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Figure 20: Parameter value of the correlation fit.

and radius maps.

4.3 Spatial pressure variation

Figure 19a shows a snapshot of the pressure in each node of the lattice for
M = 1 and Ca = 11.2 · 10−3. Other values of M and Ca are similar. It appears
to drop off approximately linearly with distance from the injection points, con-
sistent with Darcy’s law. Figure 19b shows the same data with the linear com-
ponent subtracted.

Figure 26 show the row-averaged relative deviation from the Darcy pressure
for different timesteps. It is fairly low up until the last 20 or so rows.
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Figure 21: Autocorrelation plots.

4.4 Errors and inaccuracies

Model assumptions

The model has been compared with experimental results, and it reproduces
much of the real behavior very well. Nonetheless, it is based on certain as-
sumptions that potentially limit its applicability. For instance, it assumes that
bubbles extend to the full width of the tubes. This assumption means that the
model does not account for film flow, where one fluid flows past the other in
a thin layer along the tube walls. Film flow effects have been observed at low
capillary numbers by Tallakstad [21].

The model also assumes the fluids to be incompressible, and that one of
them is perfectly wetting while the other is perfectly non-wetting. In many ex-
periments, the defending fluid has been air, which is actually quite compress-
ible. Lastly, the model does not account for viscosities varying with e.g. temper-
ature.

Burst size

When computing the burst size distributions, we define the burst size χ as the
sum of pressure drops (and only drops – the sum of all pressure changes would
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Figure 22: Correlation maps.

be rather uninteresting) within the burst. This quantity is used as a proxy for
the thing we actually want to know about, which is the geometric burst size s.
Furuberg et al. [8] established that χ ∝ s, albeit only for slow drainage in an
invasion experiment. We have assumed the relation to be valid for our system
as well, but we have not made efforts to verify this.

5 Conclusion

We have performed simulations of two-phase flow in a porous medium for a
range of capillary numbers and viscosity ratios, and investigated some inter-
esting quantities.

We have computed inclusive burst size distributions for the steady state,
and exclusive distributions for the transient phase. The inclusive steady state
distributions are found to be independent of both capillary number and viscos-
ity ratio. This is shown in figures 13, 14, 15 and 16. Past some threshold value,
the distributions are power laws. By fitting a straight line to this region, we de-
termine the exponent α of the power law. When considering the distributions
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Figure 23: Average correlation as function of distance for different counting schemes.

for all Ca and M, we find that α= 2.0±0.1. As the figures show, this power law
is valid for more than two orders of magnitude. This places our system in the
same universality class as the steady state flow on a torus and invasion.

Exclusive burst size distributions in the transient phase were also computed.
The distributions are roughly similar to the inclusive steady state ones. How-
ever, the limited duration of the transient phase, together with the fact that
there are fewer exclusive than inclusive bursts, limits the amount of data we
can gather in this phase. Trying to fit a power law to the data, we found that
α=−2.324±0.69. This is too large an uncertainty to draw any conclusions.

The large scale spatial pressure variations were found to be consistent with
Darcy’s law, except close to the system edges.

Various properties of the pressure signal correlation function ρ in steady
state have been examined. The two-point correlation in pressure between nodes
decreases as a function of the distance between the nodes. When looking only
at nodes that are directly downstream from each other, the correlation eventu-
ally drops to zero. For nodes that are on the same row, the correlation drops off
initially, then plateaus.

The average correlation as a function of node separation is qualitatively
the same for all capillary numbers and viscosity ratios. How fast it drops off
depends to some degree on the capillary number. To quantify this, we have
performed curve fits on it with a one-parameter function, specifically f (r ) =
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Figure 24: Row averaged average correlation coefficient as a function of distance from
the inlet. The nodes closer to the inlet are more correlated to the system than the nodes
far from the inlet

1/(ar +1)0.5. This parameter, a, can then tell us the drop-off speed. It initially
increases with Ca, then seems to plateau.

The autocorrelation of the pressure signal looks the same for all nodes in a
system and all system parameters. It falls off linearly as the lag increases. This
shape is typical of autoregressive processes.

The autocorrelation of pressure changes in steady state was also computed.
At one lag, it is significantly negatively correlated. Since, in the steady state, the
pressure generally fluctuates around a certain level, this is expected behavior.
For more than one lag, however, the autocorrelation is very small.
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Figure 25: Mean, minimum and maximum radius of the tubes connected to each node.
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Figure 26: Relative deviation from Darcy pressure.

A Logarithmic binning

Given a random variable X with some probability density function fX (x) the
probability that a sample of X lies on the interval x < X < x +d x is defined as

Pr(x < X < x +d x) = fX (x)d x (31)

If the probability density function is unknown it can be found by sampling
the random variable multiple times and constructing a histogram of the results.
The histogram consists of a set of bins, where each sample of the random vari-
able is added to the bin corresponding to the value of the sample. It is evident
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that the number of samples in each bin, ni , is proportional to the probability
density function of the random variable and the width of the bin, wi .

ni ∝ wi fX (x) (32)

If the PDF of the random variable is a exponential function, fX (x) ∝ x−α,
the exponent α is found by regressing log(n) versus log(x)

log(ni ) ∝ log(wi fX (x)) (33a)

log(ni ) ∝ log(wi xα) (33b)

If the bin width is some constant, wi = b, then equation 33b results in

log(ni ) ∝ log(b)+α log(x) (34)

This regression would result in the correct value α. However as the PDF is
an exponential function it may be several orders of magnitude larger for the
smallest sample than the largest sample. This difference will directly carry over
to the histogram with some bins containing several orders of magnitude more
samples than others, and it is probable that some bins contain 0 samples. This
reduces the accuracy of the regression and to avoid it logarithmic binning is
used.

Logarithmic binning means that the logarithm of the lower edge of bin i
and the logarithm of the lower edge of bin i +1 is separated by a distance b

log(xi+1) = l og (xi )+b (35)

Exponentiating both sides results in

xi+1 = xi eb , (36)

giving a bin width wi

wi = xi

(
eb −1

)
. (37)

Inserting equation 37 into equation 33b and assuming fX (x) ∝ xα results
in
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log(ni ) ∝ log(xi xαi ) (38a)

log(ni ) ∝ (α+1)log(xi ) (38b)

This means that the exponent differs by one between logarithmic binning
and constant binning.

B Geometric invasion models

B.1 Invasion percolation

Invasion percolation is a geometrical process that accurately models capillary
fingering.

1. Each site on a Lx ×Ly lattice is assigned a random threshold on the unit
interval.

2. Each site on the bottom row is set to one, all other sites set to zero.

3. The zero-value-site adjacent to a one-value-site with the lowest threshold
is set to one.

4. (Optional) If a region of zero-value-sites is completely surrounded by one-
value-sites then these sites are assigned threshold 1, making invasion im-
possible.

5. Repeat step 3 and 4 until a site at the top row has been set to one.

B.2 Diffusion limited aggregation

Diffusion limited aggregation is a geometric process that accurately models vis-
cous fingering. The algorithm is as follows:

1. A single site on the bottom row on a Lx ×Ly lattice is set to one, all other
sites are set to zero.
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2. A random-walker is introduced at the top row. When the walker reaches
a site adjacent to a one-value-site it stops and this site is set to one. The
walker can only move to adjacent sites of its current position , it can never
leave the lattice.

3. Repeat step 2 until a site at the top row is set to one.

B.3 Anti diffusion limited aggregation

Anti diffusion limited aggregation is a geometric process that accurately models
stable displacement. The algorithm is as follows:

1. Set all sites on a Lx ×Ly lattice to one.

2. Release a random walker at the bottom row. When the walker reaches
a one-value-site it stops and the site is set to zero. The walker can only
move to adjacent sites of its current position , it can never leave the lat-
tice.

3. Repeat step 3 until a site at the top row is set to zero.
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