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ABSTRACT Communication in remote locations, specially in high-latitude regions, such as the Arctic,
is challenged by the lack of infrastructures and by the limited availability of resources. However, these
regions have high scientific importance and require efficient ways of transferring research data from different
missions and deployed equipment. For this purpose, unmanned aerial vehicles (UAVs) can be used as data
mules, capable of flying over large distances and retrieving data from remote locations. Despite being a well-
known concept, its performance has not been thoroughly evaluated in realistic settings. In this paper, such
a solution is evaluated through a field-experiment, exploiting the obtained results to define and implement
an emulator for intermittent links. This emulator was designed as a mission planning tool, where we further
analyze the impact of different flight trajectories when retrieving data. Additionally, we study the overall
performance of 4 well-known file-transferring protocols suitable for a UAV being used as a data mule. Our
analysis shows that trajectories at higher altitudes, despite increasing distance between nodes, improves
communication performance. Moreover, the obtained results demonstrate that DTN2, using the bundle
protocol, outperforms FTP, Rsync, and SCP, and that all these protocols are affected by the size of the files
being transferred. These results suggest that, in order for the scientific community to practically use UAVs
as data mules, further studies are required, namely on how different UAV trajectories can be combined with
efficient file-transferring network protocols and well organized data structures.

INDEX TERMS Emulation, hardware, IP networks, protocols, prototypes, sea surface, software, unmanned
aerial vehicles, wireless communication.

I. INTRODUCTION
Scientific expeditions have an important role in the research
process conducted in many fields of science. This often
results in the deployment of equipment for extended periods
of time, which may involve a large number of scientists
and high costs. Therefore, it is common for distinct research
groups to join efforts and collaborate in missions or expedi-
tions, specially in challenging locations such as the Arctic.
Research cruises are an example of such joint initiatives
(e.g. N-ICE 20151 andMOSAIC).2 However, berth cost alone
may exceed the expedition’s budget for the entire mission,
limiting the available number of participants. This typically
results in a few scientists on board the cruise ship being
responsible for deploying scientific equipment, as well as for
performing measurements on behalf of their colleagues.

1http://www.npolar.no/en/projects/n-ice2015.html
2http://www.mosaicobservatory.org/

Limitations in the research crew, and the possible lack of
familiarity with equipment and procedures, require support
and verification of collected data, which in turn implies fre-
quent communication between colleagues in the field and
at their institutions. However, at high-latitude locations no
high-speed communication link is available and scientists
have to resort to satellite communication (e.g. Iridium). This
represents additional costs, and limited bit-rate links, which
may make the data exchange unfeasible. In the worst case
scenario, measurements can only be verified by special-
ists after the expedition is over, often several months later,
without any possibility to adapt procedures in case anything
goes wrong.

A solution for the lack of high-speed communication
options could be using Unmanned Aerial Vehicles (UAVs) as
data-mules (FIGURE 1). Data-muling UAVs are networking
nodes capable of collecting data, keeping it and delivering
it when a destination is reached. This approach is studied
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FIGURE 1. Data-muling using an unmanned aerial vehicle.

by researchers taking into account different aspects con-
cerning the use of unmanned aerial systems and existing
challenges [1]–[3]. Such aspects and challenges include the
control of flying nodes and their trajectory [4], [5], or the
study of communication and networking issues [1], [6].
However, these works focus only on a subset of existing
challenges individually, such as how to improve connection
quality or which routing protocols to be used, ignoring the
dependence between them.

Other works provide a more practical approach, describ-
ing the technical details and performance of specific solu-
tions, such as the use of data-mules in wireless sensor
networks [7], [8]. However, to the best of our knowledge,
no work considers the full stack of components comprising
unmanned aerial systems as data mules. In particular, the
users’ perspective on the performance of UAV data mules is
often disregarded, giving no insights on what can be expected
in realistic settings.

This paper presents an evaluation of data-muling in remote
oceanic scenarios, where scientific data should be retrieved
from a Research Vessel (R/V). It considers not only practical
aspects of such scenario, but also different available research
directions in system and mission optimisation for improv-
ing the overall performance of using UAVs as data mules.
Therefore, the presented field experiment focuses on a com-
mon setup, where a transceiver is located on the deck of a
ship, resulting in obstructions to the Line-of-Sight (LOS)
due to the ship’s structure (e.g. bridges, cranes and others).
In these conditions the communication quality may be inter-
mittent and, therefore, it is not trivial to determine how, and
how efficiently, data-muling UAVs can be used. To answer
this issue, this paper describes a field-experiment where
a UAV flew next to a ship using 3 different trajectories,
measuring networking performance andWiFi link parameters
to later be used in an emulated environment.

An evaluation of the overall data-muling performance is
provided, resorting to existing and well-known networking
solutions, such as the file-transferring protocols FTP, SCP,
Rsync and DTN.3 However, in order to conduct a valid com-
parison of these protocols, they need to be tested in the same
conditions. Since thismay be impossible during a flight due to
several changing variables, despite repeatedly following the
same trajectory, a new network emulator is proposed. This

3Based on DTN2 implementation of the Bundle Protocol

emulator uses the field-experiment results as input, combin-
ing aspects such as the Signal to Noise Ratio (SNR), and
provides a verifiable platform for testing UAVs as data mules,
using existing protocols in realistic conditions.
The main contributions of this paper include:
• Experimental assessment of UAV data-muling and its
performance in maritime conditions;

• Network emulator design, development and validation;
• Comparison of file-transferring protocols in 3 realistic,
dynamically-changing environments.

The organisation of this paper is depicted by FIGURE 2,
starting with a field experiment based on commercial-off-the-
shelf (COTS) components, from which performance data is
gathered. This data supports the creation and validation of
a network emulator for intermittent links, as well as of an
in-depth analysis of common file-transferring network proto-
cols. Finally, the obtained results motivate a discussion about
how to setup UAVs as data mules and the main concluding
thoughts.

FIGURE 2. Paper’s structure.

II. FIELD EXPERIMENT
In this section, we describe a field-experiment conducted in
order to obtain performance data on a WiFi link between a
UAV and a vessel. An important goal of this experiment was
to provide realistic input for further studies and, therefore,
COTS hardware was used. This included using real UAV
flights with different trajectories and a ship from where data
was to be collected.

A. HARDWARE DESCRIPTION
In order to conduct the proposed experiment, dedicated ship-
deck nodes were developed, the Coastal and Arctic Maritime
Operations and Surveillance (CAMOS) nodes (Fig. 3). The
nodes are compatible with a UAV architecture currently used
by the UAV-lab at the Norwegian University of Science and
Technology (NTNU). Core elements of nodes and the UAV
are presented in FIGURE 4.

A CAMOS node is an independent, waterproof, carry-on
unit equipped with a computer, radio transceivers, other
peripherals and a power source. A unit can be powered from
the grid or from internal its battery, providing a few hours
lifetime. It can be a standalone node, or it can be connected
to external network using Ethernet cable or WiFi. CAMOS
nodes have a flexible architecture that allows to test a variety
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FIGURE 3. Transceivers (during the experiment different antennas were
used).

FIGURE 4. Nodes: Skywalker X8 based UAV, Research Vessel ‘‘Gunnerus’’
(transceiver position marked with a red circle).

of radio transceivers and network technologies. The major
components of the node are presented in TABLE 1.

TABLE 1. Major experiment components.

Similar to the CAMOS node architecture, the UAV archi-
tecture is modular, open and flexible, based on NTNU’s X8

model [9]. For evaluating networking performance, the UAV
used in this experiment was setup with an instance of an iperf
server, running on its on-board router. The CAMOS node was
setup with a script spawning iperf clients, sequentially, with
different parameters. Additionally, during the entire experi-
ment, an extensive set of data was collected from both the
CAMOS and UAV nodes. This data contained:
• UAV autopilot log (e.g. position, attitude);
• Radio log (e.g. TX rate, SNR, CCQ, Retransmissions);
• GPS log (i.e. time and coordinates);
• iperf transfer reports.

B. FIELD EXPERIMENT EXECUTION AND RESULTS
The field experiment involved the cooperation of the R/V
‘‘Gunnerus’’ with a CAMOS node, the X8 UAV, and three
teams of engineers and researchers. The CAMOS node was
installed on-board of the R/V, which, before the experiment
start, was positioned at a target destination≈ 6 km away from
the UAV take-off area. Once at the targeted destination, the
ship used its Dynamic Positioning (DP) system in order to
maintain its position regardless of sea currents or wind.

The X8 UAV node performed a 40min flight, during
which flight parameters, ship position and communication
performance were recorded. For example, FIGURE 5 shows
the transmission rate (TX) registered by the radio during
the entire flight. This value is an outcome from the used
modulation coding scheme (MCS), taking into account the
link quality and measured SNR, and has a correlation to the
ship’s bearing to the UAV.

FIGURE 5. Example of data recorded during the flight.

In the performed experiment, the vessel’s positionwas used
as the centre of a 400m radius circumference, for which the
UAV-operators team programmed the UAV’s loiter-waypoint
at an altitude of 300m. The UAV track was modified twice
by changing either the centre or altitude (FIGURE 6). The
first track begun when the UAV was loitering above the
ship at 300m altitude, for which iperf tests were performed
(Experiment 1). When these tests were completed, the alti-
tude was changed to 200m and the iperf tests repeated
(Experiment 2). Finally, keeping altitude, the loiter-waypoint
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FIGURE 6. Field experiment: UAV flight overview.

was moved by ≈ 800m away from the ship, repeating once
again the network-performance tests (Experiment 3). These
different tracks, and collected data, are depicted in FIGURE 5
andwere used both for the validation of a new network emula-
tor (Section IV) and of different protocols for file transferring
(Section V).

III. NETWORK EMULATOR FOR INTERMITTENT LINKS
Experts in the field of autonomous, or remotely-operated,
unmanned vehicles have dedicated tools for analysing sce-
narios’ topology and trajectories, following known models to
determine the quality of used communication links. However,
this approach lacks a full understanding of the networking
capabilities, typically ignoring the requirements and sub-
tleties of protocols that can interconnect different systems.
Alternatively, field experiments can be conducted to realis-
tically characterise the environment, but they involve high
costs and therefore limited availability of resources, which
hinder the quality of such characterisation. For this reason,
we developed an emulator capable of fully supporting the
network stack and varying communication links, as well as
the execution of real tools and components. This tool allows
researchers to plan their missions without the costs and com-
plexity of testing in the field, giving full control over all the
actors and available options. With such control and flexibility
it will be possible to proceed with the planning of trajectories
and deployment of vehicles.

A. ARCHITECTURE
The main goal of the proposed emulator is to evaluate the
performance of common networking protocols, used for
connecting heterogeneous devices and technologies available
in maritime scenarios. Bearing this in mind, the emulator
allows shaping connectivity between different nodes in a
scenario, as well as the use of real software implementations

(e.g. network protocols, monitoring tools, etc.). Full emu-
lation is achieved by using operating-system-level virtual-
isation, also known as containers, combined with Linux’s
process network namespace management (netns) and traffic
control (tc) tools.

The shaping of communication links is derived from per-
formance traces used as input, allowing the support of dif-
ferent technologies. This input may result either from field
experiments or from existing tools andmodels. In fact, several
communication technologies are likely to be interdisciplinary
and highly specialised, having their own established tools and
mechanisms for performance evaluation. These are perfect
candidates to serve as input for the link configuration process.

FIGURE 7 illustrates the emulation tool and its compo-
nents, where the input from specialised interdisciplinary tools
is used for creating an emulated topology and links. Using
this information, the emulation starts at a host machine, which
in turn spawns as many containers as there are nodes in the
provided topology, which in our experiment corresponds to
2 containers (i.e. 2 nodes, the vessel and the UAV). This
approach allows emulating the Operating System of each
node, which in our experiment wasUbuntu 16.04 LTS, as well
as any other running software, in a distributed and isolated
fashion.

FIGURE 7. Architecture of the emulation tool.

Each emulated node has a dedicated and isolated link to
each other, dynamically configured by using Linux qdiscs.
A qdisc is a scheduler at the output of each network interface,
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or link, that will allow traffic control by shaping flows, delay-
ing them, or even dropping them completely. Traffic control
management occurs throughout the entire emulation process.

B. IMPLEMENTATION
A key component of the developed simulator is the container
management software. This is supported by the open-source
software Docker [10], a widely used solution for the develop-
ment of applications and management of dependencies. The
creation of the containers is triggered by a Startup script that
also initiates the Core script in each container. The Startup
script is based on the Imunes emulator [11], which offers
similar emulation possibilities. However, Imunes does not
provide the support required for the continuous management
of containers, links’ characteristics and topologies.

As previously mentioned, Linux qdiscs are used to config-
ure each link and shape it. This process, however, is heavily
influenced by the host machine running the emulator and
its kernel configuration of timer events. In particular, the
resolution of the used software clock, or jiffy, depends on the
value of the kernel-constantHZ, defined by the configuration
parameter CONFIG_HZ, which sets the interval between
each packet being shaped. With the purpose of adequately
managing traffic control, the burst and buffer of each qdisc
are respectively defined in (1) and (2).

burst = MTU +
bitrate · jiffy

8
(1)

buffer = c ·
⌈
bitrate
8 ·MPU

⌉
, ∀c ∈ Z>0 (2)

These take into account the Maximum Transmission
Unit (MTU ), the Minimum Packet Unit (MPU ), the available
bitrate, and the system’s jiffy. However, it is important to note
that these configurations may vary on some Linux systems,
in particular ones using high-resolution timers (HRTs). This
depends on the used kernel version and hardware architecture,
which in our system are 4.11.7 and x86_64 respectively.

In the presented emulator, two different qdiscs are used,
the hierarchical token bucket (HTB) and the network emula-
tor (NetEm). These are created immediately after spawning
the necessary containers and their respective interfaces. The
calculated burst value can be used to configure the used HTB
leaf class, even though it is omitted in our HRT system.
The buffer is used to define the limit parameter of NetEm,
with c = 1, representing a one second buffer. Moreover, the
maximum value of buffer is limited to 256, corresponding
to the real buffer size available in the hardware used in our
experiments. The value of limit directly affects the HTB’s
buffer and represents the number of packets available at a
given moment. These configurations are changed throughout
the emulation, according to the used input, and define the
performance of each considered communication link.

FIGURE 8 depicts the interactions between the different
components run by the emulator in one container. After
initiating the Core in each container an initial setUp script
is run. This script can be edited to initialise any parameters or

software required to perform the desired experiments (e.g. a
logging tool or tcpdump). After completing the initial setup
the Scheduler process begins. This component is respon-
sible for parsing the input from existing communication-
performance traces. As previously mentioned, these traces
may result from previous in-field experiments or from
simulation experiments using specialised tools such as
SPLAT! [12]. It is important to note that in order to syn-
chronise all the containers and processes, a time barrier is
defined for all them. This barrier is based on the clock shared
by all containers and the host computer. However, other inter-
process communication (IPC) mechanisms, such as signals,
could also have been used.

When processing the information related to topology and
link characteristics, modifying relevant qdiscs, the Scheduler
may also spawn an additionalProcess script that can be edited
to run any required software (e.g. start a specific file-transfer).
Upon completion of the Scheduler process, which is reported
back to the core, a tearDown task is initiated, terminating any
other processes that may have started for the experiment, as
well as the entire experiment.

Apart from the inner-workings of the emulation tool itself,
additional software may be required for specific scenarios.
For example, data collection and delivery, or the coordinated
operation of unmanned vehicles may require custom frame-
works such as the LSTS Toolchain [13] or MOOS-IvP [14].
Fortunately, all this software can be installed and run simply
by creating the desired container image and starting the
software either at the setUp stage or during predetermined
instants triggered by the Scheduler.

IV. EMULATOR VALIDATION
Despite being mostly based on already existing software,
before confidently using emulation data, the created emulator
was validated against real data. The validation process and its
results, which replicate real experiments, are described in the
following subsections.

A. METHODOLOGY
As described in Section II, we conducted a field experi-
ment consisting of 3 sub-experiments, where a UAV flew in
3 different trajectories. In those experiments, network and
communication performance-data was gathered, which was
used as input for validating the emulator. This input allows
configuring the qdisc parameters in real-time, shaping the
traffic going through the defined links.

The validation process, for all the performed experiments,
executed the same script used in the field experiment, which
ran a predefined sequence of network-performance tests.
These tests were based on iperf 2.0.5 software, using the UDP
protocol through the following command:

$ iperf -f k -y C -V -u -c 10.0.1.254 \
-b BANDWIDTH -l PACKET_SIZE \
-t DURATION

First, the script ran 10 tests, each 10 s long
(DURATION), with a 5 s interval between each test.

24720 VOLUME 5, 2017



D. Palma et al.: UAVs as Data Mules: An Experimental Assessment

FIGURE 8. Sequence diagram for the emulator (one-node perspective).

The tests used a 20Mbit s−1 bitrate (BANDWIDTH) and
a packet size of 1000B for every odd, and 1500B
(PACKET_SIZE) for every even, test. Finally, the script ran
10 tests in the same conditions but with an 80Mbit s−1 bitrate.
These tests were repeated for each of the 3 experiments,
every time the UAV changed its trajectory. However, due to
endurance and cost constraints, the performance evaluation
for experiment 3 could not be fully executed.

By using the performance data obtained in the field exper-
iment as input to the network emulator, we expect the results
obtained by the network emulator to be similar. However,
during the flight in the field experiment, some iperf reports
were lost due to the intermittent behaviour of the network
and to bufferbloat effects [15], [16]. Nonetheless, by com-
bining information reported by the radio, namely the ‘‘total
number of bytes transmitted’’, together with iperf data, we
were able to accurately characterise the link’s performance
for the duration of the entire flight. With this, the emulator’s
Scheduler component was responsible to configure the pre-
viously described qdiscs (i.e. HTB and NetEm), namely the
rate, delay and loss parameters.

B. VALIDATION RESULTS
The outcome of the validation process is depicted by
FIGURE 9. In this figure the dashed line represents the

FIGURE 9. Emulator validation results.

performance results obtained from the field-experiment,
while the solid line corresponds to performance registered
by our emulator. These results show that the emulator per-
forms as expected, following the trends in link quality and
almost overlapping the real data, obtaining a mean absolute
error (MAE) of 0.79Mbit s−1, which corresponds to 7.15%
of the average bitrate. Additionally, registered packet losses
are within the same level of confidence, as they are directly
dependent on the achieved transmission rate, and transmis-
sion delay results directly from the distance between nodes.
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The design of the emulator allows using the same soft-
ware as used in real life. Consequently, variations due to
the specifics of the emulator are mitigated. This means that
no unexpected behaviours, such as additional overhead, or
different handling of data, will ever occur.

Further analysing the obtained validation results we verify
that, despite the different trajectories between each exper-
iment, the emulator is able to reproduce the network con-
ditions observed in the real experiment. In particular, the
registered iperf behaviour was also matched, which resulted
in the loss of the final reports for some tests. Once again, the
results from those tests were obtained from monitoring the
network, confirming the quality of the emulation.

V. PERFORMANCE OF DATA-MULING UAVS
An important contribution of this work is to provide a better
understanding on how well UAVs perform when collect-
ing data in remote locations. Bearing this in mind, we per-
formed mock field-experiments and developed an emulator
that allows recreating realistic networking conditions and the
execution of real software. With this emulator it is possible
to thoroughly assess protocols and procedures used in real
hardware without the costs involved in real missions. The fol-
lowing subsections present an evaluation of 4 file-transferring
networking protocols commonly used for the exchange of
data between two nodes.

A. METHODOLOGY
Using the collected flight data for each trajectory, and repli-
cating the observed conditions using our emulator, it is possi-
ble to evaluate different configurations and protocols for the
exchange of data between two nodes. Focusing on the well-
known and widely used FTP, SCP, Rsync and DTN protocols,
we compare their performance under the same conditions,
using the real communication-link behaviour registered dur-
ing each experiment as input for the emulation. A limitation
of this approach is that, while replicating realistic conditions,
these actually vary in every occasion, for different vessels,
different UAVs, among other factors. However, while the
overall data-transfer performance might not be representative
of all likely scenarios, the variations in communication and
network performance due to intermittent links, and their
impact on data-exchange protocols, will be similar for most
cases.

The communication-performance data, in the form of input
files for the emulator, was generated from the monitored
radio-reports, which registered, every second, the used data
rate (TX) and the Client Connection Quality (CCQ). The TX
value is the same as presented in Section II, while the CCQ
value, also extracted from the field experiment, indicates the
quality of the link – with 100% being a perfect connection
and lower values resulting from errors in transmission. In our
emulation tool these values were used to define the maximum
link rate, configuring the rate parameter from the HTB qdisc
to match the registered TX values, as well as the number
of random losses in the link, configuring the loss random

parameter from the NetEm qdisc as 100% − CCQ. It is
important, however, to notice that the TX value expresses a
theoretical bitrate expected at a given moment, which may
not always be achievable. In fact, by analysing FIGURE 10,
which depicts the raw TX and CCQ values (i.e. TX · CCQ)
and the bitrate obtained by re-running the validation scripts,
it is possible to verify that the theoretical values are higher
than what could actually be achieved with real experiments
(FIGURE 9).

FIGURE 10. Raw TX/CCQ data and emulator results with UDP.

Despite the overestimation resulting from using optimistic
performance values, these correspond to actual measure-
ments obtained from the radio, which are commonly used in
similar evaluations. Moreover, these values follow the pattern
observed in the real experiment, where in the first half of each
experiment the 20Mbit s−1 rate tends to be more stable, and
where the second half shows a more accentuated curve, for
the 80Mbit s−1 bitrate. Nonetheless, a second input file for
the characterisation of the link was generated, increasing the
error rate by a factor of 2. Since all the selected protocols rely
on TCP, FIGURE 11 presents a comparison between these
2 inputs, generated from the same iperf script but using TCP
as the transport protocol. This figure effectively shows the
impact of an increased CCQ,while at the same time providing
a first insight on the expected file-transfer performance.

FIGURE 11. Emulator results with TCP using the measured TX and CCQ.
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As previously mentioned, each phase of field-experiment
(i.e. Experiment 1 to 3), lasted only a few minutes due to cost
constraints and endurance limitations. However, having reg-
istered the details about the trajectory followed by the UAV,
which consisted of more than one full revolution during the
loitering, wewere able to replicate the trajectory and obtained
link performance values for each experiment. This allowed
the execution of longer emulation tests without loss of gen-
erality and without the additional cost of performing longer
flights. By carefully appending more loitering revolutions
to each input file, without breaking the trajectory followed
by the UAV, the total emulation time was of ≈ 30min per
experiment.

In addition to studying the impact of different trajectories
on the selected networking protocols, we have also evalu-
ated their performance when transferring different types of
files. For that purpose, two sets of files were used. The first
one contained 14 files of 40MB each, totalling 560MB,
which corresponds to the amount of data to be generated
by two Acoustic Zoo-plankton Fish Profilers (AZFPs), over
a one week period as predicted for the ArcticABC project
[17], [18]. The second set contained 560 files of 1MB each,
intended to evaluate the impact of size and number of files in
the performance of each data-exchange method.

As with the validation process, the file transfer was entirely
scripted, guaranteeing equal conditions between all the tested
protocols. The node representing the vessel was setup with
the necessary services, or daemons, which were ssh, vsftpd,
rsync and dtnd. It is important to note that the SCP protocol
is the only protocol operating over an encrypted connection
and that Rsync uses its native protocol. In addition to dtnd,
the DTN approach required a dedicated application for trans-
ferring files, which was dtncp. For the UAV node, the file
transfer processes were initiated at the same instant as the
iperf tests, for which a link is known to exist. The transfer of
the files included a loop for verifying that all the files were
correctly received, avoiding terminating before time due to
temporary link failures. Additionally, the ‘‘partial-transfer’’
features offered by the FTP and Rsync protocols were
enabled, namely the continue and partial options, respec-
tively. The SCP protocol does not provide such feature and
for the DTN protocol this is already a built-in functionality.

B. RESULTS
The performance of the selected protocols will be evaluated
considering 2 key metrics for each experiment. The overall
performance will be represented by the total number of com-
pleted file transfers (see TABLE 2 and TABLE 4), while the
peak performance will be reflected by the highest achieved
bitrate transfer (see TABLE 3 and TABLE 5). In this section,
the results referred to as error factor x1 (EFx1), are the results
obtained from the input file using the raw TX and CCQ
radio measurements. Similarly, results from using the input
file with increased link errors will be referred to as error
factor x2 (EFx2).

TABLE 2. Transmission of 40 MB files.

1) DATA-SET WITH 40 MB FILES
The results obtained for the maximum number of transmitted
files, presented in TABLE 2, show that the trajectory used in
experiment 1 favours all protocols. This is verified both for
EFx1 and EFx2. Nonetheless, as expected, increased commu-
nication errors result in reduced complete file-transmissions.
Moreover, disparities between protocols become clearer, with
the DTN protocol outperforming all others in every exper-
iment. In fact, while for EFx1 only FTP failed to receive
11 files in experiment 3, when link errors increase, FTP
outperforms both Rsync and SCP in experiments 2 and 3,
being close in experiment 1. The poor performance of SCP for
EFx2 can be justified by the use of an encrypted connection,
which requires a more complex session initiation that can be
hampered by lost packets.

Regarding the peak performance of each protocol, detailed
in TABLE 3, no significant differences were registered
for EFx1. Despite the computational overhead of encrypting
each session, the SCP protocol achieved an overall higher
transfer rate, even though this might not be the case in
computationally-constrained settings. Following the trend of
the number of transmitted files, the maximum transfer rate
performance reduces to nearly a third with EFx2. The SCP
protocol is again the most affected, in particular for experi-
ment 2, while Rsync and FTP have similar performances with
none of them standing out.

TABLE 3. Transfer rate for 40 MB files.

2) DATA-SET WITH 1 MB FILES
In order to better understand the impact of different file sizes
in intermittent communication links, the performance evalu-
ation of UAVs as data-mules was repeated with 1MB files
for the same amount of data transfer 560MB. In particular,
this gives insights about how the collected sensor data should
be organised, as it typically can be composed of several small
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TABLE 4. Transmission of 1 MB files.

measurements. TABLE 4 presents the obtained results for this
evaluation and the impact of using smaller files is clear. For
both experiment 2 and 3, with input EFx1, the percentage of
complete file-transfers varies among protocols, being Rsync
the best. In absolute terms, and for experiment 2, all the
protocols were able to transmit more data than in the 40MB
setup (i.e. > 11 files ·40MB). However, for experiment 3, the
performance with 1MB files is lower than with larger ones,
for all protocols except Rsync. This decrease in performance
is also verified in EFx2, but it affects differently each protocol.
The DTN protocol shows again better resistance to increased
error rates, outperforming all other protocols, in particular for
experiments 2 and 3. Notably, in these conditions, the DTN
protocol was able to transmit more data than in the 40MB
test, while the other protocols seem to be affected by the
number of necessary transfers. However, while FTP, Rsync
and SCP clearly had a worse performance when compared
against using 40MB files, the increased performance of the
DTN is thought to be due to the fact that incomplete files were
not considered in the 40MB setup, even though they had been
partially transferred.

TABLE 5. Transfer rate for 1 MB files.

The results shown in TABLE 5 reveal that the 1MB files
do not have a significant impact on the maximum transfer
bitrate, being very similar to the 40MB set. Nonetheless,
an individual analysis of each protocol reveals a decrease of
performance for SCP in EFx1, but an increase for EFx2. This
suggests that, when using SCP, larger files should be avoided
in challenging communication-conditions. On the other hand,
FTP performed worse with smaller files both in EFx1 and
EFx2, being this performance degradation more accentuated
in the latter. The DTN and Rsync protocols achieved a similar
transfer-rate performance, regardless of the used file size,
with a slight improvement registered for Rsync in EFx1 and
overtaking DTN. However, for EFx2, the DTN protocol takes

again the lead in performance, while Rsync has a decrease
in performance in experiment 3, when compared against the
40MB file sizes.

A final outcome from the obtained results concerns the
use of iperf as a tool for assessing network performance.
In FIGURE 11, TCP flows reach up to 4.5Mbit s−1,
while in the file-transfer tests the maximum bitrate was of
2.81Mbit s−1. This does not invalidate the usefulness of iperf
as a network performance tool, in a limited number of sce-
narios, but instead it reinforces the need for more detailed
assessments, taking into account the characteristics of the
chosen file-transferring network protocols and how they are
used.

VI. DISCUSSION
With this paper, we demonstrate the real performance of
UAVs as data mules in remote locations, using realistic
settings and focusing on maritime environments. This was
achieved not only by performing field experiments, but also
by developing a mission planning tool for thoroughly con-
ducting research on this topic. The obtained results showed
the impact of different UAV trajectories in communication
links, as well as the combined effects of the used trajecto-
ries with the selected protocols and how scientific data is
organised.

Using different flight trajectories can improve results, but
available trajectories for data-muling depend on several fac-
tors. First of all, the loiter radius of a UAV is defined by
physical limitations of the vehicle, mainly the maximum safe
load factor and lowest possible speed. Conventional fixed-
wing UAVs, which are preferred for data-muling due to their
range and endurance, require a minimum velocity to fly (stall
speedVS ). Their wings create lift-force, perpendicular to their
surface and, during loiter, the plane banks. To keep the flight
at the same level, the vertical component of the force created
by thewings needs to be constant. Therefore, the stall speed in
manoeuvre increases and is equal to VSM = VS

√
n, where n is

a Nominal Load Factor (‘‘G’’). Another concern is the lowest
safe altitude (LSALT). This can be defined by regulations or,
if no regulations apply, by the UAV operator’s judgement.

The combination between LSALT and loiter radius deter-
mines the angle between a node and the data-muling UAV.
This angle should match antenna-radiation patterns, in order
to efficiently transfer data, but that may not always be
possible. Therefore, the definition of flight trajectories typ-
ically takes into account the physical limitations of a plane,
regulatory/safety aspects and antenna-radiation patterns.
However, the obtained results show that the selection of
trajectories should also take into account the performance of
different networking protocols, since each trajectory affects
each protocol in distinct ways.

Transferring data between two network-enabled devices
can be achieved in many ways. However, when considering
the practical aspects of using a UAV as a data mule in scien-
tific missions, only a few solutions are likely to be used. The
performed analysis considered well-known file-transferring
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network protocols, each with its advantages and disadvan-
tages, and revealed that the DTN protocol was, overall, the
most suitable one.

The popularity of TCP is widely known and seen in all
the selected networking protocols, which use it as a transport
layer. Nonetheless, TCP is known to under-perform in sce-
narios with intermittent links, or when networking flows are
unidirectional or asymmetric [19], which is likely to happen
with data-muling. In fact, extensions to the DTN protocol
already exist for supporting datagram-based communications
(e.g. UDP or DCCP) [20]. This confirms the need for a
complete emulation tool that takes into account not only
link characteristics, but also the specifics of data flows and
mission objectives

VII. CONCLUSION
The use of real UAVs as data mules is evaluated, flying over
a research vessel for retrieving data and using different file-
transferring protocols. The presented work includes a field-
experiment and the steps required to reproduce the obtained
results in emulated settings. The implementation and valida-
tion of a mission planning tool is provided, relying entirely
on open-source tools, and achieving a mean error of 7.15%
of the real bitrate.

Using real data from the field experiment, combined with
the developed emulation tool, we show the performance of a
UAV as a data mule. This includes an evaluation with 3 flight
trajectories using different file sizes and 4 distinct, well-
known file-transferring protocols. Our evaluation confirms
that each flight trajectory affects the communication link in
different ways. For example, higher altitudes, despite increas-
ing the distance between the UAV and the ground node, can
actually improve communication performance by avoiding
on-board obstacles. Moreover, concerning the performance
of the file-transferring network protocols, we verify that the
DTN protocol outperforms FTP, Rsync and SCP, with all
of them affected by the size of the files being transferred.
In particular, the obtained results show that in scenarios with
higher error-rates the performance of transferring 40MBfiles
is higher than when transferring 1MB files. These results
motivate further studies on how different UAV trajectories
can be combined with efficient file-transferring network pro-
tocols, as well as on which data structures are most suitable
for distinct scenarios.
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