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We prove that a generic multi-Higgs-doublet model (NHDM) generally must contain terms in the
potential that violate the custodial symmetry. This is done by showing that the O(4) violating terms
of the NHDM potential cannot be excluded by imposing a symmetry on the NHDM Lagrangian.
Hence we expect higher-order corrections to necessarily introduce such terms. We also note, in the
case of custodially symmetric Higgs-quark couplings, that vacuum alignment will lead to up-down
mass degeneration; this is not true if the vacua are not aligned.

I. INTRODUCTION

A recent analysis of data from the LHC has proven
the existence of a Higgs-like boson with mass at about
126 GeV [1, 2], while future investigations might give an
indication of a sector of scalar particles beyond the sin-
gle Higgs boson postulated by the standard model (SM).
A natural extension of the SM involving several scalar
particles is the SM augmented by several Higgs doublets,
resulting in what is denoted multi-Higgs-doublet mod-
els (NHDM). In these models, some of the Higgs bosons
should be responsible for the generation of the masses of
fermions and the electroweak bosons [3�6]. Other Higgs
particles might incorporate the dark matter [7�14]. In
addition, the NHDM naturally accommodates CP viola-
tion [13, 15�19].
What is usually referred to as the custodial symme-

try is an approximate SO(3) symmetry (often denoted
SO(3)V ) of the SM: The symmetry is exact in the limit
g′ → 0, where g′ is the hypercharge coupling constant, in
which the gauge bosonsW±, Z form a triplet (with iden-
tical masses). The name "custodial" was chosen since
the symmetry guards the tree-level relation

ρ ≡ m2
W

m2
Z cos θW

= 1, (1)

from radiative corrections. The radiative corrections are
proportional to g′2, and hence vanish in the custodial
symmetric limit g′ → 0, for the SM. What we refer to
as "the custodial SO(4) symmetry" is the (SU(2)L ×
SU(2)R)/Z2

∼= SO(4) symmetry which contains the cus-
todial SO(3) symmetry, see sec. II. The custodial SO(4)
symmetry is, before spontaneous symmetry breaking, ex-
act in the limit g′ → 0 for the scalar sector of the SM.
Adding scalar SU(2) doublets will not change the tree-

level relation (1). In the limit g′ → 0 we get the tree-
level relationsm2

W = m2
Z = (g2/4)(|v1|2+. . .+|vN |2) and

cos θW = 1. But additional O(4) violating terms from the
potential will contribute to ∆ρ at loop level. Complex
vacuum expectation values (VEVs) will also contribute
to ∆ρ at higher orders of perturbation theory. If we
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start with the most general explicitly, i.e. before sponta-
neous symmetry breaking, CP conserving NHDM poten-
tial, this can be written, after a possible SU(N) scalar
basis transformation, as a potential with arbitrary, but
real quadratic and quartic parameters [20]. This means
that we have no terms linear in the CP violating bilinear

operator Ĉ, cf. sec. III, while all other parameters in the
potential are arbitrary. Hence, the sources of violation
of the custodial SO(3) symmetry of a general, explicitly
CP invariant NHDM in the limit g′ → 0 are, (i) the CP
conserving while O(4) violating terms of the NHDM po-

tential (i.e. terms of the type Ĉ2), cf. sec. III; and (ii)
possibly complex VEVs, cf. [21] and sec. II.

Concerning the former source of ∆ρ: The O(4) violat-
ing terms of the NHDM potential which are quadratic
in the Higgs doublets, will contribute to ∆ρ at 1-loop
level. Furthermore, the quartic O(4) breaking terms of
the NHDM potential will contribute to ∆ρ at 2-loop level
[22].1

Although the O(4) violating terms of the NHDM po-
tential in general do not have to be exactly zero, their
magnitude will be constrained by ∆ρ, and also by the
oblique parameter U . Both ∆ρ and U are zero in the
custodial SO(3) symmetric limit [23, 24], as we already
have seen for ∆ρ. The magnitudes of ∆ρ and U will
grow with the violation of the custodial SO(3) symme-
try. The constraints on ∆ρ and U have for instance al-
ready excluded the CP violating 2HDM in a nontrivial
region of the parameter space [21]. Since an explicitly CP
violating 2HDM will violate CP through O(4) violating
quadratic terms, the result puts constraints on these O(4)
violating terms. Experimental results in the near future
may put further restrictions on both the quadratic and
quartic O(4) violating terms of the NHDM potential.

In an earlier paper [25] we investigated symmetry prop-
erties of the NHDM. There we saw that the most general
(explicitly) C invariant NHDM potential has an O(4)
symmetry (extending the custodial SO(4) symmetry)
only broken by certain quartic terms in the Higgs �elds,

1 The only 1-loop corrections from the terms quartic in the Higgs
doublets, the "tadpole" diagrams, yield vanishing contributions
to ∆ρ [22].
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of the type Ĉ2, cf. (8) below. The transformations C
and CP are equivalent for the NHDM, see the discussion

following (12). The terms Ĉ are odd under charge conju-

gation C, and hence terms quadratic in Ĉ are invariant
under C. We showed in [25] that, in case of real VEVs,

the presence of terms λ(3)Ĉ2, cf. (10), violates the cus-
todial SO(3) symmetry between the charged and C odd
Higgs sectors. We argued that the C odd and charged
sectors will get identical mass spectra in the limit g′ → 0,
in case the parameters of the type λ(3) initially are set to
zero. But when it comes to coupling constant renormal-

ization, terms of the type Ĉ2 may show up as countert-
erms, even though their corresponding parameters λ(3)

initially are set to zero [25].

Thus a question arises: Is it possible to �nd a dis-
crete symmetry D which is a symmetry of the C invari-
ant Higgs sector, except that it expels the O(4)-violating

terms, i.e. the terms of the type Ĉ2, from the NHDM po-
tential when it is imposed on the NHDM Lagrangian? If
there exists such a symmetry, we may impose this sym-
metry on the NHDM Lagrangian, and hence avoid terms

of the type λ(3)Ĉ2 at all momentum scales.

The discrete symmetry D has evidently to lie beyond

the symmetry group of Ĉ2 (which we denoted P ), but
has to be a symmetry of the (other) terms of the Higgs
Lagrangian. Hence it has to be an element of O(4), which
is the largest possible symmetry group of a Lagrangian
which can be expressed by real �elds organized in quadru-
plets, provided that the NHDM potential is complicated
enough so that di�erent Higgs quadruplets cannot be
transformed into each other. As we considered in [25],
the symmetry group of the kinetic Higgs terms may be
larger than O(4) if �elds with di�erent Higgs indices can
be transformed into each other: We there showed that the
kinetic terms where invariant under SU(2)×U(N) in the
case of N complex Higgs doublets. The U(N) component
will generally not be a symmetry of the Higgs potential,
since the Higgs �elds generally will occur in an asym-
metric manner in a potential. An element of this U(N)
component of the symmetry group of the kinetic terms,
that also is a symmetry of a speci�c NHDM potential,
is denoted a Higgs family (HF) symmetry of that poten-
tial [27]. In appendix A we show the only HF symmetry
of the quadratic (in the Higgs �elds) part of the general
C (i.e. CP ) invariant NHDM potential is an U(1) trans-
formation. This is a symmetry of all terms in a NHDM
potential, hence a HF symmetry cannot be imposed to

prevent the terms of the type Ĉ2 (and these terms only)
from occurring in the most general C invariant NHDM
potential.

Hence we can state that a symmetry transformation
of a NHDM Lagrangian with a su�ciently complicated
potential has to be an element of O(4) containing the cus-
todial SO(4) symmetry. In section VB1 we show that no
element of O−(4) (orthogonal matrices with negative de-
terminant) is a symmetry transformation of the kinetic
Higgs terms, and hence an exact (discrete or continu-

ous) symmetry of the scalar SM Lagrangian has to be an
exact subsymmetry of the approximate custodial SO(4)
symmetry. In section VB we show that all these exact
subsymmetries of the approximate custodial SO(4) sym-

metry also are symmetries of the terms Ĉ2, and hence
there is no symmetry that can be imposed on the general
C invariant NHDM, which expels the terms of the type

Ĉ2 only. Equivalently, there is no symmetry that can be
imposed on the general NHDM, which expels the O(4)
violating terms of the general NHDM only.
In theories with exact extended supersymmetry we

may avoid terms of the type λ(3)Ĉ2. Here we may set
λ(3) to zero at one momentum scale, and it will remain
zero at all scales, by the non-renormalization theorem
[26]. This does not contradict our result, since we are
only considering symmetries of the NHDM, i.e. bosonic
symmetries.
This paper is organized as follows: In section II we re-

vise the custodial symmetry of the standard model (SM).
In section III we reinvestigate the symmetry properties of
the operators which are the building blocks of the NHDM
potential, in terms of bidoublets�that is the Higgs �elds
represented by 4× 4 complex matrices. Moreover we in-
troduce some terminology, and quote some results from
[25]. The subject of section IV is to what extent the O(4)-
symmetry containing the custodial SO(4)-symmetry is a
symmetry of the di�erent parts of the Higgs and gauge
�eld Lagrangian. Some physical consequences of having
custodial symmetric Yukawa couplings are discussed in
section IVC. Finally, in section V we search for symme-
tries beyond the global SU(2)L × U(1)Y for the kinetic
Higgs terms, by investigating the adjoint action of O(4)
on the Lie algebra u(2), or more concretely, the well-
de�ned O(4) transformations of the gauge bosons, see
(31) below and the discussion thereof. Some mathemat-
ical discussions are delegated to the appendices.

II. THE APPROXIMATE SO(4) SYMMETRY OF

THE SM HIGGS LAGRANGIAN

Let the complex SM Higgs doublet be written

Φ =

(
φ+

φ0

)
. (2)

Then the global SO(4) = (SU(2)L × SU(2)R) /Z2 custo-
dial symmetry [29] of the SM Higgs Lagrangian (in the
limit g′ → 0) can be made manifest by rewriting the
Higgs doublet as a matrix (bidoublet)

Φ̌ =

(
φ0∗ φ+

−φ+∗ φ0

)
=

(
v∗ + η − iφ3 φ1 + iφ2
−φ1 + iφ2 v + η + iφ3

)
,

(3)

where v is the VEV. Here the Higgs potential will be
a function of Tr[Φ̌†Φ̌], and is hence invariant under the
global transformation

Φ̌→ ULΦ̌U†R, (4)
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where UL and UR are SU(2) matrices. The matrix UL
represents the usual gauged SU(2)L invariance. On the
other hand, UR represents an ordinary global transfor-
mation (where the gauge �elds, when g′ → 0, does not
transform in parallel with the Higgs doublet).
The SM scalar Lagrangian density can then be written

L =
1

2

(
Tr[(DµΦ̌)†DµΦ̌] + µ2Tr[Φ̌†Φ̌]− λTr[Φ̌†Φ̌Φ̌†Φ̌]

)
,

(5)

where the covariant derivative in the present notation is

DµΦ̌ = ∂µΦ̌ +
1

2
igWiµσiΦ̌−

1

2
ig′BµΦ̌σ3, (6)

where σi are the Pauli matrices. We see that the last
term breaks the SU(2)R symmetry because of the factor
σ3. However, in the limit g′ → 0 the whole SM scalar La-
grangian has the full SU(2)L×SU(2)R symmetry, when
the W �elds transform (as usual) as a triplet under (the
gauged) SU(2)L and as a singlet under the global SU(2)R
symmetry. Some authors refer to SU(2)R as the custo-
dial symmetry [28], others use the term of the symmetry
SU(2)L+R/Z2 = SO(3)V which leaves the SM vacuum
invariant [29]: The VEV of Φ̌ can be written

Φ̌0 =

(
v∗ 0
0 v

)
, (7)

and it is invariant under the transformation (4), Φ̌0 →
ULΦ̌0U†R, if UL = UR and if the VEV v is taken to be
real. In the NHDM, complex vacua may violate SO(3)V
in the same manner as in the SM [21]. In this article we
denote the SO(4) ∼= (SU(2)L × SU(2)R)/Z2 symmetry
as the custodial SO(4) symmetry, as in [30].

III. THE OPERATORS B̂ AND Ĉ OF THE

NHDM IN THE BIDOUBLET FORMULATION Φ̌

Consider the bilinear (i.e. linear in both Φm and Φn),

hermitian operators B̂ and Ĉ introduced in (2.3) of [25],
de�ned by2

B̂mn = B̂(Φm,Φn) = 1
2 (Φ†mΦn + Φ†nΦm)

Ĉmn = Ĉ(Φm,Φn) = − i
2 (Φ†mΦn − Φ†nΦm), (8)

where Φi refers to a doublet of the form (2), where every
scalar �eld has an additional index i,

Φj =

(
φ+j
φ0j

)
=

(
φ1j + iφ2j
vj + ηj + iχj

)
, j = 1, . . . , N. (9)

In (8) we let 1 ≤ m ≤ n ≤ N . The most general potential
V (Φ1, . . . ,ΦN ) of the NHDM can then be built up by

2 The operator Âm de�ned in [25] equals B̂mm (no sum over m).

products and sums of the operators in (8). The most
general C invariant NHDM potential can then be written

VC(Φ1, . . . ,ΦN ) = µmnB̂mn + λ
(2)
mn,m′n′B̂mnB̂m′n′

+ λ
(3)
mn,m′n′ĈmnĈm′n′ , (10)

with an implicit sum over repeated indices, where 1 ≤
m ≤ n ≤ N and 1 ≤ m′ ≤ n′ ≤ N for terms contain-
ing B̂, and 1 ≤ m < n ≤ N and 1 ≤ m′ < n′ ≤ N

for terms containing Ĉ. We also demand that the two
pairs of indices (mn)(m′n′) are "lexicographically" or-
dered to avoid double counting. This means e.g. that
indices (12)(13) are included, while indices (13)(12) are
excluded in the sums of (10). See sec. 2 in [25] for a more
compact indexing. Superscripts in the parameters λ are
chosen to coincide with the notation in [25].
The corresponding NHDM Lagrangian density is then

given by

L(x) =

N∑
m=1

[DµΦm(x)]†[DµΦm(x)]

− V (Φ1,Φ2, . . . ,ΦN ), (11)

where the covariant derivative here is de�ned as

Dµ = ∂µ + ig
σi

2
Wµ
i + ig′Y Bµ. (12)

The term `NHDM Lagrangian' is often used about the
Lagrangian density (11). We will apply the term `NHDM
Lagrangian' as referring to the Lagrangian density (11)
augmented by the (kinetic) gauge �eld Lagrangian given
by (34) below. For the NHDM Lagrangian, charge con-
jugation C and combined charge conjugation and par-
ity transformations, CP , are equivalent. This means
the NHDM Lagrangian (or more precisely, the action
thereof) is C invariant if and only if it is CP invari-
ant. Actually, it is only the NHDM potential that may
be explicitly C/CP violating, all other terms in the
NHDM Lagrangian obey C/CP transformations. More-
over, spontaneous CP violation is equivalent with spon-
taneous C violation, as shown in [25]. Hence the trans-
formations C and CP are, in essence, interchangeable in
this article. We prefer most of the time, for the sake
of simplicity, to use the notion `C invariant' etc, and
not to involve the parity transformation P : The e�ect of
charge conjugation C on (real representations of) com-
plex Higgs doublets may be implemented by a matrix
C ∈ SO(4) cf. (95), while this is not the case for the
space-time transformation P . Still, if we want to con-
fer our results e.g. with aspects of the CP (while not C)
conserving parts of the electroweak Lagrangian, we could
replace the term `C invariant' by `CP invariant' and so
on.
In the same manner as in the last section, we will now

show that the operator Ĉ does not share the SO(4) sym-
metry held by the rest of the NHDM potential: Let Φ̌i re-
fer to a bidoublet of the form (3), where every scalar �eld
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has an additional index i. A simple calculation shows
that

B̂(Φm,Φn) =
1

2
Tr(B̂(Φ̌m, Φ̌n)), (13)

while

Ĉ(Φm,Φn) = −1

2
Tr(Ĉ(Φ̌m, Φ̌n)σ3)

= −1

2
Tr(σ3Ĉ(Φ̌m, Φ̌n)). (14)

The latter con�rms that the operator Ĉ, in contrast to B̂,
does not have the SU(2)R [and hence neither the SO(4)-]
symmetry since the presence of the factor σ3 hinders us
from utilizing the cyclic property of the trace. Further-
more, the identity

Ĉ(Φm,Φn)Ĉ(Φm′ ,Φn′)

= −1

2
Tr(Ĉ(Φ̌m, Φ̌n)σ3Ĉ(Φ̌m′ , Φ̌n′)σ3)

= −1

2
Tr(σ3Ĉ(Φ̌m, Φ̌n)σ3Ĉ(Φ̌m′ , Φ̌n′)), (15)

infers that operators of the type Ĉ2, in the same manner

as for Ĉ above, do not share the SO(4) symmetry of a

NHDM potential built up by the operators of the types B̂

and B̂2 only. This is also shown in section 2.2 of [25], but
in a di�erent manner: Here we showed that the symmetry

group of Ĉ is Sp(2,R), while the symmetry group of Ĉ2

is P (2,R), with

P (2,R) = Sp(2,R) ∪ P (2,R)−. (16)

Here the real symplectic group Sp(2,R) is de�ned by

Sp(k,R) = {S ∈ GL2k(R)|STJ S = J }, (17)

with

J =

(
0k Ik
−Ik 0k

)
, (18)

where 0k and Ik is the k × k zero matrix and the k × k
identity matrix, respectively. The component P (2,R)−

of the Lie group P (2,R), de�ned by

P (k,R)− = {S ∈ GL2k(R)|STJ S = −J }, (19)

consists of matrices with determinant

det(P (k,R)−) = (−1)k. (20)

In the relevant case k = 2, P− evidently consists of 4 ×
4 matrices with determinant 1. The same is true for
Sp(2,R).
The custodial SO(4) symmetry however, is not a sub-

set of P (2,R), and is hence not a symmetry of the oper-

ators of the type Ĉ2 (nor Ĉ). See �gure 1 for a diagram
showing the intersections of the most important symme-
try groups in this article.

IV. SYMMETRIES OF THE KINETIC TERMS

We now turn to the (global) symmetries of the kinetic
terms of the NHDM Lagrangian,

K =

N∑
n=1

[(∂µ +Gµ) Φn(x)]
†

[(∂µ +Gµ) Φn(x)] , (21)

with

Gµ = ig
σi

2
Wµ
i + ig′Y Bµ. (22)

We will let Ki denote the terms of the i'th order in the
gauge �elds.

A. Possible extensions of the global SU(2)L × U(1)Y
symmetry

Now we will start investigating the possibility of hav-
ing discrete or continuous symmetries beyond the global
SU(2)L ×U(1)Y ∼= U(2) gauge symmetry3, in the scalar
sector. We do this by writing the NHDM Lagrangian in
real form, i.e. we write the complex Higgs doublets as real
quadruplets. In [25] we demonstrated that the kinetic
terms of the NHDM Lagrangian has a symmetry group
containing SU(2) × U(N) (enhanced to SU(2) × Sp(N)
in the limit g′ → 0), when we allowed the di�erent Higgs-
�elds to transform into each other. In the analysis below,
we will not consider the possibility of di�erent Higgs-
doublets transforming into each other, since these trans-
formations will not be symmetries of the general C in-
variant NHDM potential, see appendix A.
Consider the kinetic terms not involving gauge �elds,

K0, of the Higgs Lagrangian,

K0 =

N∑
n=1

∂µΦTn∂µΦn, (23)

where the complex Higgs doublet (Φn)2 = Ψn + iΘn is
written in real form, as a quadruplet from now on denoted

Φn =

(
Ψn

Θn,

)
. (24)

We see that we can assign the terms K0 a O(4) sym-
metry by

Φn → OΦn, (25)

3 More precisely we have SO(3)×U(1) ∼= (SU(2)L×U(1)Y )/Z2
∼=

U(2), where the divisor Z2 is necessary since multiplication by
−I can be expressed both by SU(2) and U(1). We can hence
identify elements (−U)×U ′ ∼ U×(−U ′), where U ∈ SU(2)L and
U ′ ∈ U(1)Y . Only multiplication by −I ∈ U(2) can be expressed
both by U(1) and SU(2): Assume U = exp(iα)I ∈ SU(2). Then
1 = det(U) = exp(2αi), and hence α = π, i.e. exp(iα) = −1. The
direct product SU(2)L × U(1)Y is therefore in reality a double
cover of U(2).
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Figure 1: Diagram showing the overlap between relevant symmetry groups. The SO(4) symmetry group is the custodial
symmetry, U(2) ∼= SO(4) ∩ Sp(2,R) ∼= SU(2)L × U(1)Y is the global symmetry of the SM, Sp(2,R) is the symmetry group

of operators of type Ĉ, while P (2,R) is the symmetry group of operators of type Ĉ2. Finally, O(4) is the symmetry group of

operators of type B̂. Charge conjugation C will be an element of P (2,R)− ∩ SO(4) where P (2,R)− = P (2,R)− Sp(2,R), and
the same is true for the matrix J of (18) (with k = 2).

with O ∈ O(4) and Φm given by (24). The terms K0 are
invariant under the transformation (25) since OTO = I
for O ∈ O(4). The global symmetry SU(2)L × U(1)Y ∼=
U(2) will then be embedded into SO(4) ⊂ O(4) by the
map

ρ(X) =

(
Re(X) −Im(X)
Im(X) Re(X)

)
, (26)

cf. appendix B of [25]. Then the image of U(2) under ρ,

ρ[U(2)] ⊂ SO(4), (27)

is the global symmetry of the SM, when the �elds are
written as real quadruplets. The map ρ is an isomor-
phism onto its image ρ[U(2)], and hence ρ[U(2)] ∼= U(2)
(i.e. ρ[U(2)] is a way to write U(2) in real form).
We can then, as we showed in [25], write

K1 =

N∑
n=1

∂µ(Φn)†2Gµ(Φn)2 + (Φn)†2G
µ†∂µ(Φn)2

=

N∑
n=1

∂µΦTnTµΦn + ΦTn (−T µ)∂µΦn (28)

where the subscript 2 in (Φn)2 indicates this is the usual
complex Higgs doublet, while Φn is the four-dimensional
real vector (24). Furthermore, the 4× 4 matrix T µ,

T µ = ρ(Gµ), (29)

is given by [25]

T µ =

(
gWµ

I −gWµ
R − g′ Y BµI2

gWµ
R + g′Y BµI2 gWµ

I

)
, (30)

with Wµ
R =

∑
i=1,3W

µ
i

1
2σ

i where the sum involves

the real Pauli matrices σ1 and σ3. Moreover, Wµ
I =

iWµ
2

1
2σ

2, where σ2 is the imaginary Pauli matrix. The
matrix I2 is the 2× 2 identity matrix.
We then see that the kinetic terms K1 apparently are

invariant under the O(4) transformation (25) if we let the
matrix T µ transform

T µ → OT µOT (31)

simultaneously with (25). As we will see, can the trans-
formation (31) be described as the adjoint action of O(4)
on the Lie algebra u(2) (the latter is represented by the
matrix T µ). The SM gauge bosons transform as usual
under the global SU(2)L × U(1)Y ∼= U(2) ∼= ρ[U(2)] ⊂
SO(4), since for u ∈ U(2)

uGµu† = ρ(u)ρ(Gµ)ρ(u†) = ρ(u)T µρ(u)T , (32)

where uGµu† is the way the gauge �elds transform (glob-
ally) in the SM (they transform under the adjoint repre-
sentation of SU(2)L ×U(1)Y ) [38]. We will in sec. VB1
note that in the case g′ → 0, the combined transforma-
tions (25) and (31) give us the custodial SO(4) symmetry.
The only problem is that the transformation (31) might

not be well-de�ned for choices of O beyond the global
gauge group U(2). The transformation is only well-
de�ned when it induces consistent transformations of
each of the �elds; i.e. it is well-de�ned when it makes each
of the �elds transform in the same manner everywhere in
the matrix T . For instance, we cannot accept that Bµ

transforms as Bµ → Bµ in T µ14, while it transforms as
Bµ → −Bµ in T µ41. In section V we will investigate what
kinds of transformations O make (31) well-de�ned.
Third, we consider the kinetic terms quadratic in the

gauge �elds,

K2 =

N∑
n=1

(Φn)†2G
µ†Gµ(Φn)2

= −
N∑
n=1

ΦTnT 2Φn, (33)

which obviously are invariant under the O(4) symmetry
given by eqs. (25) and (31), when the latter transforma-
tion is well-de�ned.

B. The gauge �eld Lagrangian

In this section we want to show that transformation
(31) also is a symmetry of the kinetic part of the gauge
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�eld Lagrangian. The reason for this is to ensure that
symmetries contained in O(4) are not violated by higher
order diagrams involving diagrams generated by the (ki-
netic part of the) gauge �eld Lagrangian.
Consider the kinetic terms of the gauge �eld La-

grangian, formulated as the trace of the commutator of
two covariant derivatives [as given in (12)],

LGB = −1

2
Tr

((
i

g
[Dµ, Dν ]

)2
)∣∣∣∣

g′Y→g
. (34)

A general relation is

Tr(ρ(X)) = 2Re(Tr(X)) = 2Tr(X), (35)

where the last equality is valid when the trace is real, as
it is in (34).
Then

LGB = −1

4
Tr

(
ρ

((
i

g
[Dµ, Dν ]

)2
))∣∣∣∣

g′Y→g

=
1

4g2
Tr
(
[ρ(Dµ), ρ(Dν)]2

) ∣∣∣
g′Y→g

=
1

4g2
Tr
(
[Tµ, Tν ]2

) ∣∣∣
g′Y→g

(36)

since ρ preserves matrix multiplication and addition, and
since the partial derivatives commute. (36) is invariant
under the transformation (31), by the cyclic property of
the trace.

C. Yukawa couplings

The most general Yukawa couplings of the quark sector
are of the form [17]

LQH = −Q̄L
(

∆jΦ̃jpR + ΓjΦjnR

)
+ h.c., (37)

where summation over j = 1, 2, . . . , N is implicit. The
symbol Q̄L denotes a 1× 3 vector consisting of the three
left-handed quark doublets,

Q̄L =
[
(u†L, d

†
L) (c†L, s

†
L) (t†L, b

†
L)
]
γ0, (38)

where nR and pR denote (following the notation of [17])
3× 1 vectors consisting of the right-handed quark �elds,

nR =

dRsR
bR

 , pR =

uRcR
tR

 , (39)

and where each of these six quark �elds is a four-
component Dirac spinor. Γj and ∆j are arbitrary, com-

plex 3 × 3 matrices. Moreover, the complex doublet Φ̃j
is de�ned by

Φ̃j = −i(Φ†jσ2)T , (40)

where Φj is de�ned in (9).
The authors of [21, 31, 32] has in the context of the

2HDM shown that the imposition of the custodial sym-
metry on the Yukawa couplings yields constraints on the
coupling matrices Γj and ∆j , with consequent mass de-
generation of the up- and down-type quarks in the Higgs
basis (i.e. mass degeneration of the quarks in the case
of vacuum alignment). Following [21] we may in the
NHDM, after a possible change of scalar �eld basis4

[30], write the custodial symmetric Yukawa terms for the
quarks as

LQH = −Q̄L
(
ΓjΦ̌j

)(pR
nR

)
+ h.c., (41)

where Φ̌j = (Φ̃j ,Φj) is a 2 × 2 complex matrix, gen-

eralizing the bidoublet Φ̌ of (3) to the NHDM. (41)
is then invariant under the custodial SO(4) symmetry,

by transforming Q̄L → Q̄LU
†
L, Φ̌j → ULΦ̌jU

†
R and

(pR, nR)T → UR(pR, nR)T , where UL ∈ SU(2)L and
UR ∈ SU(2)R.
By comparing eqs. (37) and (41) we see that we need

to have

Γj = ∆j (42)

for j = 1, . . . , N to get custodial SO(4) symmetric
Yukawa terms for the quarks. Then the mass matrices of
the up and down-type quarks are given by

Mu = Γjv
∗
j , Md = Γjvj , (43)

with a implicit sum over j. In the case of vacuum align-
ment, all VEVs vj are either real, or all VEVs vj are
imaginary. Then the two mass matrices of (43) will yield
identical masses when bidiagonalized, and hence we have
mass degeneration of up- and down-type quarks in the
case of vacuum alignment. Therefore, in the case of vac-
uum alignment, the custodial SO(4) symmetry of the
quark-Higgs coupling terms must be broken (before spon-
taneous symmetry breaking), to avoid up-down mass de-
generation.
If we do not have vacuum alignment, we only necessar-

ily get identical masses from the bidiagonalization of the
mass matrices of (43) in the case N = 1. If N ≥ 2, we
will generally not get up-down mass degeneration, since
the matricesMu = Γjv

∗
j andMd = Γjvj (summed over j)

will infer di�erent diagonal matrices D. Still, the pres-
ence of several non-zero Yukawa coupling matrices Γj
generically will infer �avor changing neutral Yukawa in-
teractions (FCNYI) [17], since e.g. Md = Γjvj and each
Γj generally will not be diagonal in the same basis. FC-
NYI can be avoided by demanding that all matrices Γi

4 A change of scalar �eld basis is a transformation of the scalar
�elds, Φm →

∑
n UmnΦn, where U ∈ U(N). Such a transforma-

tion changes the NHDM potential, but not the physics nor the
symmetries thereof.
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and ∆j are zero except for (i) two matrices with i = j;
or (ii) two matrices with i 6= j. The two scenarios can
be enforced by discrete symmetries [17]. For the 2HDM,
scenario (i) is denoted 2HDM type I, while scenario (ii)
is known as 2HDM type II. The minimal supersymmetric
standard model (MSSM) contains a Higgs sector which is
a speci�c variant of the 2HDM type II. We see that (i) for
the NHDM is consistent with a SO(4) symmetric Yukawa
sector, when e.g. Γ2 = ∆2 6= 0, while the other coupling
matrices equal zero. But this will still infer up-down mass
degeneration, since Md = Γ2v2 and Mu = Γ2v

∗
2 are bidi-

agonalized to the same diagonal matrix. Scenario (ii) is
not consistent with a SO(4) symmetric Yukawa sector,
since e.g. Γ1 6= 0 while ∆1 = 0 is inconsistent with (42).
On the other hand, if we in the NHDM let Γ1 and Γ2

be diagonal and Γj = 0 for j > 2, we can get custo-
dial symmetric Yukawa couplings of the quarks, realis-
tic quark masses and no FCNYI. The constraints on the
Yukawa coupling matrices can be enforced by discrete
symmetries. The mass matrices will then be diagonal in
the same bases as the coupling matrices, and hence we
will have no FCNYI. Moreover, the mass matrices can
be bidiagonalized (made real) by diagonal matrices. But
then the CKM matrix will become diagonal, contrary to
experiment.
Another possibility is the case where the Yukawa cou-

pling matrices are proportional to each other, a scenario
denoted Yukawa alignment [33]. Then the Yukawa cou-
pling matrices are of the form

Γj = djΓ1, (44)

where each dj is a complex number, and d1 = 1. When
the Yukawa couplings of the quarks are custodial sym-
metric, the quark mass matrices will become

Mu = (djv
∗
j )Γ1, Md = (djvj)Γ1. (45)

Then the mass matrices and the coupling matrices will
be diagonal in the same bases, since they are all pro-
portional, and we will have no tree-level FCNYI. If all
constants dj are real, we will get up-down mass degen-
eration, since the mass matrices will di�er only by an
all-over complex phase. But if some of the numbers dj
have a non-zero imaginary part, the mass spectra of Mu

and Md will in general di�er. Complex constants dj may
also be a source of CP violation. Unfortunately, the pro-
portionality assumption (44) is in general not radiatively
stable [34], and we may obtain large, radiatively gener-
ated FCNYI [35].
Mechanisms for natural suppression (i.e. suppression

through an exact or approximate symmetry) of FCNYI
(where the FCNYI are suppressed, but non-zero) might
still allow for custodial symmetric Higgs-quark couplings,
without up-down mass degeneration. For instance, BGL-
type models [36] where �avor changing couplings of neu-
tral scalars are �xed by quark masses and elements of
the CKM matrix. Here the �avor changing couplings are
suppressed by some of the measured, small o�-diagonal

elements of the CKM matrix. Another way of suppress-
ing FCNYI is by heavy neutral scalars, where the scalars
have to be in the TeV range [17]. Scalar masses in the
TeV range are regarded as unnatural, but is consistent
with the recently measured, NHDM-sensitive branching
fraction of the rare decay B0

s → µ+µ−, which was found
to be in agreement with the SM expectation [37]. Some
�ne-tuning of the Yukawa couplings will still be needed
to avoid too much FCNYI mediated by the SM Higgs.
If the VEVs are not aligned, we may, if the NHDM po-

tential is explicitly CP symmetric, have spontaneous CP
violation. Moreover, the custodial SO(3)V symmetry will
be spontaneously broken. If the potential is SO(4) sym-
metric, 5 of 6 SO(4) generators will be spontaneously
broken by the non-aligned VEVs. 3 of these 5 broken
generators will generate the Higgs ghosts. The two other
broken generators will yield a pair of charged, nearly
massless pseudo-Goldstone bosons (massless to zero'th
order in g′) [25].
Imposing the custodial symmetry on the Yukawa cou-

pling terms of the leptonic sector will lead to constraints
analogous to (42) on the coupling matrices of the leptonic
sector.

V. THE ADJOINT REPRESENTATION OF O(4)

To decide which transformations beyond U(2) make
the transformation (31) well-de�ned, we have to consider
the adjoint representation of O(4). We know the stan-
dard model gauge �elds transform as the adjoint repre-
sentation of U(2), which is, written in real form, a sub-
representation of the adjoint representation of O(4). For
a matrix d ∈ O(4) − U(2) such that (31) is well-de�ned
for O = d, the matrix d generates a discrete symmetry of
the kinetic terms of the electroweak Lagrangian. Further-
more, if we could �nd such a d ∈ O(4)− P (2,R) (where
P (2,R) is the symmetry group of the operators of the

type Ĉ2, de�ned in (16), see also �gure 1), we could im-
pose this discrete symmetry on the C invariant NHDM
Lagrangian and hence avoid terms proportional to the

O(4)-violating (but C invariant) operators Ĉ2. Then we,
because of the discrete symmetry, would have excluded
these O(4)-violating terms both from the original poten-
tial and during renormalization.

A. Some mathematical preliminaries

Generally, the adjoint representation of a (matrix) Lie
group G is a homomorphism

Ad : G→ GL(g,R), (46)

where g is the Lie algebra of G and

Ad(g)(X) = gXg−1, (47)
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for g ∈ G and X ∈ g. Ad is now a representation of G,
acting on the vector space g. The linear transformation
Ad(g) on the Lie algebra g is called the adjoint action of
g on g. The set of all such linear transformations,

Ad[G] = {Ad(g) : g ∈ G}, (48)

is called the adjoint action of (the Lie group) G on (its
Lie algebra) g. Moreover, the set GL(g,R) is the set
of all linear, invertible transformations L, on the real
vector space g. If the dimension of g is n (i.e. g has
n basis vectors) GL(g,R) consists of all real, invertible
n × n matrices. In the case G = SO(4), and hence g =
so(4) (which we will consider in the next section), the
dimension of g is n = 6, and therefore GL(so(4),R) will
consist of all real, invertible 6× 6 matrices.
Denote the image Ad[G] of the adjoint representation

AdG, where AdG ⊂ GL(g,R). When G is connected, the
kernel of the adjoint representation is the center Z(G) of
G [39]

Z(G) = {g ∈ G | ∀x ∈ G (xg = gx)}. (49)

The �rst isomorphism theorem of group theory then
gives us

AdG ∼= G/Z(G). (50)

In the case of SO(4), which is connected, Z(SO(4)) =
{±I}. Hence

AdSO(4) = SO(4)/{±I}. (51)

Now the group SO(4) is not simple, in contrast to SO(N)
for N = 3 and for N ≥ 5. Therefore SO(4) can be,
modulo its center {±I}, written as a direct product [46]

SO(4)/{±I} ∼= SO(3)× SO(3). (52)

Hence, we have that

AdSO(4)
∼= SO(3)× SO(3), (53)

which we also will see explicitly below.

B. The e�ect of the adjoint action

We will now explicitly consider the e�ect of the ad-
joint action of O(4) (in fact on the Lie algebra u(2),
here parametrized by the gauge boson matrix T µ), to
see if it permits any symmetries beyond the (global)
U(2) = SU(2)L × U(1)Y symmetry of the SM. We re-
gard the real variant of U(2); embedded in SO(4) by the
map ρ, and try to see if the adjoint action (31) can be
well-de�ned for any matrices

O ∈ O(4)− U(2), (54)

where U(2) in reality is "shorthand" for ρ[U(2)], the im-
age of U(2) under ρ. (We will do similar abbreviations

many places in this article, as implied by the context.)
The sets U(2) and ρ[U(2)] are the same Lie group, but
the latter is expressed by real numbers. The matrix T
only contains the gauge �elds of the SM (W1,W2,W3, B),
that is, gauge �elds corresponding to the Lie algebra
u(2) ⊂ so(4) (here u(2) is written in real form, i.e. u(2)
is here shorthand for ρ[u(2)]). Hence the adjoint action
(31) often will demand the extra gauge-�elds X and Y of
o(4)−u(2), for all gauge �elds to transform in consistent
manners in T , when the transformation (31) is carried
out with an O ∈ O(4)−U(2). We will in the subsequent
search for transformations O ∈ O(4) − U(2) which do
not demand the introduction of the extra gauge-�elds of
o(4) − u(2) to make the adjoint action (31) consistent
(i.e. well-de�ned).
A basis for the Lie algebra so(4) is [25]

J1 =

 0 1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

 , J2 =

 0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,

J3 =

 0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , J4 =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 ,

J5 =

 0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 , J6 =

 0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 . (55)

Now regard the basis of the Lie algebra so(4) given by

{Xi} =

{ 12 (J2 + J5), 12 (J1 + J4), 12 (J6 − J3),
1
2 (J6 + J3), 12 (J2 − J5), 12 (J1 − J4)}, (56)

where Xj = ρ
(
(i/2)σj

)
, j = 1, . . . , 3, and X4 =

ρ ((i/2)I2), i.e. the generators X1, . . . , X4 are real forms
of the generators of the SU(2)L × U(1)Y gauge group.
Hence X1, . . . X4 corresponds to the SM gauge bosons
W1,W2,W3, B, while X5, X6 would, if we regarded a full
SO(4) gauge symmetry, correspond to two non-SM gauge
�eldsX and Y .5 Then, since T = ρ(G) (here we suppress
the Lorentz index µ),

T =

4∑
j=1

wjXj , (57)

5 The Lie algebra so(4) ∼= su(2) ⊕ su(2), and in our notation
the matrices X1, X2, X3 is a basis for one copy of su(2) while
X4, X5, X6 is a basis for the other copy of su(2). The matrices
X5, X6 are chosen such that the usual commutator rules for the
Lie algebra su(2) are valid, for instance will [X5, X6] = −X4,
just as [X2, X3] = −X1. Moreover, [su(2)⊕ {0}, {0} ⊕ su(2)] =
[
∑3

j=1 tjXj ,
∑6

j=4 tjXj ] = 0 for t1, . . . , t6 ∈ R, as the de�nition
of a direct sum of Lie algebras demands.
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where

wj = gWj for j = 1, 2, 3, and w4 = 2g′Y B, (58)

and we also de�ne

w5 = gXX, w6 = gY Y. (59)

Since the Lie group SO(4) is compact and connected,
exponentiation of its Lie algebra generates the whole
group: exp[so(4)] = SO(4). Moreover, we can write
SO(4) as a product of exponentiated generators ("one-
parameter subgroups")

U = {et1X1et2X2 · · · et6X6 | ~t ∈ R6} = SO(4). (60)

Obviously U ⊂ SO(4), since all the exponentials are ele-
ments of SO(4). The equality U = SO(4) will be demon-
strated explicitly below, cf. the discussion following (70).
We will now consider each exponentiation etiXi of the

generators Xi, and see which e�ect each of them has
on the Lie algebra so(4) under the adjoint action [the
adjoint action will yield a linear transformation on so(4),
according to (46)]:
Let Pij(θ) denote the 6× 6 matrix with elements

pii = pjj = cos(θ)

pij = −pji = sin(θ)

pkk = 1 k 6= i, j, (61)

with all other elements equaling zero. For instance,
P24(θ) is then given by

P24(θ) =


1 0 0 0 0 0
0 cos(θ) 0 sin(θ) 0 0
0 0 1 0 0 0
0 − sin(θ) 0 cos(θ) 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (62)

Let so(4) be expressed by the basis {Xi} of (56). Then,
for example, the e�ect of et1X1 ∈ SO(4) on so(4) by the
adjoint action is [see eqs. (31) and (47)],

et1X1

6∑
i=1

wiXie
−t1X1 = et1

1
2 (J2+J5)

6∑
i=1

wiXie
−t1

1
2 (J2+J5)

= E1 ~w ~X, (63)

where ~w ~X =
∑6
i=1 wiXi is a general element in so(4),

and where the e�ect is summarized by the 6 × 6 matrix

E1. Hence Ad(et1X1) maps ~w to ~w′ = E1 ~w.
Thus, the e�ect Ei of each etiXi (no sum over i) on

so(4) by the adjoint action, can then be calculated by

the formula etiXi ~w ~Xe−tiXi = Ei ~w to be

E1 = P23(t1), E2 = P31(t2), E3 = P12(t3)

E4 = P56(t4), E5 = P64(t5), E6 = P45(t6). (64)

Moreover, the e�ect Er of the re�ection

r =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (65)

is then

Er =


0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 . (66)

The e�ect of the general element u =
et1X1et2X2 · · · et6X6 of U ⊆ SO(4), U introduced in
(60), is then given by

u~w ~Xu−1 = ~w′ ~X ⇔ ~w′ = E~w (67)

where

E = E1E2 · · ·E6. (68)

Combining eqs. (64) and (68), we get

E =

(
A(t1, t2, t3) 03×3

03×3 A(t4, t5, t6)

)
, (69)

where

A(x, y, z) =

 cycz cysz −sy
czsxsy − cxsz cxcz + sxsysz cysx
cxczsy + sxsz cxsysz − czsx cxcy

 ,

(70)

which is just the general element of SO(3), written in
the "xyz (pitch-roll-yaw) convention" [40]. Hence the
e�ect E of the general element u of the set U in (60)
is just SO(3) × SO(3), since (69) yields two indepen-
dent copies of SO(3). Since we already, in (53), stated
that AdSO(4) = SO(3) × SO(3), we know that the
parametrization U of (60) covers the whole of SO(4), at
least modulo multiplication by ±I, cf. (52), where I de-
notes the identity. Moreover, since all exponentials etjXj

(no sum over j) consists of sines and cosines of angles
tj/2 we can express multiplication by minus the 4 × 4
identity, −I4, in U ;

e(tj+2π)Xj = −etjXj = −I4etjXj , (71)

for any �xed j ∈ {1, . . . , 6}. Hence U = ±U =
SO(4), since all elements of all equivalence classes in
SO(4)/{±I} are elements of U , cf. eqs. (52) and (60).
We do not want to introduce gauge bosons beyond the

SM, neither before nor after application of the adjoint
action. Hence the parameters w5, w6 and w

′
5, w

′
6 must be

zero (w5, w
′
5 corresponded to a non-SM gauge-boson X

through the generator X5, while w6, w
′
6 corresponded to
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a non-SM gauge boson Y through the generator X6, see
(56) and the discussion after). Then we have to demand
that some of the elements of E equal zero, namely

E5i = E6i = 0, i = 1, . . . , 4. (72)

We want to �nd for which values of the angles t1, . . . , t6
the e�ect of the adjoint action E does not force us to
introduce non-SM gauge bosons X and Y , corresponding
to w5 = gXX and w6 = gY Y . It is then su�cient to
consider a matrix

Ẽ = E5E6 = E(t1 = . . . = t4 = 0), (73)

for if

~w′ = Ẽ ~w, (74)

with

w5 = w6 = w′5 = w′6 = 0, (75)

then the matrix E1 · · ·E4,

E1 · · ·E4 = E(t5 = t6 = 0)

=

(
A(t1, t2, t3) 03×3

03×3 A(t4, 0, 0)

)
, (76)

with

A(t4, 0, 0) =

 1 0 0
0 ct4 st4
0 −st4 ct4

 , (77)

does not introduce non-SM gauge �elds when applied on

the vector ~w′ of (74), that is,

~w′′ = E1 · · ·E4
~w′, (78)

since w′′5 = w′′6 = 0.

Combining the expression for Ẽ of (73) and the rela-

tion ~w′ = Ẽ ~w for this case (w5 = w6 = w′5 = w′6 = 0)
gives us the equation

w′1
w′2
w′3
w′4
0
0

 = ~w′ = Ẽ ~w

=

 I3×3 03×3

03×3

ct5ct6 ct5st6 −st5
−st6 ct6 0
ct6st5 st5st6 ct5



w1

w2

w3

w4

0
0

 ,

(79)

We hence see that the only non-trivial constraints are
Ẽ54 = Ẽ64 = 0.

The constraints Ẽ54 = Ẽ64 = 0 read

− sin(t6) = 0,

cos(t6) sin(t5) = 0, (80)

and hence,

sin(t5) = 0,

sin(t6) = 0. (81)

So we have

t5, t6 = nπ, n ∈ Z, (82)

not necessarily with the same n for both t5 and t6.
Now we want to check if the constraints (82) are consis-

tent with any (discrete) symmetries d ∈ SO(4)−P (2,R),
i.e. symmetries beyond the symmetry group of the oper-

ators of the type Ĉ2. The general element of SO(4) can
be written

O = et1X1et2X2et3X3et4X4et5X5et6X6 , (83)

but it is enough to consider matrices6

O = et5X5et6X6 =

 c5c6 c5s6 s5s6 c6s5
−c5s6 c5c6 −c6s5 s5s6
−s5s6 c6s5 c5c6 −c5s6
−c6s5 −s5s6 c5s6 c5c6

 ,

(84)

where we have de�ned

ci ≡ cos(ti/2), si ≡ sin(ti/2). (85)

We hence �nd that the matrix O of (84) depends on
angles ti/2 for i = 5, 6. Then we have to regard the cases
where

t5, t6 ∈ {0, π, 2π, 3π}, (86)

cf. (82). We then �nd that

cos(t5/2) sin(t6/2) = ±1 or sin(t5/2) cos(t6/2) = ±1

⇒ O ∈ SO(4) ∩ P (2,R)−, (87)

while we otherwise (e.g. for t5 = t6 = 0) have

O ∈ SO(4) ∩ Sp(2,R) = U(2). (88)

Eqs. (87) and (88) are found by comparing the form of O,
given by eqs. (84) and (86), with respectively the forms

6 Let u ∈ U(2) ⊂ P (2,R) and d ∈ SO(4) − P (2,R). Then ud /∈
P (2,R): Assume the opposite, ud ∈ P (2,R). Then u−1(ud) =
d ∈ P (2,R), a contradiction. Hence, if d = et1X1 · · · et6X6 /∈
P (2,R), then ud /∈ P (2,R) for u = (et1X1 · · · et4X4 )−1 ∈ U(2).
Therefore d′ = ud /∈ P (2,R), where d′ = et5X5et6X6 , and we
only have to consider matrices of the same form as d′.
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(B3) and (B5) given in Appendix B. The set P (2,R)−

in (87) is a component of the symmetry group of the

operators of the form Ĉ2, see (16). By considering the
actual values of the angles t5 and t6 instead of half the
angles, eqs. (87) and (88) can equivalently be written

cos(t5) cos(t6) = −1⇒ O ∈ SO(4) ∩ P (2,R)−, (89)

cos(t5) cos(t6) = 1⇒ O ∈ SO(4) ∩ Sp(2,R) = U(2).
(90)

(89) shows that we get symmetries beyond the gauge
group U(2) if and only if the �eld Bµ changes sign,

Bµ → −Bµ, (91)

since the parameters w′4, w4 corresponding to the trans-
formation of the gauge �eld Bµ are given by w′4 = E44w4,
see (79), where E44 = cos(t5) cos(t6) (69). Moreover, (90)
shows that Bµ transforms as

Bµ → Bµ, (92)

under (global) U(2) ∼= SU(2)L×U(1)Y transformations,
as it should according to the SM.
Furthermore, in appendix C we show that the symme-

try group component the symmetries of (89) belong to,
can be written

SO(4) ∩ P (2,R)− = U(2)S (93)

for any

S ∈ SO(4) ∩ P (2,R)−. (94)

This is especially true for S = C ∈ SO(4) ∩ P (2,R)−,
where C is the charge conjugation operator. We imple-
mented C ∈ SO(4) ∩ P (2,R)− as

C =

 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (95)

in [25]. This corresponds to the transformation C(Φ) =
Φ† of a complex scalar doublet. If we want to include
the possibility of a complex phase, i.e. C(Φ) = eiαΦ†,
where Φ is a complex Higgs doublet, we still get C ∈
SO(4) ∩ P (2,R)− (this can be shown by an argument
similar to the one in footnote 6). Hence the arguments
below are unaltered by a possible introduction of a phase
α 6= 0.
Now, since (by appendix C)

SO(4) ∩ P (2,R)− = U(2)C, (96)

while

SO(4) ∩ Sp(2,R) = U(2) (97)

we get that the Lie group G de�ned by

G = SO(4) ∩ P (2,R), (98)

can be written

G = U(2) ∪ U(2)C. (99)

Since both U(2) and U(2)C are two sets of symmetries
of the kinetic Higgs terms, the Lie group G is a sym-
metry group of the kinetic Higgs terms. There are by
eqs. (89) and (90) no symmetries of the kinetic Higgs
terms of the SM beyond the group G. This result is also
derived in [41], and it proves the sometimes-cited claim
that the only symmetry of the kinetic terms, except for
gauge transformations, is CP . The group G is also the
maximal symmetry group of a NHDM Lagrangian, pro-
vided that the NHDM potential is complicated enough
not to allow any HF symmetries (beyond an overall U(1)
transformation). Hence G is the largest symmetry group
of a NHDM Lagrangian with a su�ciently complicated
potential, e.g. the most general C-invariant NHDM La-
grangian, see appendix A. If we only regard the kinetic
terms of the NHDM Lagrangian, the maximal symmetry
group will be SU(N) × G, where SU(N) are the Higgs
family symmetries. The U(1)Y hypercharge symmetry
is, as we have seen, contained in G.
By (52) we can write SO(4) ∼= SU(2)L × SO(3) and

by footnote 5 the three generators of SU(2)L commutes
with the three generators of SO(3) (∼= SU(2)R/Z2).
Charge conjugation C will, along with U(1)Y , be a part
of SU(2)R. Hence C and U(1)Y will commute with
SU(2)L. We can therefore write G = U(2) · {I, C} =
SU(2)L× (U(1)Y · {I, C}), where U(1)Y · {I, C} ∼= O(2),
since U(1) may be mapped onto SO(2) by the map
ρ given in (26), while C may be mapped to an arbi-
trary matrix with determinant −1. Now we get that
G ∼= SU(2) × O(2), but since both SU(2) and O(2) can
express multiplication of the �elds by (−I), we divide by
Z2 to avoid a double covering of G, where G is given in
eqs. (98) and (99). Hence we have

G ∼= SO(3)×O(2). (100)

Since SO(2) is a normal subgroup of O(2) [gSO(2)g−1 ⊆
SO(2) for all g ∈ O(2)], and since O(2) ∼= U(1)Y ·
{I, C} ∼= SO(2) · Z2, O(2) can also be written as the
semidirect product SO(2) o Z2. Since CU(2)C ⊆ U(2),
U(2) will be a normal subgroup of G, and we can hence
also write

G ∼= U(2)o Z2. (101)

Note that G cannot be written as the direct product of
U(2) and Z2. In fact,

G � U(2)×H, (102)

for any group H, since the center of G is �nite while the
center of U(2)×H will be in�nite, see Appendix D.
However, we �nd no well-de�ned SO(4) transformation

of the kinetic Higgs terms beyond the symmetry group

P (2,R) of the operator Ĉ2. Hence, there is no discrete
nor continuous symmetry we can impose on the NHDM
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Lagrangian to exclude the terms of the type Ĉ2. (Again,
assuming the potential is complicated enough to exclude
the possibility of HF symmetries beyond an overall U(1)
transformation. This is the case for the most general,
explicitly C invariant NHDM potential, cf. appendix A.)
The result may, in the context of the 2HDM, also be
derived from the classi�cation of the six classes of pos-
sible symmetries that may be imposed on the 2HDM,
summarized in [19]. This summary is based on [42�
44]. Among the listed symmetries there is no symmetry
or combination of symmetries which infer the constraint
(λ4 − Re(λ5)) = 0. Here (λ4 − Re(λ5)) is the parameter
of the O(4) violating, C respecting term in the 2HDM,

which we may write (λ4 − Re(λ5))Ĉ2
12, cf. the 2HDM

notation given in Appendix A.7 Hence there is no sym-
metry that can be imposed on the 2HDM to remove this
term.

1. The custodial SO(4) symmetry

On the other hand, if we also set g′ = 0 (i.e. w4 =
w′4 = 0, since these are the parameters corresponding to
the generator X4 of the U(1)Y gauge group, see (56) and
the subsequent discussion), we see from eqs. (79) and (76)
that all symmetries are well-de�ned, and hence the whole
SO(4) is a symmetry group of the SM Higgs Lagrangian.
This is the custodial SO(4) symmetry from section II,
demonstrated in an alternative manner (for the kinetic
terms).

C. The adjoint action of elements of O(4)−

We also want to consider the adjoint action of elements
of O(4)−, the orthogonal matrices with determinant −1,
and see if it can yield any (discrete or continuous) sym-
metries of the kinetic terms. The general e�ect of the
adjoint action of an element of O(4)− can be written8

E− = Er · E1E2 · · ·E6, (103)

cf. (68), where Er is given in (66), and we calculate E−

to be of the form

E− =

(
03 D(t4, t5, t6)

C(t1, t2, t3) 03

)
, (104)

7 This notation is essentially the same as in [19].
8 O(n)− = SO(n)R = RSO(n) for any R ∈ O(n)−: We have
RSO(n) ⊂ O(n)− since det(R) det(S) = −1 for S ∈ SO(n),
and O(n)− ⊂ RSO(n) since for O ∈ O(n)−, det(RTO) = 1,
hence RTO ∈ SO(n), and then O = R(RTO) ∈ RSO(n). The
e�ect under the adjoint representation of an arbitrary element
O ∈ SO(4) can be calculated by E1E2 · · ·E6, cf. eqs. (67) and
(68). Then the e�ect of an arbitrary element RO ∈ O(4)− can
be calculated by ErE1E2 · · ·E6, cf. (66).

where 03 is the 3 × 3 zero matrix, and where the exact
expressions of the 3× 3 matrices C and D are irrelevant
for the argument below.
In case E− represented a well-de�ned adjoint action

(i.e. the non-SM parameters equal zero: w′5 = w′6 = w5 =
w6 = 0), E− would have the e�ect

w′1
w′2
w′3
w′4
0
0

 = E−


w1

w2

w3

w4

0
0

 =



E−14w4

E−24w4

E−34w4∑3
j=1E

−
4jwj∑3

j=1E
−
5jwj∑3

j=1E
−
6jwj


. (105)

But then all gauge �elds Wj , j = 1, 2, 3 (the Lorentz in-
dex µ is suppressed) are transformed into some real num-
ber times the �eld B, since wj = gWj for j = 1, . . . , 3
and w4 = 2g′Y B. But this transformation has no in-
verse transforming the B's (w4) back into the di�erent
Wj 's (wj , j = 1, 2, 3), since it would have transformed
di�erent instances of the �eld B in a di�erent manner.
Hence no such well-de�ned E−, as it appears in (105),
exists, because E− should have an inverse (an adjoint
action is a representation of a group, and all elements of
a group has an inverse). Therefore O(4)− does not pro-
vide any new symmetries of the kinetic Higgs terms of
the SM (or NHDM) Lagrangian.
The component O(4)− of O(4) does not provide any

new symmetries in the limit g′ → 0 (i.e. w4 = w′4 = 0) ei-
ther: In this caseWj , j = 1, 2, 3 would have to be mapped
to 0, so this mapping could have no inverse, hence it
cannot be an element of (the adjoint representation of)
O(4). This means the custodial SO(4) symmetry cannot
be extended by any (discrete or continuous) symmetry in
O(4). The result is also derived in [41]. It is also proven
by one of the results in [45]. In this article all 13 pos-
sible accidental symmetry groups of a 2HDM potential,
together with the kinetic Higgs terms in the limit g′ → 0,
are determined. Here the maximal symmetry group, in
case of a potential consisting of all possible O(4) sym-

metric terms of the (in our terminology) type B̂ and B̂2

(but transformed into a speci�c basis, see appendix A), is
determined to be SO(3)×SU(2)L ∼= SO(4). I.e. the cus-
todial SO(4) symmetry is the maximal symmetry group
of the kinetic Higgs terms in the limit g′ → 0 (when we
are not regarding SU(N) HF-symmetries).

VI. SUMMARY

By studying which O(4) transformations T µ →
OTT µO [cf. (31)] of the gauge bosons are well-de�ned,
we found the maximal set of symmetry transformations
of the kinetic Higgs terms in the SM to constitute the
Lie group G = SO(4) ∩ P (2,R) ∼= SO(3) × O(2). The
maximal symmetry group of the kinetic terms of the
NHDM was then SU(N) × G. The Lie group P (2,R)

was the symmetry group of operators of the form Ĉ2,
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that is the O(4) violating terms in the general, explicitly
C (i.e. CP , cf. comment after (12)) invariant NHDM po-
tential. Hence, we could �nd no discrete nor continuous
symmetry that is a symmetry of the kinetic terms and

the quadratic (in the Higgs �elds) terms of the type B̂,

while not a symmetry of the terms of the type Ĉ2. To
show this, we also used the fact that the Higgs family

symmetries of a potential containing all terms µmnB̂mn,

m ≤ n, also are symmetries of the terms of the type Ĉ2,
cf. appendix A. This means there is no symmetry we can
impose on the general NHDM Lagrangian, to exclude the
O(4) violating terms from the NHDM potential, and to
prevent them occurring as counterterms during coupling
constant renormalization.
As implied above, we found there are no symmetries

of the kinetic Higgs terms in the negative determinant
component O(4)− of O(4). This was so, even in the limit
g′ → 0. Hence, the custodial SO(4) symmetry cannot be
extended by elements of O(4)−.
In sec. IVC we saw that if we impose the SO(4) cus-

todial symmetry on the Yukawa couplings of the quarks,
it will infer up-down mass degeneration, if the VEVs are
aligned (e.g. by all VEVs being real). If the VEVs are not
aligned, the up- and down-type mass matrices Mu and
Md in general will yield distinct mass spectra. Then we
might obtain models with custodial symmetric Yukawa
couplings of the quarks, realistic quark masses and CKM
matrix, and suppressed �avor changing neutral Yukawa
interactions. If the NHDM potential is SO(4) symmetric
(before spontaneous symmetry breaking), the aforemen-
tioned non-alignment of the VEVs also will cause a pair
of light, charged pseudo-Goldstone bosons to emerge.
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Appendix A: HIGGS FAMILY SYMMETRIES

In this appendix we will show that the U(N) Higgs
family (HF) symmetries9 [27] of a potential containing all

terms µmnB̂mn, m ≤ n, also are Higgs family symmetries

of the bilinears of the type Ĉmn. Hence there is no HF
symmetry we can impose on the general, explicitly C
invariant NHDM potential, which exactly excludes the

O(4) violating terms, i.e. the terms of the form Ĉ2.

9 Here we also consider the U(1) factor [of U(N)] as a HF sym-
metry, in addition to the SU(N) HF symmetries. Overall mul-
tiplication by an U(1) factor is in fact already taken care of by
U(1)Y , which we usually consider as a gauge group symmetry
and not a HF symmetry.

Under a HF transformation the bilinear B̂kk ≡ Φ†kΦk
is transformed in the following manner

Φ†kΦk →
∑N
m,n=1(UkmΦm)†(UknΦn)

=
∑N
m,n=1 U

∗
kmUknΦ†mΦn. (A1)

If this U(N) transformation (i.e. HF symmetry) keeps

Φ†kΦk invariant, then (no sum over k)

U∗kmUkn = 1, when m = n = k,

U∗kmUkn = 0, otherwise. (A2)

This is so because the set {Φ†mΦn}m,n≤N (with N2 ele-
ments) is linearly independent: The set {Φ†n,Φm} can be
regarded classically as a set of 2N independent functions.
Assume that

N∑
i,j=1

aijΦ
†
iΦj ≡ 0. (A3)

If we then di�erentiate by ∂2/(∂Φ†m∂Φn), for arbitrary
m and n, we get that amn = 0, i.e.

amn = 0 for all m,n. (A4)

This again means that the set {Φ†mΦn}m,n≤N is linearly
independent.
(A2) then gives us that the most general HF trans-

formation which keeps a term µkkB̂kk (no sum over k)
invariant, 1 ≤ k ≤ N , is

Φk → exp(iαk)Φk. (A5)

When we want to keep the term µkkB̂kk invariant for all
k, each bilinear has to transform as given in (A5), with
a possible di�erent phase αk for each k.
Now, if the potential we are regarding also contains all

terms of the type µmnB̂mn for m < n, in addition to the

terms µkkB̂kk, there will be further restrictions on the

allowed HF symmetries. The bilinear B̂mn, m < n, now
transforms as

B̂mn ≡ 1
2 (Φ†mΦn + Φ†nΦm)

→ 1
2 (U∗mmΦ†mUnnΦn + U∗nnΦ†nUmmΦm) (A6)

(no sum over m,n) by eq. (A2) [valid for all k]. When

B̂mn, m < n, is kept invariant, that is,

U∗mmΦ†mUnnΦn + U∗nnΦ†nUmmΦm

− Φ†mΦn − Φ†nΦm = 0, (A7)

(no sum over m,n), we must have

U∗mmUnn = 1, (A8)

since the two terms Φ†mΦn and Φ†nΦm are linearly inde-
pendent. (A8) infers that the corresponding angles are
identical,

αm = αn, (A9)
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where Ukk = exp(iαk). Hence the HF symmetries that

keep all terms µmnB̂mn simultaneously invariant for all
m,n with 1 ≤ m ≤ n ≤ N , is an U(1) transformation

Φj → Φj exp(iα), (A10)

for all j, 1 ≤ j ≤ N . But this transformation also leave

all terms Ĉmn and ĈmnĈm′n′ invariant, and hence the
transformation cannot be applied to remove terms of the

type Ĉ2.
The result in (A10) and above is consistent with a re-

sult in [45]. Here the maximal symmetry group of the
general C invariant 2HDM potential (expressed in the
diagonally reduced basis) is found to be the group gen-
erated by CP (i.e. C) and U(1)Y .
The general 2HDM potential of [45] can be expressed

by the bilinear operators B̂ and Ĉ, in terms of the pa-
rameters given in [45] as

V = −µ2
1B̂11 − µ2

2B̂22 − 2Re(m2
12)B̂12 + 2Im(m2

12)Ĉ12

+ λ1B̂
2
11 + λ2B̂

2
22 + λ3B̂11B̂22 + [λ4 + Re(λ5)] B̂2

12

+ 2Re(λ6)B̂11B̂12 + 2Re(λ7)B̂22B̂12

− 2Im(λ5)B̂12Ĉ12 − 2Im(λ6)B̂11Ĉ12

− 2Im(λ7)B̂22Ĉ12 + [λ4 − Re(λ5)] Ĉ2
12. (A11)

All parameters in (A11) are real (in some cases by tak-
ing the real or imaginary part of a complex parame-
ter). In the diagonally reduced basis, we can further-
more set Im(λ5) = 0 and λ6 = λ7. Then the po-
tential symmetric under C and U(1)Y (in addition to
SU(2)L) corresponds to the constraints Im(m2

12) = 0 and
Im(λ6) = Im(λ7) = 0, i.e. we are left with the potential

V = −µ2
1B̂11 − µ2

2B̂22 − 2Re(m2
12)B̂12

+ λ1B̂
2
11 + λ2B̂

2
22 + λ3B̂11B̂22

+ [λ4 + Re(λ5)] B̂2
12 + 2Re(λ6)(B̂11B̂12 + B̂22B̂12)

+ [λ4 − Re(λ5)] Ĉ2
12, (A12)

which is the most general C invariant 2HDM potential,
expressed in the diagonally reduced basis. We note that
it, according to both [45] and (A10), has no HF sym-
metries (beyond U(1)Y , when we consider this as a HF
symmetry).
In the case [λ4 − Re(λ5)] = 0, we see that the symme-

try is enhanced, since the potential then only contains

O(4) symmetric operators (of the type B̂). When we in-
clude the Kinetic Higgs terms in the limit g′ → 0, the
maximal total symmetry becomes SO(4), cf. sec. VC.
We also noted in sec. VC that this is consistent with a
result in [45], which determines this 2HDM to have the
maximal symmetry group SO(3) × SU(2)L ∼= (SU(2) ×
SU(2)L)/Z2

∼= SO(4). Finally we note that the greatest
symmetry group of any 2HDM potential, with kinetic
terms in the limit g′ → 0, is in [45] calculated to be
SO(5) × SU(2)L. This symmetry corresponds to a po-
tential with the additional restrictions µ2

1 = µ2
2, m

2
12 = 0,

λ1 = λ2, λ3 = 2λ1 and λj = 0 for j = 4, 5, 6 and 7.
This is in agreement with [25], where we determined the
symmetry group of the kinetic terms in the limit g′ → 0
to be Sp(N)×SU(2)L, where Sp(N) is the quaternionic
symplectic group. The agreement is proven by the iso-
morphism SO(5) ∼= Sp(2)/Z2 (see [46] p. 430), where
the Z2 factor re�ect that we can express multiplication
of the �elds by −I both in SU(2)L and Sp(2) (since
SU(2)R ⊆ Sp(N)).

Appendix B: THE FORM OF SOME O(2k)
MATRICES

Let S ∈ O(2k) (the case k = 2 is the most interesting
for this article), and let

Jk = J =

(
0k Ik
−Ik 0k

)
. (B1)

Then the condition STJ S = J [i.e. S ∈ Sp(k,R)] can
be written

J S = (ST )−1J ,
J S = SJ , (B2)

which, by the de�nition (B1) of J , forces the solutions
of (B2) to be exactly the matrices in O(2k) of the form

S =

(
A B
−B A

)
, (B3)

for arbitrary k × k matrices A,B.
Again, let S ∈ O(2k). Then the equation the condition

STJ S = −J [which is the de�nition of S ∈ P (k,R)−],
can be written

J S = −SJ , (B4)

which forces the matrices S to be exactly the ones in
O(2k) of the form

S =

(
A B
B −A

)
, (B5)

for arbitrary k × k matrices A,B.

Appendix C: THE COMPONENT SO(4) ∩ P (2,R)−

In this appendix we want to prove that

U(2)S = SO(4) ∩ P (2,R)−, (C1)

for any S ∈ SO(4) ∩ P (2,R)−.
First, we claim the set P (2,R)− is given by

P (2,R)− = Sp(2,R)S = S Sp(2,R), (C2)

for any S ∈ P (2,R)−:
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P(2,R)− ⊆ Sp(2,R)S: Let S′ ∈ P (2,R)−. Then
S′S ∈ Sp(2,R) since

(S′S)TJ (S′S) = ST (−J )S = J . (C3)

Then S′ = TS for T = S′S−1 ∈ Sp(2,R), i.e. S′ ∈
Sp(2,R)S. This is true since S′, S−1 ∈ P (2,R)− infer
S′S−1 ∈ Sp(2,R) by (C3). (S−1 ∈ P (2,R)− since S ∈
P (2,R)−.) Similarly with S Sp(2,R).

P(2,R)− ⊇ Sp(2,R)S: On the other hand, if T ∈
Sp(2,R), then

(TS)TJ (TS) = STJ S = −J , (C4)

so then TS ∈ P (2,R)−. Similarly, ST ∈ P (2,R)−.
Now we can derive (C1): Let S ∈ P (2,R)− ∩ SO(4).

Then

U(2)S = (SO(4) ∩ Sp(2,R))S

= (SO(4)S) ∩ (Sp(2,R)S)

= SO(4) ∩ P (2,R)−, (C5)

the last equality by (C2).

Appendix D: THE CENTER OF G

In this appendix we will show that the Lie group G =
P (2,R) ∩ SO(4) has a �nite center Z(G) = {±I4} ∼= Z2.
Hence G cannot be isomorphic to a group with a in�nite
center, especially not groups of the form U(2) × H, H
arbitrary.
First, G is a Lie group since the intersection of two

(topologically) closed subsets of GL(n,R) is a (topologi-
cally) closed subset of GL(n,R), and hence a Lie group.
The center Z(G) of G consists of the elements in G
which commute with all elements in G, cf. (49). Let
Y ∈ Z(G) ⊂ G. Then

Y TJ Y = ±J , (D1)

since Y ∈ P (2,R). Moreover, since Y commutes with
any element in G, Y TY J = ±J , and hence

Y TY = ±I. (D2)

Since Y ∈ G ⊂ SO(4) we get I = ±I, and then + is the
right sign in (D1),

Y TJ Y = +J , (D3)

which again infer that Y ∈ Sp(2,R).
This means

Y ∈ Sp(2,R) ∩ SO(4) = U(2), (D4)

and thus Y is an element of U(2) which commutes with
all elements of G ⊃ U(2), and hence we also have

Y ∈ Z(U(2)). (D5)
Now Z(U(2)) ∼= U(1), or more concretely

Z(U(2)) = {λI2 : λ ∈ C ∧ |λ| = 1}, (D6)

which is a consequence of Schur's lemma. Expressed as a
4× 4 real matrix by the map ρ, an element Y ∈ Z(U(2))
is of the form

Y =

(
cos θI2 − sin θI2
sin θI2 cos θI2

)
, (D7)

where cos θ = Re(λ) and sin θ = Im(λ).
Since Y also is an element in Z(G), it also needs

to commute with all elements of G, especially C ∈
P (2,R)− ∩ SO(4) ⊂ G. This means Y C = CY , that
is, (

cθI2 −sθI2
sθI2 cθI2

)(
I2 02
02 −I2

)
=

(
I2 02
02 −I2

)(
cθI2 −sθI2
sθI2 cθI2

)
(D8)

which yields sθ ≡ sin θ = 0 and cθ ≡ cos θ = ±1, which
again give us

Y =

(
±I2 02
02 ±I2

)
= ±I4. (D9)

Hence we have derived the result Z(G) ⊂ {±I4}, and
since both ±I4 evidently commute with all of G, we get

Z(G) = {±I4} ∼= Z2, (D10)

i.e. a �nite center.
On the other hand,

Z(U(2)×H) = Z(U(2))× Z(H)
∼= U(1)× Z(H), (D11)

which is in�nite, since U(1) is in�nite. Thus we have
G � U(2)×H for any group H.
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