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Abstract

Breast cancer is today the leading cause for cancer related deaths among women in Europe.
Decreased mortality among breast cancer patients has been observed over the last twenty
years, where development and use of targeted therapies, utilizing hormone dependence, are
believed to be part of the reason. Some subtypes of breast cancer still have poor prog-
noses for patients, where basal-like/triple-negative breast cancer (TNBC) patients have the
worst predictions. Most basal-like tumors are triple negative, i.e. they lack expression of
hormone receptors (estrogen (ER) and progesterone (PgR)) and human epidermal growth
factor receptor 2 (HER2). Targeted treatment options for these patients are therefore
limited, but use of glutaminase inhibitors have shown to be a potential treatment option
for these patients. TNBC models have shown to be more dependent on L-glutamine and
respond better to the glutaminase inhibitor CB-839 than ER-positive models, both in in
vitro and in vivo xenograft models. CB-839 is currently under early stage clinical trials, but
more information about the metabolic response of CB-839 in basal-like tumors is needed to
identify patients likely to respond to treatment with CB-839. A patient-derived xenograft
model named MAS98.12, displaying a basal-like/TNBC phenotype, has previously been
established and is characterized in this study.

The aim of this study is to add more information about the metabolic response of CB-
839 treated basal-like MAS98.12 tumors in mice. Tumor tissue and serum samples from
CB-839 treated mice (n = 6) and control mice (n = 5) were harvested after injection of
[5-13C]L-glutamine. 13C and 1H MR spectra were acquired and analyzed by integration,
multivariate analyzes (PCA and PLS-DA), and univariate analyzes (Student’s t-test and
Wilcoxon rank sum test). Significantly higher levels of L-glutamine were found in tumor
samples treated with CB-839 than in controls, suggesting that CB-839 inhibits conversion
from L-glutamine to L-glutamate. A previous study of CB-839 showed no effect on tumor
growth in basal-like PDX model MAS98.12 when treated with CB-839. Overall, these re-
sults imply that MAS98.12 tumors are not dependent on L-glutamine for tumor growth.
13C-labeled L-glutamate and L-lactate were also observed in the MR spectra of tumor
tissue, but no significant differences were found between with CB-839 treated mice and
controls. In serum samples, a significantly higher level of 13C-labeled L-glutamine was also
detected in CB-839 treated mice compared with controls, suggesting that CB-839 leads to
a decrease in the overall uptake of L-glutamine from the bloodstream to other organs of
the mouse.
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Sammendrag

Brystkreft er den ledende årsaken til kreftrelatert død blant kvinner i Europa i dag. Synk-
ende dødelighet blant brystkreftpasienter er observert de siste tjue årene, hvor utvikling
av målrettet terapi som utnytter hormonavhengighet er antatt å være endel av grun-
nen. Noen undergrupper av brystkreft har fremdeles d̊arlige prognoser for pasientene,
hvor pasienter med basal-lignende/trippel-negativ brystkreft har d̊arligst prognose. De
fleste basal-lignende tumorer er trippel-negative, alts̊a de mangler utrykk av hormonre-
septorer (østrogen og progesteron) og human epidermal vekstfaktorreseptor 2. Målrettede
terapimuligheter for disse pasientene er derfor begrenset, men bruk av glutaminasehemmere
har vist å potensielt være en behandlingsmulighet for disse pasientene. Trippel-negative
brystkreftmodeller har vist å være mer avhengig av L-glutamin og responderer bedre til
glutaminasehemmer CB-839 enn ER-positive modeller, b̊ade i in vitro og in vivo xenotrans-
plantasjonsmodeller. CB-839 er for øyeblikket i en tidlig fase av et klinisk studie, men mer
informasjon om den metabolske responsen av CB-839 i basal-lignende tumorer er nødvendig
for å identifisere pasienter som mest sannsynlig vil respondere til CB-839. En pasientavledet
xenotransplantasjonsmodell kalt MAS98.12, som viser en basal-lignende/trippel-negative
fenotype, har tidligere blitt etablert og er karakterisert i denne studien.

Målet med denne studien er å finne ut mer om metabolske responsen til basal-lignende
MAS98.12 tumorer behandlet med CB-839 i mus. Prøver av tumorvev og serum fra CB-
839-behandlede mus (n = 6) og kontrollmus (n = 5) var innhentet etter injisering av
[5-13C]L-glutamin. 13C og 1H MR-spektre ble tatt opp og analysert ved hjelp av inte-
grering, multivariate analyser (PCA og PLS-DA) og univariate analyser (Students t-test
and Wilcoxon rangsumtest). Et signifikant høyere niv̊a av L-glutamin ble funnet i tu-
morprøver behandlet med CB-839 sammenlignet med kontroller, noe som tyder p̊a at CB-
839 hemmer omdannelsen fra L-glutamin til L-glutamat. En tidligere studie av CB-839
viste ingen effekt p̊a tumorvekst ved behandling med CB-839 i den basal-lignende pasien-
tavledet xenotransplantasjonsmodell MAS98.12. Alt i alt tyder disse resultatene p̊a at
MAS98.12-tumorer ikke er avhengig av L-glutamin for tumorvekst. 13C-merket L-glutamat
og L-laktat var ogs̊a observert i MR-spektrene av tumorvev, men det ble ikke funnet sig-
nifikant forskjell mellom CB-839-behandlede mus og kontroller. I serumprøver ble det ogs̊a
funnet et signifikant høyere niv̊a av 13C-merket L-glutamin i CB-839-behandlede mus sam-
menlignet med kontroller, noe som tyder p̊a at CB-839 fører til et minkende totalopptak
av L-glutamin fra blodet til andre organer i musen.
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List of abbreviations

α-KG α-ketoglutarate
Ac-CoA Acetyl coenzyme A
ATP Adenosine triphosphate
CoA Coenzyme A
ER Estrogen receptor
FADH2 Flavin adenine dinucleotide
FID Free induction decay
FWHM Full width half maximum
HER2 Human epidermal growth factor receptor 2
HMBC Heteronuclear multiple bond correlation
HMDB Human Metabolome Database
HR-MAS MRS High-resolution-magic angle spinning MRS
LV Latent variable
MR Magnetic resonance
MRS Magnetic resonance spectroscopy
NADH Nicotinamide adenine dinucleotide
NOE Nuclear Overhauser effect
NOESY Nuclear Overhauser effect spectroscopy
OAA Oxaloacetate
PC Principal components
PCA Principal component analysis
PDX Patient-derived xenograft
PgR Progesterone receptor
PLS Partial least square
PLS-DA Partial least square discriminant analysis
Q-Q plot Quantile-quantile plot
rf Radio frequency
SNR Signal-to-noise ratio
SPSS Statistical Package for the Social Sciences
TCA cycle Tricarboxylic acid cycle
TN Triple negative
TNBC Triple negative breast cancer
TNM Tumor, node, metastases
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1 Introduction

Breast cancer is the most common type of cancer among women in Europe today [1]. Use
of targeted endocrine therapy is one of the reasons why prognosis of breast cancer patients
has become increasingly better over the last twenty years [2]. Still, patients with basal-like
breast cancer have poor prognosis, partly because basal-like tumors are triple negative
(TN) and then hormone independent, i.e. they lack expression of hormone receptors, es-
trogen (ER) and progesterone (PgR), and targeted endocrine therapy does therefore not
work. Finding targeted therapies that utilize other properties than hormone dependence
may therefore be beneficial to improve the prognosis of TNBC patients.

L-glutamine is essential for tumor growth in many cancer types [3]. L-glutamine is used
to produce important metabolic intermediates in the tricarboxylic acid cycle (TCA cycle)
and support production of adenosine triphosphate (ATP) [4]. Before L-glutamine can en-
ter the TCA cycle, it must first be converted into L-glutamate and α-ketoglutarate. The
conversion from L-glutamine to L-glutamate is catalyzed by the enzyme glutaminase, and
elevated expression of glutaminase has been associated with high grade breast cancer [5].

Previous studies have shown that TNBC cell lines are especially dependent on L-glutamine
compared to ER-positive cell lines [6] and more dependent on glycolysis compared to mito-
chondrial oxidative phosphorylation [7]. TNBC cells will therefore produce large amounts
of L-lactate and L-alanine from glucose, resulting in only a small fraction of glucose enter-
ing the TCA cycle [3]. These cells may instead use L-glutamine as a source of energy and
to produce metabolic intermediates in the TCA cycle [8].

A potential therapy for TNBC patients, which currently is in early stage clinical trials
[9, 10], is use of the drug CB-839. CB-839 inhibits the enzyme glutaminase, which cat-
alyze the conversion from L-glutamine to L-glutamate. The hope is that this drug will
reduce access of important nutrients into the cancer cells and consequently stop cell pro-
liferation and tumor growth. To this date, a preclinical study of CB-839 performed on
basal-like/TN cell lines and animal models show that the basal-like/TN breast cancer sub-
group is particularly dependent on L-glutamine, and that CB-839 inhibits proliferation and
tumor growth in these models [6].

The basal-like patient-derived xenograft (PDX) model MAS98.12 has previously been es-
tablished [11]. In another study, assessing glycolytic activity in MAS98.12 using 13C mag-
netic resonance spectroscopy (MRS) and 13C-labeled glucose, the glycolytic activity was
found to be lower in the MAS98.12 tumors than in tumors from a luminal-like/ER-positive
PDX model MAS98.06 [12]. Tumor growth of MAS98.12 treated with CB-839 has also
been measured in another study (unpublished results) and the result show no significant
decrease in tumor growth in CB-839 treated compared with controls (see appendices Figure
E.1).
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The aim in this study is to add more information about the metabolic response to CB-839
in the basal-like PDX model MAS98.12 to better understand the mechanisms behind CB-
839 and the impact it has on metabolism in tumor tissue. The end products of L-glutamine
will be traced by injecting [5-13C]L-glutamine in CB-839 treated and untreated mice with
basal-like MAS98.12 tumors. Serums and tissue samples will be analyzed using 1H and
13C MRS.
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2 Theory

2.1 Cancer

Formation of cancer, oncogenesis, is a process where normal cells are transformed into
cancer cells after multiple mutations in DNA, leading to dynamic changes of the genome
that makes the cells proliferate and grow uncontrolled [13]. Cancer cells can behave very
differently, but there are some common hallmarks that are essential for transforming any
normal cell into a cancer cell. These hallmarks include self-sufficiency in growth signals,
insensitivity to anti-growth signals, tissue invasion and metastasis, limitless replicative
potential, sustained angiogenesis, and evading apoptosis [13, 14]. In addition, there is also
a discussion if reprogramming of energy metabolism should be included as a hallmark,
because cancer cells have found to have a different glycolytic and glutamine metabolism of
cell membrane than normal cells growing with the same growth rate [15].

2.2 Breast cancer

Breast cancer is the second most diagnosed type of cancer worldwide today [16], and the
leading cause of cancer related deaths among European women [1]. 25.2 % of all cancer
diagnosis of women in 2012 were of breast cancer, where in total 1.67 million women were
diagnosed [16]. Still, the mortality of breast cancer has decreased in European countries
over the last twenty years [2], where the reason is believed to be a combination of use of
mammography, for women in the age of 50-69 years old [1], and use of targeted hormone
treatment [17]. Hormone treatment can only be used on hormone dependent breast cancer,
so hormone independent breast cancer still has limited treatment options.

2.2.1 Subtypes of breast cancer

Breast cancer is a heterogeneous disease, and is a common term for many different dis-
eases in the breast with variations of molecular aberrations [18]. There are different ways
of characterizing the varying types of breast cancer. In clinic, breast cancer is often di-
vided into subtypes based on the presence or absence of molecular markers and is classified
as ER-positive/negative, PgR-positive/negative, in the amount of the human epidermal
growth factor receptor 2 (HER2), and the Ki-67 score [19]. Another classification is based
on the genetic expression patterns between cases of breast cancer. This classification look
for similarities in gene expression that reflects the molecular differences in breast cancer
cells. These subtypes are called molecular subtypes and are divided into luminal A, luminal
B, basal-like, HER2-type, and normal-like breast cancer, where each group can be looked
at as separable diseases with different treatments options, prognosis, and overall survival,
see Figure 2.1 [19, 20].

Luminal breast cancer is the most common type of breast cancer, with the best prog-
nosis for the patients [20, 21]. Luminal tumors are often ER-positive and/or PgR-positive,
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which means that they are dependent on hormones to grow. Luminal A tumors are often
also HER2-negative with low Ki-67 score, while luminal B tumors can be either HER2-
positive or HER2-negative with high Ki-67 score [22]. Since these tumors are dependent
of hormones, they can be inhibited by hormone blockers, which can be used for targeted
endocrine therapy. Use of endocrine therapy is one of the reasons why luminal breast
cancer patients have relatively good prognosis [23], as shown in Figure 2.1.

Basal-like breast cancer is an aggressive type of breast cancer that overlap TNBC, with a
discordance of 20-30 % [19, 24]. TNBC is ER-negative, PgR-negative, and HER2-negative
and is therefore independent of hormones to grow. Because basal-like breast cancer often
is triple-negative they are also independent of hormones, which means that they cannot
be inhibited by hormone blockers and cannot be treated with targeted endocrine therapy.
The prognosis when having basal-like breast cancer is today very poor, as shown in Figure
2.1, because the cancer is aggressive and it does not exist any targeted treatment for this
subtype of breast cancer [21, 25].

Figure 2.1: Overall survival of patients with luminal A, luminal B, basal-like, normal-like,
and HER2 type breast cancer. Adapted from Sørlie [20], and printed with permission from
the National Academy of Sciences, U.S.A (Copyright 2001).

2.2.2 Diagnosis and prognosis of breast cancer

Diagnosis of breast cancer is normally performed by staging the cancer, which describes
the extent of cancer and the prognosis of the patient. The most commonly used system
is the tumor, node, metastases (TNM) staging system, which stages the cancer based on
the primary tumor size, the regional lymph node involvement, and the presence of distant
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metastasis [26]. From this system, breast cancer is staged from 0 to IV, where stage 0 is
non-invasive breast cancer, stage I-III are invasive breast cancer, and stage IV is breast
cancer with dissemination to other organs [1].

Prognostic factors of breast cancer are factors that can predict the clinical outcome at
the time of diagnosis. Staging breast cancer through the TNM staging system is a prog-
nostic factor, where the lymph node status is the most significant prognostic indicator [27].
The presence of the molecular markers ER, PgR, and HER2 are also important prognostic
factors, because they are the main indicator for the response to endocrine therapy, where
the presence of ER and PgR indicates good response to endocrine therapy [28].

2.3 Patient-derived xenograft models

Animal models are often used to study human breast cancer. Most in vivo models are
based on cell lines that are isolated from human breast tumors and selected in culture
before being implanted into immunodeficient mice [11]. These models have shown to
possibly loose some of the heterogeneity of the original tumor [11]. PDX models are
animal models where primary tumor tissue, originating from humans, is directly implanted
into immunodeficient animals, in particularly mice [29, 30]. The advantage of using PDX
models is that the implanted tumors maintain similarities to primary human tumors like
the histopathology, clinical markers, and gene expression profiles [29, 31]. PDX tumors
can be engrafted heterotopically or orthotopically [32]. Heterotopic models are the easy
choice, where a tumor is implanted into the subcutaneous flank of mice. This gives easy
cell transfer and monitoring of cell growth and location [33]. Orthotopic models are more
technically challenging and more time consuming, where the tumor is implanted directly
into an organ of choice [33]. The benefit of using an orthotopic model is that it is more
accurate to human tumors, most likely due to more similar microenvironment, and is found
to have more similarities in histology and gene expression profiles to human tumors than
heterotopic models [34].

2.4 Cancer metabolism

Cells need energy in form of ATP to maintain cell growth and proliferation. Under aer-
obic conditions of normal cells, the production of ATP is supported by glucose. Glucose
produces pyruvate through the glycolysis and can enter the TCA cycle, which produces
nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) that
can be used to produce ATP through the oxidative phosphorylation [35]. To adjust for
increased proliferation, cancer cells have changed their energy metabolism. Pyruvate pro-
duced from glucose is then to a high degree used to produce lactate and alanine, under
aerobic conditions, instead of entering the TCA cycle. This change in metabolism is called
the Warburg effect and is a less efficient way of producing ATP [4, 13]. A possible expla-
nation for this change in metabolism is the increased production of lactate that can be
released into the extracellular domain, making the tumor more invasive by disrupting the
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architecture of normal tissue [36]. Cancer cells have in addition altered uptake of amino
acids compared with normal cells, especially increased uptake of glutamine have been found
for rapidly proliferating cells [3].

2.4.1 Glutamine dependence in cancer cells

Glutamine is a conditional amino acid, which means that supply of glutamine is only es-
sential under special conditions. Normal cells can provide itself with the necessary amount
of glutamine from glucose and are therefore not dependent of any supply of glutamine from
sources outside the cell. For some cancer cells glucose is not sufficiently supporting the
TCA cycle [37, 38]. Glutamine has then shown to be an essential amino acid because it
can support the TCA cycle through the glutaminolysis [3].

Glutaminolysis is the metabolic breakdown of glutamine. A part of the glutaminolysis
leads to metabolites that enter the TCA cycle, where ATP and biosynthetic intermediates
can be catabolized. Parts of the glutaminolysis are illustrated in Figure 2.2. Glutaminol-
ysis starts with glutamine being deaminated, by the mitochondrial enzyme glutaminase,
making glutamine donate a nitrogen to ammonia and convert into glutamate [39]. Glu-
tamate can then go into different pathways, where in one pathway glutamate is oxidized
into α-ketoglutarate (α-KG), a product in the TCA cycle, in a process that simultane-
ously converts pyruvate into alanine. Pyruvate can also produce malate and be converted
into lactate [40]. α-KG can enter the TCA cycle, which produces NADH and FADH2

that through the oxidative phosphorylation can produce ATP [3, 41]. Another pathway
for glutamate is through the glutamate/cystine antiporter, x−c , that pumps one glutamate
out of the cell and into the extracellular domain, while pumping one cystine into the cell
[8, 42]. When inside the cell, cystine is converted into cysteine that can be used to syn-
thesize the antioxidant glutathione together with glutamate and glycine [43]. Production
of glutathione is important for cancer cells to withstand oxidative and free radical damage
[44].

Cancer cells have also shown to have larger glutamine pools than normal cells, and because
these cells often cannot supply themselves with necessary amount of glutamine, it must
come from other sources like de novo synthesis, the blood supply, or reduced transport
to normal astrocytes [45]. Examples of important macromolecules produced through the
glutaminolysis are cholesterol and fatty acids, which are dependent on citrate and amino
acids, and lipids and nucleotides, where ATP is essential for synthesis [3, 4, 46, 47].
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Figure 2.2: Illustration of [5-13C]glutamine metabolism in the TCA cycle. L-glutamine
labeled with 13C in fifth position will stay in fifth position when converted into glutamate,
with help of the enzyme glutaminase [39]. Glutamate can be used to produce glutathione
[43] or α-ketoglutarate (α-KG), a product in the TCA cycle. In the TCA cycle, 13C-labeled
carbon can be in two different positions when going from succinyl coenzyme A (succinyl
CoA) to succinate. When converted into malate, some of the malate goes further into the
TCA cycle, producing oxaloacetate, and some can be used to produce pyruvate and then
lactate and alanine [40], with the 13C-labeled carbon in first position. Further in the TCA
cycle, acetyl coenzyme A (Ac-CoA) is added forming citrate. When going from citrate
back to α-KG, 13C-labeled carbon leaves the TCA cycle in one of the configurations. In
the other configuration, the 13C-labeled carbon will be in first position of α-KG and stay
in first position when converted back to glutamate and glutamine [4].

2.5 13C-labeling of glutamine

Most carbon atoms are 12C and only 1.1 % are 13C. It is therefore possible to 13C-label
molecules containing carbon atoms by replacing a specific 12C isotopes with 13C isotopes.
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13C-labeled molecules, and its downstream metabolites, can then be detected using 13C
MRS [12]. Glutamine contains five carbon atoms and it is possible to 13C-label one or
more carbon atoms on glutamine.

13C-labeling carbon number five on glutamine, see Figure 2.2, will make the 13C-labeled
carbon stay in the fifth position when converted from glutamine to glutamate and then into
α-KG. In the conversion from α-KG to oxaloacetate (OAA), the carbon in first position
leaves the cycle, resulting in a four carbon OAA that can have two different configura-
tions [4]. The 13C-labeled carbon can then be in either first or fourth position of OAA.
In the conversion from OAA to citrate, acetyl coenzyme A (Ac-CoA) is added, making a
five-carbon chain with a branched carbon. When going from citrate to α-KG the carbon
on the branch will leave the cycle, so for one of the configurations the 13C-labeled carbon
will leave the TCA cycle. For the other configuration, the 13C-labeled carbon will be in
first position of α-KG and will stay in first position when converted to glutamate and then
glutamine [4]. It is therefore possible to detect metabolites from the whole TCA cycle by
using 13C MRS when 13C-labeling carbon number five on glutamine.

2.6 Glutaminase inhibition for treatment of TNBC

TNBC cells are associated with elevated glutaminase activity [48]. Since glutaminase cat-
alyzes the conversion from glutamine to glutamate, this suggests that TNBC cells are
dependent on glutamine metabolism to get essential intermediates from the TCA cycle
that are important for cell growth [48]. Inhibiting glutaminase is therefore believed to
decrease and possibly stop cell growth of TNBC cells [3, 48].

On type of glutaminase inhibitor is Calithera’s glutaminase inhibitor CB-839, illustrated
in Figure 2.3. The enzyme glutaminase is a tetramer with four binding sites and CB-839
binds to the glutamine binding pocket on glutaminase and changes the loops of glutami-
nase to prevent glutamine from binding [6, 47]. The characteristics of CB-839 are that it is
orally bioavailable, potent, selective, and has a time-dependent reversible inhibition with
a slow recovery time [47].
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Figure 2.3: Structure of glutaminase inhibitor CB-839 as described in [49] at reference
#670.

2.7 Magnetic resonance spectroscopy

MRS utilizes the magnetic moment of nuclei with spin I = 1
2
, such as 1H and 13C. These

nuclei may exist in two different energy states at slightly different energy levels. In the
presence of an external magnetic field, a small majority of these nuclei will align in the
direction of the external magnetic field with the lowest energy state. A majority of total
spins in the direction of the magnetic field, will lead to a small magnetization vector in
this direction that can be further utilized [50].

When a radio frequency (rf) pulse is applied, it will be absorbed by nuclei with a rota-
tional frequency corresponding to the frequency of the applied rf pulse [51]. The rotational
frequency, ν, of a nuclear spin is dependent of the experienced magnetic field strength, B0,
and is given by

ν = γ ·B0, (1)

where γ is the gyromagnetic ratio of the given nucleus. The experienced external magnetic
field of a nucleus is dependent on the degree of shielding from the external magnetic field
it experiences from nearby electrons, which is determined by the chemical environment of
the given nucleus. Two identical nuclei with different chemical environment will therefore,
from Equation (1), have different rotational frequencies and will therefore absorb energy at
different frequencies. When an rf pulse is applied, spins with corresponding frequencies will
be knocked out of alignment with the external magnetic field and will relax back to thermal
equilibrium by spin-lattice interactions, leading to longitudinal relaxation (T1), and spin-
spin interactions, leading to transverse relaxation (T2) [52]. This relaxation can be detected
by a coil as a signal decay, called the free induction decay (FID). The FID signal can then
be Fourier transformed to reveal the frequency signal [51], and the amount of different
frequencies can be detected. The results can be represented in a magnetic resonance (MR)
spectrum that can be analyzed to investigate which metabolites are present in a sample
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and the amount of each metabolite [51].

2.7.1 Chemical shift scale

MR spectra are represented with a chemical shift scale. Chemical shift, δ, is defined as
the difference between the resonance frequency of a nucleus of interest, νsample, and the
resonance frequency of a reference nucleus, νref, and can be expressed by

δ(ppm) = 106 · νref − νsample

νref

Chemical shift is a measure without unit that is independent of the magnetic field strength
in the system [51].

2.7.2 Spin-spin coupling

Spin-spin coupling occurs when the magnetic moment of neighboring nuclei affect each
other. This effect is mediated by the bonding electrons and is determined by the distance
between the nuclei, the type of chemical bond, the bond angle, and the nuclear spin [51].
Spin-spin couplings are shown as splitting of peaks into multiplets in MR spectra, where
the number of peaks in a multiplet gives information about the number of close neighboring
nuclei to the detected nucleus [51].

2.7.3 Chemical exchange

A molecule may exist as different conformational isomers, called conformers, where rotation
around single bonds creates different isomers of a molecule. A given molecule will have
a dynamic equilibrium of conformers, where the molecule may switch between different
conformations [53]. A nucleus in a molecule will have different chemical environment
for different conformations and will therefore be detected at different chemical shifts. If
the conformation change is slow compared with the acquisition time, the signal from the
different conformations will be observed as separable peaks in MR spectra. This effect is
called slow-chemical exchange and occurs often at lower temperatures [54]. If conformation
change is fast compared with an acquisition, the molecule will be in both conformation
within the acquisition and the signal from all conformation will be detected as a singlet at
the same chemical shift in MR spectra. The chemical shift of the molecule will correspond
to the average of the chemical shifts of the detected conformations. This effect is called
fast-chemical exchange and occurs often at higher temperatures [54]. 13C MRS is more
sensitive to conformation changes than 1H MRS, because larger chemical shift differences
in 13C MR spectra makes it easier to detect conformation changes [55].

2.7.4 Shimming

It is desired that the magnetic field is as homogeneous as possible, because it leads to
higher spectral resolution in MR spectra. When a sample is placed into a magnet, the
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content in the samples will make small inhomogeneities to the magnetic field that will
decrease the resolution in resulting MR spectra. In attempt to make the magnetic field
more homogeneous, shimming is performed after a sample is placed into the magnet by
adjusting the current in shimming coils. Successful shimming leads to higher and more
narrow peaks in MR spectra [56]. Full Width Half Maximum (FWHM) is often used on
a singlet in the MR spectrum to decide when the shimming is good together with looking
at the symmetry of peaks. Depending on the sample content, a limit for desired FWHM
is decided.

2.7.5 High-resolution-magic angle spinning MRS

High-resolution-magic angle spinning MRS (HR-MAS MRS) has shown to be a good tech-
nique for monitoring metabolism in biological tissue [57, 58]. HR-MAS MRS spins a sample
around a given angle to the external magnetic field, called the magic angle θMA [59], to
cancel effects from interactions such as chemical shift anisotropy and dipole-dipole cou-
pling. In liquids, molecular motions cancel out these effects, while in tissue, molecules are
more bound, so these effects are not canceled, which makes peaks in MR spectra broader.
To limit these effects in tissue, the probe with the sample can be rotated with an angle
θMA that averages to zero the broadening effects. These effects have shown to have an
angular dependence described by 3 cos2 θ − 1, and will be canceled if equal zero. θMA is
then found by solving 3 cos2 θMA− 1 = 0 with respect to θMA, and θMA is found to be 54.7◦

[57, 60]. By rotating a rotor with a tissue sample around the sample spinning axis at an
angle of 54.7◦, compared with the static magnetic field B0 as illustrated in Figure 2.4, the
MR spectral line-widths will decrease and will lead to higher resonance, and then a higher
spectral resolution, in the resulting MR spectra [59, 60, 61].
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Figure 2.4: Illustration of a sample rotating with a degree of θMA compared to the external
magnetic field B0.

2.7.6 13C HR-MAS MRS

When using MRS, it is possible to target and detect signal from different nuclei with spin
1
2
. Because different nuclei, like 1H and 13C, have different gyromagnetic ratio, they will

from Equation (1), also have different rotational frequencies. Different coils must therefore
be used to detect signal from different nuclei in an MR system. MRS usually targets 1H
nuclei because 1H nuclei have a high natural abundance in the human body and because
1H nuclei have a high gyromagnetic ratio (γ) compared to other nuclei, making it a more
sensitive nucleus in MRS. 13C nuclei have a lower gyromagnetic ratio than 1H and give
therefore lower sensitivity in MRS (γ13C ≈ 1

4
γ1H). There is also a low natural abundance of

13C with 1.1 % of all carbon isotopes. In despite of the low sensitivity when using 13C MRS,
it is beneficial to use this method in some cases, because of the possibility to investigate
metabolic pathways by following 13C-labeled substrates in cell cultures or animals. In 13C
MR spectra the spectral resolution is also much higher (∼ 220 ppm) than for 1H MR
spectra (∼ 15 ppm) and peaks are therefore easier to separate [62]. 13C MRS has therefore
shown to be a good tool for studying 13C-labeled substrates with downstream metabolites
in glycolysis, TCA cycle, or other metabolic pathways [12]. All carbon atoms on glutamine
can be 13C-labeled, and different labeling will lead signal at different frequencies in resulting
MR spectra. An example of a 13C HR-MAS MR spectrum from mice injected with 13C-
labeled [5-13C]glutamine is shown in Figure 2.5 with identified metabolites.
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Figure 2.5: Example 13C HR-MAS MR spectrum of basal-like PDX tissue injected with
13C-labeled glutamine and with identified metabolites, where (*) represents fatty acids.
Ala: alanine, Cho: choline, gln: glutamine, glu: glutamate, GPC: glycerophosphocholine,
GSH: glutathione, gly: glycine, lac: lactate, PC: phosphocholine, tau: taurine.

2.7.7 Pulse sequences

The main purpose of a pulse sequence is to give out the best signal possible in MR spectra,
with optimal signal-to-noise ratio (SNR) and suppression of unwanted signals. The optimal
pulse sequence is dependent on the experiment.

1D nuclear Overhauser effect spectroscopy (1D NOESY) pulse sequence utilizes the nuclear
Overhauser effect (NOE). NOE is the cross-relaxation between two spins by transfer of spin
polarization. This effect can be used to saturate one peak while measuring the effect of
another, so one 1H peak can be measured at the time. A reason for using 1D NOESY pulse
sequence is that it easily suppresses the water signal and little optimization is needed [63].
In addition, 1D NOESY pulse sequence is quantitative and is therefore good for comparing
peaks within an MR spectrum [64].

13C single pulse with 1H decoupling pulse sequence can be used for detection of only
the signal from 13C. It is a 1D pulse sequence, where the 1H is decoupled by continuously
exciting 1H with repeating pulses, making the multiplets collapse into a singlet and in-
creasing the SNR in MR spectra [64]. The drawback with this pulse sequence is that it is
not quantitative, but this gives a much shorter repetition time. For 1D quantitative 13C
MR spectra, a pulse sequence with inverse gated decoupling can be used [64].

2.8 Preprocessing and analysis of MRS metabolomics data

2.8.1 Preprocessing MRS metabolomics data

Before statistical analyzes can be implemented, MRS metabolomics data is preprocessed
to avoid instrumental and experimental artifacts [65]. Raw MR spectra may include differ-
ences due to other factors than biological characteristics, like change in signal intensities
in MR spectra due to variations in sample mass or higher or lower chemical shifts in MR
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spectra due to temperature and pH changes. These artifacts can be reduced by prepro-
cessing MRS metabolomics data by computational procedures before analyzed. Normal
procedures of preprocessing MRS metabolomics data are baseline correction, normaliza-
tion, peak alignment, and mean centering [65].

One way of performing baseline correction is using the method asymmetric least square
that uses the least square algorithm to fit a baseline. This is carried out by making a
vector of weights and minimize the residuals, and adding a term to smooth the estimated
baseline [65]. The standard for normalization of MR spectra of tissue samples, is area
normalization that gives all MR spectra the same area by dividing each data point by the
equal total area [65]. For serum samples, area normalization is usually not performed on
MR spectra before univariable analysis [66], instead samples can be corrected for varying
variables, like sample mass. Peak alignment of MR spectra can be performed by using
icoshift, where intervals around all peaks are selected and each interval is co-shifted by
using fast Fourier transform to give the best correlation between MR spectra [67]. Mean
centering is performed to get values in MR spectra to vary around zero, instead of the mean
metabolite value [68]. This is carried out by subtracting the column mean intensity from
each individual intensity value. The origin of each component, found by using principal
component analysis (PCA), will then be in the centroid of the data [69].

2.8.2 Multivariate analysis

Multivariate analysis is a statistical method for analyzing data with more than one variable
at the time. Multivariate analysis takes advantages of the correlation between variables to
reduce the number of variables into fewer uncorrelated variables. Multivariate analysis can
be divided into two categories, supervised and unsupervised. Supervised classification uses
prior knowledge about the data to find predictions or classifications, while unsupervised
classification does not use prior knowledge about the data and try to discover new patterns
[70].

Principal component analysis
PCA is an unsupervised multivariate analysis that uses orthogonal transformation to find
linearly uncorrelated variables, called principal components (PC), from possibly correlated
variables. All PCs are orthogonal to each other and are organized so the first PC has
the highest variance and the next PCs have the highest variance it can have while still
being orthogonal to the preceding PCs. The result is a vector consisting of an uncorrelated
orthogonal basis set, which is a linear combination of the original variables. Each PC also
has a corresponding loading profile that describes the importance of the original variable
for the new PC [71].

Partial least square
Partial least square (PLS) is a supervised clustering multivariate analysis [72, 73]. PLS
look for fundamental relations between two matrices expressed by latent variables (LVs)
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that maximizes the covariance between the matrices. PLS discriminant analysis (PLS-DA)
is a special case of PLS that attempts to find a discriminant between two classes using
”dummy” variables to represent each class [74]. Permutation test is a method of cross-
validation used to validated if the classification found by PLS-DA is significantly different
from random to avoid overfitting or underfitting the classification. A permutation test is
performed by randomly label all samples and performing the same test as for the original
data sets [74]. This is repeated n times, where the p-value of the test is found by

p =
error

n
(2)

where error is the number of classification errors found by the permutation test [75].

2.8.3 Univariate analysis

Univariate analysis is a statistical analysis used for analyzing data with only one variable.
Dependent on the properties of the data sets different analyzes are preferred.

Student’s t-test
Student’s t-test is a univariate analysis that determines if the difference, in mean values
between two groups with non-dependent data, is significant or non-significant [76]. This
test requires that all outliers in the data are removed and that the data sets are reasonable
normally distributed. For an extremely small sample size, n ≤ 5, Student’s t-test can be
used if the effect size is expected to be large [77]. A t-value, for a data set with n samples,
can calculated from the formula [78],

t =
µ1 − µ2

s2p

√
1
n1

+ 1
n2

,

where µi is the mean value of the normal distributed data set i and s2p is the pooled variance
and is calculated from the formula

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
,

where si is the standard deviation of data set i equal to

si =

√∑ni

j=1(xj − x̄)2

ni − 1
.

The p-value of Student’s t-test can be found by taking the area of the tail from the t-value,
on one or both sides of the normal distribution of the data set, dependent on the test being
one-tailed or two-tailed. If the calculated p-value, between two data sets, is less or equal to
the significance level, α, normally chosen to be 0.05, the difference between the two data
sets classifies as significant [76].
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Wilcoxon rank sum test
If a data set is not normally distributed and the samples in the data set are not dependent,
a Wilcoxon rank sum test is often preferred [79]. This analysis combine two data sets and
range the data based on magnitude, where each sample get a range from 1 to the sum of
the two data sets. The sum of all ranks in a data set is then calculated for each data set
and compared and the p-value of the test can be found by using the table in Wilcoxon
[79]. As for the t-test, if the p-value is less or equal to the significance level the difference
between the two data sets is classified as significant [76, 79].

Determination of normal distribution
Normal distribution of a data set can be visually decided by illustrating the data in a
normal quantile-quantile (Q-Q) plot. A Q-Q plot compares two distributions, and if they
are similar they will make a straight line at y = x. A normal Q-Q plot will compare the
observed value of the data points against the expected normal value to determine if the
data points are normally distributed [80].

Dixon-type test
Before univariate analysis can be performed outliers must be removed. To decide if extreme
values found in a data set is classified as outliers, a Dixon-type test is preferred for small
samples sizes, n < 10. Dixon-type test look at the ratios between the range in a data set,
with n samples, to decide if a possible outlier is outside the expected range. The ratio,
when the outlier, xn, is the highest value in the data set, is decided from the formula

r10 =
xn − xn−1

xn − x1
(3)

where the data set in ranged from lowest to highest value and x1 is the lowest value in the
data set. If the calculated r10 is higher than a critical value found in Dixon [81], which is
dependent on the number of samples n and the significance level, the value is classified as
an outlier.
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3 Materials and methods

This study includes acquisition and analyzes of MRS metabolomics data of serum and
tissue from the basal-like PDX model MAS98.12 of immunodeficient mice injected with
[5-13C]L-glutamine both treated with CB-839 (n = 6) and controls (n = 5), and immun-
odeficient mice with only natural abundance (n = 3). Table 3.1 shows an overview of
materials, methods, and analyzes used in this study. All procedures and experiments in-
volving animals were approved by the National Animal Research Authority (FOTS ID:
9126).

Table 3.1: Overview of materials, methods, and analyzes used in this study of basal-like
PDXs of immunodeficient mice injected with [5-13C]L-glutamine both treated with CB-839
(n = 6) and controls (n = 5), and of mice with only natural abundance (n = 3).

Materials Methods Analyzes
CB-839 treated Tissue 1H HR-MAS MRS PCA
(n = 6) PLS-DA

13C HR-MAS MRS Mean spectrum
Integration
PCA
Student’s t-test
Wilcoxon rank sum test

Serum 13C MRS Integration
PCA
Student’s t-test
Wilcoxon rank sum test

Controls Tissue 1H HR-MAS MRS PCA
(n = 5) PLS-DA

13C HR-MAS MRS Mean spectrum
Integration
PCA
Student’s t-test
Wilcoxon rank sum test

Serum 13C MRS Integration
PCA
Student’s t-test
Wilcoxon rank sum test

Natural abundance Tissue 13C HR-MAS MRS Mean spectrum
(n = 3)
n: number of samples, HR-MAS MRS: high-resolution-magic angle spinning magnetic
resonance spectroscopy, PCA: principal component analysis, PLS-DA: partial least
square discriminant analysis.
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3.1 Animal and sample handling

In this study, tissue and serum samples from mice representing the basal-like PDX model,
MAS98.12, were obtained and analyzed. MAS98.12 tumors were already orthotopically
implanted in the mammary fat pad by others, as described in Bergamaschi [11]. These
tumors have shown to maintain the characteristics of a basal-like breast tumors, TN breast
tumors, and to have a similar gene expression as the basal-like phenotype [11]. All mice
used in experiments were female, at equal age, and with similar mass of 27.9 g ± 2.0 g at
the time of experimentation (all mice masses are represented in appendices Table A.1).

3.1.1 Administration of CB-839

CB-839 (developed by Calithera BioSciences, USA) dissolved in a drug vehicle (20 mg/ml
in 10 % cyclodextrin in saline) was administrated (200 mg/kg) twice a day, morning and
afternoon, for two days. Doses were administered perorally per gavage with a total volume
of 0.25 ml. Control mice received a volume-matched drug vehicle (10 % cyclodextrin in
saline) using the same procedure as for CB-839 treated mice.

3.1.2 [5-13C]L-glutamine injection

Serum and tissue samples were obtained by first weighing the mice and put them into an
incubation chamber filled with isoflurane (2 %), N2O, and O2, until they were sleeping.
After the mice were fast asleep, they were put on a mask with the same gas content. L-
glutamine solution, containing 35 mg/ml L-glutamine, labeled with 13C on carbon number
five (99 % [5-13C]L-glutamine, Cambridge Isotope, Andover USA), was injected into the tail
veins of the mice using an injection pump (AlarisCC) that controls the rate of L-glutamine
infused into the mice. Doses given to the mice were adjusted for the body mass of the
mouse mmice. The first three minutes a total dose, d3min, of

d3min(mg) = mmice(g) · 0.3 mg/g

was administrated. The next three hours a total dose, d3h, of

d3h(mg) = mmice(g) · 0.005 mg/(g · min) · 180 min

was continuously administrated.

3.1.3 Sample collection

After injection, the mice were sacrificed by cervical dislocation and the tumors were imme-
diately collected and stored in liquid nitrogen (77 K) until sample preparation. Blood was
collected from the right ventricle of the mice using a 25-27 G needle and stored in room
temperature for 20 minutes until blood clots were formed. The blood was then centrifuged
for 10 minutes, and serum was collected and stored in liquid nitrogen (77 K) until sample
preparation.
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3.2 Magnetic resonance spectroscopy

Overview of MRS protocol used on tissue and serum samples of basal-like PDXs are shown
in Table 3.2.

Table 3.2: Method, spectrometer, pulse program, and MR acquisition parameters used for
acquisition of MR spectra of tissue and serum samples of basal-like PDXs.

Tissue samples Serum samples
Method 13C HR-MAS MRS 1H HR-MAS MRS 13C MRS

Spectrometer Bruker Avance III Bruker Avance III Bruker Avance III
600 MHz 600 MHz 600 MHz Ultrashield Plus

Pulse program Single pulse with 1D NOESY Single pulse with
1H decoupling 1H decoupling
zgpg30; Bruker noesygppr1d; Bruker zgpg30 ; Bruker

Parameters:
Spin rate 5 kHz 5 kHz 5 kHz
Flip angle 30◦ 90◦ 30◦

NS 16384 128 2048
AQ 0.87 sec 2.74 sec 1.65 sec
TR 1.87 sec 6.74 sec 2.15 sec
Sweep width 29.9 ppm/18 kHz 251 ppm/38 kHz 197 ppm/30 kHz
Temperature 277 K 277 K 301.5 K
Total time 8 h 45 min 15 min 1 h 15 min
HR-MAS MRS: high-resolution-magic angle spinning magnetic resonance spectroscopy,
NOESY: nuclear Overhauser effect spectroscopy, NS: number of scans, AQ: acquisition
time, TR: repetition time.

3.2.1 Preparation and acquisition of tissue samples

Tissue samples (37.2 mg ± 2.6 mg) from basal-like PDX model MAS98.12 were cut into a
proper size to fit a 50 µl rotor on a block cooled in liquid nitrogen to minimize degradation
of the sample under preparation. 16 µl of a lock reference, containing 99.9 % D2O (CDN
isotopes, Pointe-Claire, Canada) and 25 mM sodium formate (Sigma-Aldrich, Shanghai,
China), was added in the rotor together with the tissue sample. The rotor was then closed
with a plug and fasten with a screw and inserted into a magnet, where the rotor was
aligned at the magic angle of 54.7 ◦ to the magnetic field. All samples were shimmed using
formate in the 1H MR spectrum, until the FWHM was less than 1.5 Hz (all FWHM are
represented in appendices Table A.1). MR spectra were acquired using a Bruker Avance
III 600 MHz (Bruker BiosSpin GmbH, Rheinstetten, Germany) equipped with a 4 mm
1H/13C HR MAS probe, with acquisition parameters listed in Table 3.2. MR spectra were
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processed using a line broadening of 1.0 Hz for 13C MR spectra and 0.3 Hz for 1H MR
spectra.

3.2.2 Preparation and acquisition of serum samples

Serum samples were thawed and 50 µl of the serum was mixed with 200 µl of a serum lock
reference containing 0.075M Na2HPO4× 7H2O, 4 % NaN3, and 0.08 % TSP (3-(trimethyl-
silyl)propionic acid-d4, Aldrich), mixed in H2O (80 %) and D2O (20 %, CDN isotopes,
Pointe-Claire, Canada). Serum samples were then transferred into a high-quality 3 mm
NMR tube. 13C MR spectra were acquired using a Bruker Avance III 600 MHz Ultra-
shielded Plus (Bruker BiosSpin GmbH, Rheinstetten, Germany) spectrometer equipped
with a 5 mm QCI Cryoprobe, and with acquisition parameters listed in Table 3.2. 13C MR
spectra were processed using a line broadening of 1.0 Hz.

3.2.3 Preparation and acquisition of solution containing [5-13C]L-glutamine

A sample containing [5-13C]L-glutamine, diluted in D2O (CDN isotopes, Pointe-Claire,
Canada), was transferred to a high-quality 5 mm NMR tube. 13C MR spectra were ac-
quired using a Bruker Avance III 600 MHz Ultrashielded Plus (Bruker BiosSpin GmbH,
Rheinstetten, Germany) spectrometer equipped with a 5 mm QCI Cryoprobe. Three MR
spectra were acquired, one using a quantitative (Bruker: zgig) pulse program at 279 K and
two using a non-quantitative pulse sequence (Bruker: zgpg30), where one MR spectrum
was acquired at a temperature of 279 K and the other at 301.5 K. Information about
method, spectrometer, pulse program, and acquisition parameters are listed in Table 3.3
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Table 3.3: Method, spectrometer, pulse program and acquisition parameters for solution
containing [5-13C]L-glutamine.

Quantitative Non-quantitative
Method 13C MRS 13C MRS

Spectrometer Bruker Avance III Bruker Avance III
600 MHz Ultrashielded Plus 600 MHz Ultrashielded Plus

Pulse program 1D sequence with Single pulse with
inverse gated decoupling 1H decoupling
zgig; Bruker zgpg30; Bruker

Parameters:
Spin rate 5 kHz 5 kHz
Flip angle 90◦ 30◦

NS 256 2048
AQ 1.65 sec 1.65 sec
TR 81.65 sec 2.15 sec
Sweep width 197 ppm/30 kHz 197 ppm/30 kHz
Temperature 279 K 279 K/301.5 K
Total time 6 h 1 h 15 min
MRS: magnetic resonance spectroscopy, NS: number of scans, AQ: acquisition
time, TR: repetition time.

3.3 Preprocessing and analysis of MRS metabolomics data

3.3.1 Preprocessing of MR spectra

MR spectra were preprocessed before analyzes by in-house made programs developed in
MATLAB (The Mathworks, Inc.). Baseline correction was performed on all MR spectra
(represented in Appendices C) using MATLAB R2017a (The MathWorks, Inc.). Baseline
correction of MR spectra was performed by estimating the baseline for each MR spectra
by using asymmetric least square [82]. Baselines of all 13C MR spectra were in addition
corrected for noise, where the mean amplitude of selected noise regions was found and
subtracted from all data points in 13C MR spectra. The resulting baselines of 13C MR
spectra then have noise varying around zero. Peak alignment of MR spectra was per-
formed by icoshift [67] using MATLAB R2017a (The MathWorks, Inc.). Normalization
was performed by normalizing MRS metabolomics data by using equal total area [65] or
sample mass correction using the formula

Xcorr,i =
Xi · m̄
mi

whereXcorr,i is the corrected MRS metabolomics data, Xi is the original MRS metabolomics
data, m̄ is the mean mass of all samples in a data set, andmi is the mass of sample i (all sam-
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ple masses are presented in appendices Table A.1). Mean centering was performed using
PLS Toolbox 8.2.1 (Eigenvector Research, Inc.) in MATLAB R2017a (The MathWorks,
Inc.). Table 3.4 summarize preprocessing methods performed on MRS metabolomics data
before analyzes. L-glutamine(C5) at 180.4 ppm was used as an internal chemical shift
reference for all 13C MR spectra.

Table 3.4: Preprocessing methods performed on MRS metabolomics data prior to analysis.

Baseline Peak Normalization Mean
correction alignment centering

Identification of Asymmetric icoshift Sample mass -
13C-labeled metabolites least square correction

Integration of peaks Asymmetric - - -
from [5-13C]L-glutamine least square

Multivariate analysis Asymmetric icoshift Equal total area Yes
least square

Amount of 13C-labeled Asymmetric icoshift Sample mass -
metabolites least square correction

Univariate analysis Asymmetric icoshift Sample mass -
least square correction

3.3.2 Identification of metabolites in 13C MR spectra originating from injected
[5-13C]L-glutamine

Identification of metabolites in 13C MR spectra originating from [5-13C]L-glutamine was
carried out by calculating mean 13C MR spectra from CB-839 treated, controls, and natural
abundance MR spectra after 13C MR spectra were preprocessed as described in Table 3.4.
Mean 13C MR spectra were found by calculating the mean value of each point in the 13C
MR spectra. Identification of metabolites was carried out by identifying the chemical shifts
of peaks in the three mean 13C MR spectra and comparing the values to chemical shifts
found from the Human Metabolome Database (HMDB) [83] for metabolites expected to be
found in the 13C MR spectra. Metabolites originated from [5-13C]L-glutamine were then
identified by comparing the metabolites found in CB-839 treated and controls with the
metabolites found in natural abundance mean 13C MR spectrum. Metabolites found in
only mean 13C MR spectra of CB-839 treated and controls or with much higher signal than
in the mean 13C MR spectrum of natural abundance, were assumed to originated from the
injected [5-13C]L-glutamine.
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3.3.3 13C-percentage of carbons on L-glutamine in [5-13C]L-glutamine solution

A quantitative 13C MR spectrum, of solution containing [5-13C]L-glutamine, was prepro-
cessed as described in Table 3.4 and integrated for each L-glutamine peak using MATLAB
R2017a (The MathWorks, Inc.). The percentage of 13C at each carbon position of L-
glutamine was calculated by assuming that signal from carbon five on L-glutamine showed
signal from 99 % of all L-glutamine in the solution, as listed in the product description.
13C-percentages of L-glutamine(C1-C4), pgln,i, were found by the formula

pgln,i =

∫
X(Ci) · 99 %∫

X(C5)
(4)

where X(Ci) is the peak of L-glutamine at carbon position i in the 13C MR spectrum and
X(C5) is the peak of L-glutamine at carbon position five in the 13C MR spectrum.

3.3.4 Relative amount of 13C-labeled metabolites

Relative amount of 13C-labeled metabolites were found by integration of selected metabolite
peaks in 13C MR spectra using MATLAB R2017a (The MathWorks, Inc.) after prepro-
cessing MR spectra as described in Table 3.4. CB-839 treated and control samples were
compared by representing the integrals as box plots containing mean value, median value,
and extreme values, using MATLAB R2017a (The MathWorks, Inc.).

3.3.5 Multivariate analyzes of MR spectra

Before multivariate analyzes were performed, MR spectra were preprocessed as described
in Table 3.4, and areas with noise or unwanted signals, like the signal from water, were
excluded before analyzing MR spectra. Included areas were 15 ppm-75 ppm and 173 ppm-
185 ppm for 13C MR spectra, and 0.5 ppm-4.8 ppm and 5.2 ppm-5.5 ppm for 1H MR spectra.

PCA was performed on the preprocessed 1H and 13C MR spectra of tissue and 13C MR
spectra of serum from basal-like PDXs as described in Table 3.4. PCA was carried out
using PLS Toolbox 8.2.1 (Eigenvector Research, Inc.) in MATLAB R2017a (The Math-
Works, Inc.) and presented as score and loading plots for recommended PCs from PLS
Toolbox 8.2.1 (Eigenvector Research, Inc.), which is based on percent variance captured by
the PCA model. PLS-DA was performed on 1H MR spectra of tissue, where a permutation
test was performed to validate separation from random. The p-value of the permutation
test was found from Equation (2).

3.3.6 Determination of outliers and univariate analyzes

Before performing univariate analyzes, MRS metabolomics data were preprocessed as de-
scribed in Table 3.4, and selected metabolites, L-lactate(C1), L-glutamate(C5), and L-
glutamine(C5), were integrated from 13C MR spectra using MATLAB R2017a (The Math-
Works, Inc.).
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For extreme values, identified in box plots of integral values, a Dixon-type test was per-
formed to determine if these data points were outliers. r10 values were calculated from
Equation (3) and compared with the critical value found from Dixon [81]. If calculated r10
value of a data point was higher than the critical value, it was classified as an outlier and
excluded before univariate analyzes were performed.

Univariate analyzes were performed on the integrals of selected peaks for both tissue and
serum. A two-tailed Student’s t-test was performed on the data fulfilling the requirement
of normal distribution, using Excel 2013 (Microsoft), while a Wilcoxon rank sum test was
performed, using Statistical Package for the Social Sciences (SPSS, IBM), if the data was
not normally distributed. The degree of normalization was visually determined from Q-Q
plots (represented in Appendix D), made by using SPSS (IBM) on the integral values of
each of the selected metabolites in 13C MR spectra. In the cases where it was doubt about
the normal distribution, both tests were performed.
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4 Results

4.1 Identification of metabolites in 13C MR spectra

Metabolites were identified in mean 13C MR spectra from basal-like PDX tissue from
mice injected with [5-13C]L-glutamine, one of CB-839 treated (n = 6) and one of controls
(n = 5), see Figure 4.1 A) and B). A third mean MR spectrum was of samples with
only natural abundance of 13C isotopes (n = 3), used to identify metabolites originating
from injected [5-13C]L-glutamine, see Figure 4.1 C). Relevant metabolites identified from
13C MR spectra are also listed in Table 4.1 together with chemical shifts of identified
metabolites.
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Figure 4.1: Representation of three mean 13C MR spectra of tissue samples from basal-
like patient-derived xenografts, with numbering of identified peaks. A) Mean 13C MR
spectrum of samples from mice treated with CB-839 (n = 6). B) Mean 13C MR spectrum
of samples from control mice (n = 5). C) Mean 13C MR spectrum of mice with only
natural abundance (n = 3). Each enumerated peak is listed in Table 4.1.
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Table 4.1: List of the most important metabolites found in 13C MR spectra of mice injected
with [5-13C]L-glutamine, with number for identification found in Figure 4.1 and identified
chemical shifts. It is also listed if the signal from metabolites originated from the injected
[5-13C]L-glutamine.

Number in Metabolite (carbon no.) Chemical shift Originates from injected
Figure 4.1 13C [ppm] [5-13C]L-glutamine
1 L-alanine(C3) 19.0 Yes
2 L-lactate(C3) 22.8
3 L-glutamine(C3) 29.0
4 L-glutamate(C3) 29.8
5 Glutathione(C4) 34.3
6 L-glycine(C2) 44.3
7 L-taurine 50.3
8 L-alanine(C2) 53.3 Yes
9 Choline 56.6
10 Phosphocholine 56.6
11 Glycerophosphocholine 56.7
12 L-lactate(C2) 71.2
13 L-alanine(C1) 178.7 Yes
14 L-glutamine(C5) 180.4 Yes
15 L-glutamate(C5) 184.0 Yes
16 L-lactate(C1) 185.3 Yes

By comparing mean 13C MR spectra in Figure 4.1, peaks originating from L-alanine(C1,
C2, C3), L-glutamine(C5), L-glutamate(C5), and L-lactate(C1) were assumed to originate
or partially originate from the injected [5-13C]L-glutamine.

4.2 Signal from L-glutamine(C5) in 13C MR spectra
13C MR spectra of basal-like PDX tissue from mice injected with [5-13C]L-glutamine showed
four separated peaks for L-glutamine(C5) (∼ 180.3 ppm). To investigate the origin of these
peaks and to determine if all four peaks originated from L-glutamine, a solution containing
[5-13C]L-glutamine was analyzed by acquiring a 13C MR spectrum with a quantitative MR
pulse sequence, as shown in Figure 4.2 A).
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Figure 4.2: Representative 13C MR spectra of L-glutamine in basal-like PDX tissue and
solution containing [5-13C]L-glutamine. A) A quantitative 13C MR spectrum from [5-13C]L-
glutamine solution in all five carbon positions. B) 13C MR spectra from basal-like PDX
tissue and [5-13C]L-glutamine solution from 180.2 ppm-180.5 ppm. C) 13C MR spectra of
[5-13C]L-glutamine solution acquired at different temperatures, 301.5 K and 279 K. L-gln:
L-glutamine, PDX: patient-derived xenograft.

From 13C MR spectrum in Figure 4.2 A), [5-13C]L-glutamine solution showed signal from
L-glutamine(C5) split into four peaks and also splitting of signal from L-glutamine(C2-C4).
Integration of signal from different carbons in L-glutamine was calculated relatively to the
integral of L-glutamine in position five (L-glutamine(C5)) by using Equation (4) to find
the 13C-percentage of L-glutamine(C1-C4). The results are represented in Table 4.2.
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Table 4.2: 13C-percentage of all carbons in L-glutamine found from a quantitative 13C
MR spectrum of [5-13C]L-glutamine solution and the coupling pattern of each peak of
L-glutamine in the 13C MR spectrum.

L-gln carbon no. 13C-percentage (%) Coupling pattern
1 1.03 Singlet
2 1.02 Doublet
3 1.06 Partially split doublet
4 0.94 Two doublets
5 99 Split in four

Peaks around L-glutamine(C5) (∼ 180.3 ppm) in two representative 13C MR spectra, one
from [5-13C]L-glutamine solution and one from basal-like PDX tissue, were analyzed and
are shown in Figure 4.2 B). Both MR spectra contained four peaks with similar chemical
shift change, but with different peak intensities. The 13C MR spectrum from the basal-like
PDX tumor tissue shows higher intensity at the peak with the highest chemical shift, while
the 13C MR spectrum of [5-13C]L-glutamine solution shows higher intensity for the peak
with the lowest chemical shift.

To better understand the origin of the splitting in the signal from L-glutamine(C5), a
13C MR spectrum from solution with [5-13C]L-glutamine acquired and analyzed at two
different temperatures, 279 K and 301.5 K, shown in Figure 4.2 C). The 13C MR spectrum
at 301.5 K shows broader signal peak with lower maximum intensity than the signal peak
from the 13C MR spectrum at 279 K, but with similar chemical shift between the peaks.

4.3 Integration and multivariate analyzes of MR spectra

4.3.1 Integration and PCA of 13C MR spectra of basal-like PDX tissue

13C MR spectra of basal-like PDX tissue from mice treated with CB-839 (n = 6) and
controls (n = 5), were analyzed by integration and PCA (all integrals are represented in
appendices Table B.1). Results of integration and PCA are represented in Figure 4.3.
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Figure 4.3: Results from analyzes of 13C MR spectra of basal-like PDX tissue. A) Relative
amount of L-lactate(C1), L-glutamate(C5), and L-glutamine(C5), found by integration of
MR spectra, from CB-839 treated (red)(n = 6) and controls (green)(n = 5), represented
in box plots. B) Mean 13C MR spectra of CB-839 treated (red) and controls (green), with
identified metabolites between 178 ppm and 184 ppm. C) Score plot from PCA of PC1,
from samples of CB-839 treated (red) and controls (green), found by PCA, where PC1
explains 51.3 % of the variance in the data set. D) Loading plot for PC1 with identified
metabolites. L-ala: L-alanine, L-gln: L-glutamine, L-glu: L-glutamate, L-lac: L-lactate.

Box plots in Figure 4.3 A) indicates that the levels of L-lactate(C1) and L-glutamate(C5)
are not considerable different between CB-839 treated and controls, while the level of L-
glutamine(C5) is higher in CB-839 treated than in controls. The box plots also show two
extreme values, one in the control group of L-lactate(C1) and one in the control group
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of L-glutamine(C5). Mean 13C MR spectra of tumor samples from CB-839 treated and
controls, in Figure 4.3 B), shows the difference between L-lactate(C1), L-glutamate(C5),
and L-glutamine(C5) in the two MR spectra and a higher level of L-glutamine(C5) is found
in CB-839 treated than in controls and similar levels of L-lactate(C1) and L-glutamate(C1).

Score plot in Figure 4.3 C) from PCA of PC1 explains 51.3 % of the variance in the
data set and shows that CB-839 treated and controls are separated, except from sample
no. 8. CB-839 treated have a positive PC1 score, while controls have a negative PC1 score
(except sample no. 8). For CB-839 treated with positive scores, the loading plot of PC1 in
Figure 4.3 D), shows a higher level of L-glutamine(C5) and lower levels of L-lactate(C1),
L-glutamate(C5), L-alanine(C1), and L-glutamate(C1).

4.3.2 Integration and PCA of 13C MR spectra of serum from mice with basal-
like PDXs

13C MR spectra acquired of serum samples from mice with basal-like PDXs were analyzed
by integration and PCA (all integrals are represented in appendices Table B.2). The results
of integration and PCA are represented in Figure 4.4.
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Figure 4.4: Results from analyzes of 13C MR spectra of serum from mice with basal-like
PDXs. A) Relative amount of L-lactate(C1) and L-glutamine(C5), found by integration,
from CB-839 treated (red)(n = 6) and controls (green)(n = 5), represented as box plots.
B) Mean 13C MR spectra of serum samples from CB-839 treated (red) and controls (green),
with identified metabolites from 180 ppm-186 ppm. C) Score plot from PCA of PC1 from
tissue samples, of CB-839 treated (red) and controls (green), where PC1 explains 48.6 %
of the variance in the data set. D) Loading plot for PC1 with 13C-labeled metabolites.
L-gln: L-glutamine, L-lac: L-lactate.

Box plots in Figure 4.4 A) indicates that the level of L-lactate(C1) in CB-839 treated
and controls is not considerable different, but a higher level of L-glutamine(C5) in CB-839
treated than in controls is observed. The box plots also show one extreme value in the
control group of L-glutamine(C5).
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Mean 13C MR spectra of serum from mice treated with CB-839 and controls, are repre-
sented in Figure 4.4 B) and shows the difference between L-lactate(C1) and L-glutamine(C5)
in CB-839 treated and controls, with higher levels for L-glutamine(C5) in CB-839 treated
and similar levels of L-lactate(C1).

Score plot from PCA of PC1 in Figure 4.4 C) explains 48.6 % of the variance in the
data set and shows that CB-839 treated and controls are separated, where CB-839 treated
have a positive PC1 score, while controls have a negative PC1 score. For CB-839 treated,
with positive scores, the loading plot of PC1 in Figure 4.4 D) shows higher levels of L-
glutamine(C5) and lower levels of L-lactate(C1).

4.3.3 PCA and PLS-DA of 1H MR spectra of basal-like PDX tissue

1H MR spectra of basal-like PDX tissue were analyzed by PCA and PLS-DA. Results from
PCA are represented in Figure 4.5 and results from PLS-DA are represented in Figure 4.6.
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Figure 4.5: Results from PCA on 1H MR spectra of the basal-like PDX tissue. A) Score
plot from PCA of PC1 against PC2, where PC1 explained 57.2 % of the variance in the
data set and PC2 26.3 %, of samples from CB-839 treated (n = 6) and controls (n = 5).
B) Loading plot belonging to PC1 and C) Loading plot belonging to PC2. Cho: Choline,
FA: fatty acids, L-lac: L-lactate.

The first two PC’s found from PCA explained in total 83.5 % of the variance in the data
set. From Figure 4.5 A) neither PC1 or PC2 shows any separation between the group
coming from samples of mice treated with CB-839 and the control group treated with
placebo. By looking at the loading plot for PC1 in Figure 4.5 B) it looks like the samples
are separated between the samples with high concentrations of fat and those with lower
concentrations of fat. From loading plot for PC2 in Figure 4.5 C) the separation seems to
be divided into the samples with high and low concentrations of choline and L-lactate.
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Figure 4.6: Representation of results from PLS-DA of 1H MR spectra of basal-like PDX
tissue from CB-839 treated (red)(n = 6) and controls (green)(n = 5). A) Score plot from
PLS-DA of LV1, explaining 19.1 % of the variance in the data set, of samples from CB-839
treated and controls. B) Loading plot from PLS-DA of LV1 with identified metabolites.
Cho: choline, GPC: glycerophosphocholine, GSH: glutathione, L-ala: L-alanine, L-gln:
L-glutamine, L-glu: L-glutamate, L-gly: L-glycine.

Figure 4.6 A) shows the score plot from PLS-DA. The score plot from PLS-DA shows a
clear separation between CB-839 treated and controls. Figure 4.6 B) shows the loading
plot for LV1. For controls with positive scores, the loading plot shows higher levels of L-
lactate, L-alanine, L-glutamate, glutathione, choline, and glycerophosphocholine and lower
levels of L-glutamine, L-glycine, and phosphocholine. By performing a permutation test
on the data, a p-value of 0.01 was found from Equation (2), making a statistical significant
difference between the results found by PLS-DA and random.

4.4 Univariate analyzes of MRS metabolomics data

Univariate analyzes were performed on calculated integrals (see appendices Table B.1 for
integrals of tissue and Table B.2 of serum) of selected 13C-labeled metabolites from 13C
MR spectra of both tissue and serum samples from basal-like PDXs. Before univariate
analyzes were performed, possible outliers were identified and eliminated. For the three
extreme values found in box plots in Figure 4.3 A) and Figure 4.4 A), a Dixon-type test
was performed on the belonging integral values. r10 values were calculated from Equation
(3) and were found to be 0.773 for L-lactate(C1) from sample no. 9 in tissue, 0.862 for
L-glutamine(C5) from sample no. 8 in tissue, and 0.768 for L-glutamine(C5) from sample
no. 8 in serum. The critical value for n = 5 samples, when a significance level of α = 0.05
was chosen, is found from Dixon [81] to be 0.642, so all three extreme values classifies as
being outliers and were excluded before performing univariate analyzes.

From Q-Q plots of selected metabolites, represented in Appendices D, normal distribution
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of data sets was determined and a Student’s t-test was chosen for normally distributed
data sets, or else a Wilcoxon rank sum test was performed. The results of the tests are
represented in Table 4.3.

Table 4.3: Representation of calculated p-values, from univariate analyzes, Student’s t-test
and Wilcoxon rank sum test, of integrals of selected peaks, L-lactate(C1), L-glutamate(C5),
and L-glutamine(C5), from 13C MR spectra between CB-839 treated and controls for both
tissue and serum samples.

Sample type Peak Student’s t-test (p-value) Wilcoxon (p-value)
Tissue L-lactate(C1) 0.25 -
Tissue L-glutamate(C5) 0.13 -
Tissue L-glutamine(C5) 3.9 ·10−7 0.010
Serum L-lactate(C1) 0.56 0.537
Serum L-glutamine(C5) 1.9 ·10−4 0.010

From Table 4.3 a significant difference, with a p-value ≤ 0.05, was observed between CB-
839 treated and controls for L-glutamine(C5), using both Student’s t-test and Wilcoxon
rank sum test for integral values of both tissue and serum samples of basal-like PDXs.
For L-lactate(C1) in both tissue and serum and L-glutamate(C5) in tissue, no significant
difference between CB-839 treated and controls was found.
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5 Discussion

5.1 Evaluation of PDX model, sample handling, and analytical
methods

5.1.1 Evaluation of PDX model

The aim of this study was to investigate how basal-like/TN breast cancer responded to
the drug CB-839 by using an in vivo PDX model. The goal for the model is to resemble
human basal-like/TN breast cancer and predict drug response in the human body. PDX
models have shown to reflect the heterogeneity of human tumors and maintain the genetic
and morphological feature from the primary tumor [29, 30, 84, 85]. PDX models have
also shown to give a good predictive value for clinical outcome [86], and can be good
tools for investigating drug response in patients [30]. Still, there are some constraints
using these models, where the main constraints involve the use of immunocompromised
mice and the impact from a different microenvironment and stromal components in the
mice [87]. PDX models will consequently not respond exactly as the human patient from
which they originate, but can still be valuable models for response of cancer therapies [87].
In the PDX model used in this study, MAS98.12, both the model and the patient, from
which the model originate from, were classified as basal-like and TN [11]. The tumors
were orthotopically implanted into the mammary fat pad of the mice to get as similar
microenvironment, histopathology, and gene expression as human basal-like/TN breast
tumors [33]. MAS98.12 is consequently expected to give a valuable representation of human
basal-like/TN breast cancer.

5.1.2 Evaluation of sample preparation

Preparation and acquisition of all samples were performed under similar conditions to get
comparable MR spectra. To inhibit degradation of metabolites all samples were stored in
liquid nitrogen until use, samples were prepared as fast as possible on a cooled block, and
acquisition of MR spectra were performed at 277 K. Degradation will be limited as long
as the samples are kept at low temperatures (273-275 K) [57]. To get comparable MR
spectra, tissue samples were cut to pieces with similar sample mass and serum was mixed
with the same amount of a lock reference in each sample. The color of the serum was clear
yellow for most samples, but for some samples it was more red or pink, indicating that
some of the red blood cells are analyzed. This may at least to some degree, influence the
concentration of detected metabolites.

5.1.3 Evaluation of MRS acquisition

MR spectra from tumor tissue and serum samples from CB-839 treated and control mice
were analyzed by 13C MRS [12]. The drawback using 13C MRS is the low sensitivity and
accordingly a poor SNR in the MR spectra. This make contribution from noise high,
which can interfere with the results when 13C MR spectra are analyzed. Weak signals
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from low-concentration metabolites may be mistakenly interpreted as noise and hence not
detected. HR-MAS MRS was used to cancel out effects from dipole-dipole coupling and
chemical shift anisotropy, which otherwise would increase the spectral line-widths in MR
spectra [58]. In liquids, like serum, these effects are canceled out by molecular motion,
and magic angle spinning is therefore not necessary [60]. 1H MR spectra, which have a
much higher sensitivity than 13C MRS due to the higher natural abundance and a higher
gyromagnetic ratio of 1H, were also acquired for CB-839 treated and control samples to
investigate low-concentration metabolites.

Equal acquisition parameters were used during MR acquisition. MR spectra were shimmed
until formate achieved a FWHM of less than 1.5 Hz. Some variations of FWHM between
the MR spectra were present, but the integral of peaks will remain the same. 13C MR spec-
tra acquired using a non-quantitative MR sequence, used a relatively short repetition time,
TR, compared to the relatively long T1 relaxation of the carbonyl nuclei of L-glutamine(C5),
L-glutamate(C5), and L-lactate(C1) [88, 89]. This will lead to weaker signal in the 13C MR
spectra from these nuclei due to less recovery of spins to the thermal equilibrium before a
new rf pulse is added. Integrals from metabolites with different T1 relaxation can for that
reason not be compared in these MR spectra, but the same peak in different MR spectra
will on the other hand have the same T1. It can therefore be assumed that the same peak
in different MR spectra, when using a non-quantitative pulse sequence, are comparable in
this study.

5.1.4 Evaluation of MRS analyzes

Tumor tissue and serum samples from the basal-like PDX model were analyzed using 13C
MRS to investigate the metabolic pathway, glutaminolysis, during CB-839 treatment. By
injecting [5-13C]L-glutamine into mice, while still alive, it is possible to follow downstream
metabolites from [5-13C]L-glutamine. For analyzes of basal-like PDXs, metabolites origi-
nating from injected [5-13C]L-glutamine were at interest. From 13C MR spectra of basal-
like PDX tissue, L-lactate(C1), L-glutamate(C1, C5), L-glutamine(C5), and L-alanine(C1,
C2, C3) were identified as partly or fully originating from the injected [5-13C]L-glutamine,
from Figure 4.1. From these metabolites L-lactate(C1), L-glutamate(C5), L-glutamine(C5)
were chosen for further analyzes because they are relevant for investigating how CB-839
effect metabolism of basal-like PDX tissue. Signal from L-alanine(C1, C2, C3) and L-
glutamate(C1) were very low and just above the limit of detection. Integrals from these
metabolites have consequently not been calculated. From 13C MR spectra of serum, L-
glutamate(C5) was not detected and analyzes were performed on L-lactate(C1) and L-
glutamine(C5).

Evaluation of integration
As described in Section 5.1.2, samples preparation and acquisition were performed under
similar conditions to get comparable MR spectra. Integrals from preprocessed 13C MR
spectra of tissue and serum were in addition scaled according to sample mass. The result-
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ing integrals were therefore assumed to describe the amount of each metabolite taken up
by the tumor tissue and in serum. The concentration of metabolites detected in serum is
expected to be affected by the metabolism in the entire mouse, and not only the PDX tissue.

Evaluation of multivariate analyzes
The multivariate analysis PCA was performed on MR spectra to find explanations for
variance between them. For PCs with separation between CB-839 treated and controls in
score plot, the loading plot will show metabolites with high and low concentrations in the
two groups. For MR spectra, where suggested PCs does not show any separation between
the groups, there may be similar concentrations or small differences compared to other
factors, like fat. To investigate if there still is a significant difference between the two
groups a PLS-DA was performed, because it looks for variations between two predeter-
mined groups [72]. To reassure that separation found by PLS-DA is better than random a
leave one out permutation test was performed, where p = 0.01 is lower than the significance
level and imply a significant separation between the results found by PLS-DA and random.

Evaluation of Dixon-type test and univariate analyzes
Outliers must be excluded before performing univariate analysis to keep the outliers from
interfering with the mean value and the variance in the data sets [90]. For small samples
sizes n < 10 a Dixon-type test is preferred as an outlier test because it does not require
normal distribution and only look at the range between the data points [91].

Which univariate analysis best suited to analysis a data set depends on the data set
properties. A Student’s t-test requires that the data sets to be compared are normally
distributed [77], because it uses the mean values from normally distribution data sets. On
data sets with few samples and not normally distribution, a Wilcoxon rank sum test is
often preferred [92], because it ranks data points and looks for classification and is there-
fore not dependent of the data set being normally distributed. The drawback with using
a Wilcoxon rank sum compared to Student’s t-test is loss of power, because the test does
not take into consideration the degree of separation. For samples where it was uncertainty
about normal distribution both tests were performed. Both tests showed, in all cases, the
same results for significance and were assumed to be valid.

5.2 Evaluation of metabolites identified in 13C MR spectra

Figure 2.2 shows the 13C-labeling pattern from [5-13C]L-glutamine and indicates which
metabolites are expected to be found in 13C MR spectra of tissue from mice injected with
[5-13C]L-glutamine. CB-839 inhibits the enzyme glutaminase which catalyzes the conver-
sion from L-glutamine to L-glutamate [6, 48]. High concentrations of L-glutamine(C5)
are consequently expected to be observed in CB-839 treated samples [6]. In addition,
glutaminase inhibition may not be 100 % efficient. For this reason, one can also expect
to find some other downstream metabolites of L-glutamine, including L-glutamate and
metabolites in the TCA cycle in the CB-839 treated samples [39]. For control samples, the
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conversion between L-glutamine and L-glutamate will be catalyzed by glutaminase. Lower
concentrations of L-glutamine(C5) and higher concentrations of other metabolites in the
glutaminolysis are consequently expected to be observed in these samples.

Carbon occurs naturally as 12C (98.9 %), which is MR invisible with a spin I = 0, and as 13C
(1.1 %), which is MR visible with spin I = 1

2
. To determine which metabolites were present

naturally in the basal-like/TN tumors, 13C MR spectra from untreated 13C-unlabeled tissue
samples were compared with samples from mice injected with [5-13C]L-glutamine, as shown
in Figure 4.1. CB-839 treated and control samples contained the same metabolites, but
with different concentrations. L-alanine(C1, C2, and C3) and L-glutamine(C5) were only
identified in samples from mice injected with [5-13C]L-glutamine and these metabolites can
therefore be assumed to originate from the injected [5-13C]L-glutamine. L-glutamate(C5)
and L-lactate(C1) were found in both natural abundance and 13C-labeled samples, but in
much higher concentrations in the 13C-labeled MR spectra. These metabolites can there-
fore also be assumed to originate from the injected [5-13C]L-glutamine.

High levels of the injected [5-13C]L-glutamine were taken up by the PDX tissue and con-
verted into L-glutamate(C5), as shown in Figure 4.1. Relatively high levels of L-lactate(C1)
were also found in 13C MR spectra from 13C-labeled compared to natural abundance tissue.
L-lactate(C1) may originate from pyruvate and L-malate in the first turn of the TCA cycle
[40]. Small concentrations of L-alanine(C1) were also observed in the 13C-labeled MR spec-
tra, and may also originate from pyruvate and L-malate in the first turn of the TCA cycle.
The occurrence of 13C-labeling on L-alanine(C2 and C3) are so far of unknown origin. Due
to the low sensitivity of 13C MRS, low-concentration metabolites are not detected. These
metabolites can consequently not be separated from noise in the 13C MR spectra.

5.3 Evaluation of signal from L-glutamine(C5) in 13C MR spectra
13C MR spectra were acquired using a proton decoupled pulse sequence and signal from
each carbon atom in a molecule is therefore expected to appear as singlets, because the
splitting due to proton decoupling is eliminated [93]. In 13C MR spectra from basal-like
PDX tissue, four peaks were identified around L-glutamine(C5) (∼ 180.3 ppm). To clarify
if all four peaks originated from the injected [5-13C]L-glutamine, a quantitative 13C MR
spectrum was acquired of a solution containing [5-13C]L-glutamine. The results, as shown
in Figure 4.2 A), confirms the assumption that all four peaks originate from L-glutamine,
since the calculated 13C-percentages of each peaks from L-glutamine(C1-C4) were approx-
imately 1.1 %, which corresponds to the natural abundance of 13C. The four peaks in 13C
MR spectrum of basal-like PDX tissue had also approximately the same chemical shifts
as the solution containing [5- 13C]L-glutamine, as represented in Figure 4.2 B). This also
indicates that all four peaks at ∼ 180.3 ppm in the 13C MR spectra originates from L-
glutamine(C5).

A possible explanation for the splitting of signal from L-glutamine is that L-glutamine
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exists in different conformers [94, 95] in the samples, explained in Section 2.7.3, which
gives a small change of the shielding of the carbon atoms in L-glutamine that can lead
to detection of slightly different frequencies from L-glutamine. A change in shielding of
a molecule will have larger change in chemical shift in a 13C MR spectrum than in a 1H
MR spectrum, and it is therefore possible to detect splitting of the signal, due to different
conformers, in 13C MR spectra [55]. This explanation is valid if the change from one con-
former to another is longer than the acquisition time of ∼ 1 sec for 13C MRS [54].

From Figure 4.2 B), there are signal intensity differences between the four peaks in the 13C
MR spectra of the basal-like PDX tumor sample and the [5-13C]L-glutamine solution. If the
splitting of L-glutamine is due to different conformers, the intensity differences will suggest
that one conformer is more preferred in solution and another conformer is preferred in tis-
sue. A possible reason for this effect is that L-glutamine can move more freely in solution
than it can in tissue and that the preferred conformer of L-glutamine then changes [95, 96].

To better understand the mechanism behind the splitting of signal from L-glutamine two
13C MR spectra were acquired of solution containing [5-13C]L-glutamine at two different
temperatures, 279 K and 301.5 K. The two 13C MR spectra, in Figure 4.2 C), shows
that the peaks broadens when the temperature increases. The two middle peaks also fuse
into one peak when the temperature increases. This supports the theory about the four
peaks occur due to various of conformers of L-glutamine, because the peaks behave like a
fast-chemical exchange of conformers in the 13C MR spectra, which is expected when the
temperature increases [54].

5.4 Evaluation of metabolic response of CB-839 in basal-like
PDXs

13C MRS analyzes of CB-839 treated and control MAS98.12 tumors show that these tu-
mors contained 13C-labeled metabolites, indicating that the tumors take up L-glutamine
and convert L-glutamine into other metabolites including L-glutamate and L-lactate. Even
more importantly, CB-839 treated samples had significantly higher concentrations of L-
glutamine than controls, which strongly suggests that CB-839 inhibits conversion from
L-glutamine to L-glutamate in these tumors [6]. Since CB-839, given as a single agent,
does not inhibit growth of MAS98.12 tumors (as shown in appendices Figure E.1), these
results indicate that the MAS98.12 tumors are not dependent on L-glutamine to maintain
tumor growth and cell proliferation. These tumors must consequently use other pathways
than glutaminolysis to maintain the rate of tumor growth. Glycolysis is a natural path-
way to consider, but a previous study on MAS98.12 showed decreased glycolytic activity
in MAS98.12 tumors compared to another luminal like model [12], indicating that these
tumors uses alternative pathways to maintain tumor growth.

Slightly higher concentrations of L-lactate(C1) and L-glutamate(C5) were observed in con-
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trol compared to CB-839 treated samples, but the differences were not statistical signif-
icant. If assuming that the total amount of other downstream metabolites is small, the
results indicates that the total amount of 13C-labeled metabolites is lower in control tumor
samples compared to CB-839 treated samples. If this is true, it could mean that CB-839
is affecting the uptake of L-glutamine into the tumor. Another possible explanation is
that L-glutamate, L-lactate, or other downstream metabolites are pumped out of the cells
[8, 97], or a third possible scenario, that L-glutamine is converted into many other metabo-
lites with too weak signal to be detected in 13C MR spectra.

Serum from the tumor-bearing mice were analyzed by 13C MRS to investigate how much
L-glutamine was present in the serum, and to study if other 13C-labeled metabolites were
released from the tumor or other tissues into the bloodstream. Similarly, as for PDX
tissue, significant higher levels of L-glutamine were found in serum from CB-839 treated
than in control mice. Higher concentrations of L-glutamine observed in the CB-839 treated
mice may be caused by an increased release of L-glutamine from other organs of the mice,
caused by CB-839. Another explanation is that CB-839 treated mice have a lower uptake
of the injected [5-13C]L-glutamine from the bloodstream due to higher concentrations of
L-glutamine in the tumor tissue. Gross [6] has shown that CB-839 inhibits consumption of
L-glutamine into cancer cells in vitro. Since glutaminase is expressed in several organs of
the mice, including kidney and brain, it is likely that L-glutamine consumption from the
bloodstream into these organs is reduced [6]. In addition, in mice bearing subcutaneous
TNBC tumors an increase in concentration of L-glutamine was found in CB-839 treated
tumors (CTG-0052) and serum compared with controls tumor and serum samples. The
tumor growth was also reduced when these tumors were treated with CB-839 [6]. In an-
other basal-like, HER2 positive xenograft model JIMT1, CB-839 inhibited tumor growth
both as a single agent and in combination with paclitaxel [6]. No signal from 13C-labeled
L-glutamate was detected in serum, but 13C-labeled L-lactate was observed in both CB-839
treated and controls, with similar concentrations between the two groups. These results
indicate that 13C-labeled metabolites released from tumor tissue will not end up in the
bloodstream, and are most likely taken up by nearby tissue or organs in the mouse or that
13C-labeled metabolites have distributed into many other metabolites in small undetectable
amounts.

A possible explanation of where 13C-labeled metabolites in controls end up is pumping of
L-lactate and L-glutamate from cancer cells into the extracellular domain. Cancer cells are
known for pumping L-lactate out of the cell and into the extracellular domain, and are also
found to release L-glutamate into the extracellular domain through L-glutamate/L-cystine
antiporters, x−c [8, 42, 43, 98]. When inside the cell, L-cystine is converted into L-cysteine
and is used to synthesize glutathione together with L-glycine and L-glutamate. This is
consistence with results found in Figure 4.6, showing higher concentrations of glutathione
in 1H MR spectra of basal-like PDX tissue and lower concentrations of L-glycine. From
the discussion above, suggested metabolic pathways of L-glutamine in CB-839 treated cells
are shown in Figure 5.1 A) and in control cell shown in Figure 5.1 B). It is not possible to
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know if signals detected in MR spectra originate from inside the cells or in the intermediate
space between the cells, so if L-glutamate remain in the extracellular domain it would still
be detected by 13C MRS.

L-glutamine

L-glutamine

L-cystine

L-glutamate

L-glutamate

L-cystine

L-cysteine

L-glycine

TCA

GSH

L-lactate

L-lactate

GLS

xc
-

L-glutamine

L-glutamine

L-glutamate
TCA

L-lactate

L-lactate

A) Control B) CB-839 treated

GLS

L-cystine
L-glutamate

L-cystine

L-cysteine

L-glycine

GSH

xc
-

Figure 5.1: Suggested metabolic pathways of L-glutamine in basal-like MAS98.12 cells.
A) Suggested metabolic pathway for control cells. L-glutamine enters the cell and is
converted into L-glutamate catalyzed by glutaminase. L-glutamate can enter the TCA
cycle, where L-lactate is produced and pumped out of the cell, or L-glutamate pumped out
of the cell while L-cystine is pumped in by the L-glutamate/L-cystine antiporter, x−c , and
converted into L-cysteine, or L-glutamate is used for production of glutathione together
with L-cysteine and L-glycine. B) Suggested metabolic pathway of L-glutamine in CB-839
treated cells. L-glutamine enters the cell and is to some degree converted into L-glutamate.
L-glutamate goes into the TCA cycle, where L-lactate is produced and pumped out of the
cell. L-glutamate may also to some degree be pumped out of the cell through x−c and
produce glutathione. GLS: glutaminase, GSH: glutathione, TCA: tricarboxylic acid cycle.

All things considered, it seems like some basal-like/TN models are dependent on L-glutamine
[6] while others, like MAS98.12, are not. The effect of CB-839 is currently being inves-
tigated in early stage clinical trials of TNBC patients (Calithera Biosciences, Inc.) [10].
Preliminary results from phase I show that, among 23 TNBC patients receiving CB-839
in combination with paclitaxel 31 % had a partial response while 69 % of the patients
showed response or stable disease [10]. CB-839 does not inhibit tumor growth in all pa-
tients, at least not as a single agent, but a better understanding of the metabolic phenotype
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associated with response and resistance may help identifying the responders and the non-
responders. One of the main advantage of this study was the possibility of directly tracing
13C-labeled L-glutamine under treatment of CB-839. In future 13C preclinical studies, it
would be interesting to study the effect of CB-839 in combination with other therapies like
paclitaxel or radiation. It would also be relevant to investigate the uptake and conversion
of L-glutamine in nearby tissue and organs. Another possible study could be to measure
glycolytic activity during CB-839 treatment.
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6 Conclusion

The aim of this study was to add more information about the metabolic response in basal-
like MAS98.12 tumors when treated with CB-839. Understanding the metabolic response
to CB-839 in basal-like PDXs could help predicting the response of CB-839 in basal-like
breast cancer patients.

From mice injected with [5-13C]L-glutamine, significantly higher levels of L-glutamine were
found in MAS98.12 tumors treated with CB-839 compared with controls. This imply that
CB-839 inhibits the conversion from L-glutamine to L-glutamate, causing L-glutamine to
accumulate in tumor. No significant increase in concentration of 13C-labeled metabolites,
like L-glutamate, L-lactate, or other downstream metabolites, were found in samples from
CB-839 treated compared with controls. This may be explained by downstream metabo-
lites from L-glutamine being released from tumor tissue or production of metabolites in
small concentrations not detectable by 13C MRS. Since CB-839 does not inhibit tumor
growth in MAS98.12 tumors the results indicate that these tumors can get supply of essen-
tial nutrients, for cell proliferation and tumor growth, from other sources than L-glutamine.
From analyzes of serum samples, significantly higher levels of L-glutamine were found in
CB-839 treated compared with controls. This suggests that CB-839 leads to a decrease in
the overall uptake of L-glutamine from the bloodstream to other organs and tissue of the
mouse.

Together these results indicate that the basal-like PDX model MAS98.12 is not depen-
dent on supply of L-glutamine for tumor growth. In future studies, other basal-like/TNBC
PDX models should be investigates and metabolism in basal-like/TNBC tumors should
also be further investigated to find additional sources, supporting tumor growth in addi-
tion to L-glutamine, to see if CB-839 can be combined with other treatments to enhance
the treatment outcome.
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Appendices

A Additional information about samples and MR ac-

quisition

Additional information about basal-like PDX tissue samples and acquisition parameters
are listed in Table A.1.

Table A.1: Sample mass of all eleven tissue samples together with information about which
mice were treated with CB-839, mice mass, and FWHM of formate after shimming.

Mouse Treated Mice Sample Shimming
no. with CB-839 mass (g) mass (mg) FWHM (Hz)
1 Yes 27.8 39.9 0.7
2 Yes 32.0 29.2 0.7
3 Yes 26.5 37.6 1.3
4 Yes 26.5 38.2 1.1
5 Yes 27.7 37.7 1.4
6 Yes 29.4 39.0 0.9
7 No 24.7 34.1 1.4
8 No 29.5 42.8 2.5
9 No 26.3 33.8 1.9
10 No 29.7 40.4 1.0
11 No 26.3 36.4 1.1
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B Integrals of metabolites in 13C MR spectra

Calculated integrals of L-lactate(C1), L-glutamate(C5), and L-glutamine(C5) in 13C MR
spectra of basal-like PDX tissue are listed in Table B.1 and of L-lactate(C1) and L-
glutamine(C5) in serum in Table B.2. Calculation of integrals were performed using MAT-
LAB R2017a (The Mathworks, Inc.).

Table B.1: Integral of L-lactate(C1), L-glutamate(C5), and L-glutamine(C5) from 13C MR
spectra (see Appendices C for 13C MR spectra) of basal-like PDX tissue injected with
[5-13C]L-glutamine.

Mouse L-lactate(C1) L-glutamate(C5) L-glutamine(C5)
1 5904323 7613056 42239701
2 4084967 4743943 24424854
3 6391139 4522595 41280108
4 5281239 7300341 45517408
5 4845639 5094433 42284333
6 6229558 7781574 45219640
7 5068822 7897566 1625728
8 6743502 7509665 30028992
9 7782172 7298598 4659913
10 6754995 9913740 2528357
11 5749955 5447025 2604200

Table B.2: Integral of L-lactate(C1) and L-glutamine(C5) in 13C MR spectra (see Ap-
pendices C for 13C MR spectra) of serum from basal-like PDXs injected with [5-13C]L-
glutamine.

Mouse L-lactate(1) L-glutamine(5)
nr.
1 1065669 9623367
2 499438 12328255
3 1007013 11728042
4 479980 18022969
5 586629 13302167
6 683355 18160040
7 1146197 2408288
8 1071898 9660033
9 603787 1817625
10 402235 1144473
11 901091 3121583
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C MR spectra

MR spectra acquired using Topspin 3.5 (Bruker), baseline corrected and plotted using
MATLAB R2017a (The MathWorks, Inc.). For details about sample mass of the samples
analyzed in the different MR spectra, see Table A.1. 13C MR spectra are not regulated for
L-glutamine(C5) at 180.4 ppm, so L-glutamine(C5) is found at ∼ 178.6 ppm.

C.1 13C MR spectra from basal-like PDXs treated with CB-839
13C MR spectra from basal-like PDXs of mice treated with CB-839.

Figure C.1: 13C HR-MAS MR spectrum of basal-like PDX tissue from mouse no. 1, treated
with CB-839.

Figure C.2: 13C HR-MAS MR spectrum of basal-like PDX tissue from mouse no. 2, treated
with CB-839.

57



Figure C.3: 13C HR-MAS MR spectrum of basal-like PDX tissue from mouse no. 3, treated
with CB-839.

Figure C.4: 13C HR-MAS MR spectrum of basal-like PDX tissue from mouse no. 4, treated
with CB-839.

Figure C.5: 13C HR-MAS MR spectrum of basal-like PDX tissue from mouse no. 5, treated
with CB-839.
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Figure C.6: 13C HR-MAS MR spectrum of basal-like PDX tissue from mouse no. 6, treated
with CB-839.

C.2 13C MR spectra from controls of basal-like PDX tissue
13C MR spectra of basal-like PDX tissue from untreated control mice.

Figure C.7: 13C HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
7.

Figure C.8: 13C HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
8.
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Figure C.9: 13C HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
9.

Figure C.10: 13C HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
10.

Figure C.11: 13C HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
11.

60



C.3 1H MR spectra from basal-like PDX tissue treated with CB-
839

1H MR spectra from basal-like PDX tissue of mice treated with CB-839.

Figure C.12: 1H HR-MAS MR spectrum of basal-like PDX tissue from CB-839 treated
mouse no. 1.

Figure C.13: 1H HR-MAS MR spectrum of basal-like PDX tissue from CB-839 treated
mouse no. 2.
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Figure C.14: 1H HR-MAS MR spectrum of basal-like PDX tissue from CB-839 treated
mouse no. 3.

Figure C.15: 1H HR-MAS MR spectrum of basal-like PDX tissue from CB-839 treated
mouse no. 4.
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Figure C.16: 1H HR-MAS MR spectrum of basal-like PDX tissue from CB-839 treated
mouse no. 5.

Figure C.17: 1H HR-MAS MR spectrum of basal-like PDX tissue from CB-839 treated
mouse no. 6.

C.4 1H MR spectra of controls from basal-like PDX tissue
1H MR spectra of basal-like PDX tissue from control mice.
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Figure C.18: 1H HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
7.

Figure C.19: 1H HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
8.
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Figure C.20: 1H HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
9.

Figure C.21: 1H HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
10.
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Figure C.22: 1H HR-MAS MR spectrum of basal-like PDX tissue from control mouse no.
11.

C.5 13C MR spectra of serum from basal-like PDX mice treated
with CB-839

13C MR spectra of serum from mice treated with CB-839 with basal-like PDXs.

Figure C.23: 13C MR spectrum of serum from mouse no. 1 with basal-like PDX, treated
with CB-839.
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Figure C.24: 13C MR spectrum of serum from mouse no. 2 with basal-like PDXs, treated
with CB-839.

Figure C.25: 13C MR spectrum of serum from mouse no. 3 with basal-like PDXs, treated
with CB-839.
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Figure C.26: 13C MR spectrum of serum from mouse no. 4 with basal-like PDXs, treated
with CB-839.

Figure C.27: 13C MR spectrum of serum from mouse no. 5 with basal-like PDXs, treated
with CB-839.

68



Figure C.28: 13C MR spectrum of serum from mouse no. 6 six with basal-like PDXs,
treated with CB-839.

C.6 13C MR spectra of serum from control mice with basal-like
PDXs

13C MR spectra of serum from control mice with basal-like PDXs.

Figure C.29: 13C MR spectrum of serum from control mouse no. 7 with basal-like PDXs.
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Figure C.30: 13C MR spectrum of serum from control mouse no. 8 with basal-like PDXs.

Figure C.31: 13C MR spectrum of serum from control mouse no. 9 with basal-like PDXs.
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Figure C.32: 13C MR spectrum of serum from control mouse no. 10 with basal-like PDXs.

Figure C.33: 13C MR spectrum of serum from control mouse no. 11 with basal-like PDXs.
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D Normal Q-Q plots

Normal Q-Q plots were plotted using SPSS (IBM) of integral values of selected metabolites
in 13C MR spectra of basal-like PDX tissue.

Figure D.1: Normal Q-Q plot of integral values of L-lactate(C5) from 13C MR spectra of
basal-like PDX tissue.
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Figure D.2: Normal Q-Q plot of integral values of L-glutamate(C5) from 13C MR spectra
of basal-like PDX tissue.

Figure D.3: Normal Q-Q plot of integral values of L-glutamine(C5) from 13C MR spectra
of basal-like PDX tissue.
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Figure D.4: Normal Q-Q plot of integral values of L-lactate(C1) from 13C MR spectra of
serum from mice with basal-like PDXs.

Figure D.5: Normal Q-Q plot of integral values of L-glutamine(C5) from 13C MR spectra
of serum from mice with basal-like PDXs.
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E Tumor growth of in MAS98.12 tumors when treated

with CB-839

Results from a previous, unpublished study on tumor growth of basal-like PDX model
MAS98.12 in immunodeficient mice, where tumors were orthotopically implanted in the
mammary fat pad (FOTS ID: 7713). Results of tumor growth, after treatment with CB-839
or controls, are shown in Figure E.1.
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Figure E.1: Tumor volume of basal-like PDX tumors (n = 6) implanted in immunodeficient
mice at different days after different times of treatment with CB-839 or controls.

Figure E.1 show no impact on tumor volume of basal-like MAS98.12 tumors when treated
with CB-839 compared with the controls.
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