def i n t e g r a t e (s e l f , image , dark=None) :
248 i f not s e l f . d i s ab l e gpu :
249 tth , I = s e l f . i n t e g r a t o r . i n t eg ra t e1d (
250 image ,
251 s e l f . i n t e g r a t i o n p o i n t s ,
252 dark=dark ,
253 un i t=’ 2 th deg ’ ,
254 method=” l u t o c l ” , # GPU method wi th Look−up−t a b l e
255 s a f e=False , # Faster . D i sab l e s some LUT va l i d a t i o n checks .
256)
257 else :
258 tth , I = s e l f . i n t e g r a t o r . i n t eg ra t e1d (
259 image ,
260 s e l f . i n t e g r a t i o n p o i n t s ,
261 dark=dark ,
262 un i t=’ 2 th deg ’ ,
263 method=” l u t ” , # CPU method wi th Look−up−t a b l e
264 s a f e=False , # Faster . D i sab l e s some LUT va l i d a t i o n checks .
265)
266 return (tth , I)
267
268 def i n t e g r a t e s i n g l e f i l e (s e l f , i t e r a t i o n , index , image) :
269 i f i t e r a t i o n % s e l f . nframes == 0 :
270 s e l f . p r i n t v e r b o s e (” −−−> ” , s e l f . data names [i t e r a t i o n / s e l f . nframes])
271 s e l f . p r i n t v e r b o s e (” I n t e g r a t i n g ” , index , indent =1)
272
273 i f s e l f . nframes > 1 :
274 (tth , I) = s e l f . i n t e g r a t e (image , s e l f . dark [i t e r a t i o n % s e l f . nframes])
275 else :
276 (tth , I) = s e l f . i n t e g r a t e (image , s e l f . dark)
277 s e l f . d i f f r a c tog ram [tuple (index)] = I
278
279 @ut i l s . S c r i p t . timed
280 def output (s e l f) :
281 s e l f . d i f f r ac togram hd5 [:] = s e l f . d i f f r a c tog ram
282 s e l f . hd5 . c l o s e ()
283
284 i f name == ’ ma in ’ :
285 in tg = I n t e g r a t o r ()
286
287 in tg . p a r s e r s e t u p ()
288 in tg . parse ()
289 in tg . c r e a t e d a t a s e t ()

109

290 in tg . i n t e g r a t e d a r k c u r r e n t ()
291 in tg . i n t eg ra t e and as s emb l e ()
292
293 in tg . output ()
294 in tg . p r i n t t i m i n g s ()

Listing D.5: scripts/xrdtoolkit-reconstruct

1 #!/ usr / b in /env python
2
3 import numpy as np
4 import os , optparse
5 import h5py , f a b i o
6
7 from skimage import trans form
8
9 import x r d t o o l k i t

10 from x r d t o o l k i t import f i l e s , u t i l s , tomo
11
12 class Reconstructor (u t i l s . S c r i p t) :
13 def i n i t (s e l f , ∗∗kwargs) :
14 super (Reconstructor , s e l f) . i n i t ()
15 s e l f . d e s c r i p t i o n = ”””
16 Correct s inograms and perform r e c o n s t r u c t i o n .
17 By d e f a u l t the sinogram i s s p l i t i n to odd and even rows
18 which are c o r r e l a t e d to c o r r e c t f o r o f f s e t in i n t e r l e a v e d
19 scans , f o l l owed by a search f o r the cente r o f r o t a t i o n .
20 ”””
21
22 def p a r s e r s e t u p (s e l f) :
23 super (Reconstructor , s e l f) . p a r s e r s e t u p ()
24
25 input group = optparse . OptionGroup (s e l f . parser , ” Input opt ions ”)
26 input group . add opt ion (”−−sinogram−group” , des t=” sinogram group ” ,
27 help=”Group conta in ing sinograms . ” , d e f a u l t=x r d t o o l k i t .SINOGRAM GROUP)
28 input group . add opt ion (”−− i t e r a t i o n s ” , des t=” s a r t i t e r a t i o n s ” , d e f a u l t =1,
29 help=”Number o f i t e r a t i o n s to perform SART r e c o n s t r u c t i o n . [d e f a u l t =1]”)
30 s e l f . pa r s e r . add opt ion (”−−no−center−c o r r e c t i o n ” , des t=” n o c o r r e c t c e n t e r ” ,
31 ac t i on=” s t o r e t r u e ” , d e f a u l t=False ,
32 help=”Attempt to f i n d cente r o f r o t a t i o n [d e f a u l t] ”)
33 s e l f . pa r s e r . add opt ion (”−−no−d e n t e r l a c i n g ” , des t=” n o c o r r e c t i n t e r l a c i n g ” ,
34 ac t i on=” s t o r e t r u e ” , d e f a u l t=False ,
35 help=”Perform d e i n t e r l a c i n g [d e f a u l t] ”)
36 s e l f . pa r s e r . add opt ion (”−−no−bragg−spot s ” , des t=” no bragg spot s ” ,

110

37 ac t i on=” s t o r e t r u e ” , d e f a u l t=False ,
38 help=”Attempt to f i n d and remove bragg spot s [d e f a u l t] ”)
39 s e l f . pa r s e r . add opt ion (”−−d i sab l e−c o r r e c t i o n s ” , des t=” d i s a b l e c o r r e c t i o n s ” ,
40 ac t i on=” s t o r e t r u e ” , d e f a u l t=False ,
41 help=”Do not perform any c o r r e c t i o n s p r i o r to r e c o n s t r u c t i o n . ”)
42
43 output group = optparse . OptionGroup (s e l f . parser , ”Output opt ions ”)
44 #output group . add opt ion(”−−sinogram−group ” , de s t=”sinogram group ” ,
45 # he lp=”Group con ta in ing sinograms .” , d e f a u l t=x r d t o o l k i t .SINOGRAMGROUP)
46
47 s e l f . pa r s e r . add opt ion group (input group)
48
49 @ut i l s . S c r i p t . timed
50 def parse (s e l f) :
51 super (Reconstructor , s e l f) . parse ()
52
53 s e l f . s a r t i t e r a t i o n s = u t i l s . convert (s e l f . opt ions . s a r t i t e r a t i o n s , int)
54
55 s e l f . c o r r e c t i n t e r l a c i n g = not s e l f . opt i ons . n o c o r r e c t i n t e r l a c i n g
56 s e l f . c o r r e c t c e n t e r = not s e l f . opt i ons . n o c o r r e c t c e n t e r
57 s e l f . r emove bragg spots = not s e l f . opt i ons . no bragg spot s
58
59 i f s e l f . opt i ons . d i s a b l e c o r r e c t i o n s :
60 s e l f . c o r r e c t i n t e r l a c i n g = False
61 s e l f . c o r r e c t c e n t e r = False
62 s e l f . r emove bragg spots = False
63
64 i f len (s e l f . a rgs) > 1 or len (s e l f . a rgs) == 0 :
65 s e l f . pa r s e r . e r r o r (” Please s p e c i f y one and only one sinogram f i l e ”)
66
67 try :
68 s e l f . s i n o f i l e = h5py . F i l e (s e l f . a rgs [0])
69 except :
70 s e l f . pa r s e r . e r r o r (”Could not open sinogram ”)
71
72 i f not s e l f . opt i ons . s inogram group in s e l f . s i n o f i l e :
73 s e l f . pa r s e r . e r r o r (’ F i l e does not have group %s ’ % (s e l f . opt ions . s inogram group ,))
74
75 s e l f . s ino group = s e l f . s i n o f i l e [s e l f . opt ions . s inogram group]
76 s e l f . c o r r e c t ed group = s e l f . s i n o f i l e . r equ i r e g roup (x r d t o o l k i t .CORRECTED SINOGRAM GROUP)
77 s e l f . r e co n s t ruc t i on g ro up = s e l f . s i n o f i l e . r equ i r e g roup (x r d t o o l k i t .RECONSTRUCTION GROUP)
78
79
80 @ut i l s . S c r i p t . timed

111

81 def proce s s s inog rams (s e l f) :
82 for key , d a t a s e t in s e l f . s ino group . i tems () :
83 s e l f . p r i n t v e r b o s e (”−−−> ” , key)
84 sinogram = d a t a s e t . va lue
85 i f len (d a t a s e t . shape) > 2 :
86 s l i c e s = d a t a s e t . shape [0]
87 else :
88 s l i c e s = 1
89 sinogram . shape = (1 ,)+ d a t a s e t . shape
90
91 c o r r e c t e d d a t a s e t = s e l f . c o r r e c t ed group . r e q u i r e d a t a s e t (
92 name=key ,
93 shape=sinogram . squeeze () . shape ,
94 dtype=” f l o a t 3 2 ”
95)
96 r e t = np . z e r o s (sinogram . shape)
97 for i in xrange (0 , s l i c e s) :
98 cor r e c t ed s inogram = sinogram [i]
99 i f s e l f . c o r r e c t i n t e r l a c i n g :

100 cor r ec t ed s inogram = tomo . s i n o d e i n t e r l a c e (co r r ec t ed s inogram)
101 i f s e l f . c o r r e c t c e n t e r :
102 cor r ec t ed s inogram = tomo . s i n o c e n t e r (co r r ec t ed s inogram)
103 i f s e l f . r emove bragg spots :
104 cor r ec t ed s inogram = tomo . s ino r emove bragg spot s (co r r ec t ed s inogram)
105
106 r e t [i , . . .] = cor r ec t ed s inogram
107
108 c o r r e c t e d d a t a s e t [:] = r e t . squeeze ()
109
110
111 @ut i l s . S c r i p t . timed
112 def r e c o n s t r u c t (s e l f) :
113 for key , d a t a s e t in s e l f . c o r r e c t ed group . i tems () :
114 cor r ec t ed s inogram = d a t a s e t . va lue
115 i f len (d a t a s e t . shape) > 2 :
116 s l i c e s = d a t a s e t . shape [0]
117 else :
118 s l i c e s = 1
119 cor r ec t ed s inogram . shape= (1 ,)+ d a t a s e t . shape
120
121 for i in xrange (0 , s l i c e s) :
122 # skimage expec t s columns o f p r o j e c t i o n s so t ranspose
123 s ino = cor r ec t ed s inogram [i] . astype (’ double ’) .T
124

112

125 i f key in s e l f . r e c on s t ruc t i on g r oup :
126 del s e l f . r e c on s t ruc t i on g r oup [key]
127 r e c o n s t r u c t i o n d a t a s e t = s e l f . r e c on s t ruc t i o n g r oup . r e q u i r e d a t a s e t (
128 name=key ,
129 shape=(s l i c e s ,)+ tuple ([s i no . shape [0]] ∗ 2) ,
130 dtype=” f l o a t 3 2 ”
131)
132
133 # Do a fa s t , f i l t e r e d back p r o j e c t i on r e con s t ruc t i on
134 # as i n i t i a l guess f o r the SART recon s t ru c t i on procedure
135 r e c o n s t r u c t i o n = transform . i radon (
136 s ino ,
137 o u t p u t s i z e = s ino . shape [0]
138)
139 try :
140 for i t in xrange (0 , s e l f . s a r t i t e r a t i o n s) :
141 r e c o n s t r u c t i o n = transform . i r a d o n s a r t (
142 s ino ,
143 image=r e c o n s t r u c t i o n
144)
145 except Attr ibuteError :
146 s e l f . p r i n t v e r b o s e (” This v e r s i on o f skimage does not support SART r e c o n s t r u c t i o n ”)
147
148 r e c o n s t r u c t i o n d a t a s e t [i] = r e c o n s t r u c t i o n
149
150 @ut i l s . S c r i p t . timed
151 def output (s e l f) :
152 s e l f . s i n o f i l e . c l o s e ()
153
154 i f name == ’ ma in ’ :
155 r e cons t = Reconstructor ()
156
157 r e cons t . p a r s e r s e t u p ()
158 r e cons t . parse ()
159 r e cons t . p roce s s s inog rams ()
160 r e cons t . r e c o n s t r u c t ()
161 r e cons t . output ()
162 else :
163 pass
164 # I n i t i a l i z e assmbl wi th va l u e s from DAWN
165 # assmbl = Reconstructor (p o s i t i o n =. . , fwhm = . . . , shape=”gauss ian ”)

113

114

Bibliography

[1] Data analysis workbench (dawn). an eclipse based workbench for doing
scientific data analysis. http://www.dawnsci.org/home.

[2] Id15 - high energy scattering beamline. http://www.esrf.eu/

UsersAndScience/Experiments/StructMaterials/ID15.

[3] Python for Scientific Computing. Computing in Science, 9(3):10 – 20,
2007.

[4] M. Álvarez Murga, P. Bleuet, and J.-L. Hodeau. Diffraction/scat-
tering computed tomography for three-dimensional characterization of
multi-phase crystalline and amorphous materialsThis article forms part
of a special issue dedicated to advanced diffraction imaging methods
of materials, which will be pu. Journal of Applied Crystallography,
45(6):1109–1124, November 2012.

[5] Michelle Álvarez Murga, Pierre Bleuet, Leonel Marques, Christophe
Lepoittevin, Nathalie Boudet, Gaston Gabarino, Mohamed Mezouar,
and Jean-Louis Hodeau. Microstructural mapping of C60 phase trans-
formation into disordered graphite at high pressure, using X-ray diffrac-
tion microtomography. Journal of Applied Crystallography, 44(1):163–
171, December 2011.

[6] J. Baruchel, J.Y. Buffiere, and E. Maire. X-ray Tomography in Material
Science. Hermes Science, 2000.

[7] Pierre Bleuet, Eléonore Welcomme, Eric Dooryhée, Jean Susini, Jean-
Louis Hodeau, and Philippe Walter. Probing the structure of hetero-
geneous diluted materials by diffraction tomography. Nature materials,
7(6):468–72, June 2008.

[8] Christopher K. Egan, Simon D.M. Jacques, Marco Di Michiel, Biao
Cai, Mathijs W. Zandbergen, Peter D. Lee, Andrew M. Beale, and
Robert J. Cernik. Non-invasive imaging of the crystalline structure
within a human tooth. Acta Biomaterialia, 9(9):8337–8345, 2013.

[9] A P Hammersley. FIT2D: An Introduction and Overview. Internal

115

http://www.dawnsci.org/home
http://www.esrf.eu/UsersAndScience/Experiments/StructMaterials/ID15
http://www.esrf.eu/UsersAndScience/Experiments/StructMaterials/ID15

report, ESRF, 2008.

[10] Veijo Honkimaki. Various matlab procedures for x-ray calculations.
Unpublished: Private communication.

[11] Jérôme Kieffer and Dimitrios Karkoulis. PyFAI, a versatile library
for azimuthal regrouping. Journal of Physics: Conference Series,
425(20):202012, March 2013.

[12] U Kleuker, P Suortti, W Weyrich, and P Spanne. Feasibility study of
x-ray diffraction computed tomography for medical imaging. Physics
in Medicine and Biology, 43(10):2911–2923, October 1998.

[13] Wolfgang Ludwig, Sø eren Schmidt, Erik Mejdal Lauridsen, and Hen-
ning Friis Poulsen. X-ray diffraction contrast tomography: a novel
technique for three-dimensional grain mapping of polycrystals. I. Direct
beam case. Journal of Applied Crystallography, 41(2):302–309, March
2008.

[14] Matthew G. O’Brien, Simon D. M. Jacques, Marco Di Michiel, Paul
Barnes, Bert M. Weckhuysen, and Andrew M. Beale. Active phase
evolution in single Ni/Al2O3 methanation catalyst bodies studied in
real time using combined µ-XRD-CT and µ-absorption-CT. Chemical
Science, 3(2):509, January 2012.

[15] L Salvo, P Cloetens, E Maire, S Zabler, J.J Blandin, J.Y Buffière,
W Ludwig, E Boller, D Bellet, and C Josserond. X-ray micro-
tomography an attractive characterisation technique in materials sci-
ence. Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms, 200:273–286, 2003.

[16] Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. NIH
Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7):671–
675, June 2012.

[17] Weingärtner Tim and Rüdiger Dillmann. Split-and-Merge Segmenta-
tion using Octrees. pages 1–5.

[18] Marco Voltolini, Maria Chiara Dalconi, Gilberto Artioli, Matteo
Parisatto, Luca Valentini, Vincenzo Russo, Anne Bonnin, and Remi
Tucoulou. Understanding cement hydration at the microscale: new op-
portunities from ‘pencil-beam’ synchrotron X-ray diffraction tomogra-
phy. Journal of Applied Crystallography, 46(1):142–152, January 2013.

116

	Glossary
	Introduction
	Motivation

	X-ray diffraction and Tomography
	Synchrotron radiation
	Computed tomography
	Absorption tomography
	Phase contrast tomography

	Diffraction/Scattering tomography
	Reverse analysis

	Data analysis
	The method of least squares
	Estimates of variance

	Reconstruction algorithms
	Sinogram correction
	Deinterlacing
	Rotation center
	Bragg peak filtering

	Sample self-absorption correction
	Acceleration of absorption correction
	Zero order approximation

	xrdtoolkit
	The framework
	Dependencies
	File handling
	The common tables
	The sample class
	Testing
	Installation

	xrdtoolkit scripts
	xrdtoolkit-calibrate
	xrdtoolkit-integrate
	xrdtoolkit-assemble
	xrdtoolkit-reconstruct
	xrdtoolkit-average

	Experiment
	Setup
	Sample preparation
	Data collection
	Data reduction

	Results
	Sinogram reconstruction
	Performance
	xrdtoolkit-average
	xrdtoolkit-calibrate
	xrdtoolkit-integrate
	xrdtoolkit-assemble

	Discussion and conclusion
	experiment
	Corrections
	Possible contamination

	The toolkit
	Script performance
	Further work

	Appendices
	Detector coordinate systems
	Batch processing of dsctdata
	The xrdtoolkit module
	The xrdtoolkit script files

