
Block Factorization of Step Response Model Predictive Control Problems

D. K. M. Kufoalora,, G. Frisonc, L. Imslanda, T. A. Johansena,b, J. B. Jørgensenc

aDepartment of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), O.S. Bragstads plass 2D N-7491 Trondheim, Norway.
bCenter for Autonomous Marine Operations and Systems, NTNU.

cDepartment of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

Abstract

By introducing a stage-wise prediction formulation that enables the use of highly efficient quadratic programming (QP) solution
methods, this paper expands the computational toolbox for solving step response MPC problems. We propose a novel MPC scheme
that is able to incorporate step response data in a traditional manner and use the computationally efficient block factorization
facilities in QP solution methods. In order to solve the MPC problem efficiently, both tailored Riccati recursion and condensing
algorithms are proposed and embedded into an interior-point method. The proposed algorithms were implemented in the HPMPC
framework, and the performance is evaluated through simulation studies. The results confirm that a computationally fast controller
is achieved, compared to the traditional step response MPC scheme that relies on an explicit prediction formulation. Moreover,
the tailored condensing algorithm exhibits superior performance and produces solution times comparable to that achieved when
using a condensing scheme for an equivalent (but much smaller) state-space model derived from first-principles. Implementation
aspects necessary for high performance on embedded platforms are discussed, and results using a programmable logic controller
are presented.

Keywords: Model Predictive Control; Step response models; Block factorization; Interior-point methods; Riccati recursion;
Condensing; Numerical optimization

1. Introduction

Model Predictive Control (MPC) is an advanced control
method based on numerical optimization. MPC uses a model
of the plant to predict future state (or output) trajectories in a
well defined constrained multivariable optimal control frame-
work. The MPC optimization problem can be formulated as a
multistage problem. When the plant model is linear, and a dis-
crete state-space representation is used, the characteristic struc-
ture of the multistage optimization problem becomes apparent.
The plant model equations (which become equality constraints
in the optimization problem) are such that each stage equation
involves coupling variables that link one stage to the next.

The capability of exploiting the multistage structure through
the use of dynamic programming or block factorization tech-
niques (e.g. Riccati recursion) was identified in [1, 2] as a
key factor to consider when developing efficient MPC algo-
rithms. This observation has led to the development of several
high-speed interior-point solvers among which Fast MPC [3],
FORCES [4], and HPMPC [5] are noteworthy in the context
of embedded MPC. Alternative solvers that do not exploit the
inherent multistage problem structure in MPC are also com-
mon. In order to use such solvers, a usual preparation step in-
volves recasting the MPC problem as a QP problem that does

Email addresses: kwame.kufoalor@itk.ntnu.no (D. K. M. Kufoalor),
giaf@dtu.dk (G. Frison), lars.imsland@itk.ntnu.no (L. Imsland),
tor.arne.johansen@itk.ntnu.no (T. A. Johansen), jbjo@dtu.dk (J. B.
Jørgensen)

not necessarily preserve the multistage structure. For instance,
qpOASES [6], as well as most active-set solvers, prefer a con-
densed QP problem formulation where the state variables are
eliminated.

For MPC problems that use step response models, the ex-
isting MPC algorithms mainly resort to compact formulations
of the prediction model where one stage equation can depend
on variables from all stages (see e.g. [7, 8, 9, 10]). Conse-
quently, the choice of a QP solver for MPC schemes that use
step response models presently excludes efficient solvers whose
strength is their ability to exploit the multistage structure (read-
ily apparent in MPC schemes that use state-space models).

It is possible to obtain an equivalent state-space realization
from step response models [11, 12], and it is therefore possible
to redesign a given step response MPC scheme to use a state-
space realization instead [8]. However, in practical examples,
where real (possibly noisy) plant data is involved, even very
efficient and numerically stable realization algorithms resort to
heuristic criteria when identifying significant states [11, 8]. As
a result, the (minimal) state-space realization may have a rela-
tively large state dimension, where the system matrices do not
exhibit any obvious structure that can be exploited in a system-
atic way [11]. If some model reduction technique is used, vali-
dation procedures will be required to ensure that an acceptable
response is produced by the resulting state-space model.

It is clear that opting for a state-space realization from step
response models may not always result in easy and straight-
forward control design, commissioning, or maintenance proce-

Preprint submitted to Journal of Process Control October 31, 2016

dures for industrial MPC installations. Recall that the main rea-
son why step response models are widely accepted in industrial
practice, and are still common in industrial MPC schemes, is
that the step response model approach facilitates easy and intu-
itive identification, control design, and maintenance procedures
[13, 8, 7].

The main motivation leading to the contributions in this pa-
per is the need to fill the gap between fast QP solver devel-
opments and industrial MPC implementations based on step
response models. Therefore, this paper proposes a new, but
mathematically equivalent, formulation for step response MPC.
The formulation facilitates the use of block factorization in the
QP solution method, and it incorporates the original step re-
sponse data in a traditional way. A dedicated state-space real-
ization algorithm is not needed in the proposed MPC scheme.
This implies that no extra model validation procedures are re-
quired. The implications for both Riccati recursion and con-
densing based solvers are studied. Discussions on implementa-
tion aspects in the HPMPC [5] framework, targeting embedded
MPC applications, are also included.

Further motivation and background for the methods pro-
posed in this paper are given in sections 3–4, and the main con-
tributions of this work are presented in sections 5–8. Simulation
results from a simple MPC problem and a more complex indus-
trial example are discussed in sections 9–10, and concluding
remarks are given in Section 11.

2. Notation and definitions

In this paper, the following notation and definitions are used.

• X represents the state vector of a state-space representa-
tion of step response models, where the vector dimension
is usually larger than that of the state vector x of a corre-
sponding state-space model derived from first-principles.

• X(j) or x(j) represents a state (or stage) vector for the
stage j in a multistage problem.

• xi(j) is element i in the stage vector x(j), i.e. x(j) =
{xi(j)}i=nx

i=1 , where nx is the number of elements in x(j).

• y(k+ j|k) represents the prediction of y(k+ j) using avail-
able information at time k.

• ·̄ implies that the variable, vector, or matrix belongs to the
augmented state-space system, which includes the previ-
ous input as a state variable.

• ·̃ indicates that the vector or matrix belongs to the recur-
sive state-space representation of step response models.

• ·̂ implies that the value of the vector is an estimate or a
prediction. For computed input moves, û j := ∆u j.

• ·d indicates that the variable or element is a dummy i.e. it
does not change the outcome (or value) of the computa-
tion it is involved in.

• step-MPC (or step-response MPC) refers to the traditional
step response based MPC scheme, where output predic-
tions are typically computed explicitly.

• ress-MPC (or realized state-space MPC) is a state-space
MPC scheme, where the state-space model is obtained
from step response data, using a realization algorithm.

• srss-MPC (or step-response state-space MPC) is the new
MPC scheme proposed herein, based on the recursive
computation of output predictions using step response
data (in a specially structured state-space representation).

• chol(·) represents a function that returns the Cholesky
factor of the input matrix.

• flops is an acronym for floating-point operations.

3. Multistage problems and block factorization

3.1. MPC problem formulation

Industrial MPC problems are typically formulated in terms
of controlled variables (CVs), disturbance variables (DVs), and
manipulated variables (MVs) (see e.g. [13, 8, 7]). The CVs are
usually plant outputs y(k) that can be measured or estimated,
DVs are measured (or estimated) disturbances d(k), and the
MVs are the control inputs u(k). Based on these variables, an
MPC problem whose objective is to track a given output refer-
ence ry(k) can be formulated as

min
Hp

∑
j=Hw

‖y(k+ j|k)− ry(k+ j)‖2
Q̄y

+
Hu−1

∑
j=0
‖∆u(k+ j)‖2

P̄ (1a)

subject to

∆u≤ ∆u(k+ j)≤ ∆u, u≤ u(k+ j)≤ ū, (1b)
y≤ y(k+ j|k)≤ ȳ, (1c)

u(k+ j) = u(k+ j−1)+∆u(k+ j), (1d)
y(k+ j|k) = ŷ(k+ j|k), (1e)

where j ∈ {Hw, . . . ,Hp} for the output constraints, j ∈ {0, . . . ,
Hu−1} for the input constraints, Hw ≥ 1 and Hu ≤ Hp. The j-
step ahead prediction of the CVs, at time k, based on the plant
dynamics is represented by ŷ(k+ j|k), and the implementation
of Eq. (1e) is crucial for the structure of problem (1). Further-
more, the way the predictions ŷ(k+ j|k) are made has a great
effect on the performance of the closed-loop system, and the
choice of prediction strategy is therefore an important point to
consider when formulating the MPC problem [8].

Note that a straightforward extension of problem (1) to in-
clude soft constraints and stability terms (or stability constraints)
can be made without losing the inherent multistage structure of
the MPC problem. Moreover, nominal closed-loop stability can
be achieved by an adequate choice of the weights Q̄y, P̄, and the
horizon lengths Hp and Hu (see e.g. [14]).

2

3.2. Effect of prediction strategy on QP problem structure
Consider the linear time-invariant (LTI) state-space model

x(k+1) = Ax(k)+Bu(k)+Bdd(k), (2a)
y(k) =Cx(k)+Du(k)+w(k), (2b)

where x(k) is the state vector, d(k) is a known disturbance vari-
able, w(k) is an unknown disturbance, and A ∈ Rnx×nx , B ∈
Rnx×nu , Bd ∈ Rnx×nd , C ∈ Rny×nx , D ∈ Rny×nu .

The predictions ŷ(k+ j|k), for j = 1, . . . ,Hp, can be com-
puted explicitly by iterating Eq. (2). The explicit predictions
provide the possibility of eliminating the states from the de-
cision variables of Eq. (1), resulting in a dense QP problem.
Although explicit predictions are used, a sparse QP formula-
tion that keeps the states as decision variables may be prefer-
able for some QP solver implementations. However, it can be
seen in the following derivation that the multistage structure
of problem (1) is lost when the explicit prediction approach is
used. Specifically, each stage equation depends on one or sev-
eral stage variables of ∆u(k+ j).

Assume the plant dynamics can be represented by Eq. (2),
with D= 0, and the disturbance-free case (i.e. d(k) = 0, w(k) =
0). The model can be written as

x(k+1) = Ax(k)+Bu(k),

y(k) =Cx(k).
(3)

Simply iterating Eq. (3) leads to the explicit predictions [8]:
ŷ(k+1|k)
ŷ(k+2|k)

...
ŷ(k+Hp|k)

=

CA CB
CA2 C(AB+B)

...
...

CAHp ∑
Hp−1
i=0 CAiB

[

x(k)
u(k−1)

]

+

CB

C(AB+B) CB
...

. . .
. . .

∑
Hp−1
i=0 CAiB . . . ∑

Hp−Hu
i=0 CAiB

∆u(k)
∆u(k+1)

...
∆u(k+Hu−1)

 , (4)

which is conveniently grouped into two terms. The first de-
pends on the current augmented state x̄(k) = [xT (k), u(k−1)]T ,
and the second depends on the vector of (unknown) future con-
trol actions ∆u(k+ j), which are decision variables calculated
in problem (1).

When step response models are used to describe the plant
dynamics in MPC, the prediction model formulations found in
the existing MPC literature resort to the explicit prediction ap-
proach. Specifically,

ŷ(k+1|k)
ŷ(k+2|k)

...
ŷ(k+Hp|k)

=

ŷ f (k+1|k)
ŷ f (k+2|k)

...
ŷ f (k+Hp|k)

+

S(1) 0 . . .

S(2) S(1)
. . .

...
...

. . .
S(Hp) . . . S(Hp−Hu +1)

∆u(k)
∆u(k+1)

...
∆u(k+Hu−1)

 , (5)

where ŷ f (k + j|k) is the free response known at time k, and
S(·) represents the step response coefficient at the correspond-
ing sampling instant. A survey of step response prediction mod-
els can be found in [15], where it is shown that different for-
mulations found in the MPC literature differ only in the way
ŷ f (k+ j|k) is computed. Note the structural similarity between
the explicit predictions (4) and (5), which indicates that the first
term of Eq. (4) is simply the free response ŷ f (k+ j|k) in Eq. (5).
The relation S(j) = ∑

j−1
i=0 CAiB can also be deduced by direct

comparison of Eq. (4) and Eq. (5).
From the above discussions, it is clear that the use of explicit

prediction for step response models cannot take advantage of
QP solver methods that are designed to exploit the multistage
structure inherent in problem (1). It is known that the multistage
structure of problem (1) is preserved if ŷ(k+ j|k) in Eq. (1e) is
defined as [2]

ŷ(k+ j|k) = C̄Āx̄(k+ j−1|k)+C̄B̄∆u(k+ j−1), (6)

where Ā =

[
A B
0 I

]
, B̄ =

[
B
I

]
, C̄ =

[
C 0

]
.

Section 4 therefore examines different strategies that enable
the use of step response data in a formulation similar to Eq. (6),
and the new multistage prediction approach proposed in this
paper is presented in Section 5.

3.3. Computational efficiency of multistage QP problems

The MPC problem (1) is a constrained convex QP problem,
which can be solved in different ways. Using the explicit pre-
dictions, (4) or (5), either a dense or sparse QP solver that is ca-
pable of exploiting the general structure of the QP problem may
be a suitable choice. The cost of solving a dense QP, where all
the states are eliminated is typically O(N3

pn3
u). This limits the

dense approach to problems with relatively small horizon, Np,
and number of inputs, nu. When efficient sparse solver tech-
niques are implemented, the sparse QP based on explicit pre-
dictions can be solved with O(Np(nx +nu)

3) complexity [1].
The possibility of achieving linear complexity in Np for the

sparse QP problem has motivated the development of different
block factorization techniques for QP solution methods based
on the multistage structure of problem (1), using Eq. (6). Effi-
cient block factorization strategies are employed in both Riccati
recursion based solvers (e.g. HPMPC) and Schur complement
based solvers (e.g. Fast MPC and FORCES). Note that although
different sparse solvers exhibit similar asymptotic complexities,
their performances in practice may differ by up to an order of
magnitude [16].

4. State-space realizations from step response models

The discussions in the preceding sections motivate the use
of a state-space model in MPC. If step response data of the
plant is available, well established realization techniques can be
used to translate such data into a minimal state-space realization

3

[11, 12, 8]. Among the numerous existing state-space realiza-
tion algorithms (see e.g. [11] for an overview), the algorithms
of [17, 18, 19, 20] have proved to be practically useful and nu-
merically reliable [11, 12, 8]. However, due to measurement
noise in step response data (in practice), the exact response of
the underlying LTI system can in general not be produced by
a state-space realization of the same order [11]. This implies
that realization algorithms may rely on some heuristic criteria
in order to arrive at good low-order approximations.

The resulting system matrices A, B, C, D, are in general
dense and do not exhibit any specific structure [11, 8], even
though canonical minimal realizations are possible in some cases
[21]. Furthermore, the state-space models obtained from real-
ization algorithms do not have any direct physical interpreta-
tion, and it will be shown (later in this paper) that an observer
is required in order to relate the states generated by realiza-
tion algorithms to measured values of controlled variables in
existing industrial MPC schemes. In order to facilitate the in-
corporation of state-space realization algorithms into an auto-
matic code-generation framework, it is desirable to use real-
ization strategies that do not rely on heuristics, and therefore
avoid extra manual verification or validation procedures. This
implies that relatively large state dimensions are expected, typ-
ically N ·min(nu,ny) [8].

An alternative approach to the use of dedicated state-space
realization algorithms, is to use the direct state-space interpre-
tation of step response models (see e.g. [10, 9], or [7]). In
this way, no further approximation is introduced to the step re-
sponse data, and the state variables can be interpreted as future
outputs [10, 9], or as a vector of past outputs and control moves
[7]. Both interpretations lead to state-space models that have
relatively large state vector dimensions. However, the interpre-
tation of [10] comes with the advantage that the system matrices
Ã and C̃ are sparse and have fixed structure that can be carefully
exploited in an MPC algorithm:

X̃(k+1) = ÃX̃(k)+ B̃∆u(k), (7a)

ỹ(k) = C̃X̃(k), (7b)

where C̃ =
[
Iny 0 . . . 0

]
ny×N ,

Ã =

0 Iny 0 · · · 0

0 0 Iny

. . . 0
...

...
. . .

. . .
...

0 0 0 · · · Iny

0 0 0 · · · Iny

nyN×nyN

B̃ =

S1
S2
...

SN−1
SN

nyN×nu

The state vector, X̃(k) of dimension N ·ny, is defined as

X̃(k),Ỹ (k)=
[
ỹT (k) ỹT (k+1) . . . ỹT (k+N−1)

]T (8)

and the matrix Si, for i = 1, . . . ,N, contains the step response
coefficients relating each input-output pair. Model (7) uses the
assumption SN+1≈ SN , which is valid for stable plants. In order
to represent integrating plants, the extensions in [9] can be used.

5. Multistage QP using step response models

A multistage problem based on the recursive computations
in problem (7) and structural exploitation techniques for step
response MPC are discussed in this section. The formulation
used and the resulting algorithms provide a new MPC scheme,
termed srss-MPC. In order to highlight the advantages of the
srss-MPC scheme, comparisons are made with the ress-MPC
scheme, which is based on the use of realization algorithms.
Since both MPC schemes involve the use of predictions in the
form of Eq. (6), the derivations in this and the following sec-
tions are compared to the general multistage QP formulation
derived from the MPC problem (1) using Eq. (6). The general
multistage QP problem is provided in Appendix A.

5.1. Multistage step response prediction
The main results of this work are based on the observation

that a multistage prediction strategy can be derived for step re-
sponse MPC when the free response trajectory is used to initial-
ize the recursive computations of the future output predictions.
Using the free response vector ŷ f (k+ j|k) as the initial state, the
stage-wise predictions of the srss-MPC can be derived from the
traditional explicit predictions (5) in a straightforward manner.

Consider j = 0, . . . ,Np, which includes the initial stage j =
0, defined in the multistage problem (A.1). Let Np = 3, without
loss of generality. From Eq. (5),ŷ(k+1|k)

ŷ(k+2|k)
ŷ(k+3|k)

=

ŷ f (k+1|k)
ŷ f (k+2|k)
ŷ f (k+3|k)

+
S1

S2 S1
S3 S2 S1

∆u(k+0)
∆u(k+1)
∆u(k+2)

which is the sum of the free response ŷ f (k+ j|k) and the forced
response (that depends on the current and future control moves
∆u(k+ j)). In order to compute the forced response (and there-
fore the predictions) recursively, consider rewriting the explicit
predictions asŷ(k+1|k)

ŷ(k+2|k)
ŷ(k+3|k)

=

ŷ f (k+1|k)
ŷ f (k+2|k)
ŷ f (k+3|k)

+

S1
S2
S3

∆u(k+0)+

 0
S1
S2

∆u(k+1)+

 0
0
S1

∆u(k+2).

It is now obvious that, in order to compute all terms depending
on ∆u(k+ j) at each stage j, a state vector X̃(k+ j) can be used
to accumulate the partial sums, asx̃1(k+1)

x̃2(k+1)
x̃3(k+1)

=
I 0 0

0 I 0
0 0 I

x̃1(k+0)
x̃2(k+0)
x̃3(k+0)

+
S1

S2
S3

∆u(k+0)

x̃1(k+2)
x̃2(k+2)
x̃3(k+2)

=
I 0 0

0 I 0
0 0 I

x̃1(k+1)
x̃2(k+1)
x̃3(k+1)

+
 0

S1
S2

∆u(k+1) (9)

x̃1(k+3)
x̃2(k+3)
x̃3(k+3)

=
I 0 0

0 I 0
0 0 I

x̃1(k+2)
x̃2(k+2)
x̃3(k+2)

+
 0

0
S1

∆u(k+2)

4

where X̃(k+ j) =
[
x̃T

1 (k+ j) x̃T
2 (k+ j) x̃T

3 (k+ j)
]T

, A(j) is
the identity matrix, B(j) is time-variant and contains the step
response coefficients, and the initial state is the free response

X̂(0) := X̃(k+0) =

x̃1(k+0)
x̃2(k+0)
x̃3(k+0)

=

ŷ f (k+1|k)
ŷ f (k+2|k)
ŷ f (k+3|k)

 .
The output predictions are then trivially computed as

ŷ(k+1|k) =
[
I 0 0

]
X̃(k+1)

ŷ(k+2|k) =
[
0 I 0

]
X̃(k+2) (10)

ŷ(k+3|k) =
[
0 0 I

]
X̃(k+3)

and the derived stage-wise prediction equations, (9) and (10),
are in the state-space form

X̃(k+ j+1) = Ã(j)X̃(k+ j)+ B̃(j)∆u(k+ j)

ŷ(k+ j|k) = C̃(j)X̃(k+ j).

Note that the component of X̃(k+ j) with index 1 is not updated
after the first stage (i.e. x̃1(k + 1) = x̃1(k + 2) = x̃1(k + 3)),
and the component with index 2 is not updated after the second
stage (i.e. x̃2(k+ 2) = x̃2(k+ 3)). This observation (and other
related properties summarized in Section 5.2) form the basis of
the structural exploitation techniques proposed in this paper.

It may be useful to explicitly include the expression of the
future control values u(k + j) as optimization variables. This
can be easily obtained by augmenting the state as

x̃1(k+1)
x̃2(k+1)
x̃3(k+1)
u(k+0)

=

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

x̃1(k+0)
x̃2(k+0)
x̃3(k+0)
u(k−1)

+

S1
S2
S3
I

∆u(k+0)

illustrated for j = 0. The state vector size becomes nX =Npny+
nu. Note that the diagonal structure of the A(j) matrices is pre-
served.

To sum up, general equations for the multistage step re-
sponse predictions in Eq. (9) and (10) are

x̃i(k+ j+1) = x̃i(k+ j)+Si− j∆u(k+ j), j = 0, . . . ,Np (11)
ŷ(k+ j|k) = x̃ j(k+ j), j = 1, . . . ,Np (12)

where Si− j = 0 for i≤ j, and i = 1, . . . ,Np.

5.2. Exploiting the system dynamics structure

In this subsection, the inherent structure of the recursive
computations presented in Section 5.1 are discussed, and ef-
ficient implementation strategies are proposed based on the ob-
servation that only some components of X̃(k+ j) are updated
from one stage to the next. In order to facilitate straightforward
referencing, the inherent structural properties in Eq. (9) or (11)
are summarized in the following:

OB1 The first variable x̃1(k+ j) in X̃(k+ j) at any stage j is not
required to compute the state variables at the next stage.

OB2 The number of states nX that contribute in calculating the
state vector X̃(k+ j) at each stage j decreases by ny from
one stage to the next, i.e. nX (k+0) = Npny, nX (k+1) =
(Np−1)ny, . . . ,nX (k+Np) = ny

OB3 The number of step response matrices Si required at each
stage decreases by 1 from one stage to the next, i.e. the
sequence {Si}

Np− j
i=1 , j = 0, . . .Np−1, is required.

OB4 The output estimate at each stage is given by
ŷ(k+ j|k) = x̃ j(k+ j), j = 1, . . .Np.

Based on OB1–OB4, implementation strategies that aim at
attaining a high structural exploitation level in the QP solution
method for the srss-MPC scheme can be derived. Using OB1,
and considering k = 0, the second and third equations in (9) can
be rewritten asx̃d

1(2)
x̃2(2)
x̃3(2)

=

0 0 0
0 I 0
0 0 I

x̃1(1)
x̃2(1)
x̃3(1)

+
 0

S1
S2

∆u(1)

x̃d
1(3)

x̃d
2(3)

x̃3(3)

=

0 0 0
0 0 0
0 0 I

x̃d
1(2)

x̃2(2)
x̃3(2)

+
 0

0
S1

∆u(2)

=⇒ X̃ j+1 =Ã jX̃ j + B̃ jû j, cf. Eq. (A.1c),

where the superscript d implies the element contains a dummy
value, and can therefore be ignored. Therefore, Ã j = Ã can be
considered either as a diagonal matrix or the identity matrix.
Both options lead to a system structure that can be easily ex-
ploited in any solver that makes computations directly involv-
ing Ã j.

Using Ã j = I implies X̃ j+1 = IX̃ j + B̃ jû j, where the state
vector X̃ j has a fixed length nX̃ = nyNp. However, an easy way
to keep track of the useful information in the recursive com-
putations (i.e. identifying dummy elements) is to maintain the
zeros in the diagonal of Ã j. In this way more structure is in-
troduced, which may facilitate further exploitation in some QP
solution methods (including the methods used in this paper). A
general multistage step response equation that is equivalent to
maintaining the zeros in the diagonal of the matrix formulation
above is

x̃i(k+ j+1) =

{
0 if i≤ j,
x̃i(k+ j)+Si− j∆u(k+ j) if i > j.

Apart from the possibility of storing Ã as an identity ma-
trix, or directly incorporating Ã = I into the solver algorithm
where applicable, a large memory workspace may be required
in a naive implementation (considering nX states at Np stages).
However, since the applicability of multistage problems is not
limited to stage variables with fixed dimensions, the dummy
elements can be omitted in the prediction equations at each
stage. The state dimension will then decrease from one stage
to the next, as nX (j) = ny(Np− j), which is in agreement with
OB2. In this way only the required data and state information
for each stage are stored, significantly reducing the memory re-
quirements.

In some implementation frameworks (e.g. HPMPC), it may-
be preferable to reverse the state vector X̃ j. This will move all

5

useful data of the system matrices to the top rows, making it
easier to keep track of useful data blocks, i.e.

[
x̃3(2)
x̃2(2)

]
=

[
I 0 0
0 I 0

]x̃3(1)
x̃2(1)
x̃1(1)

+[S2
S1

]
∆u(1)

[
x̃3(3)

]
=
[
I 0

][x̃3(2)
x̃2(2)

]
+
[
S1
]

∆u(2)

The varying stage vector size is nX (j) = ny(Np− j), and the
useful stage data size is nda

X (j) = ny(Np− j−1).
Note that using a varying stage vector size implies that the

general equation (11) for the multistage step response predic-
tions is implemented only for the case where i > j.

5.3. Implications of initializing with the free response

Several implications follow from the particular choice of
y f (k+ j) as X̂(0). First of all, any of the existing (i.e. tradi-
tional) approaches for computing the free response can be used
to obtain X̂(0) (see e.g. [15, 7, 8]). Moreover, the results of
[15] show that an implementation using the recursive formula-
tion (7), yields the most efficient free response computations.
In this work, the free response is computed as follows:

Based on Eq. (7), X̃(k) = ÃX̃(k− 1)+ B̃∆u(k− 1), can be
easily computed in an MPC scheme since estimates of both

X̃(k−1) =
[
ỹT (k−1|k−1) . . . ỹT (k+Np−1|k−1)

]T
and ∆u(k−1) are available at time k. Simply shifting X̃(k) one
step ahead (i.e. assuming ∆u(k) = 0) produces the free response
X̂ f (k+1) = {ŷ f (k+ j|k), j = 1, . . . ,Np}, which is usually cor-
rected by some disturbance estimate V (k), i.e.

X̂ f (k+1) = ÃpX̃(k)+V (k), (13)

where Ãp contains the first Np rows of Ã in Eq. (7).
Another implication is that since the disturbance model V (k)

is included in the free-response computations, the initial state
X̃(0) describes the response, including the predicted effect of
disturbances, when no future control actions are applied to the
plant. This implies that the estimate of disturbances are com-
puted only once in each sampling interval, outside the QP solver.

Compared to the option of using the realized state-space
scheme (ress-MPC), the following remarks can be made. In the
ress-MPC, further augmentation of the system dynamics model
may be derived in order to incorporate an appropriate distur-
bance model. Known disturbances d(k) can be implemented as
extra (possibly time-varying) parameters in the system dynam-
ics equation. For the case where a constant disturbance model
is used for w(k) in Eq. (2) (i.e. the typical choice in industrial
MPC schemes [8]), the cost term involving the output y(j) in
problem (1) can be redefined as

yT (j)Q̄yy(j) = (Cx(j)+w(0))T Q̄y(Cx(j)+w(0))

= xT (j)CT Q̄yCx(j)+2wT (0)Q̄yCx(j),

and the output is calculated as y(j) =Cx(j)+w(0). This is pos-
sible since w(j) =w(0) over the stages j = 1, . . . ,Np in the mul-
tistage problem, and can therefore be interpreted as a constant
parameter in the QP solver.

Clearly, a state observer is required for the ress-MPC scheme,
since outputs y(k), instead of states, are measured, and C is
generally not equal to I. Even if C = I, the presence of output
disturbances w(k) makes an observer necessary.

5.4. Control objective and constraints

The relations that convert the original MPC problem (1) to
the multistage QP problem (A.1), stated in Appendix A, apply
for both the ress-MPC and srss-MPC schemes. Moreover, a
straightforward design parameter translation from a traditional
step response MPC scheme is achieved when the srss-MPC is
used. Since the state vector X̃(k) consists of outputs, an extra
set-point filter that ensures the feasibility of the output reference
trajectory ry(k + j) in terms of state and input variables (i.e.
rX (k+ j) and ru(k+ j)) is not needed for the srss-MPC scheme.
Specifically, r(j) = ry(k + j) in problem (A.1) for srss-MPC,
whereas r(j) = [rT

x (k+ j), rT
u (k+ j)]T for the ress-MPC.

Therefore, it is straightforward to derive the matrices of the
cost function of the srss-MPC according to problem (A.1):

Q̃(1) = 2

Q̄y 0 0 0
0 0 0 0
0 0 0 0
0 0 0 R̄

 , q̃(1) =−

Q̄yry(k+1)

0
0
r̄

 ,

Q̃(2) = 2

0 0 0 0
0 Q̄y 0 0
0 0 0 0
0 0 0 R̄

 , q̃(2) =−

0

Q̄yry(k+2)
0
r̄

 ,

Q̃(3) = 2

0 0 0 0
0 0 0 0
0 0 Q̄y 0
0 0 0 R̄

 , q̃(3) =−

0
0

Q̄yry(k+3)
r̄

 ,
R̃(j) = 2P̄, r̃(j) = ry(k+ j), j = 0,1,2.

where box constraints on input values are translated into the
penalties R̄ and r̄, which provide a convenient formulation in an
interior-point method (IPM) framework. Moreover, the sparsity
pattern observed in the cost function matrices can be exploited
in some QP solution methods (see Section 6.2 for a straightfor-
ward approach). Note that the above matrices may be defined
according to the size-varying X̃(j). Moreover, computations
that do not involve the system dynamics in the QP solver can
avoid using size-varying variables, since the computed ny out-
put predictions ŷ(k+ j|k) at each stage j can be used directly.

Furthermore, since C(j) extracts the current output, com-
puted for each stage using identity matrices, simple box con-
straints on the output remain unchanged in the srss-MPC scheme.
The particular sparse structure obtained when inequality (A.1d)
maintains the original box constraints from (1c) can be easily
exploited in the QP solver method. For instance, the box con-
straints can be easily translated into penalties in the cost func-
tion in order to simplify the solution method. For the ress-MPC,

6

on the other hand, the elements of C(j) can hold any real num-
ber, implying that simple box constraints on outputs translate
into general constraints on states.

5.5. Problem size reduction strategies

Since long prediction horizons are usually chosen in prac-
tice, and the step response models tend to be large, the use of
techniques such as MV blocking and CV evaluation points are
typical in industrial MPC schemes. Due to the stage-wise pre-
diction of formulation (A.1), a straightforward translation of an
MPC problem setup that implements MV blocking is to enforce
∆u j = 0 for the indexes j where MVs are no allowed to change.
In contrast to the use of explicit predictions, the stage-wise ap-
proach does not directly eliminate the corresponding ∆u vari-
ables from the QP problem. Enforcing MV blocks in the srss-
MPC and ress-MPC schemes introduces the possibility of ex-
ploiting the blocking information in the solution method, since
the system dynamics equation (A.1c) reduces to x̄ j+1 = Ā j x̄ j at
the stages where control input moves are blocked.

Moreover, a strategy that implements CV evaluation points
can be easily derived for the srss-MPC by exploiting the fact
that A j simply shifts the state vector X̃ j to X̃ j+1 if ∆u j = 0. Note
that û j := ∆u j = 0 at points where CVs are not evaluated. Con-
sider evaluation points {`= 1, 2} corresponding to { j = 1, 4}
in the horizon, and allow inputs to change at { j = 0, 1}. It is
then easy to verify that

X̃1=Ã0X̃0 + B̃0û0 → X̃1=Ã0X̃0 + B̃0û0 → X̃1=Ã0X̃0+B̃0û0
X̃2=Ã1X̃1 + B̃1û1 X̃2=Ã1X̃1 + B̃1û1 X̃4=Ã3(X̃1+B̃1û1)
X̃3=Ã2X̃2 + B̃2û2 X̃3=Ã2(X̃1 + B̃1û1)
X̃4=Ã3X̃3 + B̃3û3 X̃4=Ã3(X̃1 + B̃1û1)

=⇒ X̃ξ (`) = Ãξ (`)−1(X̃ξ (`−1)+ B̃ξ (`−1)ûξ (`−1)),

where ξ (`) is a function that returns the corresponding stage
index j of the evaluation point index `. The resulting system
of stage equations has the same structure as the original recur-
sive system (9). Since the corresponding outputs at the points
not evaluated in the prediction horizon can be omitted from the
state vector X̃ξ (`), the state dimension reduces to nX = nEvny,
where nEv is the number of evaluation points. It is also straight-
forward to extract the corresponding step response data for the
reduced B̃ξ (`−1) matrices. Note that, since the state vector X̃
of the srss-MPC consists of future outputs that describe the re-
sponse of the plant at specific points in the prediction horizon,
the above derivation implies that the same evaluation points se-
lected for a traditional step response MPC application can be
applied directly to the srss-MPC.

Using a similar strategy for the ress-MPC will require the
computation of the corresponding Āξ (`)−1 at each evaluation
point. For instance, the last stage in the above illustration will
become

x̄4=Ā3x̄3 + B̄3û3 → x̄4=Ā3Ā2(Ā1x̄1 + B̄1û1) →
x̄4=Ā3x̄1+Ā2B̄û1

=⇒ X̃ξ (`) = Āξ (`)−1X̃ξ (`−1)+ Āξ (`)−2B̃ξ (`−1)ûξ (`−1),

considering minimal LTI models realized from step response
data. It is obvious that numerical problems may arise when
large powers of Ā are involved. The relation between states
and outputs at the evaluation points must also be considered for
the ress-MPC. It is therefore not a trivial task to implement the
evaluation points selected for a traditional step response MPC
in the ress-MPC scheme.

6. Impact on different solver frameworks

In this section different solver frameworks for the solution
of the srss-MPC problem are presented.

Interior-point methods (IPM) are considered for the solu-
tion of the QP problems. Beside the usual good features of IPM
solvers in an MPC framework (reliability, low and almost con-
stant number of iterations, possibility to have high-accuracy so-
lutions), IPM solvers are chosen also because of their ability to
efficiently deal with specialized constraints such as hard or soft
box constraints (that are preserved in the srss-MPC scheme, as
shown in Section 5.4).

In an IPM algorithm, the most computationally expensive
operation is the solution of the unconstrained sub-problems to
compute the Newton direction. In this section two solver frame-
works are considered for the solution of the unconstrained sub-
problems: Riccati recursion and condensing methods.

It is important to note that condensing is used as a tech-
nique to speed up the solution of the unconstrained problem
and therefore performed on-line at each IPM iteration. There-
fore the outputs are retained as optimization variables in the
IPM algorithms, and the box constraints on outputs are retained
in the optimization problem, and not transformed into general
polytopic constraints on the inputs. This choice is justified by
the fact that the condensing procedure is computationally cheap
compared to the Riccati recursion for the srss-MPC scheme.

6.1. Computational speedup in a Riccati framework

The Riccati recursion is a well known method for the solu-
tion of unconstrained MPC problems, as it can efficiently ex-
ploit their special structure [2]. For simplicity, and considering
the fact that the Newton direction in an IPM can be computed
by solving an instance of the linear quadratic regulator (LQR)
problem, the Riccati recursion computations are summarized in
Alg. 1 for the underlying LQR problem of srss-MPC. Alg. 1
can be embedded in an IPM using a similar procedure as that
described in [2] (i.e. the Riccati recursion retains its structure
in the IPM, and corresponding translations for Q̃ j, R̃ j, and r̃ j
are used).

The Riccati recursion has an asymptotic cost of O(Np(n3
X +

n2
X nu+nX n2

u+n3
u)) flops, where nX is the state vector size, nu is

the control vector size and Np is the prediction/control horizon
length. In particular, the O(Npn3

X) term (i.e. the term cubic
in the state vector dimension) comes from the computation of
the term ÃT

j PT
j+1Ã j in line 6 of Alg. 1. Since nX = Npny, the

cost of the Riccati recursion is O(N4
pn3

y +N3
pn2

ynu +N2
pnyn2

u +

Npn3
u) flops when computed as a function of ny, nu and Np. This

7

means that, if a generic Riccati recursion solver is employed,
the computational complexity grows with the 4-th power of Np.

However, in a Riccati framework the special structure of
the dynamic system equations presented in Section 5.2 can be
exploited to reduce the computational complexity of the algo-
rithm. These savings are mainly due to the following:

• Diagonal A j matrices. This means that the term ÃT
j PT

j+1Ã j

can be computed in time O(Npn2
X), reducing the asymp-

totic complexity of the algorithm. Similarly, the term
(PT

j+1B̃ j)
T Ã j in line 5 of Alg. 1 can be computed in time

O(Npn2
X nu), further reducing the computational cost. The

fact that the Riccati recursion becomes quadratic in nX is
especially useful since the state vector size is relatively
large (i.e. nX = Npny) compared to that of the corre-
sponding state-space model derived from first principles.
This reduces the computational cost of the Riccati recur-
sion to Np(3n2

X nu + 2nX n2
u +

1
3 n3

u) flops, or 3N3
pn2

ynu +

2N2
pnyn2

u +
1
3 Npn3

u flops when computed as a function of
ny, nu and Np, that is cubic in Np. Furthermore, this re-
duces the memory requirement to store the A j matrices.

• Size-varying nX . By exploiting OB2, it is possible to
let the size of the state vector change, and reduce it by
ny at each stage starting from Npny at the first stage 0
down to ny at the last stage Np. The Riccati recursion
can be modified to take the size-varying nX into account,
and therefore reduce both the computational cost and the
memory requirements. In particular, the cost of the terms
quadratic in nX (i.e. in the form c1N3

pn2
ynu if nX = Npny,

where c1 is a positive constant) becomes

Npny

∑
nX=ny

c1n2
X nu ≈ 1

3 c1N3
pn2

ynu

and therefore reduced by a factor 3. Similarly, the cost
of the terms linear in nX (i.e. in the form c2N2

pnyn2
u if

nX = Npny, where c2 is a positive constant) becomes

Npny

∑
nX=ny

c2nX n2
u ≈ 1

2 c2N2
pnyn2

u

and therefore reduced by a factor 2. Therefore the imple-
mented algorithm has a computational cost of N3

pn2
ynu +

N2
pnyn2

u +
1
3 n3

u flops.

Note that there is no need to retain all states as optimization
variables in the IPM: at each stage j, only the ny states corre-
sponding to output predictions ŷ(k+ j|k) and the nu states cor-
responding to inputs u(k+ j|k) are needed. This simplifies the
design of an efficient IPM, that does not need to deal with size-
varying nX and the sparsity structure of the state constraints. In
this way, besides the cubic cost to compute the Newton direc-
tion, all other operations in the IPM algorithm can be performed
in O(Np) flops.

Algorithm 1 ∗Tailored Riccati recursion scheme for srss-MPC (Ã j is diagonal,
nX is varying according to discussions the in sections 5.2 and 6.1)

Require: Ã j , B̃ j , Q̃ j , R̃ j , r̃ j = 0, { j = 1, . . . ,Np}, X̂0 := X̂ f (k+1)
1: PNp ← Q̃Np
2: for j = Np−1→ 0 do
3: RΛ, j ← R̃ j + B̃T

j · (PT
j+1 · B̃ j)

4: Λ j ← chol(RΛ, j)

5: L j ← Λ
−1
j · (PT

j+1B̃ j)
T · Ã j {exploit Ã j}

6: Pj ← Q̃ j + ÃT
j ·PT

j+1 · Ã j−LT
j L j {exploit Ã j}

7: end for
8: for j = 0→ Np−1 do
9: û j ←−(ΛT

j)
−1L j · X̃ j

10: X̃ j+1← Ã j · X̃ j + B̃ j · û j {exploit Ã j}
11: end for
∗ suitable for embedding into an IPM framework

6.2. Computational speedup in a condensing framework
By using the special structure of the matrices Ã(j), B̃(j),

C̃(j), Q̃(j), R̃(j), q̃(j), r̃(j), it is possible to write an efficient
condensing (or state elimination) algorithm, that has the same
computational complexity, i.e. O(N3

p(nyn2
u + n3

u)+N2
pn2

ynu) as
a condensing algorithm for the original state-space system (3).
The original system refers to a state-space system derived from
first principles, and it is assumed that the number of outputs
ny is equal to the number of states nx of the original system.
This assumption represents the worst case setup, implying that
a faster algorithm will be achieved for a system with ny < nx.

The condensed Hessian matrix is H̃ = R̃+ΓT
u Q̃Γu, where

R̃ =

R̃(0)
R̃(1)

R̃(2)

 , Q̃ =

Q̃(1)
Q̃(2)

Q̃(3)

 .
The matrix Γu is

Γu =

 B̃(0)
Ã(1)B̃(0) B̃(1)

Ã(2)Ã(1)B̃(0) Ã(2)B̃(1) B̃(2)

=

S1
S2
S3
I
0 0
S2 S1
S3 S2
I I
0 0 0
0 0 0
S3 S2 S1
I I I

The matrix Q̃Γu is

Q̃Γu =

Q̄yS1
0
0
R̄
0 0

Q̄yS2 Q̄yS1
0 0
R̄ R̄
0 0 0
0 0 0

Q̄yS3 Q̄yS2 Q̄yS1
R̄ R̄ R̄

8

The key concept of this condensing method is that in the Q̃Γu
matrix, each block has a number of non-zero elements that does
not depend on Np, and therefore it is possible to compute this
matrix efficiently in O(N2

pn2
ynu) flops (O(N2

pnynu) if Q̄y is diag-
onal).

The H̃ matrix can be computed as H̃ = R̃ + ΓT
u · (Q̃Γu)

(and taking into account the zero sparsity pattern of the ma-
trices) in time O(1

3 N3
pnyn2

u). This complexity could be reduced
to O(N2

pnyn2
u) by exploiting the fact that Q̄y is the same at all

stages. However, in an IPM framework this is not the case,
since the cost function matrices are updated with a penalty that
in general is different at each stage. Finally, the H̃ matrix can
be factorized in time O(1

3 N3
pn3

u) by means of a Cholesky factor-
ization (see e.g. [22]).

The condensed Jacobian vector is g̃ = r̃ +ΓT
u q̃+ΓT

u Q̃Γb,
where

q̃ =

q̃(1)
q̃(2)
q̃(3)

 , r̃ =

r̃(0)
r̃(1)
r̃(2)

 .
The vector Γb is

Γb =

 Ã(0)X̂(0)
Ã(1)Ã(0)X̂(0)

Ã(2)Ã(1)Ã(0)X̂(0)

=

ŷ f (k+1|k)
ŷ f (k+2|k)
ŷ f (k+3|k)

u(k−1)
0

ŷ f (k+2|k)
ŷ f (k+3|k)

u(k−1)
0
0

ŷ f (k+3|k)
u(k−1)

The vector Q̃Γb + q̃ is

Q̃Γb + q̃ =

 Q̃(1)Ã(0)X̂(0)+ q̃(1)
Q̃(2)Ã(1)Ã(0)X̂(0)+ q̃(2)

Q̃(3)Ã(2)Ã(1)Ã(0)X̂(0)+ q̃(3)

=

Q̄yŷ f (k+1|k)− Q̄yry(k+1)
0
0

R̄u(k−1)− r̄
0

Q̄yŷ f (k+2|k)− Q̄yry(k+2)
0

R̄u(k−1)− r̄
0
0

Q̄yŷ f (k+3|k)− Q̄yry(k+3)
R̄u(k−1)− r̄

Again, each block has a number of non-zero elements that does
not depend on Np. Finally, the g̃ vector can be built as g̃ =
r̃+ΓT

u · (Q̃Γb + q̃) (and taking into account the sparsity pattern
of the matrices).

Overall, the cost of this condensing method is exactly the
same as the condensing method applied to the original state-
space system (3) and augmented to include input moves ∆u(k+
j) in the problem formulation, as in Eq. (6), and equal to 1

3 N3
pnyn2

u+
1
3 N3

pn3
u+N2

pn2
ynu flops (i.e. cubic in Np). The condensing scheme

for the srss-MPC is summarized in Alg. 2.

Algorithm 2 ∗Tailored condensing scheme for srss-MPC

Require: Ã(j), B̃(j), Q̃(j), R̃(j), q̃(j), r̃(j), j = 1, . . . ,Np

X̂(0) := X̂ f (k+1), and ΓT
u {built offline}

1: create or update q̃, Γb, and Q̃Γu
2: compute Q̃Γb + q̃
3: H̃← R̃+ΓT

u · (Q̃Γu) {exploit fixed sparsity pattern in Q̃Γu}
4: g̃← r̃+ΓT

u · (Q̃Γb + q̃) {exploit fixed sparsity pattern in Q̃Γb + q̃}
5: compute û(j) {e.g. L← chol(H̃); û(j)←−L−1((LT)−1 + g̃)}
6: recover X̃(j) {i.e. simulate system dynamics using û(j)}
∗ suitable for embedding into an IPM framework

Note that, in the current IPM framework, condensing is only
a technique employed to speed up the solution of the uncon-
strained sub-problems producing the Newton direction. There-
fore the condensing procedure is performed on-line, and its cost
is added to the cost of factorizing the condensed Hessian ma-
trix. However, the combined cost of building and factorizing the
condensed Hessian compares favorably to the tailored Riccati
recursion cost: if nu ≈ ny, then the condensing method requires
approximately 2

3 the number of flops of the tailored Riccati re-
cursion, when considering only terms cubic in Np.

Also in this case, it is not necessary to retain all states as
optimization variables in the IPM: at each stage j, only the ny
states corresponding to the output predictions ŷ(k+ j|k) and the
nu states corresponding to the inputs u(k+ j|k) are required.

7. Efficient step response MPC algorithms

7.1. step-MPC, srss-MPC, and ress-MPC schemes

This section discusses the main MPC schemes considered
for step response models. Alg. 3 describes a high-level scheme
that implements the srss-MPC, considering the proposed struc-
ture exploiting strategies and the efficient algorithms achieved
for either the Riccati recursion or condensing based IPM solver.

Alg. 4 and 5 are provided in Appendix B for the step-MPC
and ress-MPC schemes, respectively. Alg. 4 features the tra-
ditional step response MPC scheme that relies on the explicit
prediction of future outputs. Note that, apart from the problem
formulation and solution approach, the main steps involved in
Alg. 3 and 4 are the same. This simply emphasizes the con-
venience of switching from the traditional approach to the pro-
posed srss-MPC scheme.

Alg. 5 represents a viable alternative to Alg. 3 when the
state-space realization algorithm (i.e. step2ss) is capable of
producing a state-space model with state dimension nx�Npny.
Note that an observer (i.e. obs(·)) is required for Alg. 5.

7.2. Choice of MPC scheme and solution method

Since Alg. 3–5 provide different MPC schemes when only
step response models are available, it will be useful to have an
idea of when to choose one approach over the other. First of all,
due to the fact that the condensing framework achieves full ex-
ploitation of all the inherent structure in the srss-MPC scheme,
it is easy to expect that using Alg. 2 in Alg. 3 should yield the
best solver for a large range of step response MPC problem

9

Algorithm 3 srss-MPC: step-response state-space MPC scheme

Require: {ŷi(0)}N
i=1, u(k− 1), V (0), {Si}N

i=1, ∆t (sampling interval),
Ã(j), B̃(j), Q̃(j), R̃(j), q̃(j), r̃(j), j = 1, . . . ,Np (see sections 5–6).

1: while CPU is running do
2: if ∆t elapsed since last call then
3: read measurements for CVs (ym(k)) and DVs (i.e. d(k))
4: update V (k), {ry(k+ j), j = 1, . . . ,Np}
5: compute ŷ f (k+ j|k), j = 1, . . . ,N, using e.g. Eq. (13)
6: update X̃(k) using {ŷ f (k+ j|k), j = 1, . . . ,Np}
7: update q̃(j) using ry(k+ j)
8: ∗solve multistage problem (A.1) in a structure exploiting Ric-

cati or condensing framework (i.e. using tailored HPMPC
IPM solver based on Alg 1 or 2).

9: send ∗optimal inputs (i.e. MVs) to plant
10: shift all past data one step into the past
11: update past values of variables with index k−1
12: increment sampling time counter (i.e. k← k+1)
13: end if
14: end while
∗ QP problem solved to a predefined precision within ∆t

Table 1: Asymptotic complexity comparison for Alg. 1 and
Alg. 2, considering only the terms cubic in Np

Solver framework Complexity Complexity for nu = α1ny

Riccati (Alg. 1) O(N3
pn2

ynu) O(1
α2

1
N3

pn3
u)

Condensing (Alg. 2) O(1
3 N3

pnyn2
u +

1
3 N3

pn3
u) O(α1+1

3α1
N3

pn3
u)

sizes. This argument is illustrated by the asymptotic complex-
ity comparisons made in Table 1. As mentioned at the end of
Section 6.2, when α1 = nu/ny = 1, the factor of the condensing
method complexity becomes 2

3 (i.e. cheaper than the Riccati
recursion). It is now obvious from Table 1 that the condensing
strategy is cheaper whenever there are fewer inputs than out-
puts, and for the tailored Riccati recursion to be a better choice,
the system setup should be such that α1 = nu

ny
> 1.3, approxi-

mately.
Compared to the ress-MPC (Alg. 5), it is clear from the

discussions in Section 6.2 that unless the realized state-space
system has the same dimension as the corresponding system
derived from first-principles, the condensing method for the
srss-MPC scheme (Alg. 3) will be the best choice. When
the Riccati framework is more appropriate, the ress-MPC may
yield a faster controller. This is because the state dimension
nx ≤ N ·min(ny,nu) of the realized state-space system may be
less than that of the srss-MPC (i.e. nX = Npny). However,
the above statement is true if nx � Npny. Recall that N is
the length of the step response data sequence, and that Np <
N. Consider the most dominant term of the Riccati recursion
in terms of nx for the ress-MPC, i.e. O(Npn3

x), and let nx =
α2Npny. Then, the complexity in terms of Np and ny becomes
O(α3

2 N4
pn3

y). Compared to O(α1N3
pn3

y) for the srss-MPC (see
Table 1), the ress-MPC will be faster when α3

2 < α1
Np

= nu
Npny

(i.e. nx < (N2
pn2

ynu)
1
3), approximately.

In order to achieve comparable computational times for the
traditional step-MPC (Alg. 4), compared to the tailored solution

methods (Alg. 1 or 2) for the srss-MPC, a solver that is capable
of fully exploiting the structure in the step-MPC will be needed.
It is therefore not a good idea to use a generic solver that does
not achieve a high level of sparsity exploitation for the step-
MPC scheme.

8. Implementation in HPMPC

HPMPC is a toolbox written in ANSI C for High Perfor-
mance implementation of solvers for MPC. It comes in the form
of a library (i.e. not code generated), structured in layers, with
special attention on code reuse.

At the bottom layer there are kernels (i.e. the innermost
loop) of fundamental linear algebra routines, carefully opti-
mized for a number of computer architectures. A key feature
of these kernels is the fact that they operate on sub-matrices of
the result matrix, and not on single elements: therefore there
exist a ’minimum’ matrix size that gives optimal performance
for the linear algebra routines. For the PLC considered in this
paper, this minimum size is 4×4 (see [5] for further details).

The kernels are used to implement basic linear algebra rou-
tines, optimized for the small-scale matix size typical of most
embedded MPC applications. This approach combines high-
performance (i.e. the kernels are optimized taking into account
architecture-specific instructions and features) with portability
and code reuse (i.e. the linear algebra routines implemented
using these kernels are totally machine-independent). High-
performance for small scale problems is also employed by means
of a special matrix format that stores the matrix elements in
memory, in the exact same order as they are accessed by funda-
mental linear algebra routines. Given the 4×4 kernels, the opti-
mal matrix format for a matrix of size n×m is in n

4 sub-matrices
(called ’panels’) of bs = 4 rows and m columns. This matrix for-
mat implies some limitation when operating with sub-matrices,
since the linear algebra routines assume that the matrices are
aligned to the top of a panel.

The linear algebra routines are used to implement solvers
for unconstrained optimal control problems, as e.g. Riccati re-
cursion or condensing methods. These in turn are used to imple-
ment solvers for constrained linear MPC, e.g. IPM or ADMM
(Alternating Direction Method of Multipliers).

8.1. Implementation in a Riccati framework

The fact that HPMPC makes use of the panel-major matrix
format, and that the linear algebra routines in HPMPC can only
operate efficiently on sub-matrices whose top-left corner is at
the top of a panel, has important consequences on the imple-
mentation choices. In particular, if ny is not a multiple of the
panel height bs, it is not possible to implement the tailored Ric-
cati recursion efficiently without using a reversed format of the
system matrices as discussed in Section 5.2. The reversed for-
mat can be implemented efficiently, since the useful part of the
matrices and vectors is always at the top-left corner.

10

8.2. Implementation in a condensing framework

The issues mentioned in Section 8.1 are not present in the
condensing method, since the state-space formulations presented
in Section 5.2 are not used directly in the solver, but only ana-
lytically in the method derivation in Section 6.2.

However, the minimum size for an optimal kernel has im-
portant practical consequences. For values of nu smaller than
bs, the computation of H̃ = R̃+ΓT

u · (Q̃Γu) is inefficient when
the result matrix H̃ is computed in sub-matrices of size nu×nu.
A better approach uses a special routine to compute the result
matrix H̃ in sub-matrices of size 4×4, also at the cost of mul-
tiplying zero elements from Γu and Q̃Γu.

9. Simulation Study

The performance of the MPC schemes discussed in this pa-
per were verified in a simulation study, where a simple mass-
damper-spring system is controlled. The system is[

x1(k+1)
x2(k+1)

]
=

1
10

([
8 6
−3 2

][
x1(k)
x2(k)

]
+

[
4
6

]
up(k)+

[
0.4
0.6

]
d(k)

)
y1(k) = x1(k)+w1, y2(k) = x2(k)+w2, up(k) = u(k)+ω.

(14)

The system (14) is asymptotically stable, controllable and
observable. A known disturbance variable d, which represents a
persistent force, and unknown disturbances, affecting the plant
input up (i.e. ω) and outputs (i.e. w1 and w2), are used in
the simulations. The sampling time of the system is 1s, and
the step response data was obtained using the step function in
MATLAB.

9.1. Test setup

The design values used in the MPC schemes (corresponding
to the definitions in problems (1) and (A.1)) are Np = Hp =
Hu = 12, u =−2.5, ū = 10, y = [0,−10]T , ȳ = [20,10]T , Q̄y =

diag(1, 0), and P̄ = 1. The penalty matrix Q̄y indicates that
changes in reference ry are made for only y1.

The state-space model (14) is used to simulate the plant, and
the step response data is used in the MPC schemes. The step
response data is incorporated directly into the step-MPC and
srss-MPC schemes, whereas a realization routine (step2ss)
was used to obtain a minimal state-space model from the step
response data for the ress-MPC. The step2ss routine was de-
veloped based on the minimal realization approach described
in [12]. Since the step response data is noise free and describes
the system perfectly, the minimal realization achieved has the
same size as the original system (14) (i.e. nx = 2). However,
the realized system has no particular structure, and the output
matrix C is dense (instead of C = I). Consequently, the observer[

x̂(k+1|k)
ŵ(k+1|k)

]
=

[
A 0
−C 0

][
x̂(k|k−1)
ŵ(k|k−1)

]
+

[
B
0

]
u(k)+

[
Bd
0

]
d(k)

+

[
0
I

]
ym(k) (15)

which produces both state and disturbance estimates for the
ress-MPC was used. The matrices involved are those obtained
for the minimal state-space realization:

A =

[
0.723 0.248
−0.486 0.342

]
, B =

[
−0.840
−0.582

]
, Bd =

[
−0.084
−0.058

]
,

C =

[
−0.718 0.428
−0.234 −0.661

]
.

Note that the observer is deadbeat and produces exact estimates
after only 1 step, and the observer gain is [0 I]T . This is in
agreement with the constant disturbance model typically used
in step response MPC schemes, and this particular choice is
to ensure that all the tested schemes produce the same control
performance. The equivalent disturbance model used in the free
response computations (13) for both the step-MPC and srss-
MPC schemes is V (k) = 1[ym(k)− ỹ(k)].

For the srss-MPC, the tailored HPMPC solvers implement-
ing the proposed Riccati and condensing strategies were tested,
while existing generic solvers in the HPMPC toolbox were used
for the ress-MPC. In order to obtain high performance for the
traditional step-MPC, the CVXGEN [23] code-generated solver
was used. The CVXGEN solver also implements an IPM in C
code, and tailors the code to the problem data, ensuring that a
high level of sparsity exploitation is achieved for the step-MPC.
CVXGEN solves the QP problem in the form (A.2), and there-
fore offers a convenient framework for solving the traditional
step-MPC problem. Due to the small size of the MPC setup, the
CVXGEN code is efficient and can be optimized by the com-
piler to attain high-performance levels for the target platform.
Similar solver parameters that lead to the same solution qual-
ity (or precision) are also available in both the CVXGEN and
HPMPC solvers. Due to the above reasons, CVXGEN provides
an efficient and convenient solver for the simulation study. A
summary of the MPC problem setup and the properties of the
controllers used are shown in Table 2.

9.2. Test platform
The test platform is the ABB AC500 PM592-ETH PLC,

which has a FreescaleTM G2 LE implementation of the MPC603e
microprocessor, and runs at 400 MHz. The PLC has 4MB RAM
for user program memory and 4MB integrated user data mem-
ory. The program code for each test controller is written in C,
and it incorporates the QP solver code, according to the de-
scriptions in Alg. 3–5. The code is compiled with gcc 4.7.0,
-mcpu=603e, and optimization level set to -O1.

9.3. Results
A summary of the results obtained for the step-MPC, srss-

MPC, and ress-MPC controllers are shown in Table 2. Since
all the controllers solve the same MPC problem and are con-
figured to produce the same solution quality, the same control
performance was obtained for simulations using the same se-
quence of input and output disturbances. This is also due to the
fact that perfect models and noise free step response data are
used. No significant approximations are involved in the realiza-
tion algorithm and the data used, and as shown in Section 5.1,

11

Table 2: Summary of MPC problem data, solver properties, per-
formance results, and memory usage on the AC500 PLC

step-MPC srss-MPC ress-MPC
QP variant sparse sparse dense sparse

Properties
Solver CVXGEN HPMPC HPMPC HPMPC
Factorization LDLT Riccati Cholesky Riccati
Tailoring QP data A(j) condense1 none

Number of variables
QP problem 48 48 48 72
Unconstr. sub-prob. 48 180 12 72

Performance
Iterations2 9 6 6 6
Time2 [ms] 15.69 10.27 2.24 6.88
Time/iter [ms] 1.76 1.71 0.37 1.15

Memory [MB]
Data memory 0.048 0.059 0.032 0.066
C code size 0.17 0.15 0.19 0.15
PLC code size 0.42 0.33 0.42 0.33

1 The structure of all matrices in the srss-MPC is fully exploited.
2 Produce the same solution quality and control performance for all methods,
in double precision.

the predictions used in the step-MPC and srss-MPC schemes
are equivalent. This implies that the computational time of the
test controllers in Table 2 can be directly compared.

The same simulation scenarios used in [15] were tested, and
the performance results in Table 2 represent results that are av-
eraged over 150 simulation time steps. As expected for interior-
point methods, the worst-case time per iteration is close to the
average time of each test controller. The worst-case results are
therefore omitted from Table 2. The first observation is that
a better computational performance is achieved by switching
from the traditional step-MPC formulation to equivalent for-
mulations (i.e. srss-MPC and ress-MPC) that can be solved us-
ing more efficient computational strategies. In order to obtain
the same solution precision (or the same control performance),
CVXGEN required more iterations to solve the step-MPC prob-
lem, while using similar time per iteration, compared to using
the Riccati based HPMPC solver for the srss-MPC problem.

The results confirm that the condensing approach yields the
fastest solver for the srss-MPC, considering the size of the MPC
problem. Using the asymptotic complexity comparisons in Ta-
ble 1 and the discussions in Section 7.2, a speedup factor of
roughly 4 is expected, when switching from the Riccati solver
to the condensing solver i.e.

1
α2

1
vs.

α1 +1
3α1

=⇒ 4 vs.
1
2 +1

3 · 1
2

= 1.

The achieved speedup factor is 4.58. Furthermore, since the
state dimension of the ress-MPC is

nx̄ = 5 < (N2
pn2

ynu)
1
3 = (122 ·22 ·1)

1
3 ≈ 8,

it is expected that the ress-MPC is faster than the srss-MPC
when Riccati recursion is used in both controllers, cf. Section
7.2.

p1

q2

q1

q3

q4

q5
MV 2

hl

hs

De-liquidizer

Phase splitter

GLCC MV 1 MV 3

uhluhs

qin

p2
qout1

qout2

pout1

pout2

Figure 1: The subsea compact separation process

The dense srss-MPC requires the smallest data memory size
while attaining the same code size as the CVXGEN code, gen-
erated for the step-MPC. However, unlike the CVXGEN code,
the HPMPC solver code is not automatically generated and does
not grow with increasing problem size.

10. Industrial case study

In this section, the impact of the proposed srss-MPC scheme
and solution algorithms on an industrial example from subsea
processing is discussed.

10.1. Subsea compact separator
The subsea compact separation process is well described

in [24]. The process consists of separating a multiphase input
flow of liquid (oil/water) and gas at two stages (see Fig. 1).
First, a Gas-Liquid Cylindrical Cyclone (GLCC) separates the
liquid and gas coarsely, and at the second stage a phase splitter
and a de-liquidizer are used for finer separation. The main ob-
jective is to control the quality of fluid (i.e. gas volume fraction)
in the gas (Gasout) and liquid (Liqout) outlets of the separator. It
is also necessary to control two pressure variables (P1 and P2)
around their operational points and within their safety limits,
while respecting the physical limits of three control valves (la-
beled MV1, MV2, MV3 in Fig. 1). The valves labeled uhs and
uhl are controlled by dedicated controllers that provide safety
level control for the liquid levels hs and hl and ensure that MPC
operates on a stable process. The variations in the liquid and gas
contents of the inlet flow can be measured, and are considered
as two time varying disturbances affecting the process. Due to
lack of buffer volumes in the compact separator, the dynamics
of the process is much faster compared to most separation tech-
niques, and disturbance effects are much more significant. A
sampling frequency of 1Hz or faster is therefore appropriate for
high control performance in the presence of challenging inlet
flow scenarios such as hydrodynamic slugging.

The process description naturally leads to a constrained multi-
variable control problem, and MPC is the preferred control method.
Moreover, an embedded MPC solution is desirable since the
compact separator is to be placed at the sea bed and has fast
dynamics due to very small buffer volumes.

10.2. MPC problem setup
The MPC setup used in this case study is the same as that

used in [25, 26]. Therefore, only relevant details for this pa-
per are repeated here. Statoil’s MPC tool, SEPTIC [13], was

12

used to obtain both noise-free step response data from a nonlin-
ear plant simulator and MPC configurations for the controllers
developed in this work. In SEPTIC, step response data is termi-
nated when the plant response becomes approximately steady.

The MPC setup includes 4 CVs, each with 10 evaluation
points. 1 CV (Liqout) has an upper bound, 1 CV (Gasout) has a
lower bound, and 2 CVs (P1 and P2) have both upper and lower
bounds. The bounds on the CV are considered soft, and there-
fore an ‘exact penalty’ method (see e.g. [8]) is used to ensure
that constraint violations do not occur unless there is no feasi-
ble solution to the original problem (with hard bounds). Two
measured DVs representing the inlet flow variations are also
present. There are 3 MVs (control valves), each with 6 move
blocking indices, upper and lower (hard) bounds, and (hard)
bounds on the rate of change. The evaluation points and move
blocks are chosen within a prediction horizon of 80.

For the step-MPC, this problem translates into a QP prob-
lem with 82 optimization variables, whereas the equivalent srss-
MPC implementation has 180 variables. The difference is due
to the move blocking and slack variable implementations used.
In both the step-MPC and srss-MPC schemes, the CVs are eval-
uated at all points in the prediction horizon where control moves
are allowed (except at the initial point j = 0, as in problem
(A.1)). At CV evaluation points where MV moves are not al-
lowed (i.e. set to zero), the corresponding input variables can
be removed from the step-MPC. However, due to the multi-
stage nature of the srss-MPC, even though the input moves are
zero the variables are kept in the QP problem for convenience
in the implementation. This accounts for 24 extra variables in
the srss-MPC implementation, and no special strategy was em-
ployed in order to exploit the blocking information in the solu-
tion method.

In the soft constraint implementation of the step-MPC only
6 slack variables are used. This is due to the use of an equivalent
‘exact penalty’ implementation where the ∞-norm of constraint
violations are penalized, instead of the 1-norm. Using the 1-
norm penalty enables a straightforward implementation in the
srss-MPC. However, this leads to a separate slack variable for
each constraint at every CV evaluation point. In the HPMPC
framework all constraints are considered as two sided (i.e. hav-
ing both lower and upper bounds). This leads to 80 slack vari-
ables in the srss-MPC. Nevertheless, the extra variables rather
simplify the implementation: the computational loops for the
lower and upper bounds can be merged, since they have the
same length, resulting in an efficient implementation.

Based on the analysis in Section 7.2, the condensing ap-
proach (Alg. 2) offers the best solver tailoring strategy for the
compact separator since there are fewer MVs than CVs in the
setup. When the same minimal realization algorithm used in
Section 9 is applied to the compact separator’s step response
data, a rather large and dense state space model, with 184 states,
is produced. The augmented state dimension of the ress-MPC

nx̄ = (184+3)> (N2
pn2

ynu)
1
3 = (802 ·42 ·3)

1
3 ≈ 67,

indicates that some effort should be placed in obtaining a re-
duced (and acceptable) state-space realization in order to achieve

Table 3: Hardware-in-the-loop test results for 600 time steps of
the subsea compact separation process, using the AC500 PLC.

MPC Scheme Time(ms) Iterations Mean Square Error
(QP Solver) average/max average/max P1/P2/Liqout/Gasout

PC-based SEPTIC MPC − − 0.01/0.004/3.51/0.23
srss-MPC (HPMPC1) 17.0/20.4 10/12 0.01/0.002/3.58/0.19
step-MPC (CVXGEN2) 68.36/81.8 15/18 0.01/0.003/2.96/0.22

1 Implements a predictor-corrector IPM tailored according to Alg. 2.
2 Implements a predictor-corrector IPM tailored to the problem data.

a computationally fast ress-MPC. Unlike the srss-MPC that uses
the CV evaluation points from the traditional step response MPC
setup directly (see Section 5.5), the ress-MPC scheme requires
much more effort to arrive at an equivalent MPC setup. The
ress-MPC is therefore not implemented for the compact sepa-
rator tests.

10.3. Hardware-in-the-loop test setup and results

The test setup consists of PLC implementations of the step-
MPC and srss-MPC schemes, each tested in closed-loop with a
nonlinear process simulator. Communication between the PLC
and the simulator is achieved using Ethernet and an OPC server.
The hardware-in-the-loop (HIL) test results are shown in Ta-
ble 3, where the same hydrodynamic slugging flow sequence
as in [25, 26] is used. In this case study, SEPTIC MPC (run-
ning on a PC) is used to produce high-performance control tar-
gets for the step-MPC and srss-MPC solutions, and the Mean
Square Error values are used as the control performance mea-
sure. Double precision floating point computations were used.

The results emphasize the benefits of switching from the
traditional step-MPC scheme to the more computationally effi-
cient srss-MPC scheme, which enables the use of a more effi-
cient structure exploiting solution method in HPMPC. As shown
in Table 3, both PLC implementations achieve the high perfor-
mance control targets produced by SEPTIC MPC. The com-
putational performance is in agreement with the simulation re-
sults for the simple test system in Section 9, where both fewer
iterations and faster time per iteration were achieved for the
srss-MPC. The srss-MPC using HPMPC requires 1.7ms per it-
eration, while the CVXGEN solution for the step-MPC uses
4.5ms. A total speed-up of ×4 is obtained by switching from
the traditional approach to the srss-MPC scheme.

The memory usage shown in Table 4 is also in agreement
with the results and discussions in Section 9. Moreover, the
HPMPC based controller uses about half the PLC memory re-
quired for the CVXGEN based controller.

11. Conclusions

This paper has provided contributions to fill the gap be-
tween fast QP solver developments and industrial MPC im-
plementations based on step response models. Different state-
space realization techniques were investigated. The state-space

13

Table 4: Memory usage for the subsea compact separation pro-
cess application on the ABB AC500 PLC.

Memory srss-MPC (HPMPC) step-MPC (CVXGEN)

Data memory [MB] 0.10 0.20
C code size [MB] 0.20 0.48
PLC program size [MB] 0.45 1.08

representation of step response models that relies on the recur-
sive computation of the future output trajectory was identified
as a structured model that can be exploited efficiently in a mul-
tistage QP problem.

It was shown that the explicit predictions used in the tradi-
tional step response MPC scheme translate directly to the struc-
tured recursive computations, and therefore enables the direct
use of step response data in a state-space formulation. Using the
recursive representation implies that the predictions in the MPC
scheme can be computed in a stage-wise fashion, and therefore
enables the use of block-factorization techniques in solving the
resulting multistage QP problem. Based on the above obser-
vations, a novel MPC scheme is proposed (referred to as srss-
MPC), and both a tailored Riccati recursion based IPM and a
condensing based IPM are proposed for solving the srss-MPC
problem. Since the new algorithms incorporate the original step
response data in a traditional way, a dedicated state-space real-
ization algorithm is not needed, implying that no extra model
validation procedures are required in practice. However, in the
likely exceptional case where a minimal state-space realization
algorithm generates a state-space model of a much smaller di-
mension compared to that of the srss-MPC, the realized model
will lead to a more efficient MPC controller (referred to as ress-
MPC), when a Riccati recursion framework is used.

Asymptotic complexity analyses are used to support the dis-
cussions made in the paper, and performance results are pro-
vided for a simple MPC setup and a more complex industrial
application. The results emphasize the potentials of the pro-
posed algorithms, and it is clear that solving the proposed srss-
MPC using the tailored condensing algorithm leads to superior
solution times for a wide range of MPC problem sizes. In fact,
solution times comparable to that of using the original (much
smaller) state-space system is achieved for the srss-MPC, us-
ing the condensing scheme. The new algorithms were imple-
mented in the HPMPC framework, and implementation aspects
that lead to achieving efficient solver code for embedded MPC
applications were discussed.

Appendix A. General QP problem formulations

Using Eq. (6), the MPC problem (1) can be rewritten to
fit into a general multistage QP framework, assuming k = 0,

without loss of generality:

min
Np−1

∑
j=0

(
1
2
[
x̄T

j ûT
j
][Q j 0

0 R j

][
x̄ j
û j

]
+
[
qT

j 0
][x̄ j

û j

])
+

1
2

x̄T
NpQ f x̄Np (A.1a)

subject to x̄0 = x̂, (A.1b)
x̄ j+1 = Ā j x̄ j + B̄ jû j, (A.1c)
Ē j x̄ j + F̄jû j ≤ ` j, (A.1d)

where j ∈ {0, . . . ,Np−1}, û j := ∆u j, x̂ is the current state, and
for simplicity a common horizon Np is used for both prediction
and control. Definitions that can be used to obtain problem
(A.1) from (1) are as follows:

Q j := 2C̄T
j Q̄yC̄ j, Q f := 2C̄T

NpQ̄yC̄Np , R j := 2P̄,

q j :=−C̄T
j Q̄yr j, ` j :=

[
ȳT , ūT ,−yT ,−uT ,−∆u

T
, ∆uT

]T
,

Ē j :=
[
C̄T

j , −C̄T
j , 0nx̄ , 0nx̄

]T
, F̄j :=

[
0nu , 0nu , Inu , −Inu

]T
.

The reference r j is a vector of reference states rx(k + j) and
input ru(k+ j), computed by a suitable setpoint filter to match
the output reference ry(k+ j). Note that, simply setting Q j = 0
for 0 ≤ j < Hw enforces Hw > 1, and it is possible to penalize
the tracking error at only a few points in the prediction horizon
by setting Q j = 0 for the corresponding values of j. Also, it
is straightforward to incorporate the constraint ∆u(k + j) = 0
for j ≥ Hu. The formulation (A.1) applies to general MIMO
systems, considering block matrices and vectors of appropriate
dimensions, and the system matrices Ā, B̄, C̄, can vary at each
stage j. A more compact form of (A.1) is:

min
{

1
2 zT Hz+gT z

∣∣ Ai z≤ bi, Ae z = be

}
, (A.2)

where z = [ûT
0 , x̄

T
1 , û

T
1 , . . . , x̄

T
Np−1, û

T
Np−1, x̄

T
Np
]T , and the vectors

g, bi and be as well as matrices H, Ai and Ae are easily de-
duced from problem (A.1). Due to the convexity of (A.2), the
Karush-Kuhn-Tucker (KKT) conditions provide both necessary
and sufficient conditions for optimality.

Appendix B. Step response and realized state-space MPC

Alg. 4 and 5 summarize the requirements and the com-
putations involved in the traditional step-MPC and ress-MPC
schemes, respectively.

Acknowledgment

This work was supported by the Research Council of Nor-
way and Statoil through the PETROMAKS project 215684.

14

Algorithm 4 step-MPC: traditional step-response MPC scheme

Require: {ŷi(0)}N
i=1, u(k−1), V (0), {Si}N

i=1, ∆t (sampling interval), H,
g, Ai, bi, Ae, be according to (A.2)

1: while CPU is running do
2: if ∆t elapsed since last call then
3: read measurements for CVs (ym(k)) and DVs (i.e. d(k))
4: update V (k), {ry(k+ j), j = 1, . . . ,Np}
5: compute ŷ f (k+ j|k), j = 1, . . . ,N, using e.g. Eq. (13)
6: update be using {ŷ f (k+ j|k), j = 1, . . . ,Np} and u(k−1)
7: update g using ry(k+ j)
8: ∗solve QP problem (A.2) using a tailored solver
9: send ∗optimal inputs (i.e. MVs) to plant

10: shift all past data one step into the past
11: update past values of variables with index k−1
12: increment sampling time counter (i.e. k← k+1)
13: end if
14: end while
∗ QP problem solved to a predefined precision within ∆t

Algorithm 5 ress-MPC: realized state-space MPC scheme

Require: (Ā,{B̄|B̄d},C̄) = step2ss({Si}N
i=1), prepared offline, (x̂(k+

1|k), ŵ(k+ 1|k)) = obs(ym(k),u(k),d(k), x̂(k|k − 1), ŵ(k|k − 1)),
x̄(0) = [x̂T (0),uT (k−1),wT (0)]T , ∆t (sampling interval),
Q(j), R(j), q(j), r(j) = [rT

x (k+ j),rT
u (k+ j)]T , j = 1, . . . ,Np, ac-

cording to problem (A.1).
1: while CPU is running do
2: if ∆t elapsed since last call then
3: read measurements for CVs (ym(k)) and DVs (i.e. d(k))
4: update {ry(k+ j), j = 1, . . . ,Np}
5: compute r(k+ j) = [rT

x (k+ j),rT
u (k+ j)]T using ry(k+ j)

6: update q(j) using r(k+ j)
7: compute current estimate for x̄(k) using observer, obs(·)
8: ∗solve multistage problem (A.1) in a Riccati or condensing

framework (i.e. using a generic HPMPC IPM solver).
9: send ∗optimal inputs (i.e. MVs) to plant

10: update u(k−1) (i.e. u(k−1)← u(k))
11: increment sampling time counter (i.e. k← k+1)
12: end if
13: end while
∗ QP problem solved to a predefined precision within ∆t

References

[1] S. J. Wright, Applying new optimization algorithms to model predictive
control, in: Chemical Process Control - V, AIChE Symposium Series No.
316, Vol. 93, CACHE Publications, 1997, pp. 147–155. 1, 3

[2] C. V. Rao, S. J. Wright, J. B. Rawlings, Application of interior-point
methods to model predictive control, Journal of Optimization Theory and
Applications 99 (3) (1998) 723–757. 1, 3, 7

[3] Y. Wang, S. Boyd, Fast model predictive control using online optimiza-
tion, IEEE Transactions on Control Systems Technology 18 (2) (2010)
267–278. 1

[4] A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, C. Jones, Effi-
cient Interior Point Methods for Multistage Problems Arising in Receding
Horizon Control, in: IEEE Conference on Decision and Control, Maui,
HI, USA, 2012, pp. 668 – 674. 1

[5] G. Frison, D. K. M. Kufoalor, L. Imsland, J. B. Jørgensen, Efficient Imple-
mentation of Solvers for Linear Model Predictive Control on Embedded

Devices, in: The 2014 IEEE Multi-Conference on Systems and Control,
Antibes/Nice, France, 2014. 1, 2, 10

[6] H. J. Ferreau, H. G. Bock, M. Diehl, An online active set strategy to
overcome the limitations of explicit MPC, International Journal of Robust
Nonlinear Control 18 (2008) 816–830. 1

[7] E. F. Camacho, C. Bordons, Model Predictive Control, Springer, 2007. 1,
2, 4, 6

[8] J. M. Maciejowski, Predictive Control: with constraints, Pearson and
Prentice Hall, 2002. 1, 2, 3, 4, 6, 13

[9] J. H. Lee, M. Morari, C. E. Garcia, State-space interpretation of model
predictive control, Automatica 30 (4) (1994) 707–717. 1, 4

[10] S. Li, K. Y. Lim, D. G. Fisher, A state space formulation for model pre-
dictive control, AIChE Journal 35 (2) (1989) 241–249. 1, 4

[11] B. De Schutter, Minimal state-space realization in linear system theory:
an overview, Journal of Computational and Applied Mathematics 121 (1–
2) (2000) 331–354. 1, 4

[12] C.-T. Chen, Linear System Theory and Design, Oxford University Press,
1999. 1, 4, 11

[13] S. Strand, J. Sagli, MPC in Statoil – advantages with in-house technology,
in: Int. Symposium on Adv. Control of Chemical Processes (ADCHEM),
Hong Kong, 2003, pp. 97–103. 2, 12

[14] L. Grüne, J. Pannek, Nonlinear Model Predictive Control. Theory and
Algorithms., Springer, London, UK, 2011. 2

[15] D. K. M. Kufoalor, L. Imsland, T. A. Johansen, Efficient Implementa-
tion of Step response Prediction Models for Embedded Model Predictive
Control, in: IFAC NMPC’15, Seville, Spain, 2015. 3, 6, 12

[16] G. Frison, J. Jørgensen, Efficient Implementation of the Riccati Recur-
sion for Solving Linear-Quadratic Control Problems, in: 2013 IEE Inter-
national Conference on Control Applications (CCA), Part of IEEE MSC
2013, Hyderabad, India, 2013, pp. 1117 – 1122. 3

[17] B. L. Ho, R. E. Kalman, Effective construction of linear state-variable
models from input/output functions, in: 3rd Annual Allerton Conference
on Circuit and System Theory, Monticello, Illinois, 1965, pp. 449–459. 4

[18] S. Y. Kung, A new identification and model reduction algorithm via sin-
gular value decomposition, in: 12th Asilomar Conference on Circuits,
Systems and Computers, Pacific Grove, California, 1978, pp. 705–714. 4

[19] H. P. Zeiger, A. J. McEwen, Approximate linear realizations of given
dimension via Ho’s algorithm, IEEE Transactions on Automatic Control
19 (2) (1974) 153. 4

[20] J. B. van Helmont, A. J. J. van der Weiden, H. Anneveld, Design of op-
timal controllers for a coal fired Benson boiler based on a modified ap-
proximate realization algorithm, Elsevier, London, 1990, pp. 313–320.
4

[21] J. E. Ackermann, R. S. Bucy, Canonical minimal realization of a matrix
of impulse response sequences, Information and Control 19 (3) (1971)
224 – 231. 4

[22] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University
Press, New York, NY, USA, 2004. 9

[23] J. Mattingley, S. Boyd, CVXGEN: A Code Generator for Embedded Con-
vex Optimization, Optimization and Engineering 13 (1) (2012) 1–27. 11

[24] J. Høydal, O. Kristiansen, G. O. Eikrem, K. Fjalestad, Method and sys-
tem for fluid separation with an integrated control system, patent nr.
WO2013091719 A1 (06 2013). 12

[25] D. K. M. Kufoalor, S. Richter, L. Imsland, T. A. Johansen, M. Morari,
G. O. Eikrem, Embedded Model Predictive Control on a PLC Using
a Primal-Dual First-Order Method for a Subsea Separation Process,
in: 22nd IEEE Mediterranean Conference on Control and Automation,
Palermo, Italy, 2014. 12, 13

[26] D. K. M. Kufoalor, B. J. T. Binder, H. J. Ferreau, L. Imsland, T. A. Jo-
hansen, M. Diehl, Automatic Deployment of Industrial Embedded Model
Predictive Control Using qpOASES, in: European Control Conference,
Linz, Austria, 2015. 12, 13

15

	Introduction
	Notation and definitions
	Multistage problems and block factorization
	MPC problem formulation
	Effect of prediction strategy on QP problem structure
	Computational efficiency of multistage QP problems

	State-space realizations from step response models
	Multistage QP using step response models
	Multistage step response prediction
	Exploiting the system dynamics structure
	Implications of initializing with the free response
	Control objective and constraints
	Problem size reduction strategies

	Impact on different solver frameworks
	Computational speedup in a Riccati framework
	Computational speedup in a condensing framework

	Efficient step response MPC algorithms
	step-MPC, srss-MPC, and ress-MPC schemes
	Choice of MPC scheme and solution method

	Implementation in HPMPC
	Implementation in a Riccati framework
	Implementation in a condensing framework

	Simulation Study
	Test setup
	Test platform
	Results

	Industrial case study
	Subsea compact separator
	MPC problem setup
	Hardware-in-the-loop test setup and results

	Conclusions
	General QP problem formulations
	Step response and realized state-space MPC

