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Abstract— This article presents an attitude observer that
exploits both bearing and range measurements from landmarks,
in addition to reference vectors such as magnetometer and
accelerometer. It is a gyro bias observer in cascade with a
simplified complementary filter, driven by a gyro measurement,
in which the gyro bias is estimated by comparing the bearing
dynamics with the gyro measurements. The observer is com-
pared to a full complimentary filter, and it is shown that it is
more robust to initial gyro bias estimation error compared to
the complimentary filter. The article also reveals how this new
observer handles magnetometer failure and can use landmarks
as reference vectors.

Index Terms— Attitude observer, Navigation, Nonlinear Ob-
server, Sensor data fusion, Localisation, Mapping,

I. INTRODUCTION

Robust navigation and positioning of autonomous vehicles
are fundamental for any autonomous mission. A possible
scenario is the use of autonomous vehicles for inspection
of structures such as bridges, power lines, windmills etc.,
raising the need of high accuracy in position and attitude
estimates, as the vehicles will have to work closely to the
inspection target. In this case, the electromagnetic inter-
ference and the existence of ferromagnetic materials may
degrade any magnetometer to the point of becoming unusable
[1]. Moreover, global navigation satellite systems (GNSS)
may be unreliable or severly degraded. Aided navigation
techniques such as simultaneous localization and mapping
(SLAM) algorithms can be used to handle these challenges.
SLAM fuses the sensing of the surroundings with the inertial
measurment unit IMU data to improve accuracy in the
navigation. SLAM makes this possible by estimating the
relative positions of landmarks, using ranges and/or bearing
angles measurements between the vehicle and each stationary
landmark. Over the past decades, the research community
has devoted tremendous effort in the field of probabilistic
SLAM, see [2] and [3], which includes several successful
implementations of SLAM algorithms in experiments. A
popular approach is to use the Extended Kalman filter (EKF)
SLAM, although there is a consensus that EKF SLAM has
a problem with concistency, especially related to error in the
linearization due to wrong attitude estimates [4]. A proposed
global exponentially stable SLAM solution was presented
by Johansen et al. [5], with range and/or bearing SLAM.
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The system is represented as a linear time varying system
(LTV), and thus globally solvable with the Kalman filter (KF)
without any linearization. One feature is its dependence on
an attitude heading reference system (AHRS) system, which
implies that it may be dependent on a magnetometer. Thus,
a primary motivation for the present paper was to make
an AHRS potentially independent of the magnetometer. A
similar work has been reported by Lourenco and Guerreiro
et al. [6][1], in which a globally asymptotically stable GAS
sensor-based SLAM solution is presented, for range, bearing
and range and bearing measurements; where the system also
was presented as a LTV, and solved with KF. In addition they
are able to estimate the gyro bias using range and bearing
measurements.

Attitude estimation is central to the navigation problem,
and as well as being crucial for the SLAM problem when
connecting the local estimates to a global map. A common
approach for attitude estimation is the use of reference
vectors. These can among others, come from a magnetometer
and accelerometer measuring the earth’s gravity. The attitude
is then determined by finding the rotation matrix that maps
the measured reference vectors in body coordinate system to
the known or measured reference vectors in an earth-fixed
coordinate system.

Common approaches for solving this problem are the
QUEST and TRIAD algorithms, which are compared
in et al. [7]. Problems with these solutions are A: the
measurements are noisy, wich implies that a solution should
be filtered. B: the algorithm does not take the dynamics
of the vehicle into account. Tackling this was first done
using the EKF; however EKF has issues regarding stability,
consistency and complexity due to the need of the Jacobian
matrix [8]. Another solution was the multiplicative EKF
(MEKF) presented by Markley [9], which gave several
attitude error representations for Kalman filtering with
quarternions. The computational load is still significant,
especially for low-cost and lightweight applications. A
computationally efficient complimentary filter was presented
by Mahony et al. [10], which was proven to have almost
global stability for constant reference vectors. Grip et al.
[11] proved that with a minor modification, semi-global
exponentially stability for time varying reference vectors
could be achieved. An extension of this work was done by
Fusini et al. [12], in which using optical flow and GNSS
velocity provided new reference vectors. An attitude and
gyro bias estimation scheme is presented in Batista et al.
[13], where the dynamics are given as an LTV system
and solved with a Kalman filter. A computational efficient
gyro bias attitude observer is also presented by Batista



et al. [14], where the gyro bias is in cascade with the
attitude estimation. The mentioned methods use reference
vectors from global phenomena. A weakness of these
observers is that they often rely on magnetometer for
heading reference, which have often been proven inaccurate.
A possible solution is to use reference vectors from local
surroundings. An example is shown by Vasconcelos et
al. [15] in which estimation is done by using known
landmarks. Similar work is done by Hua [16] and Bras et
al. [17], where the latter is for range-only measurements.
These methods require prior knowledge of the landmarks
position which makes them fall short on the SLAM problem.

A. Contribution

The main contribution of this paper is the design of a
new gyro bias estimator for the SLAM filter problem. This
makes it possible to estimate gyro bias without magnetometer
measurements, if velocity, range and bearing measurements
from landmarks with unknown positions are available. It is
intended to be used in the SLAM observer described in
Johansen et al. [5].

The observer can both apply bearing and range
measurements with velocity and reference vectors to
estimate the gyro bias. The gyro bias estimate is then sent to
a simplified complimentary filter from Mahony et al. [10].
This makes the gyro bias estimation and attitude estimation
decoupled, as in Batista et al. [14], so that the erroneous
initialization of the attitude does not affect the convergence
of the gyro bias estimate, resulting in a smoother and faster
transition phase for the attitude estimate, which becomes
more apparent for large gyro biases. The performance is
compared against the complimentary filter, where simulation
results are made in R3. To illustrate how the observer
preforms without magnetometer, a scenario where the
magnetometer is turned off is demonstrated. In addition, a
method for using the vector between landmarks as reference
vectors is briefly discussed.

The structure of this paper is as follows: Notation and
preliminaries are presented in Section II; Section III presents
the novel estimator and proof of its stability properties;
while Section IV shows simulation results. Finally Section
V concludes the paper.

II. NOTATION AND PRELIMINARIES

A. Notation

Scalars are in lower case a, x, ω, vectors are lower case
bold a,x,ω, sets are upper case A,X,Ω, and matrices
are bold upper case A,X,Ω. The 0 denotes the scalar
zero, while 0 is the matrix zero where dimensions are
implicitly given by the context. The accents •̂, •̃, •̇, •̄, denotes
estimate, estimate error, time derivative and upper bound.
The subscript •m denotes the measured value. Some com-
mon mathematical expressions which will be used are: The
euclidean norm for vectors and frobenius norm for matrices,
denoted ‖•‖, absolute value , denoted |• | and the transpose,

denoted •>. The representation of index sets will be done
with {1, ..., n} = {x ∈ Z|x ≤ n}.
A vector can be represented in different coordinate systems,
the representation is denoted with the superscripts •b, •n
which represents the body-fixed and earth-fixed (inertial)
coordinate systems respectively, and will be called body-
frame and inertial-frame. Lower case will denote the indices
of a landmark, vector or matrix •i and •ij .

B. Rotation representation
Rotation is the attitude change between two coordinate

systems, and a rotation from coordinate system b to n is
denoted with subscript •nb. This can be represented as:
angle-axis
Φnb = θu ∈ {R3| |θ| ≤ π, ‖u‖ = 1},
Euler angles
θnb = [ρ, φ, ψ]> ∈ {R3| |ρ| ≤ π, |φ| ≤ π, |ψ| ≤ π},
quaternions
qnb = [s, r>]> ∈ {R4|s ∈ R, r ∈ R3, ‖q‖ = 1}
rotation matrix
Rnb ∈ {R3×3| RnbR>nb = I, det(Rnb) = 1}
which means Rnb ∈ SO(3). The rotational vector transfor-
mation is calculated with the rotation matrix xn = Rnbx

b.
The cross product is represented in matrix form S(x)y =
x× y, where S(•) is a skew-symmetric matrix

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (1)

which gives S(•) = −S(•)>, x>S(•)x = 0, ∀x, S(x)y =
−S(y)x and RS(x)R> = S(Rx), ∀R ∈ SO(3). More-
over the cross-product gives the difference in angle-axis
between two vectors

S(x)y = ‖x‖‖y‖ sin(θ)u (2)

where θ is the angle between the vectors, and u is the axis
of the rotation, which is orthogonal to the two vectors.

More detailed information can be found in Sola [18] and
Fossen [19]. Let the rotation matrix denote the rotation from
the body-fixed frame to the inertia-fixed frame. The dynamics
of the rotation matrix is described by

Ṙnb = RnbS(ω) (3)

where ω = ωbnb is the angular velocity of the frame b
relative to n decomposed in b. The ω is assumed bounded
‖ω‖ ≤ ω̄ and is measured. The measurement is assumed to
be corrupted by a constant gyro bias

ωm = ω + bω (4)

Remark 1: The estimate of the rotation matrix is denoted
R̂nb, and will have the error defined as in Hamel [20] R̃nb =
R̂nbR>

nb, which means the error is a rotation matrix in itself.
The gyro-bias error is defined as b̃ω = bω − b̂ω
C. Reference vectors

Assume that there are n vectors rj that are known or mea-
surable in both body- and inertial-frame,rnj = Rnbr

b
j , j ∈

1, .., n. These vectors are normalised ‖rj‖ = 1, and there
is a standard assumption on the reference vectors to ensure
they are not parallel.



Assumption 1: there exists a constant cobs > 0 so as, for
each t ≥ 0, the inequality ‖rbj×rbk‖ > cobs holds for at least
two of the indices j, k ∈ {1, ..., n}

D. Landmark and vehicle dynamics
We assume that there is a vehicle with position pn and

m stationary landmarks where the ith landmark has position
pni . The landmark observations are the vectors between the
vessel and the landmarks δni = pni −pn. This vector can be
represented by its range and bearing,

%i = ‖δni ‖ , lni = δni /‖δ
n
i ‖ (5)

where the range is the geometric distance, while the bearing
is defined by the line of sight (LOS) vector on the unit ball,
pointing at the landmark. These can also be represented in
body-frame

δbi = R>
nbδ

n
i , lbi = R>

nbl
n
i (6)

The kinematics of the position of the vehicle is

ṗn = vn = Rnbv
b (7)

The change in the landmark observation is as follows

δ̇ni = −vn (8)

To find the dynamics of the landmark observation in body-
frame, (3) and (6)-(8) was used with the product rule

˙
δbi = −S(ω)δbi − vb (9)

From this, the dynamics of the range and bearing can be
found

%̇i = −(lni )>vn = −(lbi )
>vb (10)

l̇
n

i =
1

%i
(lni (lni )> − I)vn =

1

%i
S(lni )2vn (11)

l̇
b

i = −S(ω)lbi +
1

%i
(lbi (l

b
i )

> − I)vb

= −S(ω)lbi +
1

%i
S(lbi )

2vb
(12)

We will also use vector between the landmark observa-
tions,

γnij = δni − δ
n
j (13)

It should be noted that this vector does not change with
time, and can therefore be used as a reference vector if it is
known. It can also be directly computed from measurements
in body coordinates if both range and bearing measurements
are available

γbij = %il
b
i − %jl

b
j (14)

Finally we do a similar assumption on the position of the
landmarks as done in assumption 1 to ensure that all the
LOS vectors are not parallel.

Assumption 2: The vehicle and the landmarks are not all
located on a line, and the vectors between them spans a space
of dimension n ≥ 2

E. SLAM Attitude Problem Formulation

Let Rnb ∈ SO(3), and with the dynamics from (3). Then
the goal of the observer is to estimate the rotation matrix
R̂nb ∈ SO(3) and ensure the attitude error R̃nb → I
as t → ∞. In addition, the gyro bias error should go to
zeros b̃ω → 0, and its estimate should not be dependent on
the magnetometer. For the attitude estimate, measurements
available for the observer will be the ωm, %im, lbim and vbm,
in addition to the reference vectors rbi and rni .

Remark 2: The goal is to get the error to R̃nb → I as
t → ∞. In angle-axis, Euler angles and quaternions it will
correspond to Φ̃nb → 0, θ̃nb → 0 and q̃nb → [1,0]>
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Fig. 1: Block Diagram of the structure of the SLAM attitude observer in
cascade with the SLAM estimator from [5]

III. SLAM ATTITUDE OBSERVER

The attitude and gyro bias estimator in this paper is
based on the intuition that the dynamics of the bearing
measurement is closely related to the angle rates ω, and thus
will be useful for estimating the gyro bias. This will also
make it possible to decouple the bias estimation and attitude
estimation so that an erroneous attitude estimate does not
interfere with the bias estimation. The gyro bias estimator
for a vehicle with m landmark observations is

˙̂
lbi = −S(ωm − b̂ω + σli)̂l

b

i +
1

%im
S(̂l

b

i )S(lbim)vbm (15)

σli = kiS(lbim)̂l
b

i (16)

˙̂
bω = −

m∑
i=1

σli (17)

The error l̃
b

i = S(lbi )̂l
b

i = 1
ki
σli will be used, as well as θ̃li,

which is the angle between lbi and l̂
b

i . The relation between
these errors can be seen in (2). We see that (̂l

b

i )
> ˙̂
lbi = 0,

because (̂l
b

i )
>S(̂l

b

i ) = 0, which ensures that l̂
b

i is maintained
on the unit ball.

Theorem 1: Consider the dynamics of a vehicle with
bearing and range measurements of landmarks, in addition
to velocity measurement, and gyro measurements with a
bias bω . Let assumption 2 hold, and assume ki is large



enough; then the observer (15)-(17) is uniformly semi-
globally asymptotically stable for all trajectories, and con-
stant values of bω

The proof is divided into three steps. The first step, A), is
to verify that the LOS estimates l̂

b

i are uniformly bounded
away from pointing in the opposite direction meaning |θ̃li| <
π−ε. The next step, B), is to prove that the system is stable,
and that all the LOS estimate errors l̃

b

i will converge to zero,
implying θ̃li also converges to zero. The last step, C), is to
show that this also implies that the gyro bias estimate error
b̃ω is UGAS, this is done using Matrosov’s theorem.

Proof:
Comparing the vehicle dynamics to the estimator dynam-

ics,

˙
lbi = −S(ω)lbi +

1

%i
S(lbi )S(lbi )v

b (18)

˙̂
lbi = −S(ω + b̃ω + σli)̂l

b

i +
1

%i
S(̂l

b

i )S(lbi )v
b (19)

the error dynamics of l̃
b

i = S(lbi )̂l
b

i = 1
ki
σli and b̃ω =

bω − b̂ω is then

˙̃
lbi = S(lbi )

˙̂
lbi − S(̂l

b

i )l̇
b

i

˙̃
lbi = (S(lbi )S(̂l

b

i )− S(̂l
b

i )S(lbi ))ω − S(lbi )S(b̃ω + σli)̂l
b

i

1

%i
(S(lbi )S(̂l

b

i )− S(̂l
b

i )S(lbi ))S(lbi )v
b)

˙̃
lbi = S(̃l

b

i )ω +
1

%i
S(̃l

b

i )S(lbi )v
b − S(lbi )S(b̃ω + kil̃

b

i )̂l
b

i

˙̃
bω =

m∑
i=1

kil̃
b

i

where we have used that S(lbi )S(̂l
b

i )− S(̂l
b

i )S(lbi ) = S(̃l
b

i )
and that the bias is constant ḃω = 0. We then see that this
system has an equilibrium point l̃

b

i = 0 and b̃ω = 0.
A) Uniform Boundedness: First we want to show that

for any 0 < ε < π, a solution starting in θ̃li ∈ [−π +
ε, π − ε]∀i ∈ {1,m} will stay in this set for gain ki large
enough. We choose a Lyapunov function for every bearing
measurement, Vi = 1 − (̂l

b

i )
>lbi = 1 − cos(θ̃li), which is

positive definite and increasing for θ̃li ∈ (−π, π). It has the
derivative

V̇i = b̃
>
ω l̃
b

i − ki‖l̃
b

i‖2 ≤ −‖l̃
b

i‖(ki‖l̃
b

i‖ − b̄ω)

where we recall that there is a bound on the bias b̄ω and that
‖l̃
b

i‖ = | sin(θ̃li)|. We see that we can choose ki > b̄ω
|sin(ε)| ,

so that for |θ̃li| ≤ π − ε ⇒ ‖l̃
b

i‖ ≤ | sin(ε)| we will have
V̇i < 0, which implies that θ̃li is strictly decreasing. Consider
‖l̃
b

i (0)‖ so that |θ̃li(0)| < π− ε, and by the continuity of the
solution we can guarantee that the solution will never exceed
|θ̃li| > π− ε, and will therefore utilize that this holds for the
rest of our analysis.

B) Uniform stability and convergence of l̃
b

i : We con-
tinue to choose the Lyapunov function candidate for the
whole system

Vb(̃l
b

i , b̃ω) =

m∑
i=1

ki(1− (lbi )
>l̂
b

i ) +
1

2
b̃
>
ω b̃ω (20)

We also see that Vb can be rewritten as

Vb(̃l
b

i , b̃ω) =

m∑
i=1

ki(1− cos(θ̃li)) +
1

2
b̃
>
ω b̃ω (21)

where we see that Vb is positive definite for θ̃li ∈ [−π, π].
We calculate

((l̇
b

i )
> l̂

b

i + (lbi )
> ˙̂lbi ) = (−S(ω)lbi +

1

%i
S(lbi )S(l

b
i )v

b)> l̂
b

i

+ (lbi )
>(−S(ω + b̃ω + σli)̂l

b

i +
1

%i
S(̂l

b

i )S(l
b
i )v

b)

=− (lbi )
>S(b̃ω + σli)̂l

b

i )

where we used that ( 1
%i
S(lbi )S(lbi )v

b)>l̂
b

i +

(lbi )
> 1
%i
S(̂l

b

i )S(lbi )v
b = 0. The time derivative of Vb

is then

V̇b(l
b
i , l̂

b

i , b̃ω)) = −
m∑
i=1

ki((l̇
b

i )
> l̂

b

i + (lbi )
> ˙̂lbi ) + b̃

>
ω
˙̃
bω

=

m∑
i=1

[ki(l
b
i )
>S(σli)̂l

b

i + ki(l
b
i )
>S(b̃ω )̂l

b

i ] + b̃
>
ω

m∑
i=1

ki(S(l
b
i )̂l

b

i )

=

m∑
i=1

k2i (l
b
i )
>S(S(lbi )̂l

b

i )̂l
b

i = −
m∑
i=1

k2i (̂l
b

i )
>S(lbi )

>S(lbi )̂l
b

i

which is equal to

V̇b = −
m∑
i=1

k2i ‖l̃
b

i‖2 = −
m∑
i=1

k2i sin(θ̃li)
2 < 0, θ̃li 6= 0 or ± π

Hence V̇b is negative definite on the open set θ̃li ∈ (−π, π).
We can conclude that the system is stable, and that the
Lyapunov function will converge to V̇b = 0, hence the tra-
jectories will converge to the set E(V̇b = 0) = {l̃

b

i | ‖θ̃li‖ =
0∀i ∈ {1,m}}, since |θ̃li| 6= π . We can also conclude that
the Lyapunov function Vb converges to a constant, thus ‖b̃ω‖
will also converge to a constant.

C) UGAS using Matrosov: What is left is to show that
the states will be in the set E(V̇b = 0) in finite time, when
‖b̃ω‖ 6= 0, which means ‖b̃ω‖ has to converge to zero. For
this, Matrosov theorem will be utilized [21]. We choose the
auxiliary function

W =

m∑
i=1

b̃
>
ω l̃
b

i =

m∑
i=1

(lbi )
>S(b̃ω )̂l

b

i (22)

First we see that W is bounded by the states. To find the



derivative of Ẇ we use

(l̇
b
i )
>S(b̃ω )̂l

b
i = (lbi )

>S(ω)S(b̃ω )̂l
b
i +

1

%i
(vb)>S(lbi )S(l

b
i )S(b̃ω )̂l

b
i

(lbi )
>S(˙̃bω )̂l

b
i = (lbi )

>S(
m∑
i=1

ki l̃
b
i )̂l

b
i = −(̃l

b
i )
>

m∑
i=1

ki l̃
b
i

(lbi )
>S(b̃ω)

˙̂
lbi ) = −(lbi )

>S(b̃ω)S(ω)̂l
b
i + (lbi )

>S(b̃ω)S(b̃ω )̂l
b
i

+ (lbi )
>S(b̃ω)S(σli )̂l

b
i +

1

%i
(lbi )
>S(b̃ω)S(̂l

b
i )S(l

b
i )v

b

Adding these together, along with some algebra gives

Ẇ =

m∑
i=1

[(b̃ω)
>S(ω)̃l

b

i + (vb)>S(lbi )S(b̃ω )̃l
b

i

− (̃l
b

i )
>

m∑
i=1

ki l̃
b

i + (lbi )
>S(b̃ω)S(b̃ω )̂l

b

i

+ (lbi )
>S(b̃ω)S(ki l̃

b

i )̂l
b

i ]

As ‖l̃
b

i‖ → 0, we see that there is only one term that does
not disappear, and that l̂

b

i = lbi ; We then end up with

lim
‖l̃bi‖→0

Ẇ =

m∑
i=1

(lbi )
>S(b̃ω)S(b̃ω)l

b
i =

m∑
i=1

(b̃ω)
>S(lbi )S(l

b
i )b̃ω

≤ −c‖b̃ω‖2

where c is the smallest singular value of the matrix
m∑
i=1

S(lbi )
2. We have used that the eigenvalue of the matrix

S(̂l
b

i )S(lbi ) are λ = [0, −(lbi )
>l̂
b

i , −(lbi )
>l̂
b

i ] which for
‖l̃
b

i‖ → 0 the matrix has eigenvalues λ = [0, −1, −1]

with the zero vector lbi . The matrix
m∑
i=1

S(lbi )
2 is therefore

negative definite, because from assumption 2, there are at
least two lbi that are not parallel so that the matrix is full
rank, negative definite. Hence Ẇ is definitely not equal to
zero when ‖l̃

b

i‖ = 0 and ‖b̃ω‖ > 0. Since we know that W
is bounded by the states, we know that W converges to a
constant. We therefore know that Ẇ → 0 as t→∞, which
implies that b̃ω → 0 as t→∞. Hence we can conclude from
Matrosov’s theorem that the system will converge uniformly
to ‖b̃ω‖ → 0 and ‖l̃

b

i‖ → 0, ∀i ∈ {1,m} as t→∞, for all
trajectories starting with θ̃(0) < π − ε; since ε > 0 can be
chosen arbitrary small.

In practice, the estimate l̂bi can be chosen from its direct
measurement in the initialization, so that the bound on ki is
easier to furfill. In simulations the observer has been tested
with initialization θ̃li = π without any convergence problem.
The bias estimated can then be used in cascade with the
simplified complimentary filter from [16]

˙̂Rnb =R̂nbS(ωm − b̂ω + σR) (23)

σR =

n∑
i=1

ciS(rbi )R̂
>
nbr

n
i (24)

were semi-globally stability can be achieved.
Theorem 2: Consider the dynamics of a vehicle with

bearing and range measurements of landmarks, in addition

to velocity measurement, and gyro measurements with a bias
(4). Under the conditions of Theorem 1 and Assumption 1
satisfied and for ci large enough; the observer with (15)-(17)
in cascade with (23)-(24), will be uniformly semi-globally
asymptotically stable for time varying reference vectors.

Proof:
The gyro bias estimator is independent of the attitude

estimates. We therfor have from Theorem 1, that the gyro
bias estimate error b̃ω is bounded and converges ‖b̃ω‖ → 0
as t → ∞, we also know that the gyro bias error is
bounded by the Lyapunov function Vb(t) > ‖bω(t)‖2∀(t),
and that Vb goes to zero monotonicly. What is left to show
is that the attitude estimates in (23)-(24) are uniformly
bounded away from |Φ̃nb| = π, subjected to a gyro bias
error b̃ω , and that as ‖b̃ω‖ → 0, the attitude estimate
|Φ̃nb| → 0. First we recall that the observer (23)-(24) with
zero gyro bias, is shown in Mahony [10] and Hua [22] to
have almost globally asymptotically stability properties for
constant reference vectors and semi-globally exponentially
stability propeties for time-varying reference vectors. This
gives R̃nb → I for ‖b̃ω‖ = 0 for all trajectories starting
with |Φ̃nb(0)| < π− ε. As in Grip et al. [11], because of the
dynamic of ˙̂Rnb we can see that the estimates will be kept
in R̂nb ∈ SO(3). In addition, Grip showed in the start of
the proof of Theorem 1 in appendix B [11]; that if the gyro
bias error is bounded, then an ci can be chosen for system
(23)-(24) so that the attitude estimate is bounded away from
|Φnb| < π − ε, which means an error from the gyro bias
estimator below the bound will not destabilize the attitude
estimate. The proof is in quaternions, where the attitude error
is q̃ = [s̃, r̃>]>, and we recall that s̃ = 1⇔ R̃nb = I . The
Lyapunov function is chosen VR(s̃) = 1 − s̃2, which for
system system (23)-(24) with a gyro bias error b̃ω has the
derivative (from [11] appendix B)

V̇R ≤ −s̃r̃>Rnbb̃ω − kpc2obss̃2(1− s̃2)

≤
√
Vb − kpc2obss̃2(1− s̃2)

where kp is a lower bound on the ci gains, and cobs comes
from the assumption on the reference vectors. For a given
bound Vb(0) on the gyro bias at the initialization, kp can
be chosen kp >= b̄ω/(c

2
obsε

2(1 − ε2)) so that V̇R < 0 for
|s̃| ≥ ε. Which implies that s̃ is increasing if |s̃| ≥ ε and
because of continuity of V̇R and the solutions s̃(0) ≥ ε then
s̃(t) > ε ∀t > 0. Further on, there is a γ so that for ε <
|s̃| < γ the V̇R < 0, which by the ultimate boundedness
Theorem 4.18 [23] ensures that |s̃| > γ, t ≥ τ + T in
finite time. In addition, we see that as Vb → 0 the bound
γ → 1 which implies that R̃nb → I as t → ∞. Thus
we can conclude that (15)-(17) in cascade with (23)-(24) is
semi-globally uniformly asymptotically stable, making the
estimates converge to R̃nb → I , b̃ω → 0 as t→∞ because
ε can be arbitrary small.

Remark 3: In the proof we assume that the rotation
matrix is R̂nb ∈ SO(3) for all time. To ensure this in
the implementation, that the rotation matrices were kept



orthogonal, several methods can be used. In this paper, the
singular value decomposition(svd) algorithm was be used; if
[U, S,D] = svd(R̂) then the new orthogonalized rotation
matrix is R = UV >. Optionally it can be implemented
using quaternions as in Mahony et al. [10], or an algorithm
presented in Grip et al. [24] can be used.

Remark 4: . It should be noted that the global reference
vectors can also be used in the gyro bias observer, for lbi = rbi
and %i →∞.
The total observer is summarized in Table I.

TABLE I: Summary of the SLAM Attitude Observer

SLAM ATTITUDE OBSERVER
Measurements: ωm, %im, vbm, lbi , vbi , rib, rni
˙̂
lbi = −S(ωm − b̂ω + σli )̂l

b
i +

1
%im

S(̂l
b
i )S(l

b
im)vbm (15)

σli = kiS(l
b
im )̂l

b
i (16)

˙̂
bω = −

m∑
i=1

σli (17)

˙̂Rnb = R̂nbS(ωm − b̂ω + σR) (23)

σR =
n∑

i=1
ciS(r

b
i )R̂

>
nbr

n
i (24)

IV. SIMULATION RESULTS AND
PERFORMANCE EVALUATION

The observer was tested with simulations, and compared to
the complimentary filter. A vessel travelling in a 3D-space
described by the dynamics of (3) and (7), with changing
angular velocity
ω(t) = [r1 cos(f1t), r2 sin(f2t), r3 log(1 + f3t)]

> and
constant speed vb = [u, 0, 0]. The trajectory of the vessel,
with the landmarks positions can be seen in Figure 2.

Three landmarks are placed randomly in a box 50[m]
from the start point of the vessel. The ωm has a bias
bω = [0.8, 0.1, −0.5]>, and is corrupted with a white
noise with standard deviation σω = I0.001. The noise
in the bearing and range measurements are σl = I0.01
and σ% = 0.005. The bearing noise is orthogonal to the
bearing ln = S(lbi )wl, where the noise wl is a white noise
vector wl = N (0,σl). The reference-vectors chosen were
the normalized magnetometer and accelerometer gravity.

rn1 = [1, 0, 0]>, rb1 = R>rn1 (25)

rn2 = [0, 0, −1]>, rb2 = R>([0, 0,−1]> + an/g) (26)

rn3 = S(rn1 )rn2 , r
b
3 = S(rb1)rb2 (27)

The LOS observer was tuned with ki = 1
m = 1

3 . The
SLAM attitude observer in cascade with the LOS observer,
was tuned as the complimentary filter: k1 = 0.2, k2 =
0.5, k3 = 0.3. Where the weights ki are weighted according
quality of the measurements and gave the best results for both
observers. The bias estimation gain of the complimentary
filter was kI = 0.15, which gave the best trade-off between
the transient performance and variance of the ω output. The
starting attitude was θnb(0) = 0, while the start estimate was
θ̂nb(0) = [ 5

6π, 0, 3
4π] The results can be seen in Figures

3-5.
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Fig. 2: The figure shows the trajectory of the vehicle, and the landmarks.
The arrows represent the estimated distance vectors using l̂
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Fig. 3: The resulting ω estimates transients from the complimentary filter
and SLAM attitude observer

100 200 300 400 500 600 700 800 900 1000

[s]

-0.01

0

0.01

[r
a
d
/s
]

ω estimates end

Comp

SLAM

True

100 200 300 400 500 600 700 800 900 1000

[s]

-0.02

0

0.02

[r
a
d
/s
]

Comp

SLAM

True

100 200 300 400 500 600 700 800 900 1000

[s]

0

0.02

0.04

[r
a
d
/s
]

Comp

SLAM

True

Fig. 4: The resulting ω estimates from the complimentary filter and SLAM
attitude observer, this shows the result for the steady state bias estimates
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Fig. 6: The resulting ω estimates transient from the complimentary filter
and SLAM attitude observer for increased gyro bias

From the figures it is apparent that the SLAM observer
has a faster convergence in both attitude and bias estimation,
with no overshoots. This is a result of the decoupling of the
estimation, so the bad attitude estimate does not affect the
gyro bias estimation, as can happen with the complementary
filter. It should be noted that this is the case if the gyro-bias
is significant and there is a bad initial guess of the attitude
estimate.

Another simulation was done for double gyro bias bω =
[1.6 , 0.2 ,−1], and the results can be seen in Figures 6-7.
From these simulations it is apparent that the SLAM attitude
observer is much more robust against high gyro bias and
bad attitude initialization, which again is the result of the
decoupled system.

A. Magnetometer failure

A substantial goal for the SLAM attitude observer, is to
make it less dependent on magnetometer measurements. To
test if this is achieved, a scenario where the magnetometer
is turned off is demonstrated. The compass reference vector
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Fig. 7: The figure shows the attitude from the complimentary filter and
SLAM observer for increased gyro bias. The SLAM observer demonstrates
faster and smoother convergence

is set to the zero after t = 3000[s], leaving the gravity as
the only reference vector left. The results can be seen in
Figures 8 and 9. The bias estimation of the complimentary
filter starts being irregular, resulting in a drift in the attitude
estimates with axis parallel to the gravity vector. The SLAM
attitude observer still manages to estimate the bias, and thus
the estimated attitude is hardly affected by the loss of the
magnetometer reference vector, although it has some minor
drift in the yaw axis, which is expected.
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Fig. 8: The figure shows the yaw angle from the complimentary filter and
SLAM attitude observer. A compass failure is introduced in t = 3000 and
the result is a drift in the yaw estimates for the complimentary filter, while
the SLAM attitude observer does not get affected.
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Fig. 9: The resulting gyro bias estimates from the complimentary filter
and SLAM attitude observer in yaw. A compass failure is introduced in
t = 3000 and the result is oscillations for the complimentary filter

B. Landmark reference-vectors
A scenario was tested, where the magnetometer reference-

vector was turned off and replaced by landmark reference-
vectors. Moreover, the vectors γij from (14) are used as
reference-vectors, by setting

rn1 = R̂
n

b γ̂
b
12, rn2 = R̂

n

b γ̂
b
23 (28)

rb1 = γ̂b12 = %2l
b
2 − %1l

b
1, rb2 = γ̂b23 = %3l

b
3 − %2l

b
2 (29)



In the simulations, the attitude error is reset to zero R̃ = I ,
when the magnetometer was turned off and reference-vectors
switched, to make it easier to notice a drift. As expected the
result was drift-less, which shows that it is possible to have
drift-less estimates of the attitude, without the use of global
reference-vectors, if the bearing and range measurements or
estimates are accurate enough.

V. CONCLUSION
In this paper, we have discussed the SLAM problem, in

addition to attitude and gyro bias estimation. We presented
an observer that has decoupled the gyro bias and the attitude
estimation to avoid that bad initialization interfere with the
bias estimations. It applies bearing and range measurements
of unknown landmarks for the bias estimation, in addition
to reference vectors measurements. The performance of the
observer is compared to the complimentary filter, where
the advantageous behaviour of the observer is seen. A
scenario in which there is a failure in the magnetometer has
been demonstrated, and thus also the benefits of redundant
measurements are shown. In addition, a method for using
landmarks as reference vectors is briefly discussed.
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