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Abstract: The phenomenon of icing, i.e. ice accretion on aircraft surfaces, affects the flight performance
of unmanned aerial vehicles (UAVs). Autonomous icing detection schemes are needed in order to assure
high efficiency and limit energy consumption of de-icing and anti-icing schemes. The novel contribution
of this paper is to apply a linear parameter varying multiple model adaptive estimator to the model
of the longitudinal nonlinear dynamics of a UAV, in order to achieve an icing diagnosis that provides
information about the icing location. An advantage of applying a linear parameter varying approach is
that the icing diagnosis scheme is consistent with the UAV dynamics for a wide range of operating
conditions, and it uses only existing standard sensors. Simulation results are used to illustrate the
application of the proposed method.
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1. INTRODUCTION

The phenomenon of icing, i.e. ice accretion on aircraft sur-
faces, is a recognized problem in aviation (Caliskan and Ha-
jijev, 2013). The formation of ice layers decreases signifi-
cantly the lift and the manoeuvrability of unmanned aerial
vehicles (UAVs), while simultaneously increasing drag, weight
and power consumption (Gent et al., 2000). Icing is a common
cause for UAV incidents, which impedes conducting UAV op-
erations in environments that present potential icing conditions
(Gober et al., 2001).

With the aim of mitigating the effect of icing, some ice protec-
tion systems (IPS) have been proposed recently. For example,
Sørensen et al. (2015b) have proposed an electrically conduc-
tive carbon nano material based coating for temperature control
of UAV airfoil surfaces. This solution allows increasing rapidly
the airfoil surface temperature (de-icing) and maintaining it at
an approximately constant value above the freezing point (anti-
icing), when needed.

However, in order to assure high efficiency and limit energy
consumption, icing detection schemes are needed. Recently,
several approaches have been proposed to achieve this goal,
such as unknown input observers (UIOs) (Tousi and Khorasani,
2011, Rotondo et al., 2015a, 2016) and statistical methods
(Sørensen et al., 2015a).
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The above mentioned approaches are interesting, but share
a common limitation, which is to be able to perform icing
detection, i.e. assessing whether icing has occurred or not,
but without providing any information about the icing severity
factor (ISF) or the location of icing, i.e. whether it is affecting
the wings, the tail, or all the UAV. Concerning the ISF, Seron
et al. (2015) and Cristofaro et al. (2015) have suggested to
employ a bank of observers, each of which corresponds to a
quantised value of the ISF, and estimation algorithms that take
into account the values taken by suitable signals have been
also proposed (Wenz and Johansen, 2016). However, obtaining
a detailed icing diagnosis, comprising information about the
icing location, is still an open problem.

Recently, a linear parameter varying (LPV) multiple model
adaptive estimator (MMAE) has been proposed for estimating
the state and the value of unknown parameters in discrete time
uncertain LPV plants (Rotondo et al., 2017). The proposed
LPV MMAE comprises a collection of local observers, each
of which provides the state estimation which would correspond
to a predefined value of the unknown parameters. Under some
conditions, the identified unknown parameters correspond to
the observer that exhibits the smallest output prediction error
energy.

In this regard, the novel contribution of this paper is to apply
the LPV MMAE to the model of the longitudinal nonlinear
dynamics of a UAV, in order to achieve an icing diagnosis that
provides information about the icing location. Unlike lineari-
sation techniques, the LPV formulation does not involve any
approximation, since it relies on an exact transformation of
the original non-linear system into a linear-like one (Shamma,
2012). Hence, an advantage of the proposed LPV MMAE-



based icing diagnosis scheme is to be consistent with the UAV
dynamics for a wide range of operating conditions.

The paper is structured as follows. Section 2 presents the
quasi-LPV model of the longitudinal equations of motion of
a UAV and how icing affects them. Section 3 describes the
LPV MMAE and its relevant properties. The case study and the
simulation results are discussed in Section 4. Finally, Section 5
outlines the main conclusions.

2. QUASI-LPV MODEL OF THE UAV SUBJECT TO ICING

Following Rotondo et al. (2015a), the longitudinal equations
of motion of a UAV (Beard and McLain, 2012), under low-
angle-of-attack condition, can be brought to a quasi-LPV form
using the non-linear embedding in the parameters approach
(Kwiatkowski et al., 2006, Rotondo et al., 2015b), as follows
(see Table 1 for a description of the symbols):

ẋ = A(u,w,q,θ)x+B(u,w)υ +G(θ)ω +d(θ) (1)

where x = (u,w,q,θ)T is the state vector, υ = (δ 2
t ,δe)

T is the
input vector, ω = (ω̇x, ω̇z)

T is a disturbance vector that rep-
resents the wind effect, and the matrices A(u,w,q,θ), B(u,w),
G(θ) and d(θ) are given by:

A(u,w,q,θ) =

 a11(·) a12(·) a13(·) 0
a21(·) a22(·) a23(·) 0
a31(·) a32(·) a33(·) 0

0 0 1 0

 (2)

B(u,w) =

 b11 b12(·)
0 b22(·)
0 b32(·)
0 0

 d(θ) =

−gsinθ

gcosθ

0
0

 (3)

G(θ) =

−cosθ −sinθ

−sinθ cosθ

0 0
0 0

 (4)
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Table 1. Symbols description

Symbol Description
u Horizontal velocity relative to the wind
w Vertical velocity relative to the wind
q Pitch rate
θ Pitch angle
δt Throttle deflection
δe Elevator efficiency
ω̇x Horizontal wind acceleration
ω̇z Vertical wind acceleration
g Gravitational acceleration
ρ Air density
S Wing surface area
m Airframe mass
α Angle-of-attack
c Mean aerodynamic chord of the wing

Sprop Area of the propeller
km Efficiency of the motor
Jy Element of the inertia matrix
Va Airspeed with respect to the mass
Ci Stability and control derivatives

2.1 Icing effects

The accretion of ice on the UAV surfaces modifies the stability
and control derivatives according to the following linear model
(Bragg et al., 2002):

C∗i = (1+ηKi)Ci (5)
where η is the ISF and the coefficients Ki depend on the
UAV design and atmospheric conditions. The clean condition
corresponds to η = 0, while the most severe icing condition
occurs for η = 0.2.

Table 2 lists the coefficients used in this work, for different
icing configurations: wing icing, tail icing and full icing. It is
worth remarking that these coefficients have been computed
by mimicking the proportional variation of the stability and
control derivatives for a Twin Otter aircraft (Bragg et al., 2002),
and they are expected to differ in the case of other UAVs.
These values are used in the simulator in order to provide
realistic icing effects. However, when applying the proposed
LPV MMAE strategy to a real UAV, it would be of paramount
importance to identify properly the values of these coefficients
for the specific UAV.

It is evident that the effect of icing on the quasi-LPV model
(1)-(4) involves a modification of the matrices A(u,w,q,θ) and
B(u,w), which take different values according to the presence
and type of icing. Hence, (1) can be rewritten more generally
as:

ẋ = Aκ(u,w,q,θ)x+Bκ(u,w)υ +G(θ)ω +d(θ) (6)
where the index κ is an icing indicator, such that κ = 1
corresponds to a clean UAV (no icing), κ = 2 corresponds to
full icing, κ = 3 to wing icing and κ = 4 to tail icing.

As a matter of example, the element atail
31 (·) of A3(u,w,q,θ)

would be:

atail
31 (·) = ρScu

2Jy

(
Cm0 +(1+ηKtail

mα
)Cmα

α

)
(7)

3. LPV MULTIPLE MODEL ADAPTIVE ESTIMATOR

Let us consider a discrete time multiple input multiple output
(MIMO) LPV model of the form:



Table 2. Coefficients Ki for different icing config-
urations

KLα
KLq KLδe

KD0

wing icing -0.2809 -0.0675 -0.1151 1.0976
tail icing -0.1237 -0.0675 -0.3536 0.6098
full icing -0.5000 -0.0675 -0.4770 2.5610

Kmα
Kmq Kmδe

wing icing -0.0954 -0.1755 -0.0891
tail icing -0.1794 -0.1755 -0.4224
full icing -0.4962 -0.1755 -0.5000

x(t +1) =Aκ (ϑ(t))x(t)+Bκ (ϑ(t))υ(t) (8)
+Gκ (ϑ(t))ω(t)+d(ϑ(t))

y(t) =Cκ (ϑ(t))x(t)+ v(t) (9)

where x ∈ Rn denotes the state vector, υ ∈ Rm is the control
input vector, ω ∈ Rr is a disturbance vector that cannot be
measured, d ∈ Rn is a known additive term, and y ∈ Rq is the
measured output vector, which is affected by the measurement
noise v ∈ Rq. The initial condition x(0) is assumed to be
unknown, while the signals ω(t),v(t) are uncorrelated and may
be described as white noises with covariance matrices Sω and
Sv, respectively. The matrix functions Aκ (ϑ(t)), Bκ (ϑ(t)),
Cκ (ϑ(t)) and Gκ (ϑ(t)) depend on both an unknown parameter
κ and a known time-varying parameter vector ϑ ∈ Θ ⊂ Rs,
being Θ a known bounded set.

In order to estimate the state, a finite set of candidate parameter
values {κ1, . . . ,κN} indexed by i ∈ {1, . . . ,N} are considered.
Notice that the quasi-LPV model of the UAV subject to icing
described in Section 2 (see Eq. (6)) can be represented in the
form (8) by applying a discretization method, e.g. Euler or
Runge-Kutta, with N = 4 as detailed in Section 2.1.

It is assumed that for each candidate parameter value κi,
i ∈ {1, . . . ,N}, the corresponding matrix functions Aκi(ϑ(t)),
Bκi(ϑ(t)), Cκi(ϑt) and Gκi(ϑt) can be described as the convex
sum of L≥ 1 constant matrices denoted as vertex matrices:(

Aκi (ϑ(t)) Bκi (ϑ(t))
Cκi (ϑ(t)) Gκi (ϑ(t))

)
=

L

∑
j=1

h( j)
i (ϑ(t))

(
A( j)

κi B( j)
κi

C( j)
κi G( j)

κi

)
(10)

where, for a given i, the coefficients h( j)
i (ϑ(t)) satisfy the

following property:
L

∑
j=1

h( j)
i (ϑ) = 1, h( j)

i (ϑ) ∈ [0,1] ∀ϑ ∈Θ (11)

In Rotondo et al. (2017), taking into account previous results
developed in Hassani et al. (2009), the following LPV MMAE
has been proposed:

x̂(t) =
N

∑
i=1

pi(t)x̂(t|κi) (12)

ŷ(t) =
N

∑
i=1

pi(t)ŷ(t|κi) (13)

κ̂(t) =κi∗(t), i∗(t) = arg max
i∈{1,...,N}

pi(t) (14)

where x̂(t), ŷ(t) and κ̂(t) are the estimates of the state x(t), the
output y(t), and the unknown parameter κ , respectively, x̂(t|κi),
ŷ(t|κi) correspond to local state estimations, and pi(t) are the
dynamic weights, generated as follows:

pi(t +1) =
pi(t)βi(t)e−ψi(t)

N
∑
j=1

p j(t)β j(t)e−ψ j(t)
(15)

where βi(t) is a positive weighting function and ψi(t) is the
error measuring function, which maps the measurable signals
and the local state estimation x̂(t|κi) to a nonnegative real value.

Following Rotondo et al. (2017), ψi(t) and βi(t) are chosen as:

ψi(t) =
1
2
‖y(t)− ŷ(t|κi)‖2

Sκi (ϑ(t))−1 (16)

βi(t) =
1√

|Sκi(ϑ(t))|
(17)

where Sκi (ϑ(t)) is a positive definite weighting matrix func-
tion, which scales the energy of the estimation error sequences
making them comparable, and ‖x‖S =

√
xT Sx.

In (12)-(13), the local estimations x̂(t|κi), ŷ(t|κi) are obtained
through the following LPV Kalman filter (Simon, 2003):

x̂(t|κi) =
L

∑
j=1

x̂ j (t|κi) (18)

ŷ(t|κi) =Cκi (ϑ(t)) x̂(t|κi) (19)
where x̂ j(t|κi), j ∈ {1, . . . ,L} are obtained as follows:

x̂ j(t|κi) =
[
I−K( j)

κi C( j)
κi

]
x̂−j (t|κi)+K( j)

κi h( j)
i (ϑ(t))y(t) (20)

x̂−j (t +1|κi) = A( j)
κi x̂ j(t|κi)+h( j)

i (ϑ(t))
(

B( j)
κi υ(t)+d(t)

)
(21)

with:

K( j)
κi = P( j)

κi

(
C( j)

κi

)T
[
C( j)

κi P( j)
κi

(
C( j)

κi

)T
+Sv

]−1

(22)

where P( j)
κi is the solution of the discrete Riccati equation:

P( j)
κi = A( j)

κi

[
P( j)

κi −K( j)
κi C( j)

κi P( j)
κi

](
A( j)

κi

)T
+G( j)

κi Sω

(
G( j)

κi

)T

(23)
and the superscript − indicates that the quantity is calculated
before the measurement is taken into account.

In Rotondo et al. (2017), it has been suggested that a possible
choice for Sκi (ϑ(t)) in (16)-(17) could be:

Sκi (ϑ(t)) =
L

∑
j=1

h( j)
i (ϑ(t))S( j)

κi (24)

with:

S( j)
κi =C( j)

κi P( j)
κi

(
C( j)

κi

)T
+Sv (25)

3.1 Properties of the LPV MMAE

Hereafter, the relevant properties of the proposed LPV MMAE
are summarized. The proofs of these properties can be found in
Rotondo et al. (2017).

The following property shows positiveness and boundedness of
the dynamic weights pi(t).
Property 1. Assume that pi(0) > 0 ∀i ∈ {1, . . . ,N}. Then, all
the signals pi(t) generated by (15) are nonnegative, uniformly
bounded and contained in (0,1), with:

∑
N
i=1 pi(t) = 1 ∀t > 0 (26)



Table 3. System parameters values

Param. Value Param. Value Param. Value
m 1.56kg CL0 0.09167 CDq 0
Jy 0.0576kgm2 CD0 0.01631 Cmq −1.3990
S 0.2589m2 Cm0 −0.02338 CLδe

0.2724
c 0.3302m CLα

3.5016 CDδe
0.3045

Sprop 0.0314m2 CDα
0.2108 Cmδe

−0.3254
ρ 1.2682kg/m3 Cmα

−0.5675 Cprop 1.0
km 20 CLq 2.8932

On the other hand, the following property shows that the
dynamic weights pi(t) exhibit convergence if some conditions
are fulfilled.
Property 2. Let i∗ ∈ {1, . . . ,N} be an index for the set of candi-
date parameter values {κ1, . . . ,κN}, and let I = {1, . . . ,N}\i∗
be an index set. Suppose there exist positive constants n1, t1,ε
and ε1 such that the following conditions hold for all t ≥ t1 and
n≥ n1:

1
n

t+n−1

∑
τ=t

(ψi∗(τ)+ ε)<
1
n

t+n−1

∑
τ=t

min
j∈I

ψ j(τ) (27)

ln β̄ (t)− lnβi∗(t)< ε1 < ε (28)
where:

β̄ (t) = max
j∈I

β j(t) (29)

Then pi∗(t) calculated as in (15) satisfies pi∗(t)→ 1 as t→ ∞.

The following property provides additional information about
the parameter estimate κ̂(t) given by (14).
Property 3. Assume that the conditions of Property 2 hold, and
let ψi(t) be defined as in (16). Then, the parameter estimate κ̂(t)
converges to the closest κi as t→ ∞ in the following sense:

lim
t→∞

κ̂(t) = κi∗ (30)

i∗ = arg min
i∈{1,...,N}

lim
n→∞

1
n

t+n−1

∑
τ=t

ψi(τ) ∀t ≥ t1 (31)

4. CASE STUDY

Let us consider the case study of a small UAV, with the param-
eters appearing in the quasi-LPV model described in Section 2
taken from Beard and McLain (2012) and resumed in Table 3.
The UAV is controlled by an autopilot, which is responsible
to make the UAV track some desired reference longitudinal
velocity and pitch angle. For the considered simulation, the
following reference signals are used:

ure f (t) =


22 t < 50s

(4550−3t)/200 50s≤ t < 250s
(3550+2t)/200 250s≤ t < 450s

21 t ≥ 450s

θre f (t) =


π/15 t < 100s

(t +100π−100)/1500 100s≤ t < 250s
(100π +400− t)/1500 250s≤ t < 400s

π/15 t ≥ 400s
and the initial state is set as x(0) = (18,3,0,π/15)T . The
initial condition for the dynamic weight is chosen as p(0) =
(0.25,0.25,0.25,0.25)T .

It is assumed that the whole state is available for measurement,
i.e. Cκ (θ(t)) = I. The measurement noise v(t) is generated as
a white noise with covariance Sv = diag([0.1,0.1,10−6,10−6]).
On the other hand, the wind disturbance ω(t) is generated using
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Fig. 1. Horizontal velocity u and its estimations.

the Dryden wind turbulence model provided by the Aerospace
Toolbox of Matlab, with a light probability (10−2) of exceeding
the high-altitude turbulence intensity. However, for calculating
the solution of the discrete Riccati equation (23), a value Sω =
diag([0.8,0.8]) is used.

By applying an Euler discretization with sampling period Ts =
0.01s, and a bounding box method (Sun and Postlethwaite,
1998), the quasi-LPV model of the UAV subject to icing (1)
has been brought to the form (10) by considering the following
limits on the state variables: u ∈ [15,25], w ∈ [0.3,3], q ∈
[−0.04,0.04] and θ ∈ [−0.35,0.35].

The considered fault scenario comprises all possible icing con-
figurations, for which a value η = 0.2 is used. From t = 0s to
t = 100s, the UAV works under nominal conditions (κ = 1). At
time t = 100s, an ice layer builds incrementally on the wings,
such that the UAV operates under wing icing conditions (κ = 3)
from t = 150s to t = 250s. At time t = 250s, another ice layer
builds incrementally on the tail such that full icing conditions
(κ = 2) are considered from t = 300s to t = 400s. At time
t = 400s, a de-icing system is applied to the wings, such that the
icing condition changes abruptly to tail icing (κ = 4). Finally,
at time t = 450s, also the tail is de-iced, and the UAV returns to
the clean state (κ = 1).

Figs. 1-4 show the responses of the state variables obtained
from the simulation, along with their estimations x̂(t|κi) given
by (18). Moreover, Fig. 5 compares the estimation of the angle-
of-attack α calculated using the estimations available for u
and w with its real value α = arctan(w/u). It can be seen
that the state variables that are affected the most by icing are
the horizontal and vertical velocity, respectively. Also, aside
from the smooth transitions in the time intervals [100s,150s]
and [250s,300s], the estimations that better fit the real value
of the state is the one corresponding to the icing conditions
of the system. For example, up to t = 100s, û(t|κ = 1) (no
icing) is the signal that fits better u(t). On the other hand, in
the time interval t ∈ [150s,250s] the icing phenomenon affects
the wings (κ = 3), and the estimation that fits better u(t) is
û(t|κ = 3).

Fig. 6 shows the obtained error measuring functions ψi(t) (no-
tice that solid lines are added in order to show smoothed version
of the signals for graphical purposes), whereas Fig. 7 shows
a zoom on the time interval [399s,401s]. The corresponding
dynamic weights pi(t) are shown in Fig. 8. Then, using the
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Fig. 2. Vertical velocity w and its estimations.
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estimator (14), the icing diagnosis can be performed. At the
beginning of the simulation, κ̂ = 1 (no icing) holds. At time
t = 128.45s, the presence of wing icing (κ̂ = 3) is correctly
diagnosed. Full icing (κ̂ = 2) and tail icing (κ̂ = 4) are diag-
nosed at time t = 277.04s and time t = 401.16s, respectively.
Finally, the situation of no icing is correctly diagnosed at time
t = 450.41s.
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Fig. 5. Angle-of-attack α and its estimations.
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Fig. 6. Error measuring functions ψi(t).
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5. CONCLUSIONS

This paper has proposed a method for icing diagnosis in UAVs
using a linear parameter varying multiple model adaptive es-
timator. The linear parameter varying multiple model adaptive
estimator comprises a collection of observers, each of which
provides the state estimation which would correspond to a
predefined value of the unknown parameter (the icing condi-
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tion). Under some suitable conditions, the identified unknown
parameter corresponds to the observer that exhibits the smallest
output prediction error energy. An advantage of the proposed
approach is that the provided information is not limited to icing
detection, i.e. assessing whether icing has occurred or not, but
also comprises icing location (whether icing affects the wings,
the tail or all of the UAV). The case study of a small UAV has
allowed validating the effectiveness of the proposed technique
in simulation.

Future work will aim at applying the proposed icing diagnosis
strategy to an experimental setup. In order to do so, it is of
paramount importance to further develop the linear parameter
varying multiple model adaptive estimator in order to increase
its robustness and reliability with respect to different sources
of model uncertainty and the disturbances that affect the UAV.
Additionally, the quasi-LPV model of the UAV used in this
paper has been obtained under low angle-of-attach assumption,
which makes the method more suitable to be used in cruise
condition. In this sense, the generalization to a more complex
model which comprises the case of high angles of attack will
extend the applicability of the method to other flying phases,
e.g. fast altitude changes. Finally, another possible line of future
research concerns the integration of the proposed method with
a wind estimator.
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