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Abstract 

Electrical impedance tomography (EIT) is a technology that estimates the electrical 

properties of a body or a cross section. Their main advantages are its non-

invasiveness, low cost and free of radiation operation. The estimation of the 

conductivity field leads to low resolution images compared with other technologies 

and high computational cost. However, in many applications the target information 

lies in a low intrinsic dimensionality of the conductivity field. The estimation of 

this low dimensional information is addressed in this work. It proposes 

optimization based and data driven approaches for estimating this low dimensional 

information. The accuracy of the results obtained with these approaches depends on 

modelling and experimental conditions. Optimization approaches are sensitive to 

model discretization, type of cost function and searching algorithms.  Data driven 

methods are sensitive to the assumed model structure and the data set used for 

parameter estimation. The system configuration and experimental conditions such 

as number of electrodes and signal noise ratio have also an impact on the results.  

In order to illustrate the effects of all these factors, the position estimation of a 

circular anomaly is addressed. Optimization methods based on weighted error cost 

functions and derivate free optimization algorithms provided the best results. Data 

driven approaches based on linear models provided, in this case, good estimates, 

but the use of nonlinear models enhanced the estimation accuracy. The results 

obtained by optimization based the algorithms were less sensitive to experimental 

conditions, such as number of electrodes and signal noise, than Data driven 

approaches.  Position mean squared errors for simulation and experimental 

conditions were more than twice for the optimization based approaches compared 

with the data driven. Experimental position estimation mean squared error of data 

driven models using a 16 electrodes setup was less than 0.05% of tomograph radius 

value. These results demonstrate that the proposed approaches can estimate objects 

position accurately based on EIT measurements, if enough process information is 

available for training or modelling. Since they do not require complex calculations 

it is possible to use them in real-time applications without requiring high 

performance computers. 
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INTRODUCTION 

Conductivity distribution imaging obtained by Electrical Impedance Tomography (EIT) sensors 

provides nonintrusive measurements for a wide range of industrial applications [1–4] and medical 

applications [5–7]. Position estimation is a relevant problem for both applications. Some examples 

are the position detection of internal bleeding, lung anomalies[8,9] and gas bubbles location in 

multiphase flows or fluidized beds [10–12]. 

EIT is a low cost, fast, non-invasive and radiation-free technology. It can estimate the conductivity 

(Electrical Resistance Tomography; ERT) and/or capacitance (Electrical Capacitance Tomography; 

ECT) distribution of a body or a cross-sectional area. This estimation requires solving a nonlinear 

ill-posed inverse problem. Typical approaches consider iterative image reconstruction algorithms 

such Gauss-Newton or Levenberg-Marquardt with some regularization term [13–18]. Some of 

these methods use prior knowledge of the domain or process to obtain the solution. However, to 

obtain high quality images it is required to use numerical techniques such finite elements method 

(FEM) with fine meshes. This implies a high computational cost. 

 In [19] is proposed an evaluation methodology for  EIT systems. Image reconstruction was carried 

out by a parameterized one step Gauss-Newton algorithm. The methodology considers the 

estimation of different parameters of test objects images in a systematic way. One of the parameters 

was the object position estimation (PE). The object position was referenced to the center of gravity 

of the reconstructed object. Normalized errors by diameter position obtained an approximated 

maximum normalized error of 0.3. This is a 30% of system radius value. Also in [19] was stated the 

importance of having accuracy in PE, because its errors may lead to unreliable interpretation of the 

images.  

In [20] study the performance of Sheffield, GREIT and Gauss-Newton algorithms for the PE and 

other parameters were analysed. PE results showed small error close of the center and increased 

errors close of the boundary, where the system has increased sensitivity. Location and size of 

anomalies were estimated in [9] using a simple weighted combinations of injection current and 

boundary voltage, but the method requires an injection current pattern that generates an uniform 

electric field. It may not be possible to find such a pattern for an arbitrary conductivity distribution. 

Some authors have proposed to determine this information using parametric methods [20]. These 

methods assume that the anomaly can be parameterized in terms of few parameters. These 

parameters were obtained by solving the forward problem using the boundary element method and 

optimization algorithms. The shape and position of anomalies was estimated in [21] and [22]. In 

both studies an optimization problem is stated and the object contour is estimated using a truncated 

Fourier series model. The first approach used a particle filter while last one used Hooke and Jeeves 

pattern search method to solve the problem. Both solutions showed high accuracy for a single 

object, however computational requirements are high. The different factors affecting the accuracy 

of the estimates was not analysed in these works. 
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There are applications, however, that do not require to reconstruct accurately the conductivity field, 

because the process underlying information lies in a set of low dimensional features. For instance, 

in industrial processes, monitoring of heterogeneous phases is important to the safety and operation 

of the engineering structures. Particularly, the visualization of voids and gas bubbles is 

advantageous; then information required is only its size, shape and position. Exploiting this process 

knowledge could be a way to obtain high accuracy, low computational complexity and robust 

methods who are needed for industrial applications [23]. In [24] and [25] the conductivity 

distribution was described as nonlinear function considering a set of parameters related to object 

and medium properties. This function implicitly regularizes the problem, so no additional 

regularization terms is needed. 

The low dimensionality of position estimation problem was addressed in [26] by using methods 

based in optimization and data driven models. In the present work, the results of [26] are expanded 

by analysing the influence of different factors such as: model discretization, type of cost functions 

for position estimation and optimization algorithms. In addition, the combination of data driven 

models to enhance the accuracy of its predictions is also explored.  

This paper is organized as follows: Section 1 describes the EIT model and defines the problem. 

Section 2 describes the general framework for solving the problem of low dimensional feature 

estimation. Section 3 describes the position estimation problem and solution methods. Section 4 

outlines the simulation parameters and analyses the simulation results. Section 5 describes the 

experimental setting and experimental results. Finally, in sections 5 and 6 the discussion and 

conclusion of this work are presented. 

1 EIT MODEL AND PROBLEM DEFINITION 

An EIT sensor system has a set of 𝐿 electrodes placed on the boundary of a region of interest. A 

current is injected in a predefined pattern using two electrodes each time and the induced potentials 

are measured between adjacent remaining ones. The set of electrodes pairs used to voltage 

measuring and current injection are called measurement and injection pattern[6]. In this study the 

neighbourhood measurement/injection pattern was used. The number of measurements  𝑁𝑚  will 

depend on the number of electrodes and injection/measurement strategy. The EIT sensor model 

considers an object Ω ⊂ 𝑅3  with a given conductivity distribution𝜎(𝑧, 𝑡), 𝑧 ∈ Ω . The electrical 

currents 𝑖𝑗  are injected into the object Ω  through electrodes having a surface 𝑒𝑗  located on the 

boundary  𝜕Ω . Then, the induced electrical potential 𝑢  and the voltages 𝑣𝑗  can be uniquely 

determined by solving the equation (1) subject to conditions (2)-(4) comprising partial differential 

equations, which defines the complete electrode model:  

∇ (σ ∇ 𝑢) = 0  𝑖𝑛 Ω (1) 

𝑢 + 𝛼𝑗 𝜎 
𝜕𝑢

𝜕𝑟
= 𝑣𝑗     𝑜𝑛 𝑒𝑗 , 𝑗 = 1,2, . . . , L (2) 

∫ σ 
𝜕𝑢

𝜕𝑟
 𝑑𝑠

𝑒𝑗

= 𝑖𝑗    𝑗 = 1,2, . . . , 𝐿 (3) 



4 

 

 

𝜎 
𝜕𝑢

𝜕𝑟
= 0    𝑜𝑛 𝜕Ω \ ⋃ 𝑒𝑗

𝐿

𝑗=1

  (4) 

 

Let 𝑃 ⊂ 𝛺 ⊂ 𝑅3 be an object with boundary 𝜕𝑃 in 𝛺 with conductivity 𝜎𝑝 placed in a medium of 

homogeneous conductivity 𝜎0. The conductivity 𝜎𝑝 is a function of a vector of low dimensional 

features represented by 𝑋 ∈ 𝑅𝑛, where n is the number of features to be estimated. 

 

The problem addressed in this work is to estimate the low dimensional features vector X based on 

the measured boundary voltages 𝑣𝑗. 

2 LOW DIMENSIONAL FEATURES ESTIMATION 

2.1 Optimization Approach 

This approach requires enough knowledge of the process to formulate a forward problem �̂�(�̂�(�̂�)) 

and solve the complete electrode model. As example the following information could be known: the 

conductivities  𝜎0  and 𝜎𝑝(𝑋), dimensions and boundaries of Ω and 𝑃 . The model inputs are the 

estimated conductivity distribution �̂� that varies according the estimated �̂�;  𝑖. 𝑒. �̂� (�̂�(�̂�)) = �̂�(�̂�).  

A cost function 𝐹(�̂�) considering the residual error between the measured and simulated voltages 

can be obtained by using the forward model. Constraints could also be considered.  

We compared the use of two cost functions for the optimization problem: Non-linear least squares 

(NLS) (5) 

min
�̂�

‖�̂�(�̂�) − 𝑈(𝑋)‖
2

2
 (5) 

and a weighted NLS we refer as Non-linear relative error least squares (NRLS) (6) to emphasize the 

difference to the classical weighted least squares based on covariance matrix.  

min
�̂�

‖Λ(𝑈(𝑋))
−1

(�̂�(�̂�) − 𝑈(𝑋))‖
2

2

 (6) 

Here  𝑈(𝑋)  represents the measured voltages and Λ(𝑈(𝑋))  is a diagonal matrix having in its 

diagonal the elements of vector 𝑈(𝑋). The forward problem of computing �̂�(�̂�) is solved by using 

the finite elements method (FEM) [27]. By optimizing over �̂� instead of �̂�, less demanding image 

quality requirements are imposed, allowing coarse mesh elements and lowering associated 

computational costs. 

2.2 Data driven approach 

The relationship between the measured voltages and the object features is described by parametric 

models. Data driven approaches give a direct mapping from measured voltages and object feature 

avoiding the problem introduced by using approximated solutions provided by numerical models. 

The validity of these models depends on the type of parametrization and the data set used for 

estimating the parameters. Linear and nonlinear parameterizations can be used to represent the 

relationship, as described below. 
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2.2.1  Linear parameterization 

Let 𝑈(𝜎) be the vector containing the voltage measurements corresponding to all current patterns. 

A linearized mapping of 𝑈 = 𝑈(𝑋) = 𝑈(𝜎(𝑋)) in a condition with features vector 𝑋0 ∈ 𝑅𝑛 is: 

𝑈(𝑋) − 𝑈(𝑋0) =
𝜕𝑈(𝜎(𝑋0))

𝜕𝑋
(𝑋 − 𝑋0) (7) 

Solving for 𝑋 a direct mapping from measured voltages is obtained using the pseudo-inverse: 

𝑋 = [
𝜕𝑈(�̂�(𝑋0))

𝜕𝑋
]

†

𝑈(𝑋) − [[
𝜕𝑈(�̂�(𝑋0))

𝜕𝑋
]

†

𝑈(𝑋0) − 𝑋0] (8) 

Equation (9) can be written as  

where 𝛩 = [[
𝜕𝑈(�̂�(𝑋0))

𝜕𝑋
]

†

[[
𝜕�̅�(�̂�(𝑋0))

𝜕𝑋
]

†

𝑈(𝑋0) − 𝑋0]] and 𝑈𝑒(𝑋) = [𝑈(𝑥)𝑇 −1]𝑇.  

In general, analytical expressions for the partial derivatives are not available, but the parameters of 

the model (9) can also be obtained by solving a least squares problem: 

The main advantages of this approach are its simplicity and calculation speed. However, its 

application may be limited since it requires a large training data set for having a well-conditioned 

optimization problem and linearization may be valid only in a small neighborhood of 𝑋0.  

2.2.2 Non-linear parameterization 

 In general non-linear representations will provide models with a wider validity range  

𝑋 = 𝑁(𝛩, 𝑈𝑒) 

where 𝑁(𝛩, 𝑈𝑒) is a nonlinear function defined in terms of a set of parameter vector Θ.  In this 

context, the estimation problem can be split into two sub-problems: find suitable model structure 

and estimate its parameters from a finite set of data. This problem is ill-posed, but as pointed out in 

([28]) a minimum of prior knowledge will be enough, in general, to provide the necessary 

constraints for obtaining reasonable solutions. Analytical model describing the measured voltages 

and features are not available, but some physical insight can be used to suggest nonlinear 

combinations of measured data signals. A basic general rule in estimation one should utilize prior 

knowledge and physical insight about the system when selecting the model structure [29]. 

 If no physical insight is available or used, the use of flexible parametrization such as Support 

Vector Machines or Neural Networks can provide reasonable results. Statistical methods [28,30,31] 

provide  effective frameworks for combining prior knowledge and empirical data.  

The model fidelity of data driven models can only be ensured if the training set is representative of 

the conditions under which the model will be used. 

𝑋 = 𝛩𝑈𝑒  (9) 

  

𝑚𝑖𝑛
𝛩

‖𝛩𝑈𝑒 − 𝑈(𝑋)‖2
2 (10) 
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2.3 Estimation Errors Sources 

There are many factors affecting the accuracy of these methods. They can be classified according to 

their origin; i.e. experimental or modelling.  

2.3.1 Experimental sources 

Multiple aspects of experimental conditions can affect the feature vector estimation. The most 

obvious is measurement error because it will generate differences with simulated situations. 

Another factor is the EIT equipment features as instrumentation accuracy, number of electrodes and 

injection measurement pattern. The first one sets the sensitivity required to differentiate the 

conductivity between the medium and target. The others features define the amount of 

measurements available, sensitivity distribution and distinguishability [32–34]. Also sensitivity 

improvement is achieved with a larger number of electrodes and a reduction in the ill-posed 

condition of the Hessian approximation that consequently improves the reconstruction [35]. 

However according to [36] a larger number of electrodes do not ensure a better reconstruction of 

lung contours.  

2.3.2 Modelling sources 

There are several sources for modelling errors. The number of elements and nodes, elements basis 

functions order of FEM [27,35,37], mismatch in domain boundary, time varying boundary [38–41] 

and model discretization[42–44]. Simplifications assumptions such as that current travels only in a 

two-dimensional plane and that conductivity in domain do not changes severely between several 

injections (static EIT) are also source of errors. Changes in temperature and pH are usually 

neglected, but in some applications they should also be taken into account.   

Modelling errors associated to contact impedances are also important, [45] investigates the effect of 

errors in electrode contact impedance, electrode area, and boundary shape under the electrode in 

two-dimensional difference EIT reconstructions.  

Several techniques have been proposed to deal with some of these factors as been proposed in [35, 

41, 42]. A model calibration procedure was used in this work to reduce these effects [47]. 

Modelling errors affects estimation methods based on optimization but do not affect data driven 

approaches. The effect of modelling discretization is simulated and discussed. 

3 CASE STUDY: POSITION ESTIMATION 

The position estimation of an object of known shape and conductivity is presented in this section to 

illustrate the different factors affecting the accuracy of the estimations. A 2D problem of imaging 

the cross section of a circular section anomaly in a cylindrical vessel was carried out. The 

anomaly’s conductivity was 10 times lower than the medium. The EIT system had a set of 16 

electrodes at the boundary of the vessel. A neighbourhood injection and measurement pattern was 

used to obtain a total of 𝐿(𝐿 − 3) =208 voltage measurements per sampling instant. 

3.1 Optimization Approach 

In this case, the model inputs are the estimated conductivity distribution �̂� that varies according the 

estimated object position �̂�, consequently �̂� (�̂�(�̂�)) = �̂�(�̂�). The cost functions (5) and (6) are 
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considered. As pointed out in section 2.3.2 the cost surfaces are affected by model discretization. 

This generates a rough surface that could generate local minimum points. An analysis about how 

optimization methods are affected by discretization will be carried out in section 4. Gradient based 

Non-Linear least squares optimization (GBNLLSO) and derivative free (DFO) optimization 

techniques are considered. The solvers were selected from the OPTI toolbox [48] and MATLAB 

2013a and are described in Table I. 

Table I. OPTIMIZATION SOLVERS DESCRIPTIONS 

Search Method Optimization Type Description 

LMDER GBNLLSO Levenberg-Marquardt routine for solving NLS problems. It obtains the gradient 

by finite differences. 

NLOPT GBNLLSO Implementation of the Augmented Lagrangian algorithm described in [49,50]. It 

can handle non-linear equality/inequality constraints. 

OPTI_FMINUNC GBNLLSO Solves NLS problems using a Quasi-Newton method with a cubic line search 

procedure. It uses BFGS to update the Hessian approximation[51]. 

PSWARM DFO - Genetic Algorithm This search method solves non-differentiable, linearly constrained, nonlinear 

programs using a dual pattern and particle swarm algorithm[52]. 

PATTERNSEARCH DFO Implementation of a generalized pattern search (GPS) algorithm. This numerical 

method do not requires the problem gradient[53]. 

NOMAD DFO An extension of the GPS algorithm. Nonlinear Optimization with the mesh 

adaptive direct search (MADS) algorithm. It can solve non-differentiable and 

global nonlinear problems. 

FMINSEARCH DFO MTALAB's multidimensional unconstrained nonlinear minimization with the 

Nelder-Mead algorithm. 

 

 

3.2 Data driven approaches 

Two simple models based on Cartesian and Polar coordinates are considered in this section. The 

main advantage of these approaches is their simplicity and calculation speed. However, their 

application is limited, since access to large training data is required and linearization may be valid 

only in a small neighborhood of 𝑋0. 

3.2.1 Cartesian Coordinates Model 

Let 𝑈(𝜎) be the vector containing the voltage measurements corresponding to all current patterns. 

Equation (9) can be used directly to obtain the position in features vector �̂�  

3.2.2 Polar Coordinates Model 

The polar model is a nonlinear model and get the position of the object since the estimation in terms 

of an angle 𝜃 and a magnitude 𝑟. Due the discontinuity of θ is not possible get a linear model. Thus 

θ is estimated using: 

�̂� = tan−1 (
�̂�2

�̂�1

) (11) 

where �̂� = [�̂�1 �̂�2]
𝑇

 is the position estimated by linear model in Cartesian coordinates (9). The 

position magnitude is modelled as a linear combination of the measured voltages as:  

�̂�  = Θ𝑟 𝑈𝑒  ( 12) 

With  𝛩𝑟 ∈ 𝑅1×(𝑁𝑚+1) is a vector of parameters. Then 
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�̂��̂�,�̂�  = [
�̂�cos (�̂�)

�̂�sin (�̂�)
] ( 13) 

 

In present work, matrices 𝛩𝑟  and 𝛩  were obtained using random training data points and least 

squares identification by solving (10) . 

3.3 Evaluation criteria 

Evaluation of simulation and experimental results are quantified by the Mean Squared Error (MSE) 

according equation (14) where Nm is the number of samples.  

𝑀𝑆𝐸 =
1

𝑁𝑚

∑(𝑋𝑖 − �̂�𝑖)
𝑇

(𝑋𝑖 − �̂�𝑖)

𝑁𝑚

𝑖

  (14) 

The simulations were carried out under different SNR values calculated according (15), where 𝐴𝑠 is 

the signal amplitude and 𝐴𝑛 is the maximum noise amplitude. A maximum SNR was set and a 

random value was applied to each measurement. It should be noted that the same contaminated data 

was used for all the search methods in the optimization approach simulations.  

𝑆𝑁𝑅 = 20 log (
𝐴𝑠

𝐴𝑛

)  (15) 

The simulations and experiments results shows all the distances normalized with the tomograph 

radius.  

4 SIMULATIONS RESULTS 

 

The simulations were carried using the EIDORS toolbox[54]. In order avoid an inverse crime, the 

FEM model for simulating the measured voltages considered 6400 elements, while the mesh used to 

the forward model in optimization approach had 576 elements. Medium and target conductivity 

were 2.66 ∙ 10−4[𝑆
𝑚⁄ ] and 1 ∙ 10−6[𝑆

𝑚⁄ ] respectively. 

Position estimation by optimization approach requires a correct and accurate modelling of the 

voltage distributions. To reduce differences between models output, a model calibration process 

was achieved. The process used was developed in [47] and it consist in three steps. The first step is 

obtaining the scaling factors. These are calculated as the ratio of the homogeneous forward solution 

to the corresponding experimental measurement. The next step is the calculation of the global 

property values. These are the estimations of the electrical properties that minimize the output 

model error compared with a known condition, in this case, the homogenous medium situation. We 

obtained them by solving a NLS optimization problem (16). Finally an offset removal stage was 

done. Hence calibrated voltages are obtained as the scaled simulation minus two offset terms. The 

first term is the difference between a homogenous measurement and its scaled simulation with 

global property values. The second is the difference between an anomaly experiment measurement 
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and its scaled simulation. We neglected this last term because the offset induced by the object will 

vary according to its position in the tomograph.  

min
�̂�

‖�̂�(�̂�) − 𝑈(𝜎0)‖
2

2
 (16) 

The simulations were carried in Windows 7 64 bits environment by using MATLAB 2013a 

software and EIDORS and OPTI toolboxes. They were carried out on a personal computer with an 

Intel i7 processor and 8 GB RAM. 

4.1.1 Optimization approach 

Modelling Error Sources 

The FEM Model accuracy depends of multiple factors such as: the number of elements, their size 

and distribution. Coarse meshes fail to represent accurately the objects due that elements do not 

match with object shape (Figure 1). Table II summarizes some calculated features: coordinates of 

the target centroid and its area. All the elements with conductivity higher than the background were 

considered to get the target area. It can be seen that a larger number of elements does not imply a 

better object representation. Obviously decreasing the size of the elements, will diminish this effect, 

however it implies an increment of computational cost. Furthermore it could be easy to adjust the 

shape of elements to objects shape for forwards problems, but in the inverse problem it is not so 

straight forward and additional components should be included in the reconstruction process to 

avoid image artefacts appearing in the reconstructed images[44]. 

   
Figure 1. Target shape deformation by mesh elements approximation. Bold lines show the real object boundary. Thin lines shows 

elements contour. a) 576 elements mesh. b) 1600 elements mesh. c) 3126 elements mesh. 

 

Table II. FEATURES CHANGES BY DISCRETIZATION 

 Real value 576 elements 

mesh 

1600 elements 

mesh 

6400 elements 

mesh 

x coordinate 3,00E-01 3,01E-01 3,05E-01 3,00E-01 

y coordinate 0 -1,64E-02 4,82E-03 -8,00E-05 

Object area 4,52E-02 7,06E-02 7,46E-02 6,41E-02 

 

The cost function surfaces obtained by meshes of 576, 1600 and 3136 elements are depicted in 

Figure 2  for a reference position at [0, 0.5]. Figure 3 shows the existence of local minimums in a 

neighborhood of the real object position. These minimums exist due the domain discretization. This 

effect seems less severe in finer mesh models; however even a fine mesh did not ensure a 
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continuous surface. The error between the minimum location and the real object position is 

decreased as a function of the number of mesh elements (see Table II). Smaller errors were obtained 

by using the weighted cost function NRLS than NLS.  

  

Figure 2. Cost surfaces of NRS and NRLS problems for an object reference position at [0,0.5]. Top row NLS. Bottom row NRLS 

a,d)Forward mesh of 576 elements b,e) Forward mesh of 1600 elements c, f) Forward mesh of 3136 elements. 

 

Figure 3. Level cost curves of NLS and NRLS problems for an object reference position at [0,0](center marked with a blue x). Top row 

NLS. Bottom row NRLS a,d)Forward mesh of 576 elements b,e) Forward mesh of 1600 elements c, f) Forward mesh of 3136 elements. 

 

Experimental Conditions and Optimal Search Methods 

To evaluate the effect of the number of electrodes in the position estimation of an object at the 

origin, the optimization problem using the same mesh but with 8, 16 and 32 electrodes was solved 

(Figure 4). A mesh of 6400 elements was used as reference and 4096 elements mesh was used for 
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minimization. The results showed that incrementing the number of electrodes has a negative effect 

in the optimization surface. The gradient in the neighborhood of the minimum is smaller so 

gradients search methods will advance slowly or get stuck. 

 

Figure 4. Cost level curves with 8, 16 and 32 electrodes for NLS and NRLS problems. Top row, NLS curves. Bottom row NRLS curves. 

a,d) 8 electrodes, b,e) 16 electrodes. c,f)32 electrodes 

 

Simulations of 50 random positions using a fine mesh (6400 elements) were carried out. To avoid 

an inverse crime a coarse mesh of 576 elements was used for the optimization model. This coarse 

mesh model was used to highlight the dimensionality reduction that can  be obtained. Problems 

were formulated using cost functions (5) and (6). Both were solved by the methods described in 

Table I. The initial point used for the optimal search was the origin. Simulations with different noise 

levels were carried: Noise free, SNR of 40 dB, 30.46 dB and 26.02 dB. Analysis of solutions of 

NLS and NRLS cost functions at are summarized in Table III and Table IV respectively. The 

tolerance used to residual changes was of 10−6 for all the methods. We limited the computational 

cost by setting a search time limitation of 25 seconds. The time limitation was checked between 

algorithms iterations, therefore the average search time was greater in most cases. 

Table III. Solvers performance comparison for NLS with a 576 elements forward model at different SNR 

Search Method Noise 

Free Data 

AST[s] 

Noise 

Free 

Data 

MSE 

AST[s] - 

SNR:40 dB 

RMSE - 

SNR:40 dB 

AST[s] - 

SNR:30.46 

dB 

RMSE - 

SNR:30.46 

dB 

AST[s] - 

SNR:26.02 

dB 

RMSE - 

SNR:26.02 

dB 

LMDER 1.67E+01 1.66E-01 1.73E+01 1.66E-01 1.69E+01 1.66E-01 1.66E+01 1.65E-01 

NLOPT 2.54E+01 1.65E-01 2.54E+01 1.67E-01 2.55E+01 1.66E-01 2.52E+01 1.67E-01 

OPTI-FMINUNC 3.11E+01 3.81E-02 3.12E+01 2.87E-02 3.00E+01 9.77E-03 3.17E+01 1.23E-02 

NOMAD 2.52E+01 1.88E-02 2.51E+01 2.64E-04 2.51E+01 2.68E-04 2.52E+01 1.70E-02 

PSWARM 4.61E+01 3.91E-04 4.57E+01 1.93E-02 4.63E+01 4.98E-04 4.47E+01 7.36E-04 

PATTERNSEARCH 2.64E+01 2.70E-04 2.62E+01 3.06E-04 2.64E+01 3.34E-04 2.63E+01 6.73E-04 
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FMINSEARCH 4.15E+01 1.03E-02 4.20E+01 1.04E-02 4.27E+01 2.66E-04 4.24E+01 1.13E-02 

AST: Average Search 

Time(seconds) 

MSE: Mean Squared Error 

       

 

Table IV. Solvers performance comparison for NRLS with a 576 elements forward model at different SNR 

Search Method Noise 

Free Data 

AST [s] 

Noise 

Free 

Data 

MSE 

AST[s] - 

SNR:40 dB 

MSE - 

SNR:40 dB 

AST[s] - 

SNR:30.46 

dB 

MSE - 

SNR:30.46 

dB 

AST[s] - 

SNR:26.02 

dB 

MSE - 

SNR:26.02 

dB 

LMDER 2.13E+01 1.34E-01 2.11E+01 5.10E-02 2.15E+01 4.29E-02 2.16E+01 4.96E-02 

NLOPT 2.54E+01 3.58E-02 2.53E+01 2.99E-02 2.53E+01 3.72E-02 2.54E+01 3.83E-02 

OPTI-FMINUNC 3.13E+01 1.96E-02 3.14E+01 1.92E-02 3.13E+01 2.23E-02 3.16E+01 2.31E-02 

NOMAD 2.50E+01 2.22E-02 2.50E+01 2.23E-02 2.50E+01 2.22E-02 2.50E+01 2.59E-02 

PSWARM 4.77E+01 3.88E-04 4.60E+01 3.52E-04 4.65E+01 3.15E-04 4.75E+01 4.03E-04 

PATTERNSEARCH 2.60E+01 2.24E-02 2.62E+01 2.24E-02 2.63E+01 2.24E-02 2.64E+01 2.28E-02 

FMINSEARCH 4.60E+01 3.48E-02 4.61E+01 3.50E-02 4.61E+01 3.47E-02 4.66E+01 2.46E-02 

AST: Average Search 

Time(seconds) 

MSE: Mean Squared Error 

       

 

Figure 5 shows the MSE distribution versus the real radius position of the object referenced at the 

tomograph center. It can be seen in the Figure 5 that LMDER and NLOPT were often not able to 

find the optimal solution. This was because methods found local optimal solutions close to the 

origin. Estimation with MSE less than 2.5 ∙ 10−3 for a radius position less than 0.7 was obtained by 

other methods. Estimation close to the boundary showed larger errors except for 

PATTERNSEARCH method that showed MSE less than 1.5 ∙ 10−3. This suggests the existence of 

local optimal close of the boundary or excessive time limitation for points far away of initial point. 
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Figure 5. NLS solutions MSE vs. target radial distribution by several solvers. Note that figures have different scaling on vertical axis. a) 
LMDER b) NLOPT c) OPTI- FMINUNC d) NOMAD e) PSWARM f) PATTERNSEARCH g) FMINSEARCH 

 

The NRLS solutions in Figure 6 show MSE less than 8 ∙ 10−2 estimation by all methods for radius 

less than 0.7. Largest MSE were found at positions close to boundary at radius greater than 0.7 with 

values over 0.15 for all solvers except PSWARM. This was the only method with MSE less than 

1.5 ∙ 10−3 at all radius range for all the noise conditions.  

No significant effects of the noise level were found for NLS and NRLS solutions.  The best 

solutions were obtained in NLS except in the higher noise level case situation.   

The overall best solvers results were gradient free optimization methods PATTERNSEARCH and 

PSWARM, however the last one required longer average search time.  

 



14 

 

 

 

Figure 6. NRLS solutions MSE vs. target radial distribution by several solvers. Note that figures have different scaling on vertical axis. a) 
LMDER b) NLOPT c) OPTI- FMINUNC d) NOMAD e) PSWARM f) PATTERNSEARCH g) FMINSEARCH 

 

4.1.2 Data Driven Models Approach 

 

An evaluation of the effect of the estimation using 8, 16 and 32 electrodes was carried out. The 

simulations use the same mesh of 6400 elements. The same set of random points was used for 

model training in each case. Another set of random points was used for model testing. Results can 

be found on Table V. The results show improvement in the estimation accuracy by using more 

electrodes, this result contrasts with the one obtained for optimization methods. This might be due 

that data driven models weight the measurements, however optimization methods must deal with all 

the measurements. 

Table V. Models Position MSE with tomograph of 8, 16 or 32 electrodes. 

Model 8 Electrodes 16 electrodes 32 Electrodes 

Polar Model 3.1380E-4 2.9088E-5 2.4964E-5 

Cartesian Model 1.1327E-2 2.5803E-4 4.5674E-5 
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The models were calculated by using 1100 random training points obtained with the fine mesh 

model. The models were obtained and tested using free noise data and noises added with a SNR of 

40 dB, 30.46 dB and 26.02 dB. The obtained models performance was tested using 400 random test 

positions. Results are summarized in Table VI.  

Table VI. Position Estimation Error with Data Driven Models Approach 

Model 

Average 

Calculation 

Time 

Noise Free 

Data RMSE 

RMSE - SNR:40 

dB 

RMSE - 

SNR:30.46 dB 

RMSE - 

SNR:26.02 dB 

Polar Model 3.53E-08 2.55E-05 1.22E-04 4.48E-04 9.62E-04 

Cartesian Model 6.41E-09 1.37E-04 2.47E-04 5.89E-04 1.13E-03 

 

A 16 electrode system was used to evaluate the behaviour of methods in noisy situations. 

Calculation time is greater for the Polar than the Cartesian model because their outputs are needed 

for angle estimation. A MSE reduction was found by using the polar model approach (Table VI). 

However, it had increased MSE for objects positioned at the origin (Figure 7 a-d). In this case, the 

accuracy of the results of both models depends on the noise level, as SNR decreases (increased 

noise level) the position estimation MSE increases.   

In Figure 7 the radial distribution of the position MSE is shown for the four simulated cases. It can 

be observed that the largest position error for the Cartesian model is close the boundary, while the 

Polar model has increased error at the center the tomograph. However, MSE less than 6.5 ∙ 10−3 

were obtained in all the simulated situations.  

 

Figure 7. MSE distribution at several radius ranges with different SNR.  
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The MSE distribution shown by the Cartesian model was unexpected, because is well known that 

the sensitivity is higher close the boundary in EIT. We believe that this increase in the sensitivity at 

the boundary could be the reason of the error by making the linearization not valid in those zones. 

The increased error in the center in Polar model could be explained by an increased angle 

estimation error in that zone.  

These results suggest that a combination of the two models can reduce the position estimation error 

by selecting one of two presented models output based object radius position. As this value is 

unknown we used the estimated radius 𝑟̂ obtained by the Polar model. We set an estimated radius 

limit value 𝑟𝑙 to output selection. We choose 𝑟𝑙 = 0.5 based on results shown in Figure 7a-d.  

�̂�𝐶 = {
�̂� (𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑚𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡) Θ𝑟 𝑈𝑒 < 𝑟𝑙

�̂��̂�,�̂� (𝑃𝑜𝑙𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) Θ𝑟 𝑈𝑒 > 𝑟𝑙

  (17) 

4.1.3 Model robustness 

This section illustrates the robustness of the model predictions when the conductivity of the medium 

changes and the model is not updated to take into account this new setting. Figure 8 shows 

incremental MSE due positive and negative changes in medium conductivity. Polar model is more 

sensitive, probably because its angular estimation depends of Cartesian model output. These results 

show the dependence of the results on the underlying assumptions used to build the model. If 

changes in the medium are important, then this variable should be included in the model and the 

training data set should take into account the more likely variations of this variable. 

 

Figure 8. MSE obtained by changes in medium conductivity.  
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5 EXPERIMENTAL RESULTS 

The hardware setup consists of a circular section vessel of 225-mm diameter filled with 130mm of 

tap water. The phantom had 16 equidistant stainless-steel electrodes of 30mm diameter on its 

boundary. A 40-mm diameter PVC pipe filled with sand was used as a target. Measured medium 

conductivity was 2.66 ∙ 10−4[𝑆
𝑚⁄ ]. Target conductivity could not be measured but it was estimated 

by NLS at 5.9 ∙ 10−5[𝑆
𝑚⁄ ]. Electrodes impedance was estimated by minimizing the squared norm 

of the difference between output simulation of homogeneous condition of calibrated model and 

measured voltages in the same condition. A current of 6.5 mA at 1 kHz with a neighborhood 

injection/measurement pattern was used. The object was manually displaced and had a pattern on its 

top. An USB camera captured the image of the object and the position was calculated by image 

processing. The process consisted in locating the object pattern to find its position relative to the 

phantom contour. The obtained object position was verified a posteriori by visual inspection of the 

images. A set of 1496 EIT contour voltages data and object positions were finally collected. The 

position measurements were referenced using the center of the vessel as origin.   

  

Figure 9. a) Experimental setting diagram. b) Hardware setup. 

 

5.1 Experimental Results 

5.1.1 Optimization approach 

We obtained a total of 1496 data points. Each one is an object position obtained by image 

processing and a set of 208 contour voltages measurement. We reserved a set of 396 randomly 

selected data points for testing purposes. The other data points were used for model calibration in 

the optimization approach and the data driven models approach. The model was calibrated by using 

the method described in [47]. Optimization approach was formulated using cost functions (5) and 

(6) . Both were solved by PSWARM and PATTERN SEARCH methods because they showed less 

error in simulations. The search methods parameters used were the same that the ones used in 

simulations.  

Table VII summarizes the results for both problems. Less MSE is obtained in the NRLS 

optimization problem. By comparing the solvers performance, PATTERNSEARCH method get less 

MSE and average search time. 

Table VII. Experimental Position Estimation Error with Optimization approach. 

Search Method NLS AST NLS MSE NRLS AST NRLS MSE 
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PSWARM 4.772E+01 2.077E-03 4.808E+01 1.034E-03 

PATTERNSEARCH 2.630E+01 1.953E-03 2.632E+01 9.881E-04 

 

In Figure 10 the MSE distribution of PSWARM and solutions according the real radius position is 

shown for NLS and NRLS problems. It can be seen that MSE smaller than 0.005 was obtained for 

both methods. Errors are increased at medium radius values, while the less MSE is found closer to 

the origin. Increased MSE close to boundary, as in simulations, were not found in experimental 

results. Furthermore, smaller MSE was found for PATTERNSEARCH compared with the 

simulation results,  however the same relation was not obtained using PSWARM. 

 
Figure 10. Experimental MSE Distribution for optimization approach. a) PSWARM solutions. b) PATTERNSEARCH solutions. 

 

5.1.2 Data Driven Models Approach 

The models were obtained using 1100 random training points. The same 396 testing position data 

used for optimization approach were used for evaluation also here. We included now the combined 

model proposed based on simulations results. The model output is the Cartesian model output for 

estimated radius less than 0.5 (according magnitude estimation of polar model), and in other case is 

the polar model output.  

Table VIII. Experimental MSE and by Models Approach 

Model Average 

Calculation 

Time 

Estimated 

position MSE 

Polar Model 5.304E-05 4.00E-04 

Cartesian Model 7.610E-06 4.63E-04 

Combined Model 6.180E-05 3.98E-04 

 

A resume of the three models performance is shown in Table VIII. The obtained MSE is similar to 

simulations results. It can be seen that the combined model achieved a slight MSE improvement 

over the other models. In Figure 11 the MSE distribution is shown. It can be seen a reduction on the 

error at radius close to zero and the boundary by the combined model. At range of radius 0.4-0.5 
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combined model shows an error greater than both models. This is an effect of the chosen parameter 

value 𝑟𝑙 = 0.5 in the output selection criteria of the combined model.  

  
Figure 11. Experimental MSE Distribution for data driven models. 

6 DISCUSSION 

The results obtained for position estimation using simulations have illustrated that by incrementing 

the number of electrodes the data driven methods improve their accuracy. Optimization approaches, 

however seems not to be sensitive to this factor, since at the neighborhood of optimal point the NLS 

and NRLS cost functions becomes more flat. Several meshes with different number of elements 

were evaluated. It was found that coarse meshes had multiple local minimum close to the optimum. 

This was not found in finer meshes, however, it could be that local solutions becomes closer to the 

global solution. 

Increasing noise level does not have a significant effect on the accuracy of the results obtained by 

optimization methods. Data driven models, instead, are more sensitive to his factor. An increase in 

the position estimation error is obtained as noise level increases. However, smaller MSE is obtained 

by data driven models than the one obtained by optimization methods for all noise levels and noise 

free  simulation case. 

 

Optimization approaches using gradient based algorithms had a poor performance. Almost all the 

solvers showed large MSE when the object position was close of the boundary. This suggests the 

existence of local minimum in cost surface when objects are close to boundary. The smaller MSE 

for the NLS problem was obtained by PATTERN-SEARCH algorithm. The use of NRLS problem 

improved the solutions for almost all search methods. Larger errors still exist close to the boundary 

positions. However, PSWARM solutions had a MSE smaller than 1.5 ∙ 10−3 in all radius range and 

all noise situations. This difference in problems that share the same ideal optimal point is explained 

because the NRLS problem amplifies the small errors in measurements providing a more sensitive 

cost function in this situation.  

Data driven models simulation results shows that MSE of Polar coordinates model is smaller than 

the Cartesian coordinates model close to the boundary, but it is worst at the central position. 

However, MSE less than 6.5 ∙ 10−3 were obtained by all the simulated situations. Based in these 
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results a third approach base on the combination of both models was proposed. Simulations were 

carried to show the robustness of the estimations against changes in medium conductivity. Both 

models increase PE errors, however Cartesian model is more robust. Polar model has smaller error 

only under the nominal medium conductivity. 

The experimental results confirm the simulation results. Position estimation with a MSE smaller 

than 4.5 ∙ 10−3  was obtained by PSWARM and PATTERN-SEARCH methods for both cost 

functions. The last algorithm obtained the smallest average search time and MSE. Solutions of NLS 

had smaller MSE than NRLS only for radius values under 0.1. Furthermore, the optimization 

approach showed good experimental position estimation with MSE smaller than 4.5 ∙ 10−3. The 

main advantage of this method is that it requires only a few experimental data points to achieve a 

model calibration.  

Data driven modelling results have associated an MSE smaller than 1 ∙ 10−3 for all data driven 

models. The error distribution was similar to simulations but smaller error was found at extreme 

radius. The combined model decreases the MSE in 14% compared with the Cartesian model 

approach.  

Data driven approaches showed smaller errors and more than 7 ∙ 105 times faster estimation than 

the optimization approach. Mean squared errors smaller than 1 ∙ 10−3  were obtained in 

experimental results.  

7 CONCLUSION 

The estimation of low dimensional features can be carried out by optimization and data driven 

approaches. Optimization approaches estimate the low dimensional features by minimizing a cost 

function considering the difference between the boundary voltage measurements and the ones 

provided by the complete electrode model. Data driven models provide estimations given by a 

direct mapping between the low dimensional feature and the voltage measurements. Both methods 

are sensitive to experimental conditions such as number of electrodes and signal-noise ratio. 

Optimization methods are also sensitive to modelling errors. The use of weighted cost functions and 

derivative free optimization algorithms can reduce the effect of modelling errors. Data driven 

approaches instead parameterize the relationship between the low dimensional feature and boundary 

voltages. These methods do not require the use of an explicit model for the EIT sensor and objects. 

However, the estimation of the parameters requires a large data set.  

Results obtained from the estimation of an object position show that for this application  the 

optimization based approaches were very sensitive to model discretization. The use of NRLS and 

derivate free optimizations algorithms provided better estimates compared to the use of RLS and 

gradient based algorithms. Data driven approaches are simpler, computationally less expensive and 

accurate than optimization approach, however their used is limited by the existence of an 

appropriate relationship between features and output voltages. In addition, they require a large data 

training set to take into account all the possible operational conditions. The validity of the model 

will depend on the training data set and on the parametrization. Furthermore, optimization 

approaches are computationally more expensive, but they require fewer data points to calibrate the 
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FEM model. Further work will analyse the use of data driven approaches trained by data obtained 

from calibrated FEM models. This will enable to train data driven models using less experimental 

data. In addition, the estimation of multiple features using statistical methods is also part of our 

current research interest. 
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