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Abstract

Small-angle X-ray scattering tomography has for the first time been used to
investigate the spatially resolved orientation distribution of talc particles in a
sample of injection molded isotactic polypropylene, where the particles had a
preferred orientation along the axis of the injection. The scattering patterns
in the direction perpendicular to the rotation axis of the tomography scan
were used to retrieve the orientation distribution in a 2D cross section of the
sample.

Two different methods are presented, one using a numerical approach of
Simulated Annealing and one method using a linear set of equations to find
the distances the X-ray beam travels through the different orientation re-
gions. The method of Simulated Annealing showed little to no promise in
retrieving the orientation distribution while the method using a linear set
of equations is successful at retrieving the main features of the orientation
distribution. The resolution is however not yet good enough to distinguish
fine details inside the sample.

It is believed that with further work on the model used and additional con-
straints on the reconstruction algorithm higher precision in the retrieved
orientation distribution can be achieved.





Sammendrag

Småvinkelrøntgenspredningtomografi (SAXS tomography) har for første gang
blitt benyttet for å undersøke retningsdistribusjonen av talkpartikler i en
prøve av injeksjonssprøytet isotaktisk polypropylen, hvor talkpartiklene hadde
en preferert retning langs injeksjonsaksen. Spredningssignalene i retningen
normalt p̊a rotasjonsaksen i tomografiskannet ble benyttet til å ekstrahere
retningsdistribusjonen i et 2D tversnitt av prøven.

To forskjellige metoder er presentert, én benytter seg av den numeriske meto-
den simulert avspenning (Simulated Annealing), og én metode benytter seg
av et lineært set av likninger for å finne avstandene røntgenstr̊alen g̊ar gjen-
nom de forskjellige regionene med forskjellig orientering. Metoden som benyt-
tet simulert avspenning viste lite til ikke noe h̊ap om å gjenskape retnings-
distribusjonen, mens metoden som benyttet et lineært sett av likninger er
vellykket i å rekonstruere de karakteristiske kjennemerkene av retningsdis-
tribusjonen. Oppløsningen er derimot ikke god nok til å separere detaljer inne
i prøven.

Det er tro p̊a at det vil være mulig å øke presisjonen i å gjenfinne retnings-
distribusjonen ved å jobbe videre p̊a rekonstruksjonsalgoritmen og tillegge
flere føringer.
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Chapter 1

Introduction

1.1 Background for Project

This project has focused on Small-Angle X-ray Scattering (SAXS) tomog-
raphy of talc filled isotactic polypropylene (iPP). This means that an iPP
sample has been illuminated by X-rays, and the scattered rays at small an-
gles have been recorded and analyzed. The goal was to get three-dimensional
orientation distribution of the talc particles inside the polypropylene by the
use of computed tomography.

1.2 Computational Tomography

Computed Tomography (CT) was developed in the late 70’s, and Allan
M. Cormack and Godfrey N. Hounsfield were awarded the Nobel prize in
medicine in 1979 for the development of CT1. Since that time tomography
has been well known in the medical and scientific community, and many peo-
ple are familiar with the images a hospital CT-scanner acquires. In short,
tomography consists of a series of line scans of a sample. The sample is
rotated between each line scan and this is done until the sample has been
rotated 180 degrees. The projections are then used to recreate the sample
imaged. Ordinary tomography done in a hospital is usually based on imag-
ing the attenuation coefficients of a cross section of a patient. This makes it
possible for a doctor to view different organs or tumors, because various com-
ponents inside the body attenuates X-rays differently, and will therefore have
different attenuation coefficients. The method of attenuation-based imaging
of various objects with the use of computational tomography is rather well

1as listed at www.nobelprize.org
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explored by Kak and Slaney [1]. In recent years the development in X-ray
physics, better synchrotron sources with higher brilliance and coherence than
before, and high resolution detectors with high signal to noise ratio and fast
read out time has made it possible to do tomography based on the scat-
tered X-ray signal. This can be done with both the wide-angle signal, or the
small-angle signal, depending on what information one is looking for.

1.3 SAXS Tomography

Earlier work in SAXS tomography has only looked at the scattering in the
direction along the rotation axis, or assumed that the scattering particles
are spherically symmetric [2, 3, 4]. With these constraints or assumptions
there are very few systems which can be imaged, or it is possible to only
get information of the scattering cross section in the direction along the
rotation axis. No method exists for making use of the scattering in the
direction perpendicular to the rotation axis. This is due to the fact that the
assumptions ordinary tomographic reconstruction techniques are based on
are invalid when the scattering perpendicular to the rotation axis is used in
a direct way, by for example just putting in the recorded intensity in to the
reconstruction algorithm.

1.4 Objective for Thesis

The project this thesis is based on is trying to use the scattering in the direc-
tion perpendicular to the rotation axis, hereafter called horizontal scattering,
to get information on how the talc particles are oriented inside a piece of iso-
tactic polypropylene. The goal was not to discover the orientation of the talc
particles, but to see if, and how well, the 3D orientation distribution could
be retrieved by SAXS tomography. Earlier work had already mapped the
orientation distribution of the talc particles in the same kind of sample [5]
and served as reference to see if the method would work.

The techniques explored in this thesis would of course not only be relevant for
talc particles in polypropylene, but for all kind of different particles, as long
as the scattering particles mostly are of the same material and same shape.
Discovering a technique which can give the 3 dimensional orientation of par-
ticles inside a sample would be very interesting for both industry and science.
Tiny particles can affect many meso- and macroscopical properties like struc-
tural integrity of a sample or the index of refraction. Particles with biaxial
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index of refraction have different dielectric constants in different directions
and will therefore have different optical properties depending on how they
are oriented. There are many more examples of anisotropic microparticles,
i. e., particles that have different properties in different directions of their
shape. By developing a tomographic technique to see how they are oriented
inside a sample, it is possible to predict the sample’s properties or modify
the manufacturing method to get the desired orientation distribution. To get
the full orientation distribution of micro particles the sample would normally
have to be cut open to get a measurement of the cross section. Retrieving
the orientation distribution without destroying the sample itself can truly be
invaluable. Cutting the sample could perhaps also alter the orientation of the
particles at the surface because the cutting blade can move particles around,
giving erroneous results when doing measurements. In addition, physically
altering the sample will make it useless for many further studies. By map-
ping the 3D orientation distribution without destroying the sample, it will
be possible to do in situ studies of material reorganization during mechanical
loading. This can give predictions on which parts in the sample will break
first, during for instance a stress test.

Other methods for doing in situ studies of materials exist, as for instance
ptychography [6]. This method is a version of coherent diffraction imaging
and is imaging based on the real part of the index of refraction. It is possible
to do tomography with this technique, and the resolution can be as good as
< 100 nm. The problem is that this method is not suited to handle as large
objects as the sample investigated in this thesis. In ptychography an X-ray
beam is raster scanned across the sample. The beam spot of each scan has
to partly overlap the previous beam spot in order for the constraints of the
reconstruction algorithm to work. The time to investigate an entire sam-
ple would therefore be too long. It is also possible to imagine conventional
absorption tomography to be used in mapping the orientation distribution
of the talc particles in the sample. The attenuation coefficient of talc and
polypropylene should have good contrast. It will however not be possible,
since the particles are smaller than the beam, thus not making it possible to
distinguish talc and polypropylene.

1.5 Structure of Thesis

This thesis will start with a short description of the materials used in the
experiment, and why they are suited for this project. The report will then
continue with a theory section, explaining how scattering occurs and what

3



it is that influences the small-angle scattering signal. Computational tomog-
raphy will also be presented, with a section on why general reconstruction
algorithms do not work for the horizontal scattering. After this follows an
experimental part explaining how the practical experiment was performed,
and how the computer simulations and reconstructions were set up. Then the
results will be presented and discussed, before the conclusion of the project
will be drawn.
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Chapter 2

The Sample Analyzed

2.1 The Experimental Sample

The sample used in the experimental part of this thesis was delivered by SIN-
TEF and was a piece of injection molded talc filled isotactic polypropylene.
The shape of the sample resembled a dog bone, and can be seen in Figure 2.1.
The experiment itself was performed at the middle of the dog bone neck with
the axis of rotation parallel to the injection flow of the polymer. The sam-
ple provided was part of a series of injection molded samples manufactured
under different conditions. Each sample had a designation EDXY. The two
first letters, ED, represents the material, while the two last letters represents
the manufacturing parameters. The third letter, X, is referring to the mold
temperature and is either L (low temperature), M (medium temperature)
or H (high temperature). The last letter, Y, refers to the shear rate during
production of the sample. The shear rate is either L (low), M (medium) or
H (high). A sample made under medium temperature and high shear rate
would for example have designation EDMH . The values for the low, medium
and high temperature and shear rate are given in table 2.1.

When neglecting the solidifying layer at the walls the shear rate, γ̇, is given
by [7]

γ̇ = 3
Q

Ah
. (2.1)

Q is the volumetric flow rate in m3/s, A is the area of the cross section of
the mold and h is the smallest dimension of the cross section. The shear
rate governs the injection speed of the melt and the pressure applied during
solidification [7].
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Figure 2.1: Image of the polypropylene sample used in the experiment. The
shape resembles a dog-bone and the ruler gives the dimensions in cm and the
blue arrow indicates the direction the melted polypropylene flowed in to the
mold.

Table 2.1: The values for low, medium and high temperature and shear rate
during the manufacturing of the samples.

Shear rate Temperature
s−1 ◦C

Low 25 20
Medium 150 40
High 850 65

For this particular project, only a sample made by injection molding un-
der low temperature and low shear rate was used. It will thus not be any
comparison between samples constructed under different conditions. It is
still chosen to present this representation of the other samples to make it
easier to compare the results and samples with earlier work performed at the
X-ray group at NTNU [7, 8] and possible later work with the same kind of
samples constructed under different conditions.

This sample was well suited for this project because talc particles and polypropy-
lene give a strong signal due to the large contrast between in the scattering
length density. The talc particles also had a preferred direction, thus making
the problem less complex because less variables were unknown.
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2.2 Polypropylene

Polypropylene, also referred to as polypropene, is a common polymer used
in a large variety of items. The isotactic variant of polypropylene was first
created by Natta and Rehn in 1954 [9] and is now one of the most important
”plastics” in the world, with an estimated worldwide generated revenue of
more than US $145 billion in the year 2019 [10]. The average growth the past
eight years has been 4.4 % and will likely be surpassed in the coming years
[10]. Polypropylene is a material consisting of a repeating cell of propene, as
described in Figure 2.2.

CH3

n

Figure 2.2: The repeating cell of polypropylene. n is a number in the range
of ten thousands. A carbon atom with attached hydrogen atoms is placed at
each kink of the polymer chain.

The material in this study is of the type isotactic polypropylene. This means
that the methyl-groups all sit on the ”same” side, shown in Figure 2.3 (a),
and that the polymer chain is along a straight axis, without sharp bends.
Another type of polypropylene is shown in Figure 2.3 (b). This is syndio-
tactic polypropylene and will not be discussed further, but is shown to em-
phasize that polypropylene can form different kinds of chains. Whether the
polypropylene is isotactic or not has implications on the polymer’s ability to
form crystals. Polypropylene with lower isotacticity, meaning more defects
from a perfect isotactic chain, will form smaller crystals [11].

Isotactic polypropylene crystallizes in four different phases: α (monoclinic),
β (hexagonal), γ (triclinic) and smectic, with α usually the dominant phase
[12]. The structure of the unit cell in the α form is a = 0.666 nm, b = 2.078
nm, c = 0.6495 nm, β = 99.62◦ and α = γ = 90◦, where the chain is along
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Figure 2.3: (a) shows isotactic polypropylene, while (b) shows syndiotactic
polypropylene.

the c-axis [13]. Which form the polypropylene crystallizes to depends on
factors such as temperature [14] and shear strength [15]. Decreasing tactic-
ity also has the implication of lower melting temperature and that more of
the polypropylene will crystallize in the γ-phase [11]. The mass density of
polypropylene depends on the degree of crystallinity, but is approximately
ρ = 0.90 g/cm3[16], and has attenuation coefficient µ = 0.94 cm−1 for X-rays
with wavelengths of 1 Å [16].

The polypropylene samples used in this project were injection molded. This
is a process where thermoplastics are forced into a heated barrel where it
is melted and mixed, typically by a revolving screw inside the barrel. This
screw also forces the plastic forward from the intake towards the outlet where
the mold is attached. The plastic is then injected to the mold cavity with
a lower temperature, which cools and solidifies the plastic almost as soon as
the mold is filled. Injection molding is the most used method to produce
thermoplastic products [17].

2.3 Talc

Talc is a mineral with chemical formula H2Mg3(SiO3)4 and crystallizes in a
monoclinic unit cell with parameters a = 5.26 Å, b = 9.1 Å, c = 18.81 Å and
β = 100◦ [5], and has mass density of approximately1 ρ = 2.69 g/cm3. With
these parameters the absorption coefficient of talc can be calculated to be
µ = 23.1 cm−1 [16] for X-rays with wavelengths 1 Å. Talc gives a number of
effects when added to polypropylene. The ability to reinforce polymers [18]
is one of the advantages, in addition to reducing shrinkage and warpage, and

1Chemical tables from various suppliers, found online, list the density of talc in the
range of 2.5-2.8 g/cm3
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to reduce thermal expansion and the cycle time [5]. For these reasons talc
have been added to the polypropylene samples. Better understanding of how
the talc behaves inside the polymer is thus a crucial step to understand the
properties of this kind of polypropylene.

It has been shown in earlier studies that the talc particles in the isotac-
tic polyropylene sample form thin flakes, with their surface normal parallel
to the sample surface normals both by WAXS and SAXS raster scans of a
cross section of the sample [5, 8]. The orientation of the talc flakes is indi-
cated in Figure 2.4. It is clear that the talc particles are orienting themselves
with their surface normal perpendicular to the outer surface of the sample,
and it is perfect agreement between the WAXS and SAXS measurement.

mm

m
m

0 2 4 6 8 10
0

2

4

mm

m
m

0 2 4 6 8 10
0

2

4(a) (b)

Figure 2.4: Orientation of the talc flakes in the iPP sample from a cross
section of the dog bone neck, perpendicular to the flow direction. (a) Is the
direction of the talc c-axis measured by raster scanning WAXS, while (b) is
the direction of the talc flakes surface normal measured by raster scanning
SAXS. The direction is given by the color wheel inset. Figures adapted from
[8]

The shape and dimension of the talc particles were measured earlier by Scan-
ning Electron Microscopy (SEM) at NTNU NanoLab by Per Erik Vullum
representing SINTEF. Two of these measurement are shown in Figure 2.5.
Figure 2.5 (a) is shown with 2500x magnification, and is shown to indicate
the large spread in size of the particles. Figure 2.5 (b) is shown with 5000x
magnification and shows better the size and shape of individual particles. In
general, it looks like the diameter of the talc particles varies from 1-10 µm
and the height varies from 0.1-2 µm. Because the talc particles are very much
polydispersive it can be expected that the scattering signal will be smoothed
out, and characteristics features for talc particles with one specific geometry
will not be discernible.
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(a) (b)

20 μm 10 μm

Figure 2.5: The size and shape of the talc particles in the polypropylene
sample measured with scanning electron microscopy (SEM). (a) Image taken
with 2500x magnification. (b) Image taken with 5000x magnification.
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Chapter 3

Theory

3.1 A Brief Note on Notation

In this chapter the theory of what has been done in this thesis will be pre-
sented. The main goal has been to retrieve the orientation distribution of
talc particles inside a sample of polypropylene. This will lead to a number
of different coordinate systems being used to see how the different samples
are oriented with respect to each other. To keep notations for these different
coordinate systems consistent throughout the thesis some notation can use
slightly different symbols than other literature. The notation of the different
coordinate systems, and what they are associated with, will be presented in
this section. How the three different coordinate systems used are related to
each other can be seen in Figure 3.1.

The Cartesian (x, y, z)-coordinate systems refer to the laboratory frame. This
is the fixed coordinate system setting the basis for all the angles between the
other coordinate systems. The x-component represents the horizontal direc-
tion perpendicular to the direction the horizontal X-ray beam travels. The
y-component is along the X-ray beam while the z-component is representing
the vertical direction perpendicular to the beam as illustrated in Figure 4.2.

The iPP sample itself has a rectangular shape. The coordinate system of
the iPP sample is (s, t, z) and is referred to as the sample frame. The s-
coordinate is along the long edge of the sample, the t-coordinate is along the
short edge of the sample, while the z-component is in the same direction as
for the laboratory frame. When the entire sample is rotated with respect
to the laboratory frame, the (s, t, z) coordinate system is rotated an equal
amount, and the angle between the sample frame s-axis and laboratory frame

11



x-axis forms an angle ψ.

Each talc particle is also given its own coordinate system, referred to as
the talc frame. This Cartesian coordinate system is aligned with the internal
symmetry of the talc particles and has components (x′, y′, z′). How these
components are oriented compared to the shape of the talc particle can be
seen in Figure 3.2 and 4.4. The different talc particles have various orien-
tation inside the iPP sample. The angle a talc particle has inside the iPP
sample has the symbol φ, which means that the angle between the s-axis in
the sample frame and the x′-axis in the talc frame is φ. The angle between
the talc frame and laboratory frame is ξ = ψ + φ.

Associated reciprocal coordinate systems are used. To which coordinate sys-
tem in real space these are related is determined by a subindex. For instance,
qx is the component of the scattering vector in the x-direction of the labo-
ratory frame, while the scattering vector qx′ is the scattering vector in the
x′-direction of the talc frame.

x

y

x'

y' s

t
φ

ψ

z,z'

Figure 3.1: The figure shows the three different coordinate systems used,
and how they are related. The xy-coordinate system is the fixed laboratory
frame. The st-system is the sample frame, and the sample is outlined by the
light gray rectangle. The angle between the laboratory frame and the sample
frame is ψ about the z-axis. The talc particle is outlined by the dark gray
disk, and the talc frame has coordinate system x′y′. The angle between the
talc frame and the sample frame is φ, also all three coordinate systems have
their z-axis parallel and out of the paper plane.
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3.2 Fundamentals of Electromagnetic Waves

It is normal to make two different descriptions when describing X-rays. Either
the classical view is adapted, and an X-ray beam is imagined as a propagating
wave in compliance with Maxwell’s equations, or an X-ray beam is regarded
as a stream of quantified photons. Which description is best depends on
which optical phenomenon is considered.

When regarding X-rays as electromagnetic waves, it is normal to adopt the
formalism of describing the electric part of the wave with complex numbers

E = E0e
i(k·r−ωt). (3.1)

k is the wave vector of the electromagnetic beam, ω is the angular frequency,
r the position vector in space and t is the time. The complex amplitude
vector, E0, contains both information on the absolute amplitude of the wave,
the phase constant of the wave and the polarization of the wave. Materials
have refractive index close to unity in the X-ray regime, which means that
electromagnetic waves with these wavelengths consider the material almost
similar to vacuum. This means that the polarization is perpendicular to the
wave vector k, which follows from Maxwells equations for electromagnetic
waves in vacuum. The electric field is the real part of Equation 3.1. In
this representation the electromagnetic wave is considered a plane wave, and
this is normally a good approximation when dealing with X-ray scattering,
because the wavelength is very small compared to the usual spot size. If one
approximates the beam from the X-ray source with a Gaussian beam, the
radius of curvature, R, is given by:

R(y) = y

(
1 +

(
y0

y

)2
)

[19]. (3.2)

Here y is the distance from the beam center, and y0 = πW 2
0 /λ [19], is the

Rayleigh range, where W0 is the beam width at the beam center, and λ is
the wavelength of the beam. The beam width is in the order ∼ 10−4 m, the
wavelength is in the order of ∼ 10−10 m and the distance from the beam cen-
ter is in the order of ∼ 10−1 m. This implies that the radius of curvature will
be in the order of ∼ 102 m. The area illuminated by the X-ray beam is in the
same order as the beam width, and it is therefore a good approximation to
consider the incoming X-ray beam to be a planar wave when it is interacting
with a sample because the radius of curvature is so large that the incoming
beam will seem planar over an area the size of the beam spot.

13



With these approximations, and considering a wave traveling in the y-direction
and polarized in the z-direction in a Cartesian coordinate system, one can
write the electric field of the incoming X-ray beam as

E = E0sin(kyy − ωt)ẑ. (3.3)

Since it has been mentioned that X-rays can be regarded as particles, a
short description will follow regarding the subject. When quantifying the
electromagnetic wave, one is visualizing a particle called the photon with
quantum energy E = hf . E is the energy, h is Planck’s constant and f is
the frequency of the electromagnetic wave. Viewing X-rays in this manner
is important when considering the creation of characteristic X-ray spectra
from an X-ray source and inelastic scattering such as Compton scattering,
but will not be handled in more detail here, since it will suffice to know that
photons exist to understand the work that has been done in this thesis.

3.3 Scattering Theory

3.3.1 Fundamental Scattering Theory

The fundamentals of scattering theory lays on the fact that an electron will
interact with an incoming electromagnetic beam, or photon, depending on
which representation is most fitting. In most X-ray scattering experiments it
is assumed that the scattering is elastic. This means that the scattered wave
has the same wavelength as the incoming photon. When considering scatter-
ing from a single electron, one imagines that the incoming electromagnetic
wave will act with a force on the electron, and hence start to accelerate it.
This will again cause the electron to radiate according to [20]

dP

dΩ
=

e2

16π2ε

|r̂× (u× a)|2

(r̂ · u)5
. (3.4)

This equation describes that accelerated electric charges will be the source for
an electromagnetic wave. Here dP/dΩ is the radiated power to an infinitely
small solid angle centered around the radiating particle. ε is the electric per-
mittivity of the medium the electron is situated in, e is the electric charge, r̂
is the unit vector in radial direction and a is the acceleration of the electron.
u = cr̂−v where c is the speed of light and v is the velocity of the electron .
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If one assumes that the incoming electromagnetic wave has an electric field
of the form in Equation 3.3, then, according to Newton’s second law, the
acceleration and velocity will be given by

a =
eE0

me

sin(ωt)ẑ (3.5)

v =
eE0

meω
cos(ωt+ α)ẑ. (3.6)

Here electrons located at y = 0 are considered. α is a phase constant and me

is the electron mass. By including this in Equation 3.4 the radiated power
per steradian is:

dP

dΩ
=

e4E0
2

16π2εm2
ec

3

sin2ωtrsin
2θ

(1− eE0

meωc
cosθcos(ωtr + α))5

. (3.7)

tr = t−r/c is the retarded time, accounting for the fact that the signal needs
a finite time to travel the distance r. θ is the angle the radial unit vector
forms with the z-axis. A single electron will thus give out electromagnetic
radiation when accelerated by an electromagnetic wave. The fact that the
scattered intensity goes as 1/m2, where m is the mass of the scattering par-
ticle, shows why only electrons are considered in X-ray scattering, and not
protons. Protons have 2000 times the mass of an electron, and the scattering
will therefore be very weak compared to the scattering from the electrons.

3.3.2 Scattering From Multiple Scatterers

When considering X-ray scattering it is not usual to look at scattering from
a single electron, but from the sum of all electrons illuminated by the X-
ray beam. This is because the electromagnetic waves from each accelerated
electron can interact in either a destructive or constructive way, depending
on the phases of the waves. To understand this, it is necessary to first look
at the scattering from a single atom. The scattering intensity is proportional
to the absolute square of the atomic form factor, f 0, given by the Fourier
transform of the charge density ρ(r) [21].

f 0 =

∫
ρ(r)eiq·rdr. (3.8)

r is the position vector in real space and the scattering vector q is given by

q = k′ − k, (3.9)
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where k′ and k are the outgoing and incoming wave vectors, respectively.
The scattering angle, 2θ, is the angle between the incoming and outgoing
wave vector. When considering the scattering from multiple atoms, the sum
is done over all the atom’s atomic form factor, with the additional factor eiq·r

to account for the fact that different atoms will spread with a different phase
[22]. As the intensity of the scattering from a single atom is proportional to
the atomic form factor, the intensity of the scattering from multiple atoms
is proportional with the absolute square of the form factor, F , given by [21]

F (q) =
∑
j

fj(q)eiq·rj . (3.10)

Here the sum goes over all the different atoms involved, and fj(Q) is the
atomic form factor of atom number j. By considering only identical atoms,
the intensity, I(q), is then given by:

I(q) = |f(q)|2
∑
n

eiq·rn
∑
m

e−iq·rm = |f(q)|2
∑
n

∑
m

eiq·(rn−rm). (3.11)

By separating the summation of n = m from n 6= m, and in addition changing
the summation over m by an integral over the electron density ρn, and finally
adding and subtracting an integral over the average electron density, ρat, one
arrives at the scattering intensity [21]

I(q) = N |f(q)|2 + |f(q)|2
∑
n

∫
V

[ρn(rnm)− ρat]e
iq·(rn−rm)dVm

+|f(q)|2ρat
∑
n

∫
V

eiq·(rn−rm)dVm.

(3.12)

rn is here a fixed reference position in the sample. The electron density at
position rnm = rm−rn will quickly approach the average electron density ρat
for increasing rnm if the material is not crystalline [21]. The second term in
Equation 3.12 will therefore vanish for large rnm. The third term in Equation
3.12 will only contribute for small scattering vectors q. This comes from the
fact that when integrating over the volume the phase factor eiq·(rn−rm) will
oscillate quickly along the unit circle and the integral will add up to zero
unless q is small. Small q means small scattering angle 2θ, and this part of
the signal is therefore considered the Small-Angle X-ray Scattering (SAXS)
intensity, which gives information on the mesoscale average electron density
variations throughout the sample investigated.
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3.3.3 Small-Angle X-ray Scattering

Scattering Intensity in the SAXS Regime

The small-angle X-ray scattering intensity is formalized from Equation 3.12
as

ISAXS = |f(q)|2
∑
n

eiq·rn

∫
V

ρate
−iq·rmdVm. (3.13)

By doing a similar transformation from a sum to an integral as in Equation
3.12, the SAXS intensity becomes

ISAXS = |f |2
∫
V

ρate
iq·rndVn

∫
V

ρate
−iq·rmdVm. (3.14)

This can be approximated by [21]

ISAXS = |
∫
V

ρsle
iq·rdV |2, (3.15)

if the form factor f(q) varies little for small q. The variable ρsl = fρat have
here been introduced and is called the scattering length density. In general
the integration volume is over the entire sample. For particles in a low solu-
tion there is no ordering between the particles, and therefore no constructive
or destructive interference arise because of the ordering. When this happens,
the scattering intensity at small angles is given by the Fourier transform of
the difference between the scattering length density of the particle and the
surrounding material used as solvent [21]. If the scattering length density
of the particle is uniform, then the intensity of the scattering signal from a
single particle, ISAXS1 , is given by

ISAXS1 (q) = (ρsl,p − ρsl,0)
2|
∫
Vp

eiq·rdVp|2. (3.16)

ρsl,p and ρsl,0 is the scattering length density of the particle and the solvent.
Vp is the volume of the particle. Since the volume integral is changed from the
entire sample volume, to only over a single particle, the scattering intensity
from the single particle has to depend on the difference between the scattering
length density of the particle and the solution. This is because this intensity
is how much the signal is modified compared to the signal from the pure
solution. If the particle and the solution would have the same scattering
length density, then one would not be able to see the particle in the scattering
data, and ISAXS1 would be equal to 0. With the single particle form factor

F (q) =
1

Vp

∫
Vp

eiq·rdVp, (3.17)
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which is the Fourier transform of the particle shape, ISAXS1 (q) becomes

ISAXS1 (q) = ∆ρ2V 2
p |F (q)|2, (3.18)

where ∆ρ is the difference in scattering length density of the particle and the
solvent.

Polydispersivity

If the particles being imaged have various sizes, then the system is polydis-
perse. To get the correct intensity in the small-angle X-ray scattering regime,
it it necessary to take a weighted sum of all the different particle sizes. If the
distribution of the different particle sizes, R, is D(R), then Equation 3.18 is
modified to [21]

I(q) = ∆ρ2

∫ ∞

0

D(R)Vp(R)2|F (q, R)|2dR (3.19)

The size distribution is normalized such that∫ ∞

0

D(R)dR = 1. (3.20)

This creates the effect that the scattering signal is smeared out, and charac-
teristic peaks become smaller.

Form Factors for Different Shapes

For the study in this thesis talc particles have been studied. It is known
from earlier studies of talc containing polypropylene that the talc particles
form thin flakes oriented with their surface normals roughly parallel to the
exterior surface normals of the sample [5].

Two different shapes were tested for finding the best fit for the shape of
the talc flakes to the experimental data. These were a cylinder and a full
spheroid. A visual representation of these can be seen in Figure 3.2

The form factor for the cylinder, Fcy, and the full spheroid, Ffsph, are given
by [23]:

Fcy(q
′, R,H) = 2πR2H

J1(q||′R)

q||′R
sinc(qy′H/2)eiqy′H/2 (3.21)

Ffsph(q
′, R,H) = eiqy′H/2

∫ H/2

0

4πR2
y′

J1(q||′Ry′)

q||′Ry′
cos(qy′y

′)dy′. (3.22)
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Full spheroid

Figure 3.2: Two different shapes for modeling the geometry of a talc flake.
Each shape is shown in two different planes, with different characteristic
lengths indicated.

Here J1(x) is the Bessel function of first order, and the other variables are
given below with dimensions as indicated in Figure 3.2.

q||′ =
√
q2
x′ + q2

z′ ,

Ry′ = R

√
1− 4

y′2

H2

(3.23)

Structure Factor in the Sample

If the particle density is not sufficiently diluted to ignore the ordering among
the particles, then the structure factor |S(q)|2 has to be multiplied into
Equation 3.18. S(q) is here the Fourier transform of the function s(x, y)
describing how the particles are ordered. The small-angle scattering intensity
then becomes [21]

ISAXS(q) = ∆ρ2V 2
p |F (q)|2|S(q)|2. (3.24)
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The reason why the structure factor can be multiplied into the equation
comes from the fact that the intensity is the Fourier transform of the electron
density, which can be regarded as the convolution of the electron density of
a single particle and some sort of perfect or imperfect lattice. Since

F(h ∗ g) = H ·G, (3.25)

where F denotes the Fourier transform, h and g are real space functions, ∗
symbolizes the convolution and H and G denote the Fourier transforms of
h and g, it is possible to simply multiply the structure factor with the form
factor to the get the intensity.

3.4 Absorption

When X-ray beams travel through a material the intensity of the beam is
attenuated because of absorption [21]. This absorption can for example be
photoelectric absorption, where an electron absorbs a photon and is there-
after expelled from the atom. When considering the attenuation of an X-ray
beam through a material, the intensity I after a distance l is given by:

I = I0e
−

R
l µ(s,t,z)dl′ , (3.26)

where the integral is a line integral through the sample along l. I0 is the
initial intensity, and µ(s, t, z) is the spatially varying attenuation coefficient,
which describes how much the material absorbs. The attenuation coefficient
is in general varying in space and energy. The experiments this report is
based on were done with a monochromatic beam at the Swiss Light Source.
The energy dependence of the absorption coefficient is therefore not relevant
for the continued work. The advantage of working with a monochromatic
beam in computational tomography is that some complications, like beam
hardening, will not appear. This will further be discussed in Section 3.5.3.

The absorption coefficient for a material in the X-ray regime is generally
small for soft materials like plastic or tissue. However, it is in many cases
important to correct for this effect. Especially when the X-ray beam the
analysis is based on travels through significant different lengths in a sam-
ple. Correcting for the absorption can be done by multiplying the measured
intensity I with the factor exp(

∫
l
µ(s, t, z)dl). This will give the incoming

intensity I0. One important thing to notice is that this does not only apply
to the direct incoming beam, from for instance an X-ray source. The scat-
tered beams in a sample will also be attenuated in the same manner. To
know how much of the wave was scattered, corrections have to be made to
the measured signal.

20



3.5 Computational Tomography

3.5.1 Filtered Backprojection

Computational tomography is a method to image the the interior of a sample.
This sample could for example be the human body, or a sample of polypropy-
lene, as it is in this case. By using computational tomography it is possible
to see how different structural variables change with position inside a sam-
ple, depending on what the imaging parameter is. The procedure is done by
making projections of the sample at different angles, and then recreating the
imaged variable.

The classical way of doing X-ray tomography is by imaging the absorption
coefficient, µ, and this will be used to facilitate in explain how computational
tomography is performed. When X-rays travel through a sample, the direct
beam will be attenuated due to absorption and scattering in the sample. Af-
ter transversing a distance in a sample, the incoming intensity, I0, will, as
previously stated, be attenuated according to equation 3.26. By taking the
natural logarithm of the incoming intensity divided by the outgoing intensity
the attenuation coefficient becomes projected along the beam path y:

p(x, ψ) = ln

(
I0
I

)
=

∫
y

µ(s, t)dy. (3.27)

p(x, ψ) is here the radon transform of the attenuation coefficient µ for differ-
ent angles, ψ, in the tomography scan. By measuring the attenuated beam
leaving the sample for different places, x, the projection profile of the sample
is obtained. Figure 3.3 demonstrates how the projection profile is acquired
for different angles. The sample is illustrated by the dotted line and within
this sample there are two regions with high attenuation coefficient. It is done
one projection for each step interval of x along the line y, and for different
values of ψ, according to Equation 3.27. This yields the function p(x, ψ)
which is called the radon transform of µ for the given angle ψ. Reconstruct-
ing the function µ(s, t) is often done by taking the Fourier transform of the
radon functions, and then utilizing the Fourier slice theorem. This is seen by
taking the two dimensional Fourier transform of the function µ(s, t):

M(ν) =

∫ ∞

−∞

∫ ∞

−∞
µ(s, t)e−i2πν·rdsdt. (3.28)

Instead of integrating along the s- and t-axis, the x- and y-axis, tilted an
angle ψ compared to the original frame, are utilized, as demonstrated in
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Figure 3.3: The projections through a sample (outlined by the dotted line)
with two areas of high attenuation, symbolized by the black regions. The
projection is done along the line y normal to the x-axis which forms an angle
ψ with the s-axis. Multiple projections for different x-values and different ψ
values construct the function p(x, ψ).

Figure 3.3. The Fourier transform can then be written:

M(νx, νy) =

∫ ∞

−∞

∫ ∞

−∞
µ(s, t)e−i2π(νxx+νyy)dydx. (3.29)

Setting the component νy = 0 is the same as looking at how the Fourier
transform looks along the x-axis. The two-dimensional Fourier transform for
this case will be

M(νx, 0) =

∫
x

[∫
y

µ(s, t)dy

]
e−i2πνxxdx =

∫
x

p(x, ψ)e−i2πνxxdx = P (νx, ψ),

(3.30)
where Equation 3.27 has been substituted in, and P (νx, ψ) is the Fourier
transform of p(x, ψ). This means that the Fourier transform of the one
dimensional projection p(x, ψ) is the Fourier transform of the function µ(s, t)
along a line passing through the origin and forming an angle ψ with the
s-axis. The Fourier components will then lie on a line with an angle ψ
compared to the νs axis, which is demonstrated in Figure 3.4. By doing
different projections for different angles the values in ν-space would be filled
up. It could then be possible to do an inverse Fourier transform for these
data to acquire the function µ(s, t). A direct inverse Fourier transform would
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Figure 3.4: Representation of the Fourier slice theorem. Each line at different
angles ψ represents the Fourier transform of a projection function p(x, ψ) =∫
y
µ(s, t)dl, where dy is along a line tilted a value ψ + 90◦ compared to the

s-axis. Since the measurements done are of finite sampling rate only certain
values are known in the frequency space ν. These are indicated by the black
marks.

however require an infinite number of angles, and an infinite small step length
along the x-axis to get the correct result. Only a finite number of values will
be known for the frequency domain since the sampling rate in the frequency
domain is 1/∆xN [1], where ∆x is the step length along the x-axis and N
is the number of projections obtained. Different methods are used to get
around this problem. One method commonly used is filtered backprojections
[1]

µ(s, t) =

∫ π

0

(∫ ∞

−∞
P (ν, ψ)ei2πνt|ν|dν

)
dψ, (3.31)

and is used in this project. This transform is an ordinary inverse Fourier
transform in polar coordinates. |ν| in Equation 3.31 should be exchanged
with a filter function, S(ν). A common filter to apply is the filter S(ν) = 0
for |ν| > νmax and |ν| elsewhere. This filter is called a Ram-Lak filter. The
value of νmax is decided by the sampling distance ∆x. The highest spatial
frequency it is possible to observe is the Nyquist frequency νmax = 1/2∆x
[1]. It can in addition be applied a number of other filters, depending on the
desired output. The filter used in this project is the Ram-Lak filter multiplied
with the Hamming filter. This filter is

S(ν) =

{
|ν|(0.54 + 0.46cos (2π∆xνN/(N − 1))) |ν| < νmax

0 |ν| > νmax
(3.32)
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∆x is the interval along the x-axis where the projections are measured. This
has the effect that the higher frequencies are weighted less, and since noise in
the picture have high frequencies, this filter will suppress some of the noise.
The entire backprojection is then given by:

µ(s, t) =

∫ π

0

(∫ ∞

−∞
P (ν, ψ)ei2πνxS(ν)dν

)
dψ. (3.33)

In the practical implementation a fast Fourier transform (FFT) and an in-
verse fast Fourier transform (IFFT) routine are used because only a finite
number of transmissions are measured. The Fourier transform of Equation
3.27 is approximated by [1]

P (νn, ψ) = ∆x · FFT{p(xn, ψ}, (3.34)

where n is an integer representing the n’th sampled value. The innermost
integral in Equation 3.33 is then given by [1]:

Qψ(x) =

∫
P (ν, ψ)S(ν, ψ)ei2πνxdν ≈ ∆ν

∑
n

PnSne
i2πνnxn

= ∆νN · IFFT{P (νn, ψ) · S(νn)}.
(3.35)

Here the extra N , comes from the normalization in the IFFT-routine imple-
mented in Matlab. ∆ν = 1/N∆x. By introducing dimensionless variables
χ = x/∆x and ω = ν · ∆x the problem becomes dimensionless, and can be
implemented with ease on a computer. Qψ(x) will then be written [1]

Qψ(x) =
1

∆x
IFFT{FFT{p(χn, ψ)}S(ωn, θ)} (3.36)

The backprojection is then the outer integral in Equation 3.33 and can be
approximated by [1]

µ(s, t) =
π

K

K∑
i=1

Q(scos(ψi) + tsin(ψi)). (3.37)

The distance x = scos(ψi) + tsin(ψi) can easily be deduced from Figure 3.3.
For the cases where the value scos(ψi) + tsin(ψi) does not match one of the
measured points x along the x-axis, simple interpolation between the closest
points has been used.
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3.5.2 Sinograms

A very helpful tool when working with tomography is the sinogram. This is
a plot showing the value of each projection step, and how it varies for the
different angles. The name sinogram gives an indication of what the plot
will look like. As the sample is rotated with respect to the laboratory frame
a feature will move with respect to the x-axis as indicated in Figure 3.3.
Each feature will trace a line which resembles a sine wave in the plot. To
illustrate this the radon transforms of an image with a single feature, shown
in Figure 3.5 (a), have been taken. The sinogram of these projections is
shown in Figure 3.5 (b). The feature will move with respect to the x-axis as
the sample is rotated, and this creates a sine-shaped wave. A sinogram is also
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Figure 3.5: The radon transform of the image in (a) has been taken, and
the corresponding sinogram is shown in (b). The single feature in the image
creates a sine-shaped.

often helpful to spot errors in the experimental procedure. If the sample has
suddenly moved during the imaging, then this will show up as a discontinuity
in the sinogram.

3.5.3 Image Artifacts

When working with tomography, there are a number of different artifacts
which can appear in an image. Some of these are quite easy to correct, while
others can only be approximately corrected, and can be due to resolution
limitations. Some typical artifacts encountered when performing tomography
will be presented in this section.
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Beam Hardening

It was previously noted that beam hardening is a type of artifact which can
appear doing computational tomography. This is not directly relevant for
this case, because the experiment performed was done with a close to per-
fectly monochromatic beam, but since it was mentioned it will very briefly
be described here.

When measuring the attenuation coefficient with computational tomography
the physical measured quantity is the attenuation of the X-ray beam. Since
the attenuation coefficient is different for different energies of the X-rays this
can lead to beam hardening. This means that the soft X-rays (X-rays with
lower energy) will be absorbed in a higher degree than the hard X-rays. If a
sample contains a region with a much higher attenuation coefficient than the
rest of the sample, then the beam which travels through this area will have
its spectrum’s center of mass shifted to much higher energies. The attenua-
tion will then look to have been higher for the entire sample along the beam
path. This beam hardening artifact can be very dominant between two areas
of high attenuation coefficient. The beam hardening artifact can be seen in
Figure 3.6. Here, the area between the two regions with high attenuation,
white circles, is darker than the surroundings, although it is only two kind of
materials in the sample, the white area with high attenuation, and the grey
area with lower attenuation.

Figure 3.6: The effect of beam hardening can be seen between the two areas
with high attenuation coefficient, marked with white. Figure adapted from
a NTNU course1
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Figure 3.7: Illustration of misalignment of the rotation axis of the sample
frame with the fixed laboratory frame.

Misalignment Artifacts

The most pronounced artifacts in the experiment performed are the occur-
rence of artifacts caused by movement of the sample and misalignment of
the rotation axis of the sample compared to the origin of the xy-plane in the
laboratory frame. If the origin of the sample frame is shifted compared to
the laboratory frame, as is the case in Figure 3.7, then this will lead to prob-
lems with the backprojection, because the relation between the x-coordinate,
the ψ-angle and the (s, t)-coordinates in Equation 3.37 does not hold. This
relation says that the coordinates (s, t) = (0, 0) have to be x = 0 for all
angles ψ. Movement of the sample is usually not a big concern when doing
experiments on non-living samples. The samples can however move a little
during the scan, caused by drifts in the motors it is attached to. The artifact
this problems leads to is smearing of edges, because a region will be back
projected to different places in the (s, t)-plane.

To correct for this misalignment, it is possible to shift each sinogram in such
a way that the axis of rotation coincides with the origin of the laboratory
frame. This is however difficult, since it would require very precise measure-

1The course TFY4320 Medical Physics contained several figures regarding CT and
artifacts, including this one.
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ment of the rotation axis. This would be equally difficult as aligning the
axis of rotation in the first place, and is therefore not the best suited option.
The method used in this report has been to align the sinogram according to
the center of mass of each projection of the attenuation coefficient, which is
measured by the attenuation of the direct beam. By shifting the center of
mass of each projection to the origin of the laboratory frame, it is made sure
that one point of the sample does not move out of the origin of the laboratory
frame. Thus it is chosen that the center of mass is also the axis of rotation
and that it is aligned with the laboratory frame. How the center of mass
alignment works is demonstrated in Figure 3.8. One implication of aligning

x

p(x,ψ)

xcom

ψ

ψ

ψ

ψ

1

2

4

3

Figure 3.8: By aligning the center of mass (xcom) of each projection (p(x, ψ))
of the attenuation coefficient of the sample, grey area, to the axis of rotation,
and also aligning the axis of rotation to the laboratory frame, it is made sure
that the sinogram is properly aligned. When this is done; one point, the
black point symbolizing the center of mass, will stay at the origin of the
laboratory frame for all angles. This is easy to see because xcom has to go
through the center of mass of the sample for all the different angles of ψi.

the sinograms according to the center of mass is that this shifts the entire
reconstructed sample towards the center of the tomogram. An example of
how the sample image move when aligning the sinogram is given in Figure 3.9

The effect of how a tomogram looks before and after alignment can be seen
in Figure 3.10. This figure indicates that correcting for movement and mis-
alignment is important to get a clear image.
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Figure 3.9: Illustration of how the image will move when the sinogram is
aligned using the center of mass. (a) The original image, (b) the radon
transforms of the image, (c) the backtransform of the image after alignment
of the sinogram, (d) alignment of sinogram according to the center of mass.

Streak Artifacts

Streak artifacts are straight lines in the reconstructed tomogram which should
not be there. These will occur if there are faults with the imaged values in the
sinogram. If for instance the flux in the X-ray beam suddenly increases for
one single projection, this will cause inconsistencies in the sinogram. Under-
sampling and poor counting statistics are also factors which contributes to
these inconsistencies. Figure 3.11 shows how a streak artifact looks in a to-
mogram, compared to the tomogram reconstructed from a perfect sinogram.
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(a) (b)

Figure 3.10: The figures show the difference between the reconstructed to-
mograms before (a) and after (b) alignment of the sinogram. The areas with
high attenuation, which give the dark red spots in (b), are smeared out in
the uncorrected tomogram (a).

3.6 Scattering Cross-Section

When doing a scattering experiment, as shown in Figure 3.12, the scattering
cross section is a useful quantity. This tells how likely it is that a particle,
for instance a photon, will be scattered by another particle. In general, if a
particle hits a sample containing only equal particles, with number density
n(s, t, z), then the scattered intensity into a detector will be [21]

Isc = I0N∆Ω

(
dσ

dΩ

)
. (3.38)

Here, Isc is the scattered intensity, I0 is the incoming intensity hitting the
sample, N is the particles in the sample per unit area seen along the beam
direction, ∆Ω is the solid angle which the detector surface constitutes with
the sample as center, and dσ/dΩ is the differential cross-section. Equation
3.38 does not account for absorption in the sample, and a term accounting for
this should be added if the sample is of considerable thickness compared to
the attenuation length. If the sample does not contain particles with identical
scattering cross sections, the scattered radiation when a beam travels through
a sample will be

Isc =

∫
l

I0n(s, t, z)dl∆Ω
dσ(s, t, z)

dΩ
. (3.39)

Here it is assumed that n(s, t, z)dl is a good approximation to the two dimen-
sional particle density N . This should be a fairly good approximation when
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Figure 3.11: The perfect sinogram in (a) gives the tomogram (b). In (c)
some fault with the experiment has caused one pixel in the sinogram to have
a much higher value than it should, marked with the dark red color. When
recreating the tomogram from these data, a clear line in (d) is observed,
which should not be there and is considered a streak artifact.

the relative change in particle density is much smaller than unity, over a dis-
tance W , which is the width of the beam, W |∇n|/n << 1. Since it is more
useful to work with scattering vectors than solid angles in X-ray scattering,
Equation 3.39 can be rewritten, by using

q ∝ sin(θ)

dq ∝ cos(θ)dθ
(3.40)

and inserting this for the expression of the solid angle:

dΩ = sin(2θ)dθdζ

dΩ = 2sin(θ)cos(θ)dθdζ

dΩ ∝ 2qdqdζ,

(3.41)

as

Isc =

∫
l

I0n(s, t, z)dl∆q∆ζ
dσ(s, t, z)

dqdζ
. (3.42)
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dq is now the thickness of the red scattering ring in Figure 3.12, and 2θ is in
this case the scattering angle.

2θ

ζ

k

k

i

o

k tSample

Figure 3.12: A typical scattering experiment. The vector ki is the incoming
wave vector and is scattered in the grey sample, which gives an outgoing
wave vector ko. kt is the transmitted wave vector which is not scattered by
the sample. The scattered wave will hit the detector and form a pattern
marked by a red ring. This pattern does not need to be a full ring, but is
marked as such for simplicity. The scattering angle, 2θ, and the azimuthal
angle, ζ, indicate how they are oriented in the scattering experiment.

3.7 SAXS Tomography

3.7.1 Imaged Variable

When reconstructing an image based on the small-angle scattering signal the
routine for reconstructing the tomogram is identical for that of reconstruct-
ing the attenuation coefficient of the sample. The difference is in what the
imaging variable is. To the first Born approximation, the SAXS pattern is
given by Equation 3.42, when also considering absorption this takes the form
[4]

Iq(x, ψ) = I0

∫
l

dlf(ψ, x, l)

[
n∆q∆ζ

dσ(s, t)q,ψ
dqdζ

]
g(ψ, x, l). (3.43)

The integral is along the line l which follows the incoming X-ray beam to the
position (s, t) in the sample where parts of the beam is scattered, according
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to the scattering cross section, and then leaves with an angle 2θ with respect
to the incoming beam. The absorption in and out from the point (s, t) in the
sample where the photon is scattered is given by the functions [4]

f(ψ, x, l) = e−
R l
−∞ dl′µ(s,t)

g(ψ, x, l) = e−
R∞

l dl′µ(s,t).
(3.44)

Iq(x, ψ) is the scattered radiation measured on a detector at scattering vec-
tor q, when the X-ray beam is at position x in the laboratory frame, and
the sample is rotated an angle ψ. See Figure 3.1 for explanation of the co-
ordinates. If the scattering angle 2θ is small, then one can approximate the
direction of the scattered signal to be along the direction of the incoming
X-ray beam, meaning that the line l in Equation 3.43 and 3.44 is just along
the y-direction. The absorption part in Equation 3.43 can then be pulled out
of the integral because every scattered beam travels along the same direction:

Iq(x, ψ) = Ix,ψ

∫
y

dy

[
n∆q∆ζ

dσ(s, t)q,ψ
dqdζ

]
. (3.45)

Ix,ψ is here the transmitted intensity through the sample. By dividing the
scattered intensity, Iq, by the transmitted intensity the radon transform of
the differential SAXS cross section is obtained [4]

Iq
Ix,ψ

=

∫
y

dy

[
n∆q∆ζ

dσ(s, t)q,ψ
dqdζ

]
. (3.46)

The variable imaged when performing computational SAXS tomography
would then be n∆q∆ζ(dσ(s, t)q,ψ/dqdζ).

The challenge with this approach is that the sample is rotating. dσ/dqdζ
depends on the scattering vector q and when rotating the sample, the scat-
tering cross section in the horizontal plane will change. This is seen when
looking at a fixed position (s, t) in the sample and examining how the scat-
tering cross section depends on the rotation angle. In Figure 3.13 it can be
seen how the horizontal scattering vector in the laboratory frame, q = qq̂x,
relates to the internal coordinate system of the sample, (qs, qt). When the
sample is rotated an angle ψ, the horizontal scattering vector in the labora-
tory frame will be the scattering vector qxcos(ψ)q̂s+qxsin(ψ)q̂t in the sample
frame.

When looking at the horizontal q-dependency of the scattering cross sec-
tion in Equation 3.46 it can be seen how one line scan through the sample
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Figure 3.13: The figure indicates how the horizontal scattering vector in the
laboratory frame, q = qq̂x, looks in the coordinate system of the sample,
which is rotated an angle ψ compared to the laboratory frame.

will depend on the rotation angle ψ.

Iqx,ψ
Ix,ψ

=

∫
y

dy

[
n∆q∆ζ

dσ(qxcos(ψ))q̂s + qxsin(ψ)q̂t)

dqdζ

]
. (3.47)

Ordinary tomographic reconstruction is based on the assumption that each
voxel at position (s, t) in the sample contributes equally much to the imaged
variable in each projection that passes through that voxel, for all angles.
From Equation 3.47 it is seen that the imaged value in each position (s, t)
will change for each different angle ψ because the scattering vector in the
sample frame will change. Therefore, the ordinary tomographic reconstruc-
tion algorithms will not work in reconstructing the horizontal components
of the image variable presented in Equation 3.46. The component of the
scattering cross-section parallel to the rotation axis is however independent
of the rotation angle, and thus the qz-component of the scattering cross sec-
tion will not change while the sample rotates. It will therefore be possible to
retrieve this component of the scattering cross section using ordinary filtered
backprojection in a 2D plane of the sample.

This section has focused on imaging using components of the scattering cross
section. This has been done because this is a more general case, and is valid
for all systems where scattering is present. For the case of small-angle X-ray
scattering the scattering is dependent on the form factor of the particle as
shown previously. This gives however no different results or equations, since
the scattering cross section is proportional to the form factor of a particle in
the SAXS regime.
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3.8 Simulated Annealing

Simulated annealing is a numerical method for finding the minimum of a
function. This method is suitable for problems of large scale with many vari-
ables and where the global minimum is hidden among many poorer, local
minimum [24]. The idea is to construct some function, E, which is to be
minimized and then to perform Monte Carlo steps according to the proba-
bility distribution [24]

p ∝ exp(−E/T ). (3.48)

The function E is referred to as the energy of the system, while the param-
eter T is referred to as the temperature. A Monte Carlo step is to make a
random step in the configuration space of the function which is supposed to
be minimized. The old configuration is denoted Eα and the new configura-
tion is denoted Eβ. The probability of being in either of these configuration
is pα and pβ, given by Equation 3.48. If pβ/pα is smaller than some ran-
dom number, then the system is set equal to the new configuration, if pβ/pα
is bigger or equal to the random number, then the system stays in the old
configuration. The strength of this method is that only the ratio between
the probabilities is needed, and not the entire probability function with the
normalization constant which is often impossible to find 2.

The algorithm works by performing cycles. Each cycle starts by perform-
ing a sufficient amount of Monte Carlo steps. If the energy, E, is smaller
than at the beginning of the cycle the temperature T is set equal to Tnew,
where Tnew = T · δT , and 0 < δT < 1. If it is not, then the cycle starts
over without changing the parameter T . This cycle is repeated as long as
necessary to obtain the desired solution.

The advantage of this method is that it should be able to avoid local mini-
mum. If the function reaches a local minimum, it should be able to come out
of this if the T -parameter is large enough, but when T is gradually lowered, it
will no longer be able to make large steps towards a configuration with higher
value for the function E, and thus settle toward the closest minimum. Since
the system can move basically across all of configuration space at the start of
the cycle, it is a higher probability that the minimum which is found in the
end is the true global minimum of the function than if the method went to
the nearest local minimum it could find from the initial starting condition.

2According to the lecture notes handed out by Alex Hansen in the course TFY4235
Computational Physics at NTNU
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3.8.1 Reconstructing Using Linear Set of Equations

Formulating the Scattering Problem

If the shape and size of the particles involved in the scattering experiment
are known, then the form factor is also known. It should then be possible
to reconstruct the orientation distribution based on the recorded scattering
image registered by the detector in Figure 3.12.

It will be assumed that the particles involved will have a preferred orienta-
tion along one of the axis in the sample. Thus the only variable to determine
the full 3D orientation of the particle will be the angle between the x′-axis
of the talc particle and the s-axis of the sample frame. This angle is called
φ, and how it varies with position in the sample gives the orientation distri-
bution φ(s, t). If particles have such an orientation distribution it should be
possible to retrieve the orientation distribution by measuring the horizontal
scattering in the laboratory frame.

We will now assume that the sample consist of n regions where it is assumed
that the talc particles have only one orientation. This orientation is given
by the angle, φm, between the x′-axis of the particle frame, and the s-axis
of the sample frame. n is a whole number. The particles will be considered
to scatter independently and the final scattering pattern will be corrected
for absorption by dividing the scattered intensity by the transmitted inten-
sity according to Equation 3.45. The intensity distribution on the detector,
I(q)x,ψ, when performing a scattering experiment on the sample at position
x and angle ψ is assumed to take the form

I(q)x,ψ = aφ1,x,ψIφ1,ψ(q) + aφ2,x,ψIφ2,ψ(q) + ...+ aφn,x,ψIφn,ψ(q), (3.49)

when neglecting absorption. Here Iφm,ψ is the scattering intensity per unit
length in region m (where the orientation is φm) when the angle in the tomog-
raphy scan is ψ, and the scattering intensity is proportional to the absolute
square of the form factor of the particle. aφm,x,ψ is the length the X-ray beam
travels through the region where the angle is φm. This means that the scat-
tering pattern seen on the detector screen is equal to the sum of the products
between the scattering intensity per unit length and the distance it travels
through that region, for all the regions the X-ray beam travels through. Fig-
ure 3.14 illustrates the idea of how the scattering pattern is constructed when
the X-ray beam travels through only two different regions in the sample.

In theory it should be enough to choose n different intensity values, for dif-
ferent q, to solve for all the different coefficients aφm,x,ψ. The set of equations
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Figure 3.14: The figure illustrates the idea of how the scattering pattern is
formed when the X-ray beam travels through the sample. The scattering
pattern consist of two terms. One term is the product of the distance, aφ1,ψ,
the beam travels through region 1 and the scattering intensity, Iφ1,ψ, of par-
ticles with the given orientation φ1 when the angle in the tomography scan
is ψ. The second term is the similar product, but changing region 1 with 2.
The two coordinate systems give the orientation of the sample compared to
the laboratory frame.

which is to be solved is represented in matrix form as

I(q)x,ψ = Sψ · ax,ψ. (3.50)

I(q)x,ψ is the recorded intensity as a function of scattering vector q at position
x in the laboratory frame and angle ψ between the laboratory frame and the
sample frame:

I(q)x,ψ =


Ix,ψ(q1)
Ix,ψ(q2)

...
Ix,ψ(qn)

 . (3.51)

We refer to Sψ as the scattering matrix where each column is the scattering
intensity vector Iφi,ψ(q), i = 1,2,..n, for each of the different orientation
regions in the sample:

Sψ =


Iφ1,ψ(q1) Iφ2,ψ(q1) . . . Iφn,ψ(q1)
Iφ1,ψ(q2) Iφ2,ψ(q2) . . . Iφn,ψ(q2)

...
...

. . .
...

Iφ1,ψ(qn) Iφ2,ψ(qn) . . . Iφn,ψ(qn)

 . (3.52)
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ax,ψ is a vector containing the distances an X-ray beam travels through each
orientation region in the sample:

ax,ψ =


aφ1,x,ψ

aφ2,x,ψ
...

aφn,x,ψ

 . (3.53)

Each coefficient in ax,ψ will then be the line integral along a line l, following
the X-ray beam, of a function which is one if the region in the sample has
orientation φm, and zero if it has not. This can be formalized mathematically
as

aφm,x,ψ =

∫
l

fm(s, t)dl′

{
fm(s, t) = 1 if φ(s, t) = φm

fm(s, t) = 0 if φ(s, t) 6= φm
(3.54)

where the function φ(s, t) is the orientation distribution across the sample.
By selecting all aφm,x,ψ for all x and ψ, the sinograms of the radon functions
for each fm are created. It is then possible to do a standard filtered Fourier
backprojection to get the function fm(s, t). Finding all fm will give the
orientation distribution φ(s, t).

Solving the Linear Set of Equations

To find the distances the X-ray beam travels through each region, in each
projection, Equation 3.50 needs to be solved. The scattering matrix Sψ and
the intensity on the detector I(q)x,ψ are known. For a ”perfect” experiment,
it would only be needed to take the inverse of the scattering matrix to find
the vector ax,ψ:

ax,ψ = S−1
ψ I(q)x,ψ. (3.55)

There are however no such things as a perfect experiment since it will always
be noise from background radiation and other scatterers in the sample. In
addition the theoretical model for the scattering is not a perfect model for
how the particles scatters. Because of this; solving for ax,ψ by using Equa-
tion 3.55 could give completely different coefficients in ax,ψ than the real ones.

It was therefore chosen to minimize the function

f(ax,ψ) = (Sψ · a− Ix,ψ)2 = aT
x,ψS

T
ψSψax,ψ − 2IT

x,ψSψax,ψ + IT
x,ψIx,ψ, (3.56)

under the constraints that all coefficients in ax,ψ should be positive, and the
sum of them should be equal to the total distance the X-ray beam travels
through the sample for the given projection and angle in the tomography
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scan. This kind of optimization problem is known as quadratic programming.
Several methods exist for solving such problems, and quadratic programming
has been thoroughly covered in literature. To give a good description of how
to solve such problems would be a lengthy affair, as it also would be needed to
describe problems as degeneracy. This is not seen as relevant for this thesis,
as it is not essential to the problem discussed. In addition, many so-called
”black box”-scripts have been written and thoroughly tested by thousands of
people, making it both unnecessary and unwise to create own code to solve
such problems. To solve the problem of fitting the theoretical scattering pat-
tern to the experimental one the function quadprog() in Matlab was used.

In short, solving a quadratic programming problem is done by taking the
Lagrangian of the function to be optimized and, depending on the algorithm
used, recursively solve for the unknown variables in the problem. Further
information can be found in [25, 26].
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Chapter 4

Procedure

4.1 Experimental Set Up

The experimental measurement included in this thesis were carried out at
the cSAXS beam line at the Swiss Light Source (SLS) at the Paul Scherrer
Institute in Switzerland. The SLS is a third generation synchrotron, and
the cSAXS beamline is specialized for coherent small-angle X-ray scattering.
The set up in front of the sample can be seen in Figure 4.1 The diamond

Figure 4.1: The optics before the X-ray hits the sample. Figure adapted
from the SLS website1.

filter is used to separate the vacuum of the synchrotron and the beam line
and the beam position monitor is used for aligning. The slits control the
shape of the beam. The monochromator works by only letting those wave-
lengths which can fulfill the diffraction condition of the (111) reflection in a

1The figure can also be found at http://www.psi.ch/sls/csaxs/beamline-layout
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Si-crystal through. By changing the angle of the crystal compared to the X-
ray beam, different wavelengths can be chosen. The mirror filters out higher
harmonics in the diffracted wave from the silicon crystal, making the beam
monochromatic. This works by having the mirror very close to the critical
angle. The critical angle is proportional to the wavelength of the X-ray beam
[21]. X-rays with low wavelengths will therefore be totally reflected, while
X-rays with higher wavelengths will be refracted into the mirror. The the
set up after the optics is shown in Figure 4.2. The sample itself was placed
on various piezoelectric translation and rotation stages and placed so that
the X-rays hit the neck of the dog bone. After the sample the X-rays went
through a 7 m long flight tube before hitting the detector.
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Figure 4.2: The experimental set up after the X-ray optics in Figure 4.1.
i: X-ray optics, ii: sample, iii: flight tube, iv: beam stop, v: Pilatus 2M
detector.

4.2 Analysis of the Experimental Data

4.2.1 Fitting Theoretical Scattering

To fit the theoretical scattering to the experimental data, the form factor
was calculated for various shapes. This was then convoluted with a Gaus-
sian function to accommodate for both polydispersity and the fact that the
detector has finite resolution. Since (in practice) all photons hitting a pixel
will be registered at the same q-value, each pixel gives the integrated inten-
sity over the region the pixel covers. The parameters giving the best fit was
chosen to be used in the further analysis.

After the general shape of the theoretical scattering signal was fitted to
the experiment, the experimental data were corrected for absorption, as de-
scribed in Equation 3.45. The absorption in the iPP sample was not precisely
known. It was also impossible to use the voltage from the diode placed as a
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beam stop to estimate the attenuation coefficient, because part of the SAXS
signal hit this diode. This influenced the apparent absorption because the
SAXS signal from the talc particles depended on their orientation. An ab-
sorption coefficient was used in the correction which made the experimental
data fit with the theoretical data for two distinct cases. One case where the
beam only traveled through a region where the talc particles had their sur-
face normal oriented perpendicular to the X-ray beam, and one case where
the beam only traveled through a region where the talc particles had their
surface normal oriented parallel to the X-ray beam. The attenuation coeffi-
cient used was µ = 2.85 cm−1. This attenuation coefficient seems to be in
agreement with theory, and will be discussed in Section 6.1.

4.2.2 Creating Experimental Tomograms

The data recorded by the detector was sectioned into 16 different sectors,
where all the data along one radial line in the detector was averaged to form
a one dimensional scattering pattern, I(q), in each sector. How these sectors
built up the detector can be seen in Figure 4.3.

1
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11121314
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16

Figure 4.3: How the detector screen was sectioned into 16 different sectors.
The green sections are the regions containing the ”horizontal scattering”.
The dark red circle segment is the radial line where the intensity is integrated
up and averaged by the number of pixels along the radial line, which makes
each sector a one dimensional representation of the scattering pattern.
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Two tomograms were constructed from the experimental data. One was
created using the voltage of the diode placed as beam stop, and would then
ideally give information on the attenuation coefficient in the sample. This
was done to see the shape and orientation of the sample itself and could be
compared to later tomograms based on the scattering pattern to verify if the
reconstructed image behaved as expected. The second tomogram was cre-
ated by summing up the entire horizontal scattering pattern, cf. Figure 4.3,
after correcting for attenuation in the sample. This would make it possible
to compare later simulations, where the scattering in the tomography scan
was simulated and then reconstructed.

4.3 Simulating Tomography Scan Procedure

To see if the model used would be a good approximation to the real scattering
from a talc particle, a simulation of the scattering in the tomography scan
was performed. The talc particles were modeled as an oblate ellipsoid where
the x′- and z′-radius are equal and 1.25 µm and the y′-radius is 0.5 µm. The
talc particles thus look like disks, and a sketch can be seen in Figure 4.4. It
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Figure 4.4: A sketch of one talc particle.

is known that the talc particles align themselves with their y’-axis parallel
to the outer edge surface normals [5]. For illustrative purposes it will be
assumed that the sample consisted of only four different regions, where the
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talc particle was either pointing horizontal or vertical, seen in Figure 4.5.
To see how the particle orientation affected the tomograms, it was necessary

I

II
III IV

s

t
xy ψ

Figure 4.5: How the talc particles, grey disks, were oriented in the simulation.
The change in direction for this example is abrupt, and not continuous as in
the real sample. The long black arrow symbolizes an X-ray beam traveling
through the sample when the sample is oriented at ψ degrees compared to
the laboratory frame.

to model the scattering in the horizontal direction. Equation 3.18 says that
the scattering intensity is proportional with the absolute square of the form
factor. The tomographic scan was simulated by taking a line scan at different
positions, x, through the sample and measuring what distance through the
sample the X-ray beam traveled through regions I and II, and III and IV, as
can be seen in Figure 4.5. The SAXS pattern was then simulated by taking
the distance through I and II and multiplying it with the absolute square
of the form factor for the particles, for a q-vector in the horizontal direc-
tion, and adding the distance through area III and IV multiplied with the
absolute square of the form factor for a horizontal q-vector, as described in
Equation 3.49. In practice this calculation was done by creating n different
matrices, where n now is a whole number, for all the different orientation
regions representing fm in Equation 3.54. These matrices had the value one
if the initial orientation at that position was φn and zero otherwise. Then the
radon transform was performed on each different matrix for different angles
and multiplied by what the scattering intensity would be for talc particles
with that orientation to get the scattering signal from each region. These n
scattering signals for each projection were then summed up to give a model
for the entire scattering signal. Figure 4.6 shows four different regions with
different initial orientation φm for a model of the sample where n = 36.
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(a) (b)

(d)(c)

Figure 4.6: Different matrices with different initial orientation φm. Red
means that region has talc particles with the orientation φm, while blue color
means the particles have another orientation. The regions shown have the
orientation (a) -45◦, (b) 0◦, (c) 45◦ and (d) 90◦.

The particle density was approximated to be equal throughout the sam-
ple, which means the factor n in Equation 3.47 is a constant and can be
normalized out of the equation. These SAXS patterns were calculated for
multiple projections through the sample, which means that the black arrow
in Figure 4.5 would be moved in the x-direction, and for angles, ψ, in the
interval [0, 180〉. The numerical values for the scattering vector were similar
to those in the experimental data acquired at the cSAXS beam line, namely
q = 0.038 nm−1 − 0.425 nm−1. These values for the q-range was set to be
sure the non-circularly shaped beam stop would affect the measurements,
and because the scattering signal seemed to be significantly influenced by
scattering from other kind of particles in the sample for q-values larger than
0.425 nm−1. The SAXS patterns were integrated up and the filtered Fourier
backprojection was computed in a similar way as done for the experimental
data.

4.4 Retrieving Orientation Distribution

by Simulated Annealing

An idea for reconstructing the orientation distribution of the talc particles
in the iPP sample was to construct an energy function, and try to minimize
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this by the use of the numerical method Simulated Annealing. This was done
by making an initial guess of the orientation distribution, as can be seen in
Figure 4.7, and then simulating a tomography scan as outlined in Section
4.3. This initial guess was taken because it was known prior to the start

Figure 4.7: The initial guess of the orientation distribution. Blue areas: talc
particles with their surface normal horizontal, red areas: talc particles with
their surface normal in the vertical direction.

of the simulation to resemble the true orientation, and should therefore be
a good starting point to see if the algorithm works. The sinogram to the
initial configuration was then compared to the sinogram of the simulated
SAXS tomography scan of the true talc orientation distribution, as can be
seen in Figure 2.4. The function, E, to be minimized was then defined as

E =
∑
i,j

(Ss(i, j)− St(i, j))
2 , (4.1)

where Ss is the sinogram of the SAXS tomography scan with the current
orientation distribution, while St is the true sinogram. St would eventually
be the experimental data, but is now only a chosen correct sinogram from
the simulation of the horizontal scattering in the tomography scan.

With the function to be minimized in Equation 4.1 and the initial guess
of the orientation in Figure 4.7, the initial T parameter, T0, in Equation 3.48
and the factor it should decrease with after each cycle, δT , had to be set.
Finding the optimal values for these parameters is often dependent on how
the system behaves, and what kind of function is to be minimized. These
values often have to be found by trial and error [24]. The parameter values
used, the number of Monte Carlo steps in each cycle and the number of cy-
cles performed can be found in Table 4.1. These were chosen based on the
time required to run each configurations and the and that the initial value of
the function which was to be minimized was i the order of 102. It should be
noted that the model representing the iPP sample was 63× 151 pixels large.
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Table 4.1: Different parameters used in the simulated annealing method

Configuration # T0 δT MC steps Cycles
1 400 0.65 20 000 15
2 600 0.65 20 000 15
3 600 0.75 20 000 15
4 800 0.80 20 000 15
5 1200 0.55 20 000 15

4.5 Retrieving Orientation Distribution

by a Linear Set of Equations

Equation 3.56 was minimized to find the distances the X-ray beam traveled
through the different regions in the sample. One of the constraints in this
fitting was that the sum of all the distances the X-ray beam traveled through
the different orientation regions inside the sample should be equal to the total
distance the X-ray beam travels through the entire sample. This would be
the distance from where the X-ray beam enters the sample, to where it exits.
To find the distance the X-ray beam traveled through the sample for each
projection and for each angle in the tomography scan, the radon transform
of a function with the exact same shape and dimensions as the true sample,
and with value one if it was inside the sample and zero if it was outside, was
performed so that each projection would be proportional with the distance
from where the X-ray beam enters the sample to where it exits. This function
is visualized in Figure 4.8. These radon transforms were compared to the
sinogram of the experimental scattering data, as seen in Figure 4.9. The
two black and green rings marks where the X-ray beam first hits the sample
for two different angles ψ in the tomography scan. These are placed at the
exact same projection and scan angle, showing that the radon transform of
the sample shape is properly aligned with the experimental data.
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Figure 4.8: The figure shows a region with the exact same shape as the true
iPP sample. The red color is marking the sample, while the blue color is
marking air. The s- and t-axis is not perfectly aligned with the sample, as
they have been presented earlier, but is representing them according to how
they were in the experimental set up.
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Figure 4.9: (a) The radon transforms of the distances an X-ray beam travels
through a shape with same dimensions as the true iPP sample. The color
gives the distances in cm. (b) Total recorded intensity of the scattering
from the iPP sample in the tomography scan. Number of counts are on a
logarithmic scale. The black and green rings in figure (a) and (b) show where
the X-ray beam first enters the sample for the incoming beam parallel to the
short and long sides of the sample, respectively.
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Chapter 5

Results

5.1 Experimental Scattering Data

Two figures of the 2D scattering pattern are shown in Figure 5.1 (a) and (b).
These are both taken directly from the detector, with no sort of correction
or altering applied to the data. Although only the horizontal part of the
scattering signal was used, these figures are added to make it easier for the
reader to follow the discussion when it is referred to the horizontal scattering.
The two scattering patters are representative for how all the different 2D
scattering patterns looked, and show two typical scattering experiments. One
where the X-ray beam travels through the iPP sample where all the talc
particles have the same orientation, Fig. 5.1 (a), and one where the X-ray
beam travels through the iPP sample where the talc particles have multiple
different orientations, Fig. 5.1 (b).

5.2 Tomograms of Experimental Data

Figure 5.2 shows the tomogram based on the diode signal. By this recon-
struction it would look like the attenuation coefficient is higher towards the
edges, than in the middle of the sample. Unfortunately, the low-q part of
the SAXS signal hits the beam stop, and depending on what sample regions
the X-ray beam travels through this will modify the signal. The marked
attenuation coefficient is therefore not the correct, but it is reassuring that
it is in the correct order of magnitude. This tomogram gives a very clear
representation of the shape and external orientation of the sample in the
experimental set up.

The tomogram based on the horizontal scattering pattern is shown in Figure
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Figure 5.1: Experimental 2D scattering patterns from the SAXS measure-
ments. (a) is the scattering pattern where the X-ray beam has traveled
through the iPP sample where all the talc particles have the same direction.
(b) shows the scattering pattern where the X-ray beam has traveled through
the iPP sample where the talc particles have a number of different orienta-
tions. The unshaded area between the white lines is the part of the scattering
pattern which is referred to as the horizontal scattering signal. The rectan-
gular beam stop at the center contained a diode. Axis indicate pixel number
on detector
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Figure 5.2: A tomogram based on the voltage readout from the diode used
as beam stop in the experimental set up. This would represent the attenu-
ation coefficient in the sample, in units 1/cm. It seems like the attenuation
coefficient is higher towards the edges of the sample, compared towards the
center. The external shape and size of the sample is well defined by this
tomogram.

5.3. Here the sum of all counts of the detector pixels in the horizontal di-
rection has been made after correcting for absorption according to Equation
3.46. By reconstructing it in this way, one can clearly recognize the size and
shape of the iPP sample, although the value in the tomogram itself does not

50



have any direct physical meaning or units.
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Figure 5.3: A tomogram based on the entire horizontal scattering pattern
from the iPP sample. The image intensity values have no obvious physical
meaning, and has hence been normalized to 1. Some artifacts are shown at
the corners of the sample, showing a few lines in the vertical and horizontal
direction. The general tendency is that the value in the tomogram is negative
at the center, and growing towards positive values towards the edges.

5.3 Fitting Theoretical Scattering

As it is crucial to have a good approximation of the theoretical scattering
pattern to the experimental, several different sizes and shapes where tested
to get the best fit. Figure 5.4 shows the best fit of the scattering vector when
the form of the particle is shaped as a spheroid, for the case where the scat-
tering vector lays in the x′z′-plane, and one case where the scattering vector
is in the y′-direction. How these scattering vectors are oriented compared
to the shape of the particle can be seen in Figure 4.4. The spheroid which
gave the results in Figure 5.4 had average dimensions: diameter d = 2.5 µm
and height h = 1 µm. This height, or thickness, of the talc particles is the
same as the SEM pictures in Figure 2.5 indicates, but the diameter could
be argued to be a little too small compared to the observed talc particles
in Figure 2.5, where there is a lot of particles with diameter in the range
between 5-10 µm.

The results of trying to fit the experimental data with theoretical scattering
from a particle shaped as a cylinder is shown in Figure 5.5. These fittings
show that it is not possible to fit both the scattering in x′z′-plane and the
scattering in the y′-direction at the same time. Changing the radius and
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Figure 5.4: The red curves are fitted theoretical scattering from a spheroid
to the blue experimental data for the cases where the scattering vector is in
the x′z′-plane, (a), and y′-direction, (b). After a background of 0.07 has been
subtracted from the data it is rather good agreement between the two curves.
The intensity is measured in arbitrary units. The sharp drop in figure (a) at
q = 0.32 nm−1 is most likely caused by some defects in the detector.
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Figure 5.5: The red curves are theoretical scattering from a cylinder shaped
particle fitted with the blue experimental data. (a) is scattering in the x′z′-
plane, which is the circular plane of the cylinder, and (b) is in the y′-direction.
A background of 0.07 has been subtracted from the experimental data and
the intensity is in arbitrary units.

height of the particle did not give any significant improvement in the theo-
retical scattering compared to the experimental. To emphasize the problem
with the cylinder model, Figure 5.6 shows how the theoretical scattering in
Figure 5.5(b) looks compared to the experimental when the theoretical scat-
tering is normalized to the intensity of the experimental data. It is clear that

52



the absolute square of the form factor does not fall off quick enough to fit
the experimental data.
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Figure 5.6: The theoretical curve for scattering from a cylinder in the qy′
direction, which is through the flat top part, drops down much slower than
the experimental data.

From these results it is clear that the spheroidal shape is a far better model
than the cylindrical one for modeling the shape of the talc particles. The
random fluctuations also seem to contribute rather much at high scattering
vectors compared to the signal itself. This is especially evident i Figure 5.4
(a).

5.4 Simulated Tomography-Scan of iPP

The reconstructed tomogram based on a simulated tomographic scan, as
described in Section 4.3, is shown in Figure 5.7 (a), and can be compared to
the tomogram reconstructed by the use of experimental data in Figure 5.7 (b).
The simulated tomography scan was done by accounting for polydispersity
of the particles, and letting all the talc particles in the sample have one
out of 36 different orientations. The main features are the same in both
tomograms, with an area along the edges with high values, and a negative
value in the center, which strengthens the hypotheses used in this thesis. It is
however not perfect agreement, which means that the model can be improved
in some way. The simplification of not accounting for low counting statistics
for high q and not considering other scatterers in the sample could be two
of the reasons why they are not in perfect agreement. The fact that the talc
particles are not perfect spheroids also cause differences.
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Figure 5.7: Two tomograms based on the (a) simulated and (b) experimental
horizontal scattering from an iPP sample. since the value that comes out of
the reconstruction has no clear physical meaning the data have been normal-
ized to emphasize the similarities and the color scale is to help the reader
know what color is high and low. A general similarity between the simulated
and experimental tomogram can be seen. The area along the edges has a
high value, while the center has a negative value for both tomograms.

5.5 Reconstruction of Orientation

5.5.1 Reconstruction Based on Simulated Annealing

The results of trying to reconstruct the orientation distribution with simu-
lated annealing is shown in Figure 5.8. This figure shows the results for all
the five different configurations shown in Table 4.1.

Figure 5.8 (b)-(e) are identical, which means that varying the T0 and δT
parameter had little effect. It also shows little resemblance with the true ori-
entation distribution, as seen in Figure 2.4. It is apparent that the algorithm
used didn’t manage to retrieve the orientation distribution even when using
simulated data from perfect monodispersive scatterers and with no noise in
the scattering signal. The number of regions tried to retrieve was n = 36.
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(a) (b)

(c) (d)

(e)

Figure 5.8: The orientation distribution reconstructed by simulated anneal-
ing. (a) - (e) represent configuration 1-5 in Table 4.1. The colors give the
direction of the talc particles surface normal, indicated by the color wheel
inset.

5.5.2 Reconstruction Based on Linear Set of Equations

When reconstructing the orientation distribution by using a linear set of equa-
tions, several steps towards the full retrieval of the orientation distribution
were done, from perfectly monodisperse particles, to more complex scatter-
ing where different sized particles scatter. These steps are all presented in
this section to emphasize how increasing complexity alter the reconstructed
orientation distribution.

Reconstructing the Orientation Distribution from Synthetic Datasets

The horizontal scattering patterns obtained from simulations of monodisper-
sive talc particles were used to retrieve the original orientation distribution
in the sample by the method described in Section 3.8.1. The result of this
reconstruction can be seen in Figure 5.9. There are some artifacts at the
boundary between regions, where the orientation in general is higher than
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(a) (b)

Figure 5.9: Reconstructing orientation distribution of a synthetic dataset.
(a) The model of the orientation to the talc particles in the sample with
36 different regions. (b) The reconstructed orientation of the talc particles
surface normal based on the syntesized horizontal scattering test patterns.
The orientation is indicated by the color wheel inset.

it should be, but besides that the reconstruction works very well. This re-
construction of the simulated sample works well in determining the different
regions where the orientation is different. It is however emphasized that this
is by the use of simulated data, with particles of shape as spheroids of a
single size and very high detector resolution with no noise.

Reconstructing from Polydisperse Particles

Retrieving the orientation distribution from simulated horizontal scattering
patterns, where also polydisperse and finite detector resolution are taken into
account, is shown in Figure 5.10. This reconstruction clearly shows that with

Figure 5.10: The reconstructed orientation distribution from simulated scat-
tering patterns, where polydispersity is taken into account, shows the original
distribution. The streak artifacts are caused by polydisperse particles and
finite detector resolution.

the smoothening of the scattering patterns, arising because of polydispersity,
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it creates more artifacts when retrieving the original orientation distribution.

Sinogram of Distances Through Regions

Figure 5.11 shows a typical sinogram of the distances the X-ray beam travels
through a certain region with talc orientation φ in the experimental tomog-
raphy scan. We have chosen to only show one of the sinograms for these
radon transforms since they all show the same tendencies. The rest of the
sinograms can be found in Appendix A. It can be seen that the sum of all
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Figure 5.11: The figure shows the radon transforms of the distance the X-ray
beam travels through a region in the iPP sample where the orientation is φ.
The color indicates the distance, in units of cm, the X-ray beam traveled
through the region for each projection as given by the colorbar.

distances in one projection angle is not equal between the different projec-
tion angles. This is especially evident between ψ = 61◦ and ψ = 65◦ where
the X-ray beam according to the reconstruction does not travel through this
given region at all.

Reconstructing a Bimodal Orientation Distribution
from Experimental Data

To retrieve the orientation distribution of the talc particles in the real iPP
sample, by using the experimental data, it was assumed that the sample
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would only contain talc particles with two different orthogonal orientations.
The result from this reconstruction can be seen in Figure 5.12. By compar-
ing it with Figure 2.4, which is the true orientation distribution of the talc
particles, it is seen that the main features agree well between the figures.
It is clear that the flake normals are aligning themselves parallel with the
external surface normals of the sample.

Figure 5.12: The figure shows the retrieved orientation distribution by using
experimental data. The color indicates the direction of the talc particles
surface normal as given by the color wheel inset. The red cross above and
below the sample are artifacts due to imperfect datasets.

Reconstructing 4-modal Orientation Distribution
from Experimental Data

Reconstructing a 4-modal orientation distribution is shown in Figure 5.13.
It is still possible to recognize the main features of the true orientation dis-
tribution seen in Figure 2.4, although more artifacts appear than for the
tomogram reconstructed with fewer orientation regions. There are for in-
stance regions inside the sample with no specified orientation, marked with
white color, which is a sign that the reconstruction algorithm fails for these
areas because of incorrect radon transforms of the distances aφi,x,ψ. The red
and light blue regions are located at the same position as in the true orien-
tation distribution, while the purple area has direction from top left towards
bottom right, and the green area has direction from bottom left towards
upper right, as they should according to the real orientation distribution.
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Figure 5.13: A reconstruction of four regions with different orientation in
the iPP sample. The colors indicate the direction of the talc flakes surface
normal, given by the color wheel inset. There are many artifacts caused
by the difficulty of fitting the experimental parameters to theoretical ones.
Various regions in the interior of the sample also have no specified orientation,
marked with white color.

Reconstructing 6-modal Orientation Distribution
from Experimental Data

Increasing the number of distinct regions of uniform orientation reconstructed
to six is shown in Figure 5.14. The different orientations of the talc particles
are given by the color wheel. This tomogram looks quite messy at first glance,
with a lot of artifacts. It is however still possible to recognize the red and
light blue region when comparing it with Figure 2.4. The pink region looks
to have a tendency of laying above the dark blue region in the left part of
the tomogram, and below in the right part, as it should according to the real
orientation distribution. The yellow region can be argued be below the green
region in the left part of the tomogram, and above in the right part, also this
as it should, but this is most likely only possible to see because it is known to
be that way from earlier experiments. The green and dark blue regions are
almost non existent. It is also apparent that the borders between the different
regions are very diffuse. An important remark about this reconstruction is
that the resolution of the orientation distribution of the talc particles is higher
than what should be possible based on the segmentation of the detector, as
will be discussed in Section 6.3.2. It was still chosen to add this attempt to
reconstruct the orientation distribution for six regions to see what the effect

59



would be when this resolution limit was violated.

Figure 5.14: The figure shows the orientation distribution of talc particles
in the iPP sample. Six different regions have been reconstructed and the
color indicates the direction of the talc particles surface normal, as given by
the color wheel inset. There is a lot of artifacts outside the sample, and the
regions inside the sample are therefore unlikely to be very precise.
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Chapter 6

Discussion

6.1 Absorption Corrections

The absorption coefficient in the iPP sample was set to µ = 2.85 cm−1 in
order to fit the experimental data to the theoretical ones. This is between
the value of the absorption coefficients for talc and polypropylene, which
are 23.1 cm−1 and 0.94 cm−1, respectively. It should be expected that the
attenuation coefficient is closer to polypropylene than talc, since the volume
percent of polypropylene is higher in the sample than talc. The attenuation
coefficient was measured by fitting experimental data, rather than directly
measuring it. This creates more uncertainty about the model used for the
scattering. If the attenuation coefficient had been measured precisely it is
one less unknown variable of the total system, and this would have made it
easier to alter the scattering model to a more correct one.

6.2 Fitting Experimental Data

By trying to fit the theoretical model of the form factor to the experimental
scattering data, it is clear that approximating the particles as oblate spheres
is far superior to approximating the particles as cylinders. This is apparent
when comparing Figure 5.4, 5.5 and 5.6. It was not possible to fit the exper-
imental scattering to the cylinder model for scattering in both the x′z′-plane
and the y′-direction using the same normalization constants for both direc-
tions. The magnitude of the scattering intensity in qy′ was much stronger in
the theoretical model than for the experimental data. It was also apparent
that when trying to normalize the theoretical data in qy′ to fit with the ex-
perimental data, the shape of the curve was not correct for the theoretical
case. The theoretical curve decreased at a slower rate.
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The full spheroid model, on the other hand, worked much better. Here
it was possible to fit the shape and intensity of the experimental data for
both the qx′ and qy′ direction using the same scaling parameters. The fit
also looks quite good, and should imply that the full spheroid model is an
accurate model to use.

Figure 5.4 (a) still implies some problems with the experiment performed.
For scattering in the qx′ direction it can be concluded that the counting statis-
tics for heigh q-values are too low. This means that those intensities cannot
be used to fit the theoretical data, because they are too much influenced by
noise. Since only low q-values can be used for fitting the theoretical scattering
to the experimental, this can make it difficult to find the distances, {aφi,x,ψ},
the X-ray beam travels through the different regions. Particles differing in
orientation by only a small angle will have almost identical form factor when
comparing the scattering amplitudes for low q-values. The scattering matrix
S used for finding the distances will then be close to singular. It can then
be expected that the reconstructed tomogram will have a large number of
artifacts when trying to retrieve different orientations, because the algorithm
will have problems separating two regions where the angle between the dif-
ferent oriented talc particles is small.

To get a good fit between the theoretical data and the experimental data, a
background intensity of 0.07 a.u. was used up to q = 0.43 nm−1. This is likely
caused by other scatterers in the sample and background radiation. Since
this scattering from other particles most likely is not constant for different
q-values, the background intensity should also fall off at higher q. Because
the counting statistics were rather low for high q, it was not attempted to
try to find this precise background intensity, because the intensity at high q
would anyway be too uncertain to use in the fitting routine,. Therefore only
q-values up to q = 0.43 nm−1 were used.

The optimal ”average” height and diameter of the spheroid used for fitting
the theoretical scattering intensity to the experimental were found to be 1.0
µm and 2.5 µm. The hight of the particles is close to what is observed in the
SEM-pictures, in Figure 2.5, but the diameter appears to be too small. It is
not clear what the cause of this could be, but it is certain that the material
causing scattering is the talc particles rather than polypropylene crystallites.
At the same time as the data used in this thesis was measured, scattering on
a sample of polypropylene without talc was performed. This sample showed
much less scattering intensity, making it certain that it is the talc particle
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scattering that dominates. This is further evidenced by the fact that the
orientation of the SAXS signal, seen in Figure 2.4(b), when performing a
raster-scan of a physically cut cross section is in full agreement with WAXS
measurements performed earlier, seen in Figure 2.4(a). It should therefore
be without doubt that what is causing the scattering for low q in the sample
is the talc particles. When looking at the SEM-pictures of the talc particles,
the diameter of the particles looks to be in the range of 5-10 µm. Although
there are many large particles, there are also many small particles, with di-
ameter below 5 µm. One reason why the ratio between the average height
and diameter of the talc particles looks to be different in the theoretical
model of the particles and in the SEM-pictures could be caused by the finite
size of the X-ray beam. The width and height of the focused X-ray beam
was approximately 20× 20 µm2. This is close to the diameter of the largest
particles, and it is likely that the largest particles are only partly illuminated
by the beam for each step interval in the tomographic scan. It would be
impossible to get signal from the entire shape of the particle if parts of it
is outside the beam. Only parts of the talc particles would give rise to any
signal, which is illustrated in Figure 6.1. The model used does not take into
account such edge effects. Since few of the largest particles will be entirely
inside the beam most of these particles will not contribute to the SAXS sig-
nal the way the model predicts, and the average particle diameter will seem
smaller when fitting the experimental data to the theoretical model.

Figure 6.1: An example of a partly illuminated talc particle. Only parts of
the gray talc particle is inside the X-ray beam, indicated with a blue square.
Because the X-ray beam does not see the entire particle, only the marked
portion of the particle inside the beam will create scattering in the SAXS
regime.

Another important remark regarding the model used for fitting the SAXS
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signal is the lack of structure factor. It has not been seen any significant
ordering between the particles in the experimental data. By including a
structure factor in the SAXS signal, additional Bragg peaks should appear.
The SAXS signal is falling off monotonically, and the experimental scattering
fits rather well when fitting it to the form factor of a spheroid. This should
imply no significant contribution from a structure factor. The reason why the
structure factor is not significant, is most likely the fact that the dimensions
of the particles are so large compared to the X-ray beam that the scattering
from the different particles are not scattering coherently. The intensity will
then add linearly, without interference from how the particles are structured
compared to each other.

In the theory chapter, a model for handling scattering from polydisperse
particles was presented. This model consists of a weighted sum of the form
factors for the differently sized particles. Because of the large size of the
particles, the oscillation frequency of the Bessel function in Equation 3.21
and 3.22 will be large in q-space. To prevent under-sampling the form fac-
tor, a large number of q-values have to be used in the calculation to get the
correct shape of the form factor. Because of this it could take several days to
calculate the form factors for the different oriented particles for all angles in
a tomography scan. Since calculating the form factors for only single sized
particles in a tomography scan could take several days, calculating form fac-
tors for several differently sized particles, and then taking a weighted sum of
them, would take too much time. At the early stage it was uncertain how well
the method would work and therefore spending a lot of time on something
that perhaps would be unnecessary seemed unwise. Now that the method
has proven to work it can be relevant to use the model for polydispersity as
presented. Instead of the model presented, a much easier method was used,
where the theoretical data was smoothed by a Gaussian function, accounting
for both polydispersity and finite detector resolution. The crude convolution
with a Gaussian function to fit the theoretical data with the experimental
data was successful and therefore viewed as sufficient for the method used in
this thesis. By applying the model for polydispersity presented in the the-
ory, additional information could perhaps be drawn from the system. The
distribution of the particle size could possibly give information on why the
average particle size is as it is seen in this thesis, but this was not seen as a
significant goal of this thesis, and therefore postponed for later work.
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6.3 Reconstructing Orientation Distribution

6.3.1 Reconstruction Based on Simulated Annealing

When reconstructing the orientation distribution by Simulated Annealing,
as seen in Figure 5.8, the orientation distribution has little resemblance to
the true orientation distribution seen in Figure 2.4. The fact that four of
the cases with different initial conditions turned out to give the exact same
results, can imply that the T and δT values are not good enough tuned to
give a converging solution. Even in the single case where the final orienta-
tion distribution was different from the other cases, the difference was only
marginal. The reason why these are almost exactly the same comes most
likely from how the routine was implemented in Matlab. To get random
numbers the rand function in Matlab was used. This is basically just a list
of random numbers which is the same each time Matlab is opened. For this
reason every simulation would use the same random numbers. This means
that during each Monte Carlo step, the same voxel would be tried updated
to the same new value, and the only difference would come when it should
check according to the probability distribution if the change was allowed to
take place. The problem is not the pseudo random function implemented in
Matlab, but that the initial T and δT were too similar between the differ-
ent configurations compared to the initial value of the energy. These values
decides what step are allowed to take place and how quick it should settle
for the closest minimum. Finding better values for T and δT is crucial for
making this method work.

It could also be theorized that the final distribution found indeed is a lo-
cal minimum. The behavior of the energy as function of number of iterations
should be investigated to see if where it settles looks like a local minimum,
or if the energy is roughly the same for all iterations.

The reason why this approach was not explored further, and tried to make
improvements on the model, is due to the fact that the preliminary results
showed very little resemblance with the true distribution, even though the
initial guess of the distribution was fairly close to the true distribution. If this
method would be used on real experimental data, where the initial orienta-
tion is totally unknown, it would be even harder to get this method to work.
Another reason for not going further with this method is that it is very time
consuming. In this idealized case where the form factor is precisely known
it looks like the algorithm would need considerably more iterations before
finding the optimal solution. The number of iterations used in this simula-
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tion was 300 000 and took roughly 48 hours. Although this was without any
optimization of the code, it mostly used internal Matlab functions which in
general are well tested and optimized for speed. Even if the code could be
optimized to run several times faster it is unlikely that a sufficient amount
of iterations could be achieved to get close to the optimal solution. It would
for the case demonstrated in this thesis be 3663·151 different possible config-
urations of the iPP model, since each of the 63 × 151 voxels could have 36
different values. This is vastly more configurations than any computer could
have time to check systematically, and the number of iterations to reach the
optimal solutions by Simulated Annealing is hence also very large.

If this method is to be improved, there are some improvements that could be
done. First of all the radon function used in Matlab is a big time consuming
choking point. If a method for finding how far an X-ray beam travels through
an area where the orientation has a specific value could be found, which is
significantly faster than the implemented radon function in Matlab, then this
would help to speed up the process. If the function which is to be minimized
had an extra term which was high if the gradient of the orientation distribu-
tion was high, this could remove most of the 3663·151 possible configurations
which the orientation distribution is allowed to have. This is because a high
gradient in the orientation distribution would mean that neighboring voxels
have a large difference in orientation, and this is something that is unlikely
for many cases, including the test sample used here. There are a lot more
configurations with a high gradient in the orientation distribution than with
low gradient, therefore only a few configurations are allowed. Checking the
gradient will however slow down the process, and to check how much the gra-
dient should influence the system would also need some fine tuning. Another
alteration which could be made, would be lowering the number of possible
orientations the talc particles inside the sample could have. It was used 36
different orientations which in retrospect is obviously too high. Combining
voxels to regions, meaning that changing one voxel would change the entire
region it is part of, would probably be an improvement. Since it is known
that the orientation varies slowly, it is probably not necessary to have the
possibility to change each voxel independently, thus speeding up the algo-
rithm since it will change more voxels in less time.

A big disadvantage with the formulation of this problem is the lack of knowl-
edge about how the energy function used behaves and how the the global
minimum is. For instance, if the energy function is almost equal for all con-
figurations, except at a very steep drop close to the global minimum, it will
be very difficult to find this point in configuration space.
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The suggestions for improvements presented here could very well help getting
closer to the correct orientation distribution. However, since the initial test
of retrieving the orientation distribution from simulated scattering, with no
polydispersity and no noise, failed, it was decided to focus on retrieving the
orientation distribution based on a linear set of equation, since this method
showed much more promise.

6.3.2 Reconstruction Based on a Linear Set of Equa-
tions

Reconstruction from Simulated Perfect Data

Figure 5.9 shows excellent agreement between the true orientation distribu-
tion in the model of the iPP sample, and the retrieval of the orientation
distribution based on the simulated horizontal scattering signal. Figure 5.9
(b) was reconstructed based on the method outlined in Section 3.8.1. We
have thus proven it possible to reconstruct the orientation in a sample based
on the horizontal scattering pattern, if it is a priori known that one of the
axis of symmetry always is pointing along the rotation axis of the tomogra-
phy scan.

Our method is however limited by some assumptions. The precise form
factor has to be known for all different orientations. It is therefore required
that the theoretical model for the scattering is in very good agreement with
the experimental data. The method is also based on the assumption that the
scattering intensity from each different orientation region adds linearly and is
proportional to the distance it travels through the given region. In addition
the system has to consist of a single type of particles, with no polydispersity,
no noise and high detector resolution. Under ideal conditions it is thus pos-
sible to retrieve the orientation distribution of the talc particles in the sample.

The biggest disadvantage with this method comes from the symmetry of
the particles being imaged. By Friedel’s law, the form factor is symmetric
around the origin, e.g. |F (q)|2 = |F (−q)|2. Every scattering pattern in the
horizontal direction can come from particles with two different orientations.
This is demonstrated in Figure 6.2. Here it is seen that the scattering pat-
terns, outlined by the green ellipses, from two differently oriented particles
have the exact same intensity value for the scattering vector q in the hori-
zontal plane. Because of this problem, it is not possible to reconstruct every
single orientation in the sample. This would lead to a singular scattering
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Figure 6.2: The scattering patterns from two differently oriented particles
are outlined by the green ellipses. The intensity for the scattering vector
q is identical for both scattering patterns, and it is therefore impossible to
distinguish these particles by only looking at the scattering in the horizontal
direction.

matrix S, because two or more horizontal scattering intensities would be the
same between different oriented particles. In practice, discrete set of orien-
tation intervals is made, where the initial particle orientation is denoted by
φm in interval number m. This set of orientations is chosen in such a way
that the theoretical horizontal scattering intensity is not equal for any two
orientations in any angle of the tomographic scan. A possible way around
this problem could be by using the entire 2D scattering pattern to separate
those particles which have orientation giving the same horizontal scattering
intensity. These particles will not necessarily give same intensity for other
scattering vectors, as seen in Figure 6.2.

Reconstruction From Simulated Polydispersive Data

Figure 5.10 showed how the reconstruction works for simulated data when
polydispersity and finite detector resolution is taken into account. Every-
thing else is done under ”ideal” conditions, meaning that only talc particles
scatter, and it is no noise or background radiation in the detector signal.
The scattering signal is also proportional to the form factor squared and to
each different orientation region the X-ray beam travels through, and adding
linearly to give the full signal. Even with conditions as ideal as this the
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reconstruction algorithm has problems with recreating the orientation dis-
tribution of 36 regions with different orientation, because many of the line
artifacts are shadowing the details of the orientation distribution. Many of
these artifacts could possibly be removed by setting various thresholds and
forcing continuous and slow variation of the orientation gradient. This means
however that it is necessary with pre-known knowledge of the sample.

Even under nearly perfect conditions, the reconstruction algorithm has prob-
lems retrieving the orientation distribution. It was not chosen to try to opti-
mize the reconstruction of the simulated data with polydispersity and finite
detector resolution taken into account, because even though there are many
line artifacts in the tomogram, the different regions are clearly visible. It
was also believed that 36 different regions would give a much higher resolu-
tion than what it could be expect to retrieve from the experimental data. It
demonstrates that the method used for retrieving the orientation distribution
has a practical upper limit when dealing with polydispersive particles.

Reconstruction From Experimental Data

Figure 5.12, 5.13 and 5.14 show how the orientation distribution of the talc
particles is when two-, four- and six-modal orientation distribution are at-
tempted reconstructed from the experimental data. It is clear that the main
features of the talc particles orientation distribution are retrieved. This is
seen by noting that the red area is located at the correct place for all the
reconstructions, as well as that the area along the short sides have ”light
blue” orientation.

When looking at the tomogram where four different orientations are recon-
structed, it is apparent that the ”light blue” region is not so dominant, as it
was for the bimodal orientation. This is to be expected since in the bimodal
orientation distribution the ”light blue” region represented the angle interval
φ = 〈−45, 45] while in the 4-modal it only represents φ = 〈−22.5, 22.5]. Here
the ”green” and ”purple” orientations are placed between the ”light blue”
and ”red” orientation, as it should. The ”green” and ”purple orientations”
are also found in the correct direction, from bottom left to top right and top
left to bottom right. The ”light blue” orientation is placed mainly along the
short edges in the sample and in the center, as it should be. Another appar-
ent feature is the fact that the regions of ”red” orientation are almost joined
together close to the center, which agrees well with the true orientation dis-
tribution. This was not seen in the tomogram reconstructed with only two
different orientations. The resolution of the tomogram has clearly gone up
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by going from two to four reconstructed orientations, since it is possible to
distinguish more distinct features.

The cost of separating characteristic features is many more artifacts. There
is no distinct border between the different orientation regions. Larger parts
of the interior also have no assigned orientation. This is likely caused by
the fact that the theoretical model of the scattering does not agree perfectly
with the experimental data. The calculated distances the X-ray beam travels
through each orientation region, {aφi,x,ψ}, are not consistent between differ-
ent angles ψ. The integrated value along each projection angle should be the
same for each angle in the tomography scan according to theory. This would
just be the area of the function fm, which is independent of the coordinate
system used, which means independent of rotation angle ψ. The inconsisten-
cies in the sinogram, in Figure 5.11, can be seen by looking at the projections
when the projection angle ψ = 63◦. Here, the sinogram shows that the X-ray
beam does not travel through the region with the given orientation for any
projections. It is obvious that this is impossible, since this would imply that
this region does not exist, as it clearly does because it is present for most of
the other ψ-angles. This is causing many of the streak artifacts and regions
with no orientation inside the sample.

Another observation is the fact that the ”purple” and ”green” orientation
is more scattered than the ”red” and ”light blue orientation”. Scattered
means in this case that the regions are not continuous and connected. The
”purple” and ”green orientation” represents talc particles with median ori-
entation φ = −45◦ and φ = 45◦, respectively. By comparing with the true
orientation distribution it is noted that the regions with talc particles with
this orientation are very thin for most projections, while the regions with
”red” and ”light blue orientation” are thicker. Thin and thick refer to the
distance, aφi,x,ψ, the X-ray beam travels through the region for a single pro-
jection. The reconstruction algorithm seems to have problems reconstructing
regions in the sample which are thin for most projections.

Trying to reconstruct regions with six different possible orientations, gives
the main features for the ”red” and ”light blue orientation” in the same way
as for the tomogram trying to recreate four regions. The tomogram where
six regions are reconstructed is however suffering from more artifacts. Al-
though it is still possible to recognize the main features, the tomogram is too
unclear to give any reliable insight. The orientation regions beside the ”red”
and ”ligh blue” are more mixed into each other than for the other tomograms.
It would for instance be unwise to state that a single voxel has talc particles
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with the direction given by the color, since the domains are scattered around,
and many areas have white domains, meaning the reconstruction algorithm
has not given them any specific orientation. There are mainly two reasons
why this tomogram fails as much as it does in retrieving the orientation dis-
tribution. First, since the scattering intensity from polydispersive particles
is varying slowly it is difficult to separate particles of almost the same ori-
entation. This can be seen, as part of where the orientation should be ”red”
is now ”pink”. These two orientations have almost the same form factor,
and are therefore difficult to separate when fitting the data. Second, the 2D
scattering patterns were packed to reduce the storage space, and speed up
calculations. Figure 4.3 shows how the scattering pattern on the detector was
divided into 16 different regions. Because of this sectioning, regions 1, 8, 9
and 16 had to be used for the horizontal scattering signal, since they were all
equivalent. Since region (8 and 9) and (1 and 16) form an angle of 45◦, this
is the best possible resolution which can be achieved when trying to retrieve
the orientation distribution. It would for example be impossible to separate
two talc particles with 10◦ separation in orientation because scattering in the
qy′ direction of the internal coordinate system of each particle would both be
scattered to the same sector on the detector, where it is measured to be q
according to the laboratory frame. This is visualized in Figure 6.3.

8
9

8
9qy'q

y'

Figure 6.3: The figure demonstrates the resolution limit in retrieving the
orientation distribution of the talc particles. Two differently oriented talc
particles will both have their qy′-direction scatter into sectors 8 and 9, which
means that due to how the data are stored it will be marked as both particles
are scattering into the horizontal plane and are therefore have the same
orientation.

To get around this problem, the entire detector signal could be used. This will
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increase the theoretical maximal resolution in the orientation distribution to
22.5◦ because it is then possible to separate scattering into each sector. To
increase it further, the raw data picture would have to be processed again,
increasing the number of sections the detector is divided into. By doing
this, it would be unnecessary to use the entire 2D scattering pattern, since
narrowing the angle forming the horizontal scattering also will increase the
maximum theoretical resolution. A problem with this will be lowering the
counting statistics, making it necessary to increase the exposure time when
performing the experiments.

6.4 Further work

There are a number of suggestion for improving the reconstruction algorithm.
The fact that the method of retrieving the orientation distribution by a lin-
ear set of equations works rather well for a few angle intervals shows that
the method is promising. It is thought that improving the talc scattering
model will further improve the results. If the entire scattering pattern on the
detector is used then additional constraints are applied to the problem. The
scattering should not only fit for in the horizontal direction, but also for the
vertical and along a diagonal on the detector. It is then visualized that a
numerical algorithm can work with the data retrieved and improve it further.
By applying constraints, as continuous domains, slow variation in the orien-
tation distribution and that the sinogram shall be consistent between every
angle ψ, then an iterative algorithm can improve the result further. One
numerical algorithm which could fit this problem is the Simulated Annealing
method presented in this thesis, but also other algorithms are possible.

The reason why the Simulated Annealing method did not work in retrieving
the orientation distribution was because it tried to recreate the scattering
patterns by altering the orientation in each voxel. This was both time con-
suming and very large problem with many variables. By minimizing a func-
tion which already uses the fitted scattering pattern it is believed that the
method will work better and faster.
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Chapter 7

Conclusion

Two different methods, for retrieving the orientation distribution of talc par-
ticles in a sample of isotactic polypropylene, have been presented in this
thesis. The first method used a numerical approach of Simulated Annealing
and the second method used a linear set of equations to find the distances
the X-ray beam traveled through the different oriented regions for each pro-
jection.

7.1 Retrieving Orientation Distribution By

Simulated Annealing

As seen in Figure 5.8, Simulated Annealing shows little promise in retrieving
the orientation distribution of the talc particles inside the sample. Although
several alterations can be made to improve the algorithm, as discussed in
Section 6.3.1, it is seen as unlikely that these would improve it considerably.
The results of this method to retrieve the orientation distribution is added
to this thesis to discourage future work on trying to retrieve the orientation
distribution from the SAXS pattern by Simulated Annealing in the same way
as presented in this thesis. If however this method is decided to be used, then
it is advised to note the suggestions for improvements discussed, and use it
on a problem formulated after the orientation distribution has been retrieved
by a linear set of equations, and thus improve that result.
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7.2 Retrieving Orientation Distribution By

Linear Set of Equations

It can be seen from Figure 5.12 and 5.13 that the main features of the true
orientation distribution of the talc particles have been retrieved. The to-
mograms suffer from many artifacts, with regions marked with orientation
outside the sample, regions inside the sample with no specified orientation,
non-continuous domains and unsharp borders between regions with different
orientation. Despite this, the method shows promise, and with further im-
provements the accuracy of the position of the regions could be improved.
From an academic standpoint it is very interesting with further work on this
project, since earlier work in SAXS tomography have only focused on the
vertical scattering or assumed spherical particles.

It can also be seen from Figure 5.14 that when trying to retrieve the ori-
entation distribution with higher resolution than the detector segmentation
allows, the retrieved orientation regions would be mixed up in each other.
Unfortunately, this segmentation has also hindered the progress in determin-
ing how many regions which can be retrieved and still have the main features
visible as in the true orientation distribution. It is not certain wether this
method with these data will or will not be able to resolve six different regions.
It does, however, seem to work rather well for four regions.

As noticed earlier, the tomograms are far from perfect, and the different
orientation regions are not precisely placed inside the sample. This makes
it at the current moment difficult to use our method for in situ studies of
mechanical testing of the iPP samples, which was one of the desired goals
for this thesis. To notice differences, with the current method, in the orien-
tation of the talc particles after the sample has been modified in some way,
very large changes in the orientation distribution would be needed. These
changes in the orientation distribution are probably larger than what would
be possible without destroying the sample.

It has been demonstrated that polydispersity makes it difficult to retrieve
the orientation distribution because the scattering signal is smoothed out,
making the form factor of two slightly differently oriented talc particles al-
most identical. How symmetry in the scattering prohibits a continuous ori-
entation distribution to be retrieved is also shown. To improve the resolution
and accuracy of the method further, work should be put into the model of
how the talc particles scatter and the precise attenuation coefficient of the
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sample should be measured. The talc particles which scatter in the sample
can also be argued to be too large compared to the beam. The largest parti-
cles were approximately 10 µm in diameter, which is rather large compared
to the 20 × 20 µm2 beam size. To see how well our method works, other
samples should be tested, preferably systems with smaller scatterers, with
less polydispersity and with a preferred direction of orientation. By doing
an experiment on such a system it can be known if the limiting factor is
the model and reconstruction algorithm itself, or if it is the scattering talc
particles in the iPP sample.

7.3 Summary

It has been shown that it is possible to reconstruct the spatially varying orien-
tation distribution of particles, with a preferred orientation inside a sample,
by using the method of a linear set of equations. Specifically, we have re-
trieved the orientation distribution of talc particles in a sample of isotactic
polypropylene by using the horizontal signal in a small-angle X-ray scattering
tomography scan. This method and and the data in this thesis are however
not yet accurate enough to give a precise localization of the different oriented
regions inside the sample, and can thus not be used for in situ studies at the
present moment. It is however believed that with further work this can be
achieved.

The method presented is not specialized for talc particles, and it should
be possible with minor alterations to use it on other systems. If it is known
that the particles involved have a preferred direction of orientation then the
only part needed to be changed would be the form factor of the particle.
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Appendix A

Sinograms and Tomograms
from Experimental Data

The reconstructed sinograms of the distances an X-ray beam travels through
a given orientation in the sample, along with the reconstructed tomogram,
will be given here. The sinograms should ideally be radon transforms of the
function given in Equation 3.54. All the figures are built up the same way,
with the sinogram on the left, where the color indicates the distance the X-ray
beam travels through an oriented area in cm. The right are the tomograms.
These should ideally have the value 1 in voxels where the orientation of the
talc particles is equal to the given orientation and 0 where it is not. Due
to imperfect data sets a threshold was set, where all the values above 1 was
set to have the given orientation. Those voxels in the sample which would
succeed the threshold for multiple orientation, the voxel would be assigned
the orientation from the tomogram where the value was highest. The reason
why the tomograms have zero value along the vertical edges is due to zero
padding in Matlab when the tomogram was rotated to a horizontal position.
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Figure A.1: 2-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = 0◦
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Figure A.2: 2-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = 90◦
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Figure A.3: 4-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = 0◦
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Figure A.4: 4-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = −45◦
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Figure A.5: 4-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = 90◦
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Figure A.6: 4-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = 45◦
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Figure A.7: 6-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = 0◦
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Figure A.8: 6-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = −30◦
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Figure A.9: 6-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = 90◦
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Figure A.10: 6-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = 60◦
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Figure A.11: 6-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = 30◦
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Figure A.12: 6-modal orientation distribution reconstructed. Represents ori-
entation distribution where φ(s, t) = −60◦
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Appendix B

Poster Presented at ICXOM

A poster containing the major results from this thesis was presented at the
22nd International Conference of X-ray Optics and Microscopy (ICXOM)
in Hamburg in the start of September 2013. This has been attached as an
appendix to give potential readers a short and compact summary of the
project. This poster does not discuss the major challenges and assumptions,
but is meant to intrigue the reader to discover more about the subject.
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Towards orientation distribution mapping in 
isotactic polypropylene by SAXS-tomography
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scatteringDusedDinDtheDreconstructionDofDtheDorientationDdistributionL
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withDtheirDsurfaceDnormalsDasDindicatedDbyDtheDfigureDaboveLDTheDscatteringD
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distanceDaφiωj
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TheD XUrayD beamD wasD scannedD overD aD physicallyD cutD
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