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5.8 Discussion
In the previous section we found that the bound on the Higgs mass from an
absolute stability requirement is gauge dependent, as shown in figure 5.8. This
means that for a given Higgs mass, determining if the potential has a minimum
for large field values will not be a gauge invariant statement, as we found in figure
5.10. This observation is merely an identification of a problem with the current
method of analyzing the Standard Model by extrapolating the effective potential
up to the Planck scale, as used most recently by Buttazzo et al. [7]. We think
this problem deserves some attention and further analysis should attempt to find
a gauge independent procedure for determining the stability of the Standard
Model.

To solve this problem of gauge dependence, the most natural place to start
looking for a solution is analyzing the results found in the previous section.

While it is true that the Higgs mass bound we found was gauge dependent, the
fact that the curve in figure 5.9 is flat for large ξ is very interesting. Compared to
a proper calculation of the Higgs mass bound, one can imagine that our current
procedure is inconsistent in some way for small ξ, and this is what is giving us
the gauge dependence we are seeing in figure 5.8. Fixing such an inconsistency
might give us a gauge independent bound on the Higgs mass. It is also possible
for the flat region we are seeing to be an inconsistent artifact of our current
calculation, and that the Higgs mass bound really should be growing without an
upper bound. The latter scenario would leave us with the conclusion that the
current procedure really is meaningless in terms of analyzing the stability of the
Standard Model. This is all speculation and the resolution might be something
completely different we have yet not thought about. We will attempt to answer
these questions in future work.

One remarkable feature of figure 5.12, 5.13 and 5.14 is the observation that
for a fixed value of the Higgs mass, the points φ where λ(1)

eff (φ) = 0 for different
values of ξ are almost equal. We say almost equal because we know from figure
5.10 that they do not actually cross the φ axis at exactly the same point, which
is why we found the Higgs mass bound to be gauge dependent in the first place.
However, looking at figure 5.12, 5.13 and 5.14 it is hard to imagine that this is
happening by pure accident.

Based on these findings, we speculate if there might something gauge invariant
about the point where λ(1)

eff = 0, or at least a gauge invariant property related
to this observation. If one can formally find such a gauge invariant property,
we will have a formal proof showing that the absolute stability bound is gauge
independent since we computed the Higgs mass bound by finding the limiting
value when λ(1)

eff > 0. It is very plausible that some of the gauge artifacts we are
seeing in the Higgs mass bound are effects due to the fact that we are working
to a fixed loop order in the effective potential, beta functions and threshold
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corrections. Seeing how the gauge dependence on the Higgs mass bound changes
by adding in higher order effects might give an indication on what the resolution
to this problem is.

We know from section 3.3.3.1 of one formal condition related to the gauge
dependence of the effective potentials. In eq. (3.110) we found the Nielsen
identity

ξ
∂Veff
∂ξ

= C(φ)∂Veff
∂φ

, (5.49)

where C(φ) is defined in eq. (3.108). However, we do not see at this point how
this applies to our calculation. The application of this identity is typically that
at the minimum of the potential

∂Veff
∂φ

∣∣∣∣∣
φ0

= 0 =⇒ ξ
∂Veff
∂ξ

∣∣∣∣∣
φ0

= 0, (5.50)

and this interpreted as saying that the effective potential at the minimum is gauge
independent. However, by comparing to the plots in the previous section it is
not clear how this enters our calculation since we observe both a change in the
value of the effective potential at the minimum, and a change in the location of
the minimum. We will again note that these effects might be artifacts from not
including higher order contributions, and we are aware of the fact that the Nielsen
identity must be satisfied order by order in perturbation theory as described by
Nielsen [58].

We would again like to review how we in massless scalar QED with symmetry
breaking by radiative corrections was able to predict a gauge independent scalar
to vector mass ratio from the gauge dependent effective potential in section 4.2.3.
By renormalizing the effective potential at the minumum, Coleman and Weinberg
[15] found λ = O(e4), and by only keeping the terms to leading order in e the
scalar to vector mass ratio came out gauge invariant. It is possible that such a
procedure can be performed to find the bound on the Higgs mass, but due to
the numerical solutions it is difficult to such a calculation at this stage. Instead
of trying to solve the problem in the Standard Model, it might be possible to
construct a simpler theory with the same features that can be solved analytically
to address these questions.
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Chapter 6

Summary, Conclusion and
Outlook

6.1 Summary
In this thesis, we have studied the gauge dependence of the Standard Model
effective potential and how it relates to the Higgs mass bound derived from
requiring stability of the Standard Model vacuum.

We have presented a detailed derivation of the 1PI effective action includ-
ing different approaches for computing the effective potential. We found the
background field method together with the path integral particularly useful and
applied it throughout chapter 4 and 5.

Before studying the Standard Model, we used the Abelian Higgs model to
learn how to work with the gauge dependent 1-loop effective potential. We mod-
ified Jackiw’s [13] functional method of computing the gauge-dependent effective
potential, and with our method we computed the 1-loop effective potential in
basically one step, with the same amount of work with or without kinetic mixing
in the Lagrangian.

In the Abelian Higgs model, we also performed a detailed comparison of differ-
ent ways of gauge fixing. We considered Lgf = − 1

2ξ (∂µAµ)2, Lgf = − 1
2ξ (∂µAµ +

ξeφ1φ2)2 and Lgf = − 1
2ξ (∂µAµ + ξevφ2)2. The second and third gauge fixing

Lagrangians are chosen to cancel the kinetic mixing, but we showed that the
third one does not work as intended when using the background field method
since v is different from the background field.

Motivated by the analysis in chapter 5 on the Higgs mass bound, we used the
beta functions and anomalous dimension of the Higgs boson to find the resummed
effective potential valid up to the Planck scale for massless scalar QED. We did
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a numerical comparison of the different effective quartic couplings and saw that
the ξ-dependence was significant for scale dependence of the effective potential,
but most of the effect came from the field strength renormalization.

We have also taken the massless limit of the Abelian Higgs model to study
some historically important calculations relating to spontaneous symmetry break-
ing generated by radiative corrections. We reproduced the 1-loop gauge-invariant
scalar-to-vector mass ratio, and we believe this knowledge might be useful in at-
tempting to solve the problem of the gauge dependence found in the Higgs mass
bound.

With the complete analysis for the Abelian Higgs model, we extended the cal-
culation of the 1-loop effective potential with gauge dependence to the Standard
Model. Using the 3-loop beta functions and the 2-loop threshold corrections, we
found the resummed Standard Model effective potential.

We reproduced the most recent Higgs mass bound by Buttazzo et al. [7],
mH > 129.6GeV for absolute stability using the 2-loop effective quartic coupling,
and we used the same analysis on our gauge-dependent 1-loop effective potential.

6.2 Conclusions and Outlook
We have computed the Higgs mass bound for different values of the gauge pa-
rameter ξ using the same procedure that Buttazzo et al. [7] used in the Landau
gauge. The main result from this thesis is that we are seeing a gauge dependence
on this bound. We found a variation in the Higgs mass bound of 0.1GeV varying
when ξ from 0 to 50. We also found that the bound plateaus for roughly ξ > 100.
We find the plateau to be very interesting, and we will investigate these results
further in future work.

There are basically two kinds of future work to be done on this analysis
of the gauge dependence of the Higgs mass bound. First, there are multiple
improvements that can be made on our current analysis. We want to go back
and check that all the approximations are valid, and see how big the effects are.
These approximations include dropping the mass terms in the effective potential
and ignoring the imaginary part of the effective potential when λ < 0. We also
want to improve the numerical solutions and get better control over the numerical
errors. Quantifying the errors beyond the standard Mathematica [75] accuracy
will be very important. Since the ξ-dependence is small, even small numerical
errors can affect our result, and we want to make sure that the effects that we
see are not numerical artifacts of any sort.

Future work also includes adding new calculations to our analysis. We want to
add in the metastability bound and compute the gauge dependence of this bound
as well. Understanding the metastability bound also involves understanding new
theoretical concepts, and this might take some time to accomplish. It would also
be interesting to compute the effective potential with a different gauge fixing
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function, for example, one that cancels the kinetic mixing, and see how sensitive
the Higgs mass bound is to ξ, and then compare this to our current gauge fixing
functions.

A problem with the Standard Model calculations is that we are in many of
cases forced to solve the differential equations numerically. So in the future we
will be interested in writing down simple toy models with the right properties so
we can analyze the gauge dependence analytically.

Eventually, the goal is to formulate gauge-invariant stability and metastability
bounds for the resummed potential.
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Appendix A

Gaussian Integrals

In this appendix we will calculate Gaussian integrals in a range of different con-
texts. We start with the basic one dimensional case and go on to do multiple
dimensions with both real, complex and Grassmann variables [80, 31].

A.1 Gaussian Integral in 1 dimension
Consider the integral

I =
∫ ∞
−∞

dxe−
1
2ax

2+Jx, (A.1)

where a and J are some real constants. The first step is to complete the square
and then we shift x→ x+ J

a

I =
∫ ∞
−∞

dxe−
1
2a(x− Ja )2+ J2

2a

⇓

I = 1√
a
e
J2
2a

∫ ∞
−∞

dx′e−
1
2x
′2
,

(A.2)

where we have changed variables to x′ =
√
ax in the last step giving the 1√

a
in

front. To compute the integral we use the following trick[∫ ∞
−∞

dxe−
1
2x

2
]2

=
∫ ∞
−∞

dx

∫ ∞
−∞

dye−
1
2 (x2+y2)

= 2π
∫ ∞

0
drre−

1
2 r

2
= 2π

(A.3)
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where we have changed from Cartesian to radial coordinates. In conclusion we
find

I =
∫ ∞
−∞

dxe−
1
2ax

2+Jx =
√

2π
a
e
J2
2a . (A.4)

A.2 Gaussian Integral in n dimensions
Let xa and Ja be n dimensional vectors and Mab be a n×n dimensional real and
symmetric matrix. We want to perform the n dimensional Gaussian integral

I =
∫
dnxe−

1
2xaMabxb+Jaxa . (A.5)

Since Mab is real and symmetric we can always diagonalize it, i.e. find an or-
thonormal matrix P such that P−1

ab MbcPcd = daδad where da are the eigenvalues
of Mab. Now choose a new set of coordinates ya = P−1

ab xb. Changing coordinates
doesn’t change the measure since dy = |DetP−1|dnx = dnx, where we have used
that the absolute value of the determinant of an orthonormal matrix is one. We
find

I =
∫
dnye−

1
2yadaδabyb+JaPabyb . (A.6)

We see that we can now separate this integral into a product of one dimen-
sional Gaussian integrals.

I =
∏
i

∫
dyie

− 1
2diy

2
i+(JaPai)yi . (A.7)

Using equation (A.4) we find

I =
∏
i

√
2π
di
e

(JaPai)
2

2di . (A.8)

To simplify this, we want to write the result in terms of the original matrices
and vectors. First, note that the product of the eigenvalues di is equal to the
determinant of the original matrix Mab, so we can write

∏
i di = detM . Second,

remember that P−1
ab MbcPcd = daδad has an equivalent expression for the inverse

of the matrix P−1
ab M

−1
bc Pcd = d−1

a δad. Rewriting this in terms of the inverse
matrix we find M−1

ab = Paid
−1
i P−1

ib . Now we can simplify the exponential in eq.
(A.8) ∏

i

e
(JaPai)

2
2di = e

∑
i

1
2JaPaid

−1
i
P−1
ib
Jb = e

1
2JaM

−1
ab
Jb , (A.9)

136



APPENDIX A. GAUSSIAN INTEGRALS

where we have used that P is orthonormal such that P−1
ab = PTab = Pba.

In conclusion we find

I =
∫
dnxe−

1
2xaMabxb+Jaxa =

√
(2π)n
detM e

1
2JaM

−1
ab
Jb . (A.10)

A.3 Gaussian Integral over complex coordinates
Let a ∈ R, J ∈ C and consider the integral

I =
∫
dzdz∗e−azz

∗+Jz∗+J∗z. (A.11)

We change coordinates to x and y in the normal way z = x + iy, and we define
J = Jx + iJy. Changing the coordinates we get a Jacobian factor that is equal
to 2. The integral becomes

I = 2
∫
dxdye−a(x2+y2)+2Jxx+2Jyy

= 2
∫
dxe−ax

2+2Jxx
∫
dye−ay

2+2Jyy

= 2
√

2π
2a e

4J2
x

4a ×
√

2π
2a e

4J2
y

4a

= 2π
a
e
JJ∗
a

(A.12)

where we have used the result from eq. (A.4). In conclusion

I =
∫
dzdz∗e−azz

∗+Jz∗+J∗z = 2π
a
e
JJ∗
a (A.13)

A.4 Gaussian Integral over multiple complex co-
ordinates

Let Hij be a n × n dimensional Hermitian matrix, zi ∈ C for i = 1, 2, ..., n, and
consider the Gaussian integral

I =
∫
dnzdnz∗e−z

∗
iHijzj+Jiz

∗
i +J∗i zi . (A.14)

Since H is a Hermitian matrix, we know that we can diagonalize it as Hij =
PikdkδklP

−1
lj where P is unitary (P † = P−1) and dk ∈ R are the eigenvalues of
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H. We change coordinates to w ∈ C such that zi = Pijwj . The integral becomes

I =
∫
dnzdnz∗e−w

∗
i diδijwj+JiP

∗
ijw
∗
j+J∗i Pijwj

=
∏
i

∫
dzidz

∗
i e
−diw∗iwi+(JjP∗ji)w

∗
i+(J∗j Pji)wi

=
∏
i

2 π
di
e
J∗kPki

1
di
P †
ij
Jj

= (2π)n

detH eJ
∗
i H
−1
ij
Jj

(A.15)

where we have used that
∏
i di = detH and H−1

kj = Pki
1
di
P †ij . In conclusion

I =
∫
dnzdnz∗e−z

∗
iHijzj+Jiz

∗
i +J∗i zi = (2π)n

detH eJ
∗
kH
−1
ij
Jj (A.16)

A.5 Gaussian Integral over Grassmann Variables
In this section we will compute the Gaussian integral over Grassmann variables.
Since Grassmann variables are very different from numbers we usually deal with,
we will start by reviewing some of the basic properties.

A.5.1 Properties of Grassmann Variables
We define a set of n Grassmann variables θi, i = 1, 2, ..., n that satisfy

{θi, θj} = 0, [x, θi] = 0, (A.17)

where x is a normal c-number. We want to define a function of Grassmann vari-
ables, and then we want to define differentiation and integration of this function.
Any function of Grassmann variables can be defined in terms of its Taylor series.
For simplicity let’s consider the case where we only have two Grassmann numbers
η and θ. Since they satisfy

η2 = 0, θ2 = 0, ηθ = −θη, (A.18)

the most general function can be written as

f(η, θ) = a+ bη + cθ + dθη (A.19)

where a, b, c, d ∈ C. For n Grassmann variables we need 1
2 (n2 + n + 2) complex

numbers to define the most general function. We define differentiation of a c-
number and Grassmann number to satisfy

da

dθi
= 0, dθi

dθj
= δij . (A.20)
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If we are differentiating a product of Grassmann variables, we must remember to
include a minus sign when d

dθk
passes a Grassmann variable to make the definition

take into account the anticommuting nature of the Grassmann variables. For the
case of two variables, we find

d(θiθj)
dθk

= dθi
dθk

θj − θi
dθj
dθk

= θjδik − θiδjk. (A.21)

Integration is defined to be exactly the same as differentiation,∫
dθia = 0,

∫
dθiθj = δij ,

∫
dθi(θiθj) = θj . (A.22)

To calculate the Gaussian integral, we will need to know how to integrate over
multiple variables. Consider the integral

I =
∫
dθndθn−1 · · · dθ2dθ1 [θi1θi2 · · · θin ] . (A.23)

This integral can only be nonzero if for every dθj there is one θj among the θin
(and only one since θ2

j = 0). If we relabel two neighboring indices θijθij+1 we
must get an overall minus sign since they are Grassmann variables. We conclude
that the result must be the totally antisymmetric and the result is

I =
∫
dθndθn−1 · · · dθ2dθ1 [θi1θi2 · · · θin ] = εi1i2···in . (A.24)

Note that the ordering is consistent with the ordering convention
∫
dηdθθη = 1

and the fact that ε123···n = 1.

A.5.1.1 Ordering of Grassmann variables

We will now prove the general ordering result

η1θ1η2θ2 · · · ηnθn = (−1) 1
2n(n−1)η1η2 · · · ηnθ1θ2 · · · θn (A.25)

using induction. Let’s check it for n = 3.

η1θ1η2θ2η3θ3 = η1(−η2θ1)(−η3θ2)θ3 = −η1η2η3θ1θ2θ3, (A.26)

so it is correct for n = 3 since (−1) 1
2 3(3−1) = −1. Now we assume that the result

is true for n = j − 1, and we want to check the result for n = j. We start with
the expression with j θs and ηs and note that the only thing missing is moving
ηj past j − 1 θs giving a factor of (−1)j−1,

η1θ1 · · · ηjθj =
[
(−1) 1

2 (j−1)(j−2)η1 · · · ηj−1θ1 · · · θj−1

]
ηjθj

= (−1) 1
2 (j−1)(j−2)+(j−1) [η1 · · · ηj−1ηj ] [θ1 · · · θj−1θj ]

= (−1) 1
2 j(j−1) [η1 · · · ηj−1ηj ] [θ1 · · · θj−1θj ] .

(A.27)
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We could also have ordered the final result with decreasing n. It’s easy to see
that we get the same result. Reordering η1 · · · ηn → ηn · · · η1 can at most give
an overall minus sign. But since we also will reorder the θs, the overall sign will
always cancel. In conclusion we have

η1θ1η2θ2 · · · ηnθn = (−1) 1
2n(n−1)η1η2 · · · ηnθ1θ2 · · · θn

= (−1) 1
2n(n−1)ηnηn−1 · · · η1θnθn−1 · · · θ1

(A.28)

A.5.1.2 Complex Grassmann Variables

Sometimes we want to consider complex Grassmann variables. We do this in the
same way as with c-numbers, we define

θ = θ1 + iθ2√
2

, θ∗ = θ1 − iθ2√
2

, (A.29)

where θ1 and θ2 are real Grassmann variables. With this definition we can treat
θ and θ∗ as independent complex variables.

A.5.2 Gaussian Integral
We will now compute the Gaussian integral over Grassmann variables θi and θ∗i
for i = 1, 2, ..., n

I =
∫
dθ∗1dθ1 · · · dθ∗ndθne−θ

∗
iAijθj (A.30)

where Aij = −Aji insures that the exponent is a real number. We Taylor ex-
pand the exponential and realize that the only term that will contribute is the
1
n! (−θ

∗
iAijθj)n. This is the only term that will have one and only one copy of

every θi and θ∗i . We find

I = 1
n!

∫
dθ∗1dθ1 · · · dθ∗ndθn(−θ∗i1Ai1j1θj1) · · · (−θ∗inAinjnθjn)

= (−1)n

n!

∫
[dθ∗1dθ1 · · · dθ∗ndθn]

[
θ∗i1θj1 · · · θ

∗
inθjn

]
Ai1j1 · · ·Ainjn

= (−1)n2

n!

∫
[dθ∗n · ·dθ∗1dθn · ·dθ1]

[
θ∗i1 · ·θ

∗
inθj1 · ·θjn

]
Ai1j1 · ·Ainjn

= (−1)2n2

n!

[∫
dθ∗n · ·dθ∗1θ∗i1 · ·θ

∗
in

] [∫
dθn · ·dθ1θj1 · ·θjn

]
Ai1j1 · ·Ainjn

= 1
n!εi1i2···inεi1j2···jnAi1j1 · ·Ainjn

= detA

(A.31)
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Here’s an explanation of what we have done. Between line 1 and 2 have collected
the n minus signs out to the front. From line 2 to 3 we have used eq. (A.28) twice
to reorder the dθs,dθ∗s, θs and θ∗s into the desired order. Simplifying the overall
minus signs we find (−1)n(−1) 1

2n(n−1)(−1) 1
2n(n−1) = (−1)n2 . To get from line 3

to 4 we have moved the dθn · · · dθ1 past θ∗i1 · · · θ
∗
in
. This gives another factor of

(−1)n2 . Between line 4 and 5 we have used (−1)2n2 = 1 and used eq. (A.24) twice
to perform the integrals. Finally we have recognized the well known formula for
the determinant of a matrix in terms of the Levi-Civita symbols.

We conclude that

I =
∫
dθ∗1dθ1 · · · dθ∗ndθne−θ

∗
iAijθj = detA. (A.32)

Adding in linear terms in the exponential, we find [80]

I =
∫
dθ∗1dθ1 · · · dθ∗ndθne−θ

∗
iAijθj+ξiθ

∗
i+ηiθi = eηiA

−1
ij
ξjdetA. (A.33)

A.6 Gaussian Integrals over Fields
In this section we want to evaluate Gaussian integrals over fields. Consider a
real field φa, a real current Ja(x) and a real symmetric matrix Mab(x− y) in the
integral

I =
∫
DφeiS[φ] =

∫
Dφe−i

∫
d4xd4y 1

2φa(x)Mab(x−y)φb(y)+i
∫
d4xJa(x)φa(x). (A.34)

We will put our system in a finite size box of volume L3T = V4, and we will later
take the limit of infinite volume later. We expand the field, matrix and current
in a Fourier series

φa(x) =
∑
k

1
V4
φa(k)eikx,

Mab(x− y) =
∑
k

1
V4
Mab(k)eik(x−y),

Ja(x) =
∑
k

1
V4
Ja(k)eikx,

(A.35)

where k = 2π
(
nt
T ,

~n
L

)
, and n = (nt, ~n) is an integer vector. The condition that

φ(x) and J(x) are real give φ(k) = φ∗(−k) and J(k) = J∗(−k), and Mab(x −
y) being real and symmetric (Mab(x − y) = Mba(y − x)) gives that Mab(k) is
Hermitian Mab(k) = M†ab(k).1

1To be more specific, being real gives Mab(k) = M∗
ab(−k) and being symmetric gives

Mab(k) = Mba(−k), which together gives that Mab(k) is Hermitian.
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Using the Fourier series, we can rewrite the first term in the action as

S[φa]1 = −
∫
d4xd4y

1
V3

4

∑
k,p,q

1
2φa(k)Mab(p)φb(q)eikxeip(x−y)eiqy

= − 1
V4

∑
k,p,q

1
2φa(k)Mab(p)φb(q)

1
V4

∫
d4xeix(k+p) 1

V4

∫
d4yeiy(q−p)

= − 1
V4

∑
k

1
2φa(−k)Mab(k)φb(k),

(A.36)

where we have used that 1
V4

∫
d4xeix(k+p) = δk,−p. The second term becomes

S[φa]2 = 1
V2

4

∫
d4x

∑
k,p

Ja(k)φa(p)eix(p+k)

= 1
V4

∑
k

1
2 (Ja(k)φa(−k) + Ja(−k)φa(k)) .

(A.37)

Due to the symmetry between k > 0 and k < 0 we can restrict the sum to
only positive k. We find

∑
k

1
2φa(−k)Mab(k)φb(k)

=
∑
k>0

1
2φa(−|k|)Mab(|k|)φb(|k|) +

∑
k<0

1
2φa(|k|)Mab(−|k|)φb(−|k|)

+ 1
2φa(0)Mab(0)φb(0)

=
∑
k>0

1
2φa(−|k|)Mab(|k|)φb(|k|) +

∑
k<0

1
2φb(−|k|)Mba(|k|)φa(|k|)

+ 1
2φa(0)Mab(0)φb(0)

=
∑
k>0

φa(−k)Mab(k)φb(k) + 1
2φa(0)Mab(0)φb(0),

(A.38)

where we have used that Mab(k) = Mba(−k) between line 1 and 2, and we
relabeled a ↔ b in the second term in going from line 2 to 3. We have also
removed the absolute sign in the last line since we are only summing over positive
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k. Doing the same procedure to eq. (A.37) we can write the action as

S[φ] = 1
V4

∑
k>0

[−φ∗a(k)Mab(k)φb(k) + J∗a (k)φa(k) + Ja(k)φ∗a(k)]

− 1
2V4

φa(0)Mab(0)φb(0) + 1
V4
Ja(0)φa(0),

(A.39)

where we have used φa(k) = φ∗a(−k) and Ja(k) = J∗a (−k). The measure Dφa is
now defined as

Dφ ≡
∏
k>0

dnφ(k)
(2πV4)n2

dnφ∗(k)
(2πV4)n2

dnφ(0)
(2πV4)n2

, (A.40)

and we find

I =
∫
DφeiS[φ]

=
∏
k>0

∫
dnφ(k)dnφ∗(k)

(2πV4)n e

[
−φ∗a(k)MabV4

(k)φb(k)+ J∗a(k)
V4

φa(k)+ Ja(k)
V4

φ∗a(k)
]

× 1
(2πV4)n2

∫
dnφ(0)e−

1
2V4

φa(0)Mab(0)φb(0)+ 1
V4
Ja(0)φa(0)

=
∏
k>0

1
(2πV4)n

(2πV4)n

detM(k)e
1
V4
J∗a (k)M−1

ab
(k)Jb(k)

× 1
(2πV4)n2

(2πV4)n2√
detM(0)

e
1
V4
Ja(0)M−1

ab
(0)Jb(0)

=
∏
k>0

1
detM(k)e

1
V4
J∗a (k)M−1

ab
(k)Jb(k) 1√

detM(0)
e

1
V4
Ja(0)M−1

ab
(0)Jb(0)

(A.41)

where we have used eq. (A.16) and eq. (A.6) to perform the integrals.
Since Mab(k) = Mba(−k) we must have detM(k) = detM(−k), and we see

that we can write∏
k>0

1
detM(k)

1√
detM(0)

=
∏
k<0

1√
detM(−k)

1√
detM(0)

∏
k>0

1√
detM(k)

=
∏
k

1√
detM(k)

= e−
1
2

∑
k

ln detM(k).

(A.42)

We can similarly write∏
k>0

e
1
V4
J∗a (k)M−1

ab
(k)Jb(k)e

1
V4
Ja(0)M−1

ab
(0)Jb(0) = e

1
V4

∑
k
J∗a (k)M−1

ab
(k)Jb(k). (A.43)
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A.6. GAUSSIAN INTEGRALS OVER FIELDS

Putting everything together, we find∫
DφeiS[φ] = e−

1
2

∑
k

ln detM(k)e
1
V4

∑
k
J∗a (k)M−1

ab
(k)Jb(k). (A.44)

Taking the limit L → ∞, T → ∞, the sum over k becomes an integral∑
k → V4

∫
d4k

(2π)4 . The final result is∫
DφeiS[φ] = e

− 1
2V4
∫

d4p
(2π)4

ln detM(k)
e

∫
d4p

(2π)4
J∗a (k)M−1

ab
(k)Jb(k)

. (A.45)
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Appendix B

Method of Characteristics

In this appendix we will review the method of characteristics that is used in
section 3.3.2.2 to find the resummed effective potential using RGE.

The method of characteristics [81] is a technique used to solve partial dif-
ferential equations (PDE). The idea is to rewrite the PDE in terms of ordinary
differential equations (ODE) that in general are easier to solve.

Consider the PDE

a(x, y, u)∂u
∂x

+ b(x, y, u)∂u
∂y

= c(x, y, u) (B.1)

where u = u(x, y). We want to parametrize x and y in terms of a new parameter
t, i.e. x = x(t), y = y(t) and u = u(x(t), y(t)). Differentiating u with respect to
t we find using the chain rule

du(x(t), y(t))
dt

= ẋ
∂u

∂x
+ ẏ

∂u

∂y
(B.2)

where ẋ = dx
dt and ẏ = dy

dt . This is remarkably similar to eq. (B.1), and we get
exactly this equation if we choose to define

ẋ = a(x(t), y(t), u(x(t), y(t))),
ẏ = b(x(t), y(t), u(x(t), y(t))),
u̇ = c(x(t), y(t), u(x(t), y(t))).

(B.3)

To verify this we see by explicit calculation that eq. (B.2) becomes

du(x(t), y(t))
dt

= a
∂u

∂x
+ b

∂u

∂y
= c(x(t), y(t), u(x(t), y(t))). (B.4)

Now consider a surface S = {(x, y, u(x, y))} in R3. The normal vector at each
point (x, y) isN(x, y) = [ux(x, y), uy(x, y),−1]. Let V (x, y) = [a(x, y), b(x, y), c(x, y)],
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B.1. EXAMPLES

and note that eq. (B.1) can be written as V (x, y) · N(x, y) = 0. We conclude
that V (x, y) is always in the tangent plane to the surface S. Since a(x, y), b(x, y)
and c(x, y) are given we know V (x, y) ∀(x, y) ∈ R2. We now want to construct S
from V to find our solution u(x, y).

Consider the curve C = [x(t), y(t), u(x(t), y(t))] ∈ R3 that is parametrized by
t ∈ R. The tangent vector to a curve is described by the derivative with respect
to t, and in our case we see by eq. (B.3) that this vector is VC(x(t), y(t)) =
[a(x(t), y(t)), b(x(t), y(t)), c(x(t), y(t))]. In other words, we can construct the
curve by solving the systems of ODEs in eq. (B.3), which are sometimes re-
ferred to as the characteristic equations for eq. (B.1). The curve C is called the
characteristic curve for our PDE in eq. (B.1).

To form the surface S, we simply take the union of the characteristic curves.
One way this is done, is to specify an initial curve that is non-parallel to the
characteristic curve. If we know the value along this curve we have enough
information to describe the whole surface S, and we can find u(x, y). To illustrate
the method of characteristics, let’s do a couple of examples.

B.1 Examples

B.1.1 Example 1
Let u = u(x, y) and consider the PDE

ux + kuy = 0 (B.5)

with the initial condition

u(0, y) = sin(y), (B.6)

where the subscript means partial derivative, e.g. ux = ∂u
∂x . Following the method

described above we parametrize x = x(t), y = y(t). The characteristic equations
are

ẋ =1,
ẏ =k,
u̇ =0.

(B.7)

The solution is

x(t) = t+ c1,

y(t) = kt+ c2,

u(x(t), y(t)) = c3.

(B.8)

146



APPENDIX B. METHOD OF CHARACTERISTICS

x

y

y − kx = c2 − kc1

Figure B.1: Plot of one characteristic line projected into the x− y plane.

Note that u(x(t), y(t)) is constant along the characteristic line. We can eliminate
t from these equations and we find

y − kx = c2 − kc1. (B.9)

A sketch of one characteristic line can be seen in figure B.1. Since we know that
at along the y-axis the value of u(0, y) = sin y, we can find the value of c3 for
a specific curve where the line crosses the y-axis. For this characteristic line we
find using the initial condition that

u(0, y) = sin(y) = sin(c2 − kc1) = c3, (B.10)

and sin(c2−kc1) = sin(y−kx) is the value of u(x, y) along this whole characteristic
line. In fact, we can do this for any characteristic and we find

u(x, y) = sin(y − kx) (B.11)

B.1.2 Example 2
In this example we will take a slightly different approach to solving the PDE. We
will look at the method of characteristics as a method of changing coordinates
from (x, y) to (t, s). Since t and s are independent, the derivation of the charac-
teristic equations follow in exactly the same way as before, just making the total
derivatives with respect to t into partial derivatives. Consider the PDE

ux + kuy = byu (B.12)
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B.1. EXAMPLES

with the initial condition

u(0, y) = f(y), (B.13)

where f(y) is a general function. Let x = x(t, s), y = y(t, s) and the characteristic
equations are

∂x

∂t
=1,

∂y

∂t
=k,

∂u

∂t
=bxu.

(B.14)

The solution is

x(t, s) = t+ c1(s),
y(t, s) = kt+ c2(s),

u(t, s) = c3(s) exp
[

1
2bt

2 + bc1(s)t
] (B.15)

where we had to first solve for x(s, t) and put that back in to the differential
equation for u(t, s) to solve. We now have the freedom to choose s in whatever
way we like as long as the coordinate transformation is invertible. We will make
a choice such that the initial condition in (t, s, u(t, s))coordinates is (0, s, f(s)).
This gives

x(0, s) = 0 + c1(s) = 0,
y(0, s) = 0 + c2(s) = s,

u(0, s) = c3(s) = f(s).
(B.16)

Having fixed the functions ci(s) we have x = t and y = kt + s. Expressing u in
(x, y) coordinates we find

u(x, y) = exp
[

1
2bx

2
]
f(y − kx) (B.17)

which is the solution to our PDE with the initial condition u(0, y) = f(y).
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Appendix C

Standard Model Beta
Functions

In this appendix we list the beta functions used in chapter 5. The beta function
for a coupling gi(µ) is defined as

µ
d

dµ
gi(µ) ≡ βgi (gj(µ)) , (C.1)

where βgi (gj(µ)) in general depends on other couplings gj(µ). We will list the
beta functions as

βg ≡ β(1)
g + β(3)

g + β(3)
g + · · · , (C.2)

where the subscript stands for the loop order where the contribution comes from.
For simplicity we will drop the µ dependence and just write gi for gi(µ). All
values are given using the MS subtraction scheme.

The beta functions β(1)
λ , β(2)

λ , β(1)
g1 , β(2)

g1 , β(1)
g2 , β(2)

g2 , β(1)
g3 , β(2)

g3 , β(1)
yt and β

(2)
yt

are taken from [77]. The three loop results β(3)
g1 , β(3)

g2 and β
(3)
g3 are taken from

[82]. The three loop results for β(3)
λ and β(3)

yt are from [83] and note that this is
only known in the limit g1, g2 → 0. All the results for the anomalous dimension
for Higgs γH are from [78].
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β
(1)
λ = 1

16π2

(
λ
(
12y2

t − 3g2
1 − 9g2

2
)

+ 3
8
(
g2

1 + g2
2
)2 + 3g4

2
4 + 24λ2 − 6y4

t

)
(C.3)

β
(2)
λ = 1

(16π2)2

(
λy2

t

(
85g2

1
6 + 45g2

2
2 + 80g2

3

)
+ 39

4 g
2
1g

2
2λ−

559
48 g

4
1g

2
2

+ 36λ2 (g2
1 + 3g2

2
)
− 289

48 g
2
1g

4
2 + 21

2 g
2
1g

2
2y

2
t + 629

24 g
4
1λ (C.4)

− 1
48379g6

1 −
19
4 g

4
1y

2
t −

8
3g

2
1y

4
t −

73
8 g

4
2λ+ 305g6

2
16

− 9
4g

4
2y

2
t − 32g2

3y
4
t − 312λ3 − 3λy4

t − 144λ2y2
t + 30y6

t

)

β
(3)
λ = 2

(16π2)3

(
(895− 1296ζ(3))g2

3λy
4
t + (1152ζ(3)− 1224)g2

3λ
2y2
t

+
(

1244
3 − 48ζ(3)

)
g4

3λy
2
t + (240ζ(3)− 38)g2

3y
6
t

+
(

32ζ(3)− 266
3

)
g4

3y
4
t +

(
117
8 − 198ζ(3)

)
λy6

t (C.5)

+
(

756ζ(3) + 1719
2

)
λ2y4

t +
(
−36ζ(3)− 1599

8

)
y8
t

+ 873λ3y2
t + (2016ζ(3) + 3588)λ4

)

β(1)
g1

= 1
16π2

(
41
6 g

3
1

)
(C.6)

β(2)
g1

= 1
(16π2)2 g

3
1

(
199g2

1
18 + 9g2

2
2 + 44g2

3
3 − 17y2

t

6

)
(C.7)

β(3)
g1

= 1
(16π2)3 g

3
1

(
205
96 g

2
1g

2
2 −

137
27 g

2
1g

2
3 + 3

2g
2
1λ−

388613g4
1

5184 − 2827
288 g

2
1y

2
t

− g2
2g

2
3 + 3

2g
2
2λ+ 1315g4

2
64 − 785

32 g
2
2y

2
t + 99g4

3 (C.8)

− 29
3 g

2
3y

2
t − 3λ2 + 315y4

t

16

)
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β(1)
g2

= 1
16π2

(
−19

6 g
3
2

)
(C.9)

β(2)
g2

= 1
(16π2)2 g

3
2

(
3g2

1
2 + 35g2

2
6 + 12g2

3 −
3y2
t

2

)
(C.10)

β(3)
g2

= 1
(16π2)3 g

3
2

(
291
32 g

2
1g

2
2 −

1
3g

2
1g

2
3 + 1

2g
2
1λ+ 1

576(−5597)g4
1

− 593
96 g

2
1y

2
t + 39g2

2g
2
3 + 3

2g
2
2λ+ 324953g4

2
1728 − 729

32 g
2
2y

2
t (C.11)

+ 81g4
3 − 7g2

3y
2
t − 3λ2 + 147y4

t

16

)

β(1)
g3

= 1
16π2

(
−7g3

3
)

(C.12)

β(2)
g3

= 1
(16π2)2 g

3
3

(
11g2

1
6 + 9g2

2
2 − 26g2

3 − 2y2
t

)
(C.13)

β(3)
g3

= 1
(16π2)3 g

3
3

(
− 1

8g
2
1g

2
2 + 77

9 g
2
1g

2
3 + 1

216(−2615)g4
1 −

101
24 g

2
1y

2
t (C.14)

+ 21g2
2g

2
3 + 109g4

2
8 − 93

8 g
2
2y

2
t + 65g4

3
2 − 40g2

3y
2
t + 15y4

t

)

β(1)
yt = 1

16π2

(
yt

(
−17

12g
2
1 −

9g2
2

4 − 8g2
3

)
+ 9y3

t

2

)
(C.15)

β(2)
yt = 1

(16π2)2 yt

(
y2
t

(
131g2

1
16 + 225g2

2
16 + 36g2

3 − 12λ
)
− 3

4g
2
1g

2
2 (C.16)

+ 19
9 g

2
1g

2
3 + 1187g4

1
216 + 9g2

2g
2
3 −

23g4
2

4 − 108g4
3 + 6λ2 − 12y4

t

)

β(3)
yt = 1

(16π2)3 yt

(
1
3(−4166)g6

3 + 16g2
3λy

2
t + 3827

6 g4
3y

2
t − 157g2

3y
4
t

− 228ζ(3)g4
3y

2
t + 640ζ(3)g6

3 − 36λ3 + 15
4 λ

2y2
t (C.17)

+ 198λy4
t + 339y6

t

8 + 27
2 ζ(3)y6

t

)
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γ
(1)
h = 1

16π2

(
− 1

2g
2
1ξB −

3
2g

2
2ξW + 3g2

1
2 + 9g2

2
2 − 6y2

t

)
(C.18)

γ
(2)
h = 1

(16π2)2

(
− 85

12g
2
1y

2
t −

45
4 g

2
2y

2
t − 40g2

3y
2
t −

3
4g

4
2ξ

2
W − 6g4

2ξW (C.19)

− 1
48431g4

1 −
9
8g

2
2g

2
1 + 271g4

2
16 − 12λ2 + 27y4

t

2

)

γ
(3)
h = 1

(16π2)3
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1λ
2 − 90g2

2λ
2 − 39g4

1λ
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1ζ(3)y2

t + 6g2
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