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Abstract: The paper provides a practical stochastic method by which the suspended sediment
concentration due to long-crested (2D) and short-crested (3D) nonlinear random waves can be
calculated. The approach is based on assuming the waves to be a stationary narrow-band
random process, and by using the parameterized formulas valid for regular waves presented in
Soulsby (1997). The Forristall (2000) wave crest height distribution representing both 2D and
3D nonlinear random waves is also adopted. The model covers sediment suspension over
rippled beds and for sheet flow. Comparisons are made with random wave data from Thorne
et al. (2002) for flow over rippled beds. An example for sheet flow using data typical to field

conditions is also included to illustrate the approach.
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1. INTRODUCTION

Suspended sediment concentrations over sandy seabeds in shallow and intermediate
water depths, i.e. in coastal zones and on continental shelves, occur predominantly as a result
of the combined action of waves and currents. The waves are the principal cause of the
entrainment of the sediment, which are diffused into the flow by turbulent processes, and
subsequently transported by the current. Wave-current-sediment interactions are crucial in
scour and erosion studies for seabed pipelines and other near seabed structures. This
interaction is also important in developing models for the movement of sediment on the
seabed in combined action of waves and currents, and the resulting coastal evolution.

In a realistic sea state the surface waves show a complex three-dimensional irregular
pattern where the sharpening of the wave crests manifests wave nonlinearity, complicating the
problem. The wave-induced bottom shear stress determines the response of sandy seabeds.
When the shear stress exceeds the critical value for initiation of sand motion, ripples will be
formed as the wave activity increases. Under large waves the seabed ripples are washed out
such that a larger layer of high sediment concentration is developed in the vicinity of the bed,
i.e. a sheet flow layer with a thickness of the order of mm or cm depending on how it is
defined (see e.g. Myrhaug and Holmedal (2007)).

The sheet flow layer is defined as the layer where concentrations are so high that inter-
granular forces and sediment flow interaction forces are important. Sheet flow transport is
important in the surf zone even in moderate wave conditions, and the associated high
concentrations play an important role in erosion, sedimentation and morphology as well as for
the design of coastal structures. Under severe wave conditions sheet flow may occur in
intermediate water depths, and the intense sediment transport might cause exposure of e.g.
buried pipelines and foundations of structures, as well as affect the stability of scour

protections of marine structures. Sheet flow conditions might also have ecological



implications since the high sand concentrations might directly affect life in the ocean in
several ways: for example, highly turbid water might negatively impact fish to feed, as well as
reducing their reproduction rate. Thus, knowledge of the response of this thin layer for sheet
flow under realistic field conditions is crucial to conserve the diversity of species living in the
thin surface bottom sediment layer. The suspended sediments also play an important role in
spreading and transport of pollutants, since it affects the upper bottom sediment layer which is
brought into suspension. Recent works related to sheet flow are those of e.g, Myrhaug and
Holmedal (2007); Holmedal et al. (2013); Fuhrman et al. (2013); Chassagneux and Hurther
(2014); and the references therein.

Steady streaming under sinusoidal waves is caused by non-uniformity of the wave
boundary layer resulting from spatial variation of the orbital velocities. Vertical velocities
generated within the bottom boundary layer under progressive waves are not exactly out of
phase with the horizontal velocities, leading to a non-zero time-averaged bed shear stress. The
steady streaming for a laminar wave boundary layer was determined by Longuet-Higgins
(1956). Based on this work, the streaming-related time-averaged bed shear stress can be
expressed in terms of the wave friction factor and the wave number (see, e.g. Nielsen (1992)).
Nielsen and Callaghan (2003) included the effect of streaming predicting the shear stress and
the total sediment transport rate for sheet flow under waves. The effect of streaming was
included by adding a constant shear stress corresponding to the streaming-related bed shear
stress and by applying a friction factor for rough turbulent flow. This method predicts the real
propagating wave observations of Ribberink et al. (2000) quite well. Myrhaug et al. (2004)
followed Nielsen and Callaghan (2003) relating the wave-induced current (streaming) for
rough turbulent flow and used this to deduce formulas for bottom friction and bedload
sediment transport due to boundary layer streaming beneath random waves. The effects of

second order wave asymmetry on bottom friction and bedload sediment transport for




horizontally uniform oscillatory flow were also part of the study.

A summary of results from models and experiments on wave-induced streaming near
the seabed is given by Davies and Villaret (1997, 1998, 1999). Above a smooth bed, the
measured streaming at the edge of the wave boundary layer is in reasonable agreement with
the Eulerian drift predicted by Longuet-Higgins (1956). Over a flat rough bed, however, the
Eulerian drift is reduced in magnitude. The reason is that the phase difference between the
outer velocity and the near-bed velocity is smaller for rough turbulent flow than for laminar
flow. This feature is described by Trowbridge and Madsen ( 1984) for flows in which

momentum transfer is dominated by turbulent processes, i.e. for 4/z,>900, where A4 is the
near-bed orbital displacement amplitude and zg is the bed roughness. Trowbridge and

Madsen (1984) also included the effect of second order wave asymmetry by including second
order terms in a specified time-varying eddy viscosity for flow over flat rough beds. They
found that this reduced the Eulerian drift at the edge of the boundary layer with a mean flow
reversal (negative drift) occurring for very long waves, i.e. for small kh, where k is the wave
number and / is the water depth.

Holmedal and Myrhaug (2009) investigated in detail the Longuet-Higgins streaming,
the streaming due to wave asymmetry and the interaction between these two mechanisms. For
realistic physical situations the seabed boundary layer beneath both propagating linear waves
and Stokes second order waves, as well as horizontally uniform oscillatory bottom boundary
layer flow with second order asymmetric forcing were investigated. They found that the
Longuet-Higgins streaming velocities beneath propagating linear waves are always in the
wave propagation direction, while the streaming velocities in horizontally uniform boundary
layers with asymmetric forcing are opposite the wave propagation direction. This work was
extended by Holmedal et. al. (2013) investigating the effect of streaming on the seabed

boundary layer flow beneath combined waves and current for waves following and opposing a




current. They found that for wave-dominated conditions the mean (i.e. averaged over one
wave period) velocity profile beneath following waves and current is significantly different
from the mean velocity profile beneath opposing waves and current. Both linear and second
order Stokes waves were taken into account (a review and more details are given in Holmedal
et. al. (2013) and in the references therein).

The reader should note the difference between the two effects considered in this work;
the second order wave asymmetry and streaming. Due to the second order wave asymmetry
effect, the magnitude of the wave crest velocity is larger than that of the wave trough velocity
at the edge of the boundary layer. On the other hand, streaming is caused by the presence of a
vertical velocity component in the boundary layer under progressive waves giving a weak
current at the edge of the boundary layer. For the parameter regime considered here, this
current is in the wave propagation direction.

For the prediction of suspended sediment concentration due to random waves, a
commonly used procedure is to substitute the wave-related quantities with their characteristic
statistical values, for example the rms (root-mean-square) values in an otherwise deterministic
approach, see e.g. Soulsby (1997). Comparison of results from field measurements and
empirical models of suspended sediments under waves and currents have been made by
representing the random waves by their characteristic statistical values (see e.g. Cacchione et
al. (2008), Dolphin and Vincent (2009), Bolanos et al. (2012)). However, this procedure does
not account for the stochastic feature of the processes included. Moreover, sharpening of the
wave crests manifests wave-nonlinearity. To the present authors knowledge no stochastic
method for prediction of suspended sediment concentration bencath random waves is
available in the open literature.

The purpose of this study is to provide a practical stochastic method for calculating the

suspended sediment concentration over rippled seabeds and for sheet flow due to random



waves including effects of second-order wave asymmetry. For sheet flow the effect of wave
boundary layer streaming is also provided. The approach is based on assuming the waves to
be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height
distribution representing both long-crested (2D) and short-crested (3D) random waves, and
using parameterized formulas valid for regular waves presented in Soulsby (1997). The model
covers sediment suspension over rippled beds for linear and 2D nonlinear random waves, and
comparisons are made with data obtained from measurements of suspended sediment
concentrations over rippled bedforms beneath 2D random waves in a large-scale flume
reported by Thorne et al. (2002). An example for sheet flow is also included to demonstrate

the applicability of the results for practical purposes using data typical for field conditions.

2. SUSPENDED SEDIMENTS DUE TO REGULAR WAVES

Many parameterizations to calculate the suspended sediment concentration in the water
column close to the seabed under regular waves have been proposed in the literature; these
parameterizations were reviewed and presented in Soulsby (1997). In the following the
formulas for regular waves, which are used as the basis for suspended sediments due to

random waves given in Section 3, will be summarized.

2.1  Rippled beds

For rippled beds the concentration profile is given by

C(z)=C, exp(—%) (H

where C(z) is the sediment concentration at the height z above the bed, C; is the reference

concentration at the seabed, and ¢ is the decay length scale. Here the Nielsen (1992)

expressions for ¢ and C are adopted
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Here U is the linear near-bed orbital velocity amplitude, w, is the settling velocity, n

is the ripple height, 4 is the ripple length, and @ is the Shields parameter defined by
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Here r, is the maximum bottom shear stress under the waves, p is the density of the fluid,
g 1s the acceleration due to gravity, s is the sediment density to fluid density ratio, and d,, is

the median diameter of grains.

The maximum bottom shear stress within a wave cycle is taken as

L _ lwaZ (6)
p 2

where f, is the friction factor, which is taken from Myrhaug et al. (2001, Table 3)

ot

2y
(e,d)=(18,1) for 20,5 A/z, $200 (8)
(c,d)=(1.39,0.52) for 200< 4/z, 11000 ®
(e,d)=(1.12,0.25) for 11000< 4/z, (10)

where z, =2.5d,,/30 is the bed roughness used in Egs. (6) to (10) to calculate the shear

stress due to the grain size, 4=U /w is the maximum near-bed orbital displacement, and w

is the wave frequency. Note that Eq. (9) corresponds to the coefficients given by Soulsby



(1997) obtained as best fit to data for 10.< 4/z, S10°.
The settling velocity is obtained from Soulsby (1997) as

W, = dl[(lo.sﬁ2 +1.049D3)"” —10.36] (1)

50

where vis the kinematic viscosity of the fluid and D, is the dimensionless grain diameter

defined as

2

D.=[g(s—])]”d50 (12)

For irregular wave-generated ripples the Nielsen (1992) expressions for n and A are adopted:

n=2py"%*4 for y>10 (13)

=0.342-0.3406"% (14)

3

where y is the mobility number defined by

UZ
v 15
VoD, (1)

The ripples are washed out for 6> 0.8. According to Nielsen ( 1992) @, w and 4 in
Egs. (13) and (14) are based on using the significant wave height H_ . However, in the present

method H,  will be used. More discussion will be given in Section 3.

It should be noted that ripples start to be generated when 6> @

.» where @ is the
critical value of the Shields parameter corresponding to the initiation of motion at the bed

which according to Soulsby (1997) is given as

_ 030
" 1+1.2D,

+0.05[1—-exp(-0.020D.)] (16)

As already mentioned the wave ripples are washed out leaving a flat bed with oscillatory sheet

flow, when the criterion is given in terms of 6> 0.8.



2.2 Sheet flow

For sheet flow conditions the concentration profile is given by

a

C(z)=C, (ij (17)

where the Zyserman and Fredsoe (1994) expressions for the reference height z, and the

reference concentration C, are adopted; z, = 2.0d,, and

_ 0.331(6-0.045)""
* 1+0.720(8-0.045)'

(18)

Moreover, b=w, /(xu.), and is based on assuming the eddy diffusivity to vary linearly with

the distance from the seabed, x = 0.4 is von Karman’s constant, u, =(r, / p)"? is the friction

velocity, which by using Eq. (5) can be expressed in terms of the Shields parameter as

u.=[g(s—1)d,,8]"” (19)

2.2.1 Effect of streaming

The effect of streaming is included by adopting the results in Myrhaug et al. (2004)
(following Nielsen and Callaghan (2003)), taken as a linear combination of the bed shear
stress for waves and streaming, which is not strictly true due to nonlinear interaction.
However, as a first approximation the streaming is considered to give an additional shear
stress, i.e. the Shields parameter can be written as

6,=6+8 (20)

st

where 6, is the Shields parameter associated with the boundary layer streaming given by

sir

T 1
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It should be noted that the approach is valid for 4/ z, 2,900, i.c. by using Egs. (7), (9) and
(10) for A/z, 2 900. Further details are given in Myrhaug et al. (2004).

By combining Egs. (5), (6), (20) and (21), Eq. (20) can be rearranged to

I
6,=0(1+8) ; 6 =—=kA 22
) =0(1+9) b 22)

Thus, the effect of streaming on the concentration profile can be taken into account by using
Egs. (11), (12), (17) to (19) with 6, replacing 8, i.e. Egs. (18) and (19) are replaced by,
respectively:

__0331[6(1+5)-0.045]' "
1+0.720[6(1+5)~0.045] "

(23)

. =[g(s - 1)d,001+8)]"” (24)

3. SUSPENDED SEDIMENTS DUE TO NONLINEAR RANDOM WAVES

3.1 Theoretical background for stochastic method

Under nonlinear waves the nonlinearity is primarily caused by the asymmetric wave velocity,
i.e. that the near-bed orbital velocity is larger in the wave propagation direction than in the
opposite direction. In the present paper the effects of wave asymmetry are considered by
using Stokes second-order wave theory. For Stokes second-order waves the nonlinearity is
primarily caused by the larger velocity under the wave crest (crest velocity) than under the
wave trough (trough velocity). It seems reasonable that it is the largest velocity in the wave
cycle (i.e. the crest velocity) which is responsible for bringing sand grains into suspension,
rather than the mean of the crest and the trough velocity (i.e. equal to the linear wave
velocity). Thus the concentration for individual random Stokes second-order waves is

obtained from the regular wave formulas in Section 2 by replacing U with U , i.e. the

[5

maximum near-bed orbital velocity under the wave crest, which will be elaborated further in



the forthcoming. The use of the regular wave formulas implies that each wave is treated
individually, and consequently that the suspended sediment concentration is taken to be
constant for a given wave situation and that memory effects are neglected. For rough turbulent
flow the validity of this assumption was confirmed for seabed shear stresses by Holmedal et
al. (2003) for high values of A/zy (at about 30000). Characteristic statistical values of the
resulting seabed shear stress amplitude deviated less than 20% from those obtained by the
Monte Carlo simulation method by Holmedal et al. (2000); that essentially is based on the
same assumptions upon which the present approach is based. Regarding the assumption that
each wave is treated individually, Holmedal et al. (2003) concluded for large values of A/z
that the main reason for the fair agreement obtained between the Monte Carlo simulations and
the (k - &) model predictions is the good description of the wave friction factor for individual
waves. This appears to be much more important than violating the assumption of independent
individual waves. Thus, since the suspended sediment concentration formulas applied here are
essentially based on using the Shields parameter and the friction factor for rough turbulent
flow in Egs. (5) to (10), the assumption of treating each wave individually seems reasonable.

Moreover, the wave process is also assumed to be a stationary narrow-band process.
For a narrow-band process the waves are specified as a 'harmonic’ wave with cyclic
frequency @ and with slowly varying amplitude and phase. Then, for the first order, the
near-bed orbital velocity amplitude U is related to the near-bed orbital displacement
amplitude A by U =wA, where U is slowly varying with time as well (see e.g. Sveshnikov
(1966)). Thus this assumption is used as a first approximation to describe the stochastic
features inherent in a random process, which consequently will provide results containing the
global stochastic features associated with the random waves.

At a fixed point in a sea state with stationary narrow-band random waves consistent

with Stokes second-order regular waves in finite water depth / the non-dimensional nonlinear



crest height, w, =7, /a,, , and the non-dimensional nonlinear maximum horizontal particle

velocity evaluated at the seabed, U. =U_/U

rms >

are (Dean and Dalrymple, 1984)

w,=a+0(k,a,,) (25)
0,=4+0(k,a,,) (26)
Here a=a/a,, is the non-dimensional linear wave amplitude, where the linear wave

amplitude a is made dimensionless with the 7ms value @ . and

rms *

_ w,a, @7)
™ " sinhk h

prms

Moreover, O(k a ) denotes the second order (nonlinear) terms which are proportional to

the characteristic wave steepness of the sea state, £ a

prms?

where k, is the wave number
corresponding to @, (= the peak frequency of the wave spectrum) given by the dispersion
relationship for linear waves (which is also valid for Stokes second order waves)

@, = gk, tanh k ,h (28)

Now Eq. (25) can be inverted to give 4 = w. —O(k a ) » which substituted in Eq.

prms

(26) gives Oc =w, +0(k a ) Thus it appears that @ can be replaced with w, in the linear

prms
term of UC » because the error involved is of second order. Consequently, by neglecting terms
of O(k a ) the maximum near-bed orbital velocity under the wave crest in dimensional

prms

form can be taken as

U =% (29)
‘" sinhk,h

Moreover, 4, =U, / @, is the maximum near-bed orbital displacement under the wave crest,

;Ic =4,/ 4, is the non-dimensional maximum near-bed orbital displacement where




A = (30)
sinh & plz
Furthermore,
wp = Uc - Umu (31)
AL Amu

by combining Egs. (27) and (30).

Now the Forristall (2000) parametric crest height distribution based on simulations
using second-order theory is adopted. The simulations were based on the Sharma and Dean
(1981) theory; this model includes both sum-frequency and difference-frequency effects. The
simulations were made both for 2D and 3D random waves. A two-parameter Weibull

distribution with the cumulative distribution function (cdf) of the form
w /
P(w.)=1-exp| -| —= ;s w20 (32)
() ‘{ %) J

was fitted to the simulated wave data. The Weibull parameters o and £ were estimated from

the fit to the simulated wave data, and are based on the wave steepness S, and the Ursell

parameter U, defined by

S =—"_3 33)
g TP (
and
H.
U, = kfhj (34)

Here H, is the significant wave height, 7 is the spectral mean wave period, and , is the

wave number corresponding to T;. It should be noted that H = Zﬁam when a is Rayleigh

distributed. The wave steepness and the Ursell number characterize the degree of nonlinearity

of the waves in finite water depth. At zero steepness and zero Ursell number the fits were




forced to match the Rayleigh distribution, i.e. @ =1/+/8 ~0.3536 and [ =2. Note that this is
the case for both 2D and 3D linear waves. The resulting parameters for the 2D-model are

a,, = 0.3536+0.2892S, +0.1060U,

(35)
Bop =2~2.15978, +0.0968U;
and for the 3D-model

a,, =0.3536+0.2568S, +0.0800U
Bip =2-1.79128, -0.5302U,, +0.284U}

(36)
Forristall (2000) demonstrated that the wave setdown effects were smaller for short-
crested than for long-crested waves, which is due to that the second-order negative difference-

frequency terms are smaller for 3D waves than for 2D waves. Consequently the wave crest

heights are larger for 3D waves than for 2D waves.

3.2 Outline of stochastic method
Let x represent the random variable which causes the sand grains to be suspended, i.e. the
crest velocity due to second-order waves. The quantity of interest is the expected (mean)

suspended sediment concentration caused by the random waves
EIC@) =] C(z:x)p(x)dx (37)
0

where p(x) is the probability density function (pdf) of x. More specifically, the present

approach is based on the following assumptions: the free surface elevation is a stationary
narrow-band process with zero expectation, and that the formulas for regular waves given in

Section 2 are valid for individual irregular waves as well.

3.3  Rippled beds



For a narrow-band process T'=T, where 7, =2x/®,=274,, /U, and where Eq.

rns s

(31) has been used. By taking U=U,, A=A4 and using from Eq. (31) that

~

A=A /A4, =U_/U

c rms c mms

UC , Egs. (1) to (15) can be combined and re-arranged to be valid for

It

individual random waves. This means that Eq. (1) is valid together with the following

equations (with UC =w, by neglecting terms of O(k,a, ) according to the previous

prms

discussion) :
0=0075Zm My for Yme <13 (38)
w, W,
(=14n for U 518 (39)
ws
2-d
C,=0.0056" ; 6 = Lm¥e (40)
1-7 d )
A

0 = 0,-,," r‘z—d > rms = (41)
' ‘ g(s-1)d,
%: 0.342—-0.3408° 3 w24 (43)
UZ
— rms (44)

Now the mean suspended sediment concentration at an elevation z above the seabed caused

by the random waves is given from Eq. (37) as
E[C(z)]=jC(z; w.)p(w,)dw, (45)
0

where C(z;w,) is given by Egs. (1), (11), (12) and (38) to (44), and p(w.) is obtained from



the cdf of w, in Eq. (32). However, since Eq. (14) is valid for 8 < 0.8 it implies that UL, =w,

follows the truncated Weibull distribution given by the cdf

o]

1—exp [—( \;vg’; )”]

where w,=(6,/6,,)"* and 6, =0.8 and by using Eq. (41).

s

P(w)= ;0Sw <w, (46)

It should also be noted that when evaluating the integral in Eq. (45) it is checked that
the Shields critcrion =6, w’™ > @, is valid for each individual wave.

mes

3.4  Sheet flow
Similar to the procedurc in Section 3.3, Eqs. (17) to (19), (23) and (24) can be
combined and re-arranged to be valid for individual random waves. This means that Eq. (17)

is valid together with the following equations:

1.75
0.331[0mwf"’ [1 +Oms WCJ— 0.045}

w,
a = 175 (47)
l+0.720[9,mwf"' (1 4 O w(]—0.045]
wl’
12
u, =[g(s-1)dy,0,,]" [wf_"“ (1 Oy, ﬂ (48)
wP
s = pa (49)
rms 2\/_ P

Now the mean suspended sediment concentration at an elevation z above the seabed caused

by the random waves is given from Eq. (37) as

E[C(2)]= TC(z; w.)p(w,)dw, (50)



where C(z;w,) is given by Egs. (17), (47) to (50), and p(w.) is obtained from the cdf of w,
in Eq. (31). However, since Eq. (14) is valid for > 0.8 it implies that Ur =w, isdefined ina

finite interval. Consequently w_ follows the truncated Weibull distribution given by the cdf

exp[—( sl )”]—exp[—( e -)"}
P(w,) = VBa " VBa sw, S w, (51)
=

where w, =(6./6,,.)""™" and 8, =0.8 and by using Eq. (51). The integral on the right-

ms

hand side of Eq. (50) has to be calculated numerically.

Formally this formulation includes both second-order wave asymmetry and wave
boundary layer streaming effects. However, based on the background given in the
Introduction, it should be noted that the method is only valid for each of the effects separately.
More specifically this means that:

1. The effect of second-order wave asymmetry is taken into account by taking &, =0 in
Eqgs. (47) and (48) and by using the cdf in Eq. (51) with S, and U, over their whole
validity range.

2. The effects of wave boundary layer streaming is taken into account by taking &, #0
and by using the cdf in Eq. (51) with S, =0 and U, =0, i.e. the Rayleigh cdf mode

of Eq. (51) corresponding to linear waves.

4. RESULTS AND DISCUSSION

Now some results for the mean suspended sediment concentration over rippled beds and for
sheet flow will be presented and discussed. First, predictions by the present approach will be
compared with results from the Thorne et al.’s (2002) experimental study for random wave-

induced flow over rippled bedforms. Second, since to the authors’ knowledge no data exist in



the open literature on suspended concentration for random wave-induced sheet flow, an

example of results is provided for sheet flow conditions.

4.1 Comparisons with Thorne et al.’s (2002) data for rippled beds

Predictions by the present approach will now be compared with results from the experimental
study reported by Thorne et al. (2002). They presented results on data obtained from
measurements of suspended sediment concentrations over rippled bedforms beneath both 2D
regular and random waves in a large-scale flume. Here the random wave data from four
experiments are considered. The sediment consists of medium quartz sand with
dy=0175mm, d;=033mm and d,,=0.735mm, which is the grain diameter
corresponding to 10, 50 and 90 percent of the material being finer than the given value,
respectively. The other main flow variables are given in Table 1.

The present stochastic approach requires knowledge of T., 4, . and U, . Since the

s rms *

wave process is assumed to be narrow-banded it follows that 7. =T7,. Consequently

Uppe =@, Arg A =H,, 1(2sinhkh)=H,, /(2sinhk,h) where H, =H, /2 when H is

rms prms * rms rms

Rayleigh distributed, and & and k, are the wave numbers corresponding to the wave
frequencies m:(cof =gk tanhl?h) and wp(a)f, = gk, tanh k,,h), respectively. Thus the
procedure is to determine k, for given values of w, and 4 from wf, =gk, tanhk h, and to

calculate A4

. and U_ .

The predictions are based on two modes of the method:

e The fuil stochastic method as described in Section 3.3.

o The semi-stochastic method; similar to the full stochastic method except for

specifying the ripple geometry; i.e. not applying Eqgs. (42) and (43), but otherwise the

method is as described in Section 3.3.



Figs. 1 to 4 show the mean concentration versus the height z above the seabed for
Experiments 11 (Fig. 1), 12 (Fig. 2), 13 (Fig. 3) and 14 (Fig. 4). The data are represented by
the mean value (dots) and the mean value +25% (crosses). The four curves in each figure
represent the predictions; the full stochastic method for linear and 2D nonlinear waves; the
semi-stochastic method for linear and 2D nonlinear waves. It should be noted that in the semi-

stochastic method the ripple geometry (i.e. 7 and A1) given in Table 1 is used as input for
both linear and 2D nonlinear waves. Moreover, the scales along the horizontal axis are

different in the figures, reflecting that the suspended concentration increases as H increases

from Figs. 1 to 4 (see also Table 1).

Overall, from the results shown in Figs. | to 4 it appears that the semi-stochastic method is
superior to the full stochastic method. The main reason is most probably that by using the
measured ripple geometry the uncertainties of determining the reference concentration is
reduced compared with using the full stochastic method.

It should be noted that Thorne et al. (2002) compared predictions with the measured
suspended sediment concentration for Experiment 14. Essentially the predictions were made
by using a deterministic method and with the measured bedform as input. More specifically,
they considered the concentration profile obtained by pure diffusion (i.e. corresponding to Eq.
(1)), pure convection and combined convection—diffusion following the formulations in
Nielsen (1992). They obtained good prediction of the data in Experiment 14 by making a best

fit to the data by the combined convection-diffusion solution.

4.2  Example of results for sheet flow
An example for sheet flow based on the results in Section 3.4 is presented by using the

following given flow conditions: A=15m, H,=5m, T,=89s, d;;=0.20mm, s=2.65,

w, =0.02 m/s (Eq. (11)). The calculated quantities are given Table 2. It appears that the flow



corresponds to sheet flow conditions, i.e. 8, =1.124>0.8. Fig. 5 shows the mean suspended

s
concentration versus the height above the bed for these flow conditions. The results are given
for linear waves, 2D and 3D nonlinear waves (i.e. no streaming included), streaming and
linear waves including streaming. It appears that the mean concentration is: slightly larger for
3D than for 2D nonlinear waves, which both are larger than that for linear waves as well as
for linear waves including streaming. These features are also demonstrated in Fig. 6, showing

the following ratios: the nonlinear to linear ratios for 2D(R,,,) and 3D(R,;,) waves; the

ratio between the mean concentration for 3D waves and the mean concentration for 2D waves
(R,); the ratio between the mean concentration due to streaming and that for linear waves
(Rs

) ; the ratio between the mean concentration due to streaming and that for 2D nonlinear

ir

waves (R,). From Fig. 6 it appears that R ,, and R,,, range up to about 1.7 and 1.9,

respectively. Consequently, R, ranges up to about 1.1. Moreover, R, and R, range up to

about 0.3 and 0.1, respectively. The larger concentration for 3D waves than for 2D waves is
caused by the smaller wave setdown effect for short-crested than for long-crested waves as
mentioned previously in Section 3.1. This smaller wave setdown effect for 3D than for 2D
waves leads to higher wave crests and therefore larger wave-induced bed shear stress under
the wave crest for 3D waves than for 2D waves. Consequently this gives larger concentration

for 3D waves than for 2D waves.

4.3 General comments

It should be noted that the effects of wave nonlinearity due to 2D and 3D Stokes second order
waves are not possible to estimate by using the deterministic method since nonlinearities are
not included in the regular wave formulas. Hence this stochastic approach is more

mathematically sound than by using H,.s and T, in an otherwise deterministic method.



Moreover, it also provides results which arise from 2D and 3D Stokes second order wave
nonlinearities inherent in the Forristall (2000) parametric wave crest distribution. However,
comparison with more data is required to validate the approach. In the meantime the approach
should be of practical interest for estimating random wave-induced suspended sediment

concentrations based on available wave statistics.

5. CONCLUSIONS

The main conclusions are:

1. A practical stochastic method for calculating the suspended sediment concentration
due to random waves is given for:

¢ A rippled seabed including effects of second order wave asymmetry;
e Sheet flow including separate effects of second order wave asymmetry and
boundary layer streaming.

2. The method includes two modes:

¢ Full stochastic method for rippled beds and sheet flow;
e Semi-stochastic method for rippled beds, i.e. by specifying the ripple
geometry, but otherwise a stochastic method.

Overall, for rippled beds the semi-stochastic method gives better prediction of the
Thorne et al. (2002) data than the full stochastic method. The main reason is most
probably that by using the measured ripple geometry as input the uncertainties of
determining the reference concentration is reduced compared with using the full
stochastic method.

4. For sheet flow an example of results shows that

C(Z )3Dnonlinear > C(Z ) 2 Dnanlinear > C(Z )linear+stremmm_= > C(Z ) linear

The larger C(z)for 3D than for 2D nonlinear waves is attributed to the smaller wave



setdown effects for 3D waves than for 2D waves.

5. The present results for sheet flow should be taken as tentative, and data for
comparison are required before any conclusion can be made regarding the validity of
the approach. In the meantime, the method should be useful as an engineering tool for

the assessment of streaming effects on suspended sediments due to random waves.
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Table 1. The main flow variables in Thorne et al.’s (2002) measurements.

Experiment | h (m) | H;(m) | T, (s) | » (m) | 2 (m)
11 446 | 0.504 | 498 | 0.040 | 0.262
12 45 | 0.788 | 4.92 { 0.045 | 0.325
13 45 | 1.006 | 5.10 | 0.046 | 0.395
14 4.5 1.223 | 5.10 | 0.056 | 0.480

Table 2. The main flow variables in the example of results for sheet flow.
H,_ (m) 3.54
k, (rad/m) 0.0667
S, 0.040
U, 0.333
U s (MV/5) 1.06
A4, (m) 1.50
A,./2, 90 000
c,d 0.112,0.25
6, (Eq. (41)) 1.14
0.0354

J,.. (Eq. (47)




Figure captions

Fig 1 Experiment 11: measured and predicted concentration profiles above a rippled

bed; the data are from Thorne et al. (2002); see also Table 1.

Fig. 2 Experiment 12: otherwise caption as in Fig. 1.

Fig. 3 Experiments 13: otherwise caption as in Fig. 1.

Fig. 4 Experiment 14: otherwise caption as in Fig. I.

Fig. 5 Example of results for sheet flow: mean concentration profile above the bed for

h=15m, H=5 m, T,;=8.9 s, d5¢=0.20 mm, s=2.65, w, =0.02 m/s; see also Table 2.

Fig. 6 Ratios for the mean concentration profiles above the bed for the example of results

presented in Fig. 5.
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Fig 1 Experiment 11: measured and predicted concentration profiles above a rippled

bed; the data are from Thome et al. (2002); see also Table 1.
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Fig. 5 Example of results for sheet flow: mean concentration profile above the bed for

h=15m, H=5m, T,=8.9 s, d5y=0.20 mm, s=2.65, w, =0.02 m/s; see also Table 2.
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Fig. 6 Ratios for the mean concentration profiles above the bed for the example of results

presented in Fig. 5.



