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Abstract: Dealing with nonlinear dynamics in conventional estimation methods like the
extended Kalman filter (EKF) is challenging, since they are not guaranteed to have global
convergence, and their instability can arise by selecting a poor initial guess. Recently, a double
Kalman filter (DKF) has been proposed, where two stages of estimation are considered using
cascade stability theory in the continuous time domain. The first stage guarantees global
convergence through the use of a globally valid linear time-varying model transformation,
but leads to sub-optimal accuracy in the presence of noise. The global model transformation
is applicable to a class of nonlinear systems, where its state can be explicitly derived
through a mapping of previous measurements and disturbances. Furthermore, the second stage
compensates the lost performance using the estimate from the first stage via local linearization.
Here, we derive the stability analysis of this globally convergent method in discrete time using a
Lyapunov approach. Different Kalman filters are compared via simulation to validate the benefit
of using DKF for nonlinear state and parameter estimation.

1. INTRODUCTION

The Kalman filter (KF) as an optimal (minimum vari-
ance) state estimation method is proven to be globally
exponentially stable for uniformly completely observable
(UCO) linear time varying (LTV) systems with white
input and output disturbances (Jazwinski, 2007). The ex-
tended Kalman filter (EKF) is a modified KF for nonlinear
dynamics which has enormously influenced the state esti-
mation of real life applications (Gelb, 1974; Simon, 2010).
However, this widely used estimator lacks a global stability
guarantee; state and parameter estimates may diverge
because of a poor initial guess or its dependency on system
trajectory. This drawback is argued to initiate from the
inherent feedback in its linearization, where the estimate
from a poor initial guess is utilized as the linearization
point. Divergence of the EKF has been reported by Perea
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et al. (2007); Haseltine and Rawlings (2005); Lee and West
(2010); Ficocelli and Janabi (2001).

A two stage state estimation approach has been recently
developed by Johansen and Fossen (2016a). One of its
variants, the double Kalman filter (DKF), has been an-
alyzed in the continuous-time domain (Johansen and Fos-
sen, 2016b) and further has been applied to a position
estimation using pseudo-range measurements (Johansen
et al., 2016). The first stage of DKF employs a tech-
nique which eliminates the nonlinearities of the system
using a transformation that results in a LTV system. This
transformation uses the measurements and possibly its
derivatives without optimally considering the input and
output disturbances. Suboptimal modeling of disturbances
degrades the performance of estimation methods using this
LTV model. The second stage of the DKF, a linearized
Kalman filter (LKF), utilizes the estimates from the first
stage as its linearization point.

The use of differential flatness theory is one approach to
transform a continuous-time nonlinear system into a LTV
system in the first stage of the DKF. This theory was first
introduced by Fliess et al. (1995) and further developed by
others in the field of control and state estimation (Rigatos,
2015). Based on Fliess et al. (1995), flat systems are among
the class of nonlinear systems that are equivalent to a
static system; using a flat output it is possible to explicitly
express the state in terms of the flat output and a number
of its derivatives. Difference flatness is the counterpart
concept of differentially flatness in the discrete-time do-



main (Sira-Ramirez and Agrawal, 2004). Under the same
topic, an immersion method with or without feedback is
proposed by Levine and Marino (1986) to transform a
class of nonlinear systems to linear systems. Necessary
and sufficient conditions for linearizing transformations
up to output injection are discussed by Besançon (1999);
Hammouri and Gauthier (1992). Furthermore, conditions
for a coordinate transformation to observer canonical form
are presented by Califano et al. (2009).

This paper first discusses the transformation of a nonlinear
system into a LTV system in Section 2. Next, Section 3
introduces the equations of the DKF in discrete time. A
stability analysis of the DKF in discrete time is presented
in Section 4. The stability analysis is derived utilizing
a Lyapunov approach, where it is proven that the DKF
is uniformly globally asymptotically stable using stability
theory for discrete-time cascaded systems. Furthermore, in
Section 5 different numerical examples validate the advan-
tage of the DKF over the EKF that uses its last estimate
as linearization point. Finally, this paper is concluded in
Section 6.

Finally we define some useful definitions. A function α :
R≥0 → R≥0 is in class of K, if it is continuous, strictly
increasing and α(0) = 0. Furthermore, α ∈ K∞ if it is
unbounded. A function β : R≥0 × R≥0 → R≥0 is of class
KL if β(·, k) ∈ K for all k ≥ 0, and if β(x, ·) is continuous,
strictly decreasing and lim

k→0
β(x, k) = 0 for all x > 0.

Diagonal matrix is denoted by diag.

2. MODEL TRANSFORMATION

This section provides the definitions and assumptions
needed for applying a linearizing model transformation
based on difference flatness. Let the nonlinear dynamics
be described as follows

xk+1 =f(xk, ẃk), (1a)
yk =h(xk, v́k), (1b)

where the nonlinear dynamics is denoted by f(·) : Rn ×
Rq → Rn and the nonlinear output function is expressed
as h(·) : Rn × Rr → Rp. Furthermore, x ∈ Rn is the
state vector, y ∈ Rp is the output, ẃ ∈ Rq is the input
disturbance and v́ ∈ Rr denotes the output disturbance.
The time index is denoted by k. Although f(·) and h(·)
are known functions, the state xk and the disturbances
ẃk and v́k are unknown. The output yk is obtained via
measurement and is therefore known.
Definition 2.1. (Loria and Nešić, 2002) A nonlinear sys-
tem of the form (1) is uniformly globally asymptotically
stable (UGAS) if there exists a function β ∈ KL such that

‖xk‖ ≤ β(‖xk0
‖, k − k0)

for all xk0 ∈ Rn and all k ≥ k0 ≥ 0.
Definition 2.2. (Loria and Nešić, 2002) A nonlinear sys-
tem of the form (1) is uniformly globally bounded (UGB)
if there exist a function κ ∈ K∞ and a constant c ∈ R>0

such that
‖xk‖ ≤ κ(‖xk0

‖) + c
for all xk0

∈ Rn and all k ≥ k0 ≥ 0.

We make the following assumptions regarding system (1).
Assumption 1. The nonlinear functions f(·) and h(·) are
twice continuously differentiable.

Assumption 2. The state xk is uniformly bounded.
Assumption 3. There exists a known map ψ(·) : Rpd ×
Rq(d−1)×Rrd → Rn and a positive integer d such that the
state of (1) can be written as

xk = ψ(Y l
k,W l

k−1,V l
k),

where Y l
k = {yl, . . . , yk}, W l

k−1 = {ẃl, . . . , ẃk−1} and
V l
k = {v́l, . . . , v́k}, with l = k − d+ 1.

Remark 2.3. Assumption 3 implies that system (1) is
difference flat (Sira-Ramirez and Castro-Linares, 2000),
with flat outputs Y l

k,W l
k−1 and V l

k. It is worth mentioning
the fact that ψ is not necessarily unique. Moreover, it
follows from Assumption 3 that the current state xk can
be uniquely determined from a number of current and past
output measurements Y l

k and disturbances W l
k−1 and V l

k,
which implies observability of system (1) in some sense.

Using Assumption 3, the nonlinear system (1) can be
globally transformed into a LTV system of the form

xk+1 =f(0, 0) + Fkxk + wk, (2a)
yk =h(0, 0) +Hkxk + vk, (2b)

where the matrices Fk and Hk are known, and where the
new input and output disturbances, denoted by wk and vk
respectively, are uniformly zero (i.e., zero for all k) if ẃk

and v́k are uniformly zero. The transformation from (1) to
(2) is not unique. One possible choice for Fk and Hk is

Fk =

∫ 1

0

∂f

∂x
(sψ(Y l

k, 0, 0), 0)ds, (3)

Hk =

∫ 1

0

∂h

∂x
(sψ(Y l

k, 0, 0), 0)ds. (4)

The matrices Fk in (3) and Hk in (4) are known because f ,
h, ψ and Y l

k are known. The corresponding disturbances
are given by

wk =

∫ 1

0

(
∂f

∂x
(sxk, 0)− ∂f

∂x
(sψ(Y l

k, 0, 0), 0)

)
ds xk

+ f(xk, ẃk)− f(xk, 0), (5)

vk =

∫ 1

0

(
∂h

∂x
(sxk, 0)− ∂h

∂x
(sψ(Y l

k, 0, 0), 0)

)
ds xk

+ h(xk, v́k)− h(xk, 0), (6)

where we note that
∫ 1

0
∂f
∂x (sxk, 0)ds xk = f(xk, 0) −

f(0, 0) and
∫ 1

0
∂h
∂x (sxk, 0)ds xk = h(xk, 0)− h(0, 0), which

follows from Abraham et al. (2012, Prop. 2.4.7). From
Assumption 3, we have that xk = ψ(Y l

k, 0, 0) if ẃk and
v́k are uniformly zero. By substituting xk = ψ(Y l

k, 0, 0) in
(5) and (6), it is easy to see that wk and vk are uniformly
zero if ẃk and v́k are uniformly zero.

Example. Consider the nonlinear system
xk+1,1 = xk,1(1 + ẃk) + xk,2,

xk+1,2 = −xk,1x2
k,2,

yk = xk,1 + v́k.

Let δk := yk − v́k such that xk,1 = δk. From the first
system equation, we obtain xk−1,2 = δk − δk−1(1 + ẃk−1).
Substituting this in the second system equation yields
xk,2 = −δk−1(δk− δk−1(1 + ẃk−1))2. Hence, we can define
ψ in Assumption 3 as

ψ(Yk−1
k ,Wk−1

k−1 ,V
k−1
k ) =

[
δk

−δk−1(δk − δk−1(1 + ẃk−1))2

]
.



Using the map ψ, the nonlinear system can be written as a
LTV system of the form (2), with f(0, 0) = 0, h(0, 0) = 0
and

Fk =

[
1 1

− 1
3y

2
k−1(yk − yk−1)4 2

3ykyk−1(yk − yk−1)2

]
,

Hk = [1 0] ,

as in (3) and (4). We note that this linearizing transforma-
tion is not unique because the use of any matrix Fk that
satisfies

Fk =

[
1 1

−ζy2
k−1(yk − yk−1)4 (1− ζ)ykyk−1(yk − yk−1)2

]
for some ζ ∈ R results in a LTV system for which wk and
vk are uniformly zero if ẃk and v́k are uniformly zero.
Remark 2.4. The DKF in the next section can be ap-
plied to any nonlinear system (1) as long as it can be
globally transformed into a LTV system. It is not strictly
necessary that this transformation is based on difference
flatness. Alternative methods to transform a nonlinear
system into a LTV system are mentioned in Section 1.

3. DOUBLE KALMAN FILTERING

There are two stages of Kalman filtering in the DKF; see
Fig. 1. The first stage of DKF utilizes the transformed
LTV system for sub-optimal estimation and is called an
auxiliary Kalman filter (AKF). This Kalman filter is acting
as an auxiliary estimation to provide an operating point
for the second stage. In the second stage, a linearized
Kalman filter (LKF) improves the estimation quality using
the results of AKF. This approach has been analyzed for
continuous time domain by Johansen and Fossen (2016b).
Here, we present the DKF in discrete time.

AKF

LKF

x̄k|k

x̂k|k

yk

Fig. 1. Schematic of DKF in discrete time

Before we introduce the DKF formulation, let us define the
notion of uniform complete observability for LTV systems.
Definition 3.1. A LTV system of the form (2) is uni-
formly completely observable (UCO) if there exist con-
stants c1, c2 ∈ R>0 and a positive integer N such that

c1I �
k+N−1∑

i=k

ΦT(i, k)HT
i HiΦ(i, k) � c2I

for all k ≥ 0, where the transition matrix is defined as
Φ(i, k) = Fi−1Fi−2 · · ·Fk, ∀i > k, Φ(k, k) = I.

The AKF estimates the state of the LTV system in (2).
We assume the following.
Assumption 4. The LTV system in (2) is UCO.

The correction step of the AKF is formulated as
K̄k =P̄k|k−1H

T
k (HkP̄k|k−1H

T
k + R̄k)−1, (7a)

x̄k|k =x̄k|k−1 + K̄k(yk − h(0, 0)−Hkx̄k|k−1), (7b)
P̄k|k =(I − K̄kHk)P̄k|k−1, (7c)

with initial conditions x̄0|−1 and P̄0|−1 = P̄T
0|−1 � 0, where

R̄k = R̄T
k � 0 is a tuning matrix and K̄k is the Kalman

gain. The state estimate is propagated to the next time
step using the equations

x̄k+1|k =f(0, 0) + Fkx̄k|k, (8a)
P̄k+1|k =FkP̄k|kF

T
k + Q̄k, (8b)

where Q̄k = Q̄T
k � 0 is a tuning matrix. The tuning

matrices R̄k and Q̄k are chosen such that
cR̄1I � R̄k � cR̄2I,

cQ̄1I � Q̄k � cQ̄2I

for all k ≥ 0 and some constants cR̄1, cR̄2, cQ̄1, cQ̄2 ∈ R>0.
Remark 3.2. If the disturbances ẃk and v́k in (1) are
stochastic processes, the gain matrices Q̄k and R̄k can
be chosen to be equal to the covariance matrices of the
disturbances wk and vk in (2), respectively. However, the
transformation from the nonlinear system in (1) to the
LTV system in (2) makes it difficult to relate the stochastic
properties of ẃk and v́k to the stochastic properties of wk

and vk. Moreover, the transformation can lead to estima-
tion biases and nonlinear sensitivities due to correlations
between the state and the disturbances. Hence, although
setting the values of Q̄k and R̄k to the covariances of ẃk

and v́k often serves as a good starting point for the tuning
of Q̄k and R̄k, calculating the covariances of wk and vk
may be difficult and additional tuning may be required.
This motivates the need for the second stage KF, where
the disturbances can usually be accommodated better.

For the second stage of the DKF, we linearize the nonlinear
system in (1) about the state estimate x̄k|k of the first stage
of the DKF, which gives

xk+1 = f(x̄k|k, 0) +Ak(xk − x̄k|k) +Qk + w̌k, (9a)
yk = h(x̄k|k, 0) + Ck(xk − x̄k|k) +Rk + v̌k, (9b)

with

Ak =
∂f

∂x
(x̄k|k, 0), Ck =

∂h

∂x
(x̄k|k, 0),

where Qk = [Q1,k, . . . ,Qn,k]T and Rk = [R1,k, . . . ,Rp,k]T

are the higher order remainder terms due to linearization
and from (Folland, 1990)

Qi,k = (xk − x̄k|k)T

∫ 1

0

(1− s) (10)

× ∂2fi
∂x∂xT

(sxk + (1− s)x̄k|k, 0)ds (xk − x̄k|k),

Rj,k = (xk − x̄k|k)T

∫ 1

0

(1− s) (11)

× ∂2hj
∂x∂xT

(sxk + (1− s)x̄k|k, 0)ds (xk − x̄k|k)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, where fi is the ith
element of f and hj is the jth element of h, and where the
disturbances w̌k and v̌k are defined as

w̌k = f(xk, ẃk)− f(xk, 0), (12)
v̌k = h(xk, v́k)− h(xk, 0). (13)

Similar to wk and vk in (2), we note that w̌k in (12) and
v̌k in (13) are uniformly zero if ẃk and v́k are uniformly
zero.
Assumption 5. The LTV system in (9) is UCO.



The LKF formulation about x̄k|k as an operating point is

K̂k = P̂k|k−1C
T
k (CkP̂k|k−1C

T
k + R̂k)−1, (14a)

x̂k|k = x̂k|k−1 + K̂k(yk − h(x̄k|k, 0)− Ck(x̂k|k−1 − x̄k|k)),
(14b)

P̂k|k = (I − K̂kCk)P̂k|k−1, (14c)

with initial conditions x̂0|−1 and P̂0|−1 = P̂T
0|−1 � 0, where

R̂k = R̂T
k � 0 is a tuning matrix and K̂k is the Kalman

gain. The propagation for the state estimate is as follows
x̂k+1|k =f(x̄k|k, 0) +Ak(x̂k|k − x̄k|k), (15a)

P̂k+1|k =AkP̂k|kAk
T + Q̂k, (15b)

where Q̂k = Q̂T
k � 0 is a tuning matrix. The tuning

matrices R̂k and Q̂k are selected such that they satisfy

cR̂1I � R̂k � cR̂2I, (16)

cQ̂1I � Q̂k � cQ̂2I (17)

for all k ≥ 0 and some constants cR̂1, cR̂2, cQ̂1, cQ̂2 ∈ R>0.
Remark 3.3. The expressions of the disturbances w̌k in
(12) and v̌k in (13) of system (9) are much simpler than
the expressions of wk and vk of the LTV system in (2); see
for example (5) and (6). Therefore, it is relatively easy
to relate the properties of the disturbances ẃk and v́k
of the nonlinear system in (1) to the properties of the
disturbances w̌k and v̌k of the linearized system in (9).
For example, if ẃk and v́k are additive, then w̌k = ẃk and
v̌k = v́k. For additive disturbances, the tuning matrices
Q̂k = Q́k and R̂k = Ŕk are suitable choices, assuming
that ẃk and v́k are zero-mean white noise processes
with covariances Q́k and Ŕk, respectively. Moreover, for
nonadditive disturbances, the tuning matrices Q̂k and R̂k

may be chosen as Q̂k =
(

∂f
∂ẃ (x̄k|k, 0)

)T

Q́k
∂f
∂ẃ (x̄k|k, 0)

and R̂k =
(
∂h
∂v́ (x̄k|k, 0)

)T
Ŕk

∂h
∂v́ (x̄k|k, 0), similar to Simon

(2006), under the additional assumption that x̄k|k is a
reasonably good estimate of xk.

4. NOMINAL STABILITY ANLAYSIS

In this section, we study the stability of the DKF in Fig.
1 under nominal conditions, i.e., ẃk = 0 and v́k = 0 for all
k. We define the following estimation errors of the AKF:

x̃k|k−1 = x̄k|k−1 − xk, x̃k|k = x̄k|k − xk. (18)

From (2), (7) and (8), it follows that the corresponding
difference equations under nominal conditions are

x̃k|k = (I − K̄kHk)x̃k|k−1, (19a)
x̃k+1|k = Fkx̃k|k, (19b)

where we note that wk and vk are uniformly zero because
ẃk and v́k are uniformly zero; see Section 2. The stability of
(19) follows directly from the well-known stability analysis
for Kalman filters in Jazwinski (2007).
Lemma 4.1. Under Assumptions 1-4, the nominal error
system of the AKF in (19) is UGAS.

Proof. See Jazwinski (2007, Theorem 7.4). 2

We denote the estimation errors of the LKF by
x̆k|k−1 = x̂k|k−1 − xk, x̆k|k = x̂k|k − xk. (20)

The difference equations of the corresponding error system
of the LFK under nominal conditions follow from (9), (14)
and (15):

x̆k|k = (I − K̂kCk)x̆k|k−1 + K̂kRk, (21a)
x̆k+1|k = Akx̆k|k −Qk, (21b)

where we note that the disturbances w̌k and v̌k are
uniformly zero because ẃk and v́k are uniformly zero, as
shown in Section 3. Remainder terms Qk and Rk depends
on the estimation error of the AKF.
Proposition 4.2. Under Assumptions 1-4, there exist
constants εq, εr ∈ R>0 such that
‖Qk‖ ≤ εq‖x̃k|k‖2, ‖Rk‖ ≤ εr‖x̃k|k‖2, ∀k ≥ 0.

Proof. From (10), (11) and (18), it follows that

Qi,k = x̃T
k|k

∫ 1

0

(1− s) ∂2fi
∂x∂xT

(xk + (1− s)x̃k|k, 0)ds x̃k|k,

(22)

Rj,k = x̃T
k|k

∫ 1

0

(1− s) ∂2hj
∂x∂xT

(xk + (1− s)x̃k|k, 0)ds x̃k|k

(23)
for i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. From Lemma 4.1 and
Assumption 2, it follows that the state xk and the error x̃k
are uniformly bounded. Moreover, Assumption 1 implies
that the Hessians of the functions f and h are continuous.
Therefore, there exist constants εq, εr ∈ R>0 such that∥∥∥∥ ∂2fi

∂x∂xT
(xk + (1− s)x̃k|k, 0)

∥∥∥∥ ≤ 2εq√
n
, (24)∥∥∥∥ ∂2hj

∂x∂xT
(xk + (1− s)x̃k|k, 0)

∥∥∥∥ ≤ 2εr√
p

(25)

for all k ≥ 0, i ∈ {1, . . . , n}, j ∈ {1, . . . , p} and s ∈ [0, 1].
The proposition follows from (22)-(25). 2

The combined error dynamics of the AKF in (19) and the
LKF in (21) can be regarded as a cascaded system, where
the estimation error of the AKF enters the error system
of the LKF via the remainder terms Qk and Rk. If the
estimation error of the AKF is zero, then the remainder
terms are zero (see Proposition 4.2), the error system of
the LKF in (21) reduces to

x̆k|k = (I − K̂kCk)x̆k, (26a)
x̆k+1|k = Akx̆k|k (26b)

and we obtain the following result.
Lemma 4.3. Under Assumptions 1-5, the (reduced) nom-
inal error system of the LKF in (26) is UGAS.

Proof. See Jazwinski (2007, Theorem 7.4). 2

Since the estimation error of the AKF has converged to
zero, the estimation error of the LKF converges to zero.
To prove that the cascaded nominal error system in (19)
and (21) is UGAS, it is sufficient to show in addition that
the state of cascaded nominal error system is UGB; see
Loria and Nešić (2002). The following lemma proves that
the cascaded nominal error system of the DKF in (19) and
(21) is UGB under the assumptions in this work.
Lemma 4.4. Under Assumptions 1-5, the cascaded nom-
inal error system of the DKF in (19) and (21) is UGB.

Proof. Lemma 4.1 directly implies that the error system
of the AKF in (19) is UGB because it is UGAS. Therefore,



the estimation error x̃k of the AKF is uniformly bounded
for any initial condition. To prove that the error system
of the LKF in (21) is UGB if x̃k is uniformly bounded, we
introduce the Lyapunov function candidate

Vk = x̆T
k|k−1P̂

−1
k|k−1x̆k|k−1. (27)

Under Assumption 5, it can be shown with a similar line of
reasoning as in the proofs of Jazwinski (2007, Lemmas 7.1-
7.2), that there exist constants cP̂1, cP̂2 ∈ R>0 and a
positive integer N such that

cP̂1I � P̂k|k−1 � cP̂2I, (28)
for all k ≥ N . This implies that Vk can be bounded by

1

cP̂2

‖x̆k|k−1‖2 ≤ Vk ≤
1

cP̂1

‖x̆k|k−1‖2, (29)

for all k ≥ N . From (14), (15), (21), (27) and the matrix
inversion lemma, we obtain

Vk+1 ≤ Vk +QT
k Q̂
−1
k Qk +RT

k R̂
−1
k Rk − (Ckx̆k|k−1 −Rk)T

× (CkP̂k|k−1Ck + R̂k)−1(Ckx̆k|k−1 −Rk), (30)
similar to the proof of Jazwinski (2007, Theorem 7.4).
From (30) and Young’s inequality, it follows that

Vk+1 ≤ Vk −
1

2
x̆T
k|k−1C

T
k (CkP̂k|k−1Ck + R̂k)−1Ckx̆k|k−1

+QT
k Q̂
−1
k Qk + 2RT

k R̂
−1
k Rk. (31)

From Proposition 4.2 and the bounds on R̂k in (16) and
Q̂k in (17), we obtain that for any uniformly bounded
solution of (19), there exist constants ρQ, ρR ∈ R>0 such
that 2RT

k R̂
−1
k Rk ≤ ρR and QT

k Q̂
−1
k Qk ≤ ρQ for all k ≥ 0.

Moreover, from the boundedness of Ck and the bounds
in (16) and (28), it follows that there exists a constant
ρC ∈ R>0 such that

Vk+1 ≤ Vk − ρC x̆T
k|k−1C

T
k Ckx̆k|k−1 + ρQ + ρR (32)

for all k ≥ 0. By recursively using (32), we get

Vk+N ≤ Vk − ρC
k+N−1∑

i=k

x̆T
i|i−1C

T
i Cix̆i|i−1 +NρQ +NρR

(33)
for any positive integer N . From (21), we have

x̆i|i−1 = Ψ(i, k)x̆k|k−1 +

i−1∑
j=k

Ψ(i, j + 1)
(
AjK̂jRj −Qj

)
(34)

for all i ≥ k, where Ψ(i, k) = Gi−1Gi−2 · · ·Gk for all i ≥ k,
with Gj = Aj(I − K̂jCj) for all j ≥ k, and Ψ(k, k) = I.
From (34), Young’s inequality and the boundedness of Ak,
Ck, K̂k, Rk and Qk, we obtain that there exists a constant
ρΨ ∈ R>0 such that

−
k+N−1∑

i=k

x̆T
i|i−1C

T
i Cix̆i|i−1 ≤

ρΨ

ρC

− 1

2
x̆T
k|k−1

(
k+N−1∑

i=k

Ψ(i, k)TCT
i CiΨ(i, k)

)
x̆k|k−1. (35)

Because it follows from Assumption 5 and Anderson and
Moore (1981, Lemma 3.1) that

k+N−1∑
i=k

Ψ(i, k)TCT
i CiΨ(i, k) � coI (36)

for some constant co ∈ R>0 and a sufficiently large integer
N , we obtain from (29), (33), (35) and (36) that

Vk+N ≤
(

1−
cocP̂1ρC

2

)
Vk +NρQ +NρR + ρΨ (37)

for all k ≥ N . By recursively applying (37), we obtain that

Vk0+iN ≤ Vk0 +
2 (NρQ +NρR + ρΨ)

cocP̂1ρC
(38)

for all k0 ≥ N and all nonnegative integers i. From (29)
and (38), it follows that

‖x̆k0+iN |k0+iN−1‖ ≤
√
cP̂2

cP̂1

‖x̆k0|k0−1‖

+

√
2cP̂2 (NρQ +NρR + ρΨ)

cocP̂1ρC
(39)

for all k0 ≥ N and all nonnegative integers i. Because the
boundedness of Ak, Ck, K̂k,Rk andQk implies that x̆k|k−1

remains bounded for all 0 ≤ k ≤ 2N under arbitrary initial
conditions, we conclude from (39) that the error system of
the LKF in (21) is UGB. Hence, the cascaded system in
(19) and (21) is UGB. 2

By combining Lemmas 4.1, 4.3 and 4.4, we obtain the
following result.
Theorem 4.5. Under Assumptions 1-5, the cascaded
nominal error system of the DKF in (19) and (21) is
UGAS.

Proof. The proof follows directly from Lemmas 4.1, 4.3
and 4.4 and Loria and Nešić (2002, Theorem 3). 2

Theorem 4.5 implies that the state estimate x̂k|k provided
by the DKF globally converges to the state xk of the
nonlinear system in (1) under nominal conditions if the
given assumptions hold.

5. NUMERICAL EXAMPLES

In this section, two different nonlinear systems are consid-
ered. The first example involves an inherent nonlinearity
in the dynamics. The second example has linear dynamics,
although, parameter estimation casts as a nonlinear sys-
tem. The estimation results using the DKF and the EKF
are compared.

5.1 Nonlinearity in dynamics

Consider the nominal nonlinear dynamics of the Van der
Pol oscillator
ẋ1 = x2 + w1, ẋ2 = (1− x2

1)x2 − x1 + w2, y = x1 + v

that can be discretized using Euler’s method with sam-
pling time Ts = 0.01 as
xk+1,1 = xk,1 + Tsxk,2 + Tswk,1, (40a)
xk+1,2 = xk,2 + Ts((1− x2

k,1)xk,2 − xk,1 + wk,2), (40b)
yk = xk,1 + vk, (40c)

where the states are xk,1 and xk,2. The disturbances wk

and vk are modeled as Gaussian white noise with variances
diag [0.001, 0.001] and 0.1, respectively.

DKF design: The model (40) corresponds to Assumption
3 that allows us to use the measurement yk to transform
the nominal nonlinear dynamics to a LTV model with
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Fig. 2. Different estimation methods for the numerical

example, (a) with correct initial estimate x̂0|0 =

[0.1, 2]T, for which the results with the EKF and
the DKF are almost indistinguishable, and (b) with
perturbed initial estimate x̂0|0 = [−8.8, 12]T

Fk =

[
1 Ts
−Ts 1 + Ts(1− y2

k)

]
, Hk = [1 0],

where the system matrix Fk is time varying. The imple-
mentation of the AKF is summarized by (7) and (8). The
matrix Ck = Hk and Ak of the LKF in (14) and (15) of
the DKF are given as follows

Ak =

[
1 Ts

−Ts(1 + 2x̄k|k,1x̄k|k,2) 1 + Ts(1− x̄2
k|k,1)

]
.

EKF design: We make use of the discrete-time EKF
that linearizes the system about the state estimate to
update the state covariance matrix as described in (Gelb,
1974). The tuning matrices of the EKF and the LKF

Table 1. accumulative estimation error

AKF DKF EKF
Acc. error (a) 0.79 0.75 0.78

Acc. error (b) 271 263 N/A

are chosen as the covariances of wk and vk, i.e. Q̂k =
diag [0.001, 0.001] and R̂k = 0.1. The tuning matrices of
the AKF are chosen differently to take into account the
effects described in Remark 3.2, i.e. Q̄k = diag [0.01, 0.01]
and R̄k = 0.1. Since the state correction of the EKF
is based on linearized dynamics, the wrong choice of
initial condition can result in a suboptimal solution. The
results are illustrated in Fig. 2, where the erroneous initial
guess made the EKF to diverge and fail, even though
the initial guess for covariance matrix has been updated
to compensate the wrong choice of initial state. On the
other hand, a correct initial guess for estimates, makes the
algorithms have similar performance. Table 1 also provides
a comparison between different estimation methods in the
sense of accumulated error (Acc. error) for all scenarios. It

should be noted that the main benefit of the DKF over the
EKF is its global convergence and any optimality analysis
is outside the scope of this study.

5.2 Nonlinear augmented parameter estimation problem

In this example, a linear model for a vibration system is
discretized using Euler’s method with the sampling period
Ts as follows

xk+1,1 = xk,1 + Ts(xk,2 + wk,1), yk = xk,1 + vk,

xk+1,2 = Ts(axk,1 + bxk,2 + uk + wk,2),

where a and b are unknown parameters, uk is the excitation
signal, and the states are denoted by xk,1 and xk,2. By
assuming the parameters constant over a sampling period,
one can augment them into the system (xk,3 := a and
xk,4 := b) for estimation purposes. So, the nonlinear model
for parameter estimation is
xk+1,1 = xk,1 + Ts(xk,2 + wk,1), (41a)
xk+1,2 = Ts(xk,3xk,1 + xk,4xk,2 + uk + wk,2), (41b)
xk+1,3 = xk,3, xk+1,4 = xk,4, yk = xk,1 + vk, (41c)

For the AKF design, the multiplicative nonlinearity can
be removed under nominal conditions (i.e. wk,1 = wk,2 =
vk = 0). For wk,1 = wk,2 = vk = 0, we obtain from
(41) that Tsxk−j,2 = yk−j+1 − yk−j and xj,1 = yj , for
all j = {0, 1, . . . , k}. We need to calculate xk,2 based on
previous measurements to formulate a causal model for the
AKF. So, rewriting the dynamics backward in time gives
Tsxk−2,2 = yk−1 − yk−2 = aT 2

s yk−3 + bTs(yk−2 − yk−3)

Tsxk−1,2 = yk − yk−1 = aT 2
s yk−2 + bTs(yk−1 − yk−2)

where a = xk,3 and b = xk,4 are functions of yk−j+1:

a =
ykyk−3 − yk−2(yk + yk−1) + y2

k−1

T 2
s (yk−1yk−3 − y2

k−2)
− 1

T 2
s

,

b =
ykyk−3 − yk−1yk−2

Ts(yk−1yk−3 − y2
k−2)

− 1

Ts
.

Hence, xk,2 = aTsyk−1 + b(yk − yk−1) =: φ(Yk−3
k ).

Therefore, the nonlinear model in (41) can be transformed
to the LTV model

xk+1 =

1 Ts 0 0
0 0 Tsyk Tsφ(Yk−3

k )
0 0 1 0
0 0 0 1

xk +

 0
Ts
0
0

uk, (42a)

yk = [1 0 0 0]xk (42b)
under nominal conditions. The DKF and the EKF are
applied to estimate the parameters a and b, where (41)
is linearized to obtain the LKF and the EKF, and where
(42) is used for the AKF. The disturbance wk and vk
are assumed to be Gaussian white noise with variances
diag [10−4, 10−4] and 0.01, respectively. The tuning matri-
ces of the EKF and the LKF are chosen accordingly as
Q̂k = diag [10−4, 10−4, 10, 10] and R̂k = 0.01 to obtain
the best performance, while the ones for AKF are slightly
different: Q̄k = diag [10−3, 10−3, 104, 102] and R̄k = 0.01.

Simulation results are presented in Fig. 3, where two
scenarios are compared like in the previous example.
In Fig. 3 (a), the second parameter estimate (denoted
by x̂4) of the AKF shows a bias that is due to the
neglected disturbances, which is compensated for by the
LKF. Finally, in Fig. 3 (b) it is illustrated that a wrong
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Fig. 3. Comparison of estimation methods, (a) with correct
initial estimate x̂0|0 = [0, 0,−25,−10]

T and (b) with
perturbed initial estimate x̂0|0 = [0, 0,−200,−200]

T.

choice of initial guess for the parameters results in an
erroneous linearization point for the EKF. Consequently,
the estimates diverge to wrong values, although the initial
covariance matrix has been updated accordingly. On the
other hand, the DKF converges to the right value even
though it uses the same initialization.

6. CONCLUSION

This paper summarizes the nominal error stability analysis
of a two stage estimation method for nonlinear systems in
the discrete-time domain. Since the so-called DKF uses an
equivalent LTV model in its first stage, global convergence
is achieved. Sufficient conditions for uniformly globally
asymptotic stability under nominal conditions are derived.
Furthermore, simulation results validate the stability of
the method.
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