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Abstract— The importance of measuring the size of ice floes
in e.g. marine navigation and environmental sciences has made
it a frequently performed procedure. When real-time data is
required, images from a camera on-board an aerial vehicle
or mounted on a marine vessel is commonly preferred over
satellite images. Their lower fields of view can be improved
by tilting the cameras to capture images of a larger area.
However, this introduces a greatly changing ground resolution
within the same camera image, which makes size estimation
a more complex task. It is nevertheless performed in several
methods to estimate the size of ice floes. In this paper, ice
floe size estimation is evaluated for different scenarios when
using an aerial camera at slant angles. In order to reduce
errors caused by automatic image segmentation and attitude
estimation algorithms, the methods are aided by human input.
The estimates are performed on real world data captured
during the Statoil Station Keeping Trials in the Bothnian
Bay during March 2017. The results conclude that the major
challenge is to guarantee separation between ice floes in the
camera images, which is something that requires both enough
ground resolution and a suitable image segmentation algorithm.

I. INTRODUCTION

Sea ice occupies approximately 7% of the surface area of
the world oceans [1], and comes in different shapes such as
icebergs, which have been broken off from a glacier or an
ice shelf, and ice floes, which are pieces of sea ice varying
in size from a few meters to tens of kilometers across [2].
Sea ice has a major effect on weather, climate, and ocean
currents [3], and can also significantly obstruct navigation
in places such as the Northern Sea Route [4]. Both smaller
and larger ice formations undergo large changes throughout
a year [5]. This makes continuously monitoring sea ice a
vital part in a number of fields.

There exist a number of methods for monitoring ice
floes. Haugen et al. [6] provides an overview of existing
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sensors and sensor platforms for ice management. Using a
satellite as a sensor platform allows for very high quality
sensors and a large field of view from cameras and radars
carried by the satellite. However, due to their high altitude,
the spatial resolution is limited. Satellite images can also
be costly, and the updates are slow. Additionally, some
sensors carried by satellites can not properly sample the
ground environment during certain weather conditions such
as clouds. An alternative to a satellite is a high-altitude
aircraft. An aircraft can carry many of the same sensors as
a satellite while operating at a lower altitude, which allows
for higher spatial and temporal resolution than the satellite.
Using a high-altitude aircraft as a sensor platform is however
expensive, in particular in remote areas such as the Arctic
or when continuous updates of the environment are required.
If the goal is to obtain sea ice data around a marine vessel,
a solution is to attach the sensors to the vessel itself. An
example of this is marine radars used for navigation and
collision avoidance. The data from the sensors come in real-
time, and have a high spatial resolution for areas near the
vessel. However, the area covered by shipborne sensors is
often small. A similar scenario is when the sensors are placed
on land, which has similar benefits and limitations.

In between the high-altitude airborne sensors and the
shipborne sensors are the recent emergence of Unmanned
Aerial Vehicles (UAVs) as a sensor platform when gathering
ice data – in particular UAVs small enough to take off from
and land on a marine vessel [6] [7]. These UAVs often
operate at a lower altitude, allowing for real-time data at a
high spatial resolution, even though the weight of the sensors
are limited. The sensors carried by UAVs can cover a higher
area than those carried by the marine vessel, but not quite
as big as a satellite or a high-altitude aircraft. A similar
sensor platform is an aerostat moored to a marine vessel.
The aerostat can not move around like a UAV in order to
cover a larger area, but it benefits from a higher altitude
than the sensors attached to a marine vessel and requires
little supervision. A camera mounted to an aerostat or a small
UAV is therefore suitable when monitoring sea ice in an area
near a vessel, but the spatial coverage of shipborne sensors
are not enough.

In order to be able to increase the field of view further of
a camera attached to a marine vessel, a UAV, or an aerostat,
the camera can be tilted. If the tilt angle and other camera
parameters are known, the pinhole camera model [8] can
be used to find the world coordinates of a pixel in the
camera image. Several methods use this to rectify camera
images and measure the size of ice floes [9] [10]. Since the



image capturing process is complex, in particular with greatly
varying distances in an outdoor environment such as that of
a tilted camera measuring ice floe sizes, it is of interest to
evaluate how well it is possible to estimate the ice floe size
when the camera is tilted at slant angles.

A method developed by Lu & Li [10] for obtaining the size
of ice floes from camera images when the camera is tilted
was evaluated by the same authors against a more direct
method, by comparing the ice floe distributions calculated
by both methods. However, the authors only evaluates their
simplified method, and not the effects of having a camera
at a slant angle. A qualitative evaluation of size estimation
for different camera-to-object angles (see Appendix I for the
definition of camera-to-object angle) could provide guide-
lines for when a good ice floe size estimate can be expected.

In this paper, a method for estimating the dimensions
of individual ice floes is presented. The main goal of the
method is to be used in evaluating the size estimation of
individual ice floes seen at different camera-to-object angles.
Manual methods with high accuracy are therefore preferred
over automatic methods, in order to reduce errors caused
by e.g. image segmentation errors. The method is applied
to experimental data from the Statoil Station Keeping Trials
performed in the Bothnian Bay during the first three weeks
of March 2017. The results are evaluated and discussed in
order to find how well the size of ice floes can be estimated
for different scenarios when a large camera-to-object angle
is used.

II. METHODOLOGY

This section contains explanations of the methods used in
this paper for comparing the dimension estimates of an ice
floe appearing in multiple camera images at different camera-
to-object angles. Figure 1 shows an overview of the methods.
Lastly, the size estimation error that can be explained by a
difference in ground resolution is explained.

A. Finding the pixels representing an ice floe

In order to find the pixels representing an ice floe in a
camera image, the image is first segmented. Segmentation
divides an image into regions or objects [11]. In this case,
the ice floes are separated from other objects such as water,
brash ice, and other ice floes. Errors made by the image
segmentation algorithm, such as dividing one ice floe into
two segments, or missing a border between two ice floes
labelling them as the same segment, can have a big impact
on the size estimate.

Even though image segmentation methods have existed for
a long time, humans still outperform commonly available al-
gorithms [12]. Recent algorithms have started to outperform
humans [13], but human performance in image segmentation
is still often used as the ground truth when evaluating
algorithms. In this paper, human image segmentation aided
by flood-fill algorithm is used to find the pixels representing
an ice floe in an image due to its simplicity.

The flood-fill algorithm selects connected pixels with an
intensity within a certain threshold from that of the starting
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Fig. 1. Overview of the size estimation and evaluation algorithm. The
rightmost text indicates which section contain that details about each part.

pixel [14], and is run after the image has been converted
to gray-scale. After the flood-fill algorithm has been run,
a human adjusts the segmentation by manually adding or
removing regions of pixels to properly represent the area
occupied by the ice floe in the camera image.

B. Image to world coordinates

The pinhole camera model [8] is used to model the
projection of world coordinates onto an image plane. The
projection is given by
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where xi, yi, and pw = [xw yw zw]T are the pixel co-
ordinates and world coordinates of the projected point re-
spectively, λ is a scaling factor, Λ is the intrinsic camera
matrix obtained by camera calibration, and Ω and τ are the
rotation matrix and translation vector from world coordinates
to camera coordinates respectively.

The world coordinate system is in this case defined as the
local tangent plane of the Earth at the location of the camera
at sea level, with the x-axis pointing east, the y-axis pointing
down, and the z-axis pointing north. By solving (1) for xw



and zw, it is possible to obtain the world coordinates of a
point if its pixel coordinates and world coordinate yw are
known. The change in yw due to the curvature of the Earth
and the altitude of the ice floes are disregarded, and yw is
thus set to zero.

The pinhole camera model assumes that the rotation matrix
and translation vector from world coordinates to camera
coordinates are known. In this paper the exact world position
of a point represented by a pixel in the camera image is
not required, but rather the distance from the camera to the
point. Rotating the camera around its y-axis (yaw) or moving
the camera in the xz-plane will not change this calculated
distance. This means that there is only a need to estimate
the negative camera altitude, τy , and the camera rotations
around its x- and z-axis (pitch and roll).

The camera altitude is estimated using a GPS unit. The
roll and pitch are estimated by projecting horizon points onto
the camera image using (1), and then manually adjusting the
roll and pitch until the horizon points match the horizon in
the camera image. The method for finding the world position
of horizon points is described in Appendix II. See figure 2
for an example of matching horizon points.

Fig. 2. The horizon points (red dots) matched with the horizon in a camera
image.

C. Comparing ice floe size estimates

The aim of this paper is to evaluate the accuracy of the size
estimates of an ice floe for different camera-to-object angles.
The evaluation is done by comparing the size estimate of an
ice floe with its reference. The reference is the size estimate
of the same ice floe at the lowest camera-to-object angle
available in the camera image set, i.e. it is the estimate least
prone to errors. In order to make a quantitative evaluation
of the results easier, a single metric of the accuracy will
be used. It is possible to use e.g. the volume, but this can
be misleading since vastly different shapes can result in the
same volume. Instead, the standard deviation of the radiuses
of an ice floe in polar coordinates from the reference is
calculated as the error metric, σradiuses. This guarantees a
larger error when the deviation from the reference is larger
overall, and can be used in e.g. statistical simulations.

The standard deviation σradiuses will be evaluated against
the camera-to-object angle, αc-o, for each ice floe. This is
calculated as the mean camera-to-object angle for each xw
and zw coordinate of the points representing the ice floe in
the camera image.

After the xw and zw coordinates of the points representing
the ice floe in the camera image have been obtained accord-
ing to section II-A and II-B, they are mean centered.

An alpha shape [15] is then generated for the points in

order to find a natural border of the ice floe. An alpha
shape is a shape that encloses a set of points by defining the
boundary points as those which can be touched by empty
circles (i.e. circle not containing any points) with radiuses
α. See figure 3 for a visual description of the alpha shape
algorithm. The alpha shape boundary points are selected as

Fig. 3. The alpha shape algorithm visualized. The filled points represent
the points, the grey dashed circles represent the empty circles connected
to two points each, and the lines indicate which boundary points the alpha
shape goes through.

the boundary points of the ice floe. The ice floe boundary
points are transformed from Cartesian to polar coordinates
according to

rb =
√
x2w + z2w

αb = arctan

(
xw
yw

) (2)

where rb is the radius and αb is the polar angle.
Since the ice floe will be rotated relative to the camera

between camera images, and the resolution of the polar angle
will change, the calculated radiuses of an ice floe in one
camera image can not be directly compared with the radiuses
of the ice floe in another image. In order to make them
comparable, radiuses for predefined equidistant polar angles
are found using piecewise cubic Hermite interpolation [16].
After the interpolation, the polar angles of the reference
ice floe are shifted in order to find the polar angles which
produces the lowest standard deviation σradiuses. This is
equivalent to rotating one ice floe to match the other ice floe.

D. Ground Resolution Error
The ground resolution is the number of pixels per square

meter when projected onto the sea surface. In order to find
what accuracy is possible, the error that can be explained by
the decrease in ground resolution as the camera moves away
from the object – the ground resolution error, σradiuses gr – is
calculated for each ice floe in each camera image. This is
done by shifting the mean of the world points of the reference
to the mean of the ice floe being evaluated; projecting it onto
the image coordinate system using (1); rounding the image
coordinates to their closest integer values to simulate the
precision lost; and then calculating the standard deviation
σradiuses using the same methods as for the ice floe being
evaluated.

The ground resolution error is not the theoretical mini-
mum error for the given camera-to-object angle and ground



resolution. Rather, it is the approximation of how large part
of the error that can be attributed to the ground resolution
for the current image.

III. EXPERIMENTAL SETUP

Experiments were performed in order to evaluate the
accuracy of size estimates of ice floes using a camera at
slant angles using the method described in section II. The
experiments took place during the Statoil Station Keeping
Trials (SKT) in the Bothnian Bay during the first three weeks
of March 2017. The SKT involved two vessels in operation,
Magne Viking and Tor Viking.

The camera system was mounted on the moored balloon
system OceanEye made by Maritime Robotics, which in
turn was attached to Magne Viking. The OceanEye allowed
for the camera to stay at an altitude of around 120 meters
throughout the day.

A. Camera System

The camera system consisted of an EO-camera, a lens,
a GPS unit, and an on-board computer. The system was
designed to capture images with low distortion, high time
synchronization accuracy, and to be light weight. The details
of the camera unit and lens can be found in table I.

TABLE I
SPECIFICATION OF THE CAMERA SYSTEM

Camera FLIR CM3-U3-31S4C-CS

Resolution 2048 x 1536 px

Pixel size 3.45 µm

Lens Kowa LM8JC10M

Focal length 8.5 mm

Lens distortion 0.31 %

B. Scenarios

The camera was capturing images at 1 Hz for about eight
hours per day. Since the process of estimating the dimensions
of an ice floe in a camera image consists partly of manual
work, the evaluation was limited to a camera image sequence
of ten images, taken eight seconds apart. The sequence was
chosen to be when Magne Viking was moving, in order
to capture the same ice floes in multiple camera images at
different camera-to-object angles. In the image sequence, five
ice floes of different sizes were chosen. See figure 4 for a
cropped camera image containing the five ice floes.

Fig. 4. A cropped camera image containing the five ice floes being
analyzed.

IV. RESULTS AND DISCUSSION

This section presents and discusses the experimental re-
sults together with the calculated theoretical errors. First,
each step of the methods in section II is shown, followed
by an analysis of the error metric, σradiuses.

The pixels are first selected using a flood-fill algorithm,
and then adjusted by manually adding and removing pixel
regions. See figure 5 for an example of this process.

Fig. 5. The pixel selection process. The top image shows the raw camera
image. The center image shows the pixels selected by the flood-fill algorithm
in yellow. The bottom image shows the final results after after manually
adjusting the pixels selected by the flood-fill algorithm.

After the ice floe pixels have been selected, their corre-
sponding position in the world coordinate system are found,
assuming an ice floe altitude of zero. The mean is subtracted
from the points in both dimensions, xw and yw, and an alpha
shape around the points is calculated. See figure 6 for the
mean-centered points in the world coordinates, together with
the alpha shape.
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Fig. 6. The corresponding mean centered world coordinates of the selected
pixels (blue dots) and the alpha shape (red curve).

The points connected to the border of the alpha shape
are then transformed into polar coordinates, and interpolated
using piecewise cubic Hermite interpolation for polar angles
in the interval [0◦, 360◦), with a resolution of 1◦. See figure 7
for the interpolated border points in polar coordinates.

The same methods were applied to the ice floe in the
reference camera image. The ice floe reference was then
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Fig. 7. The border points in polar coordinates (blue dots), and a curve
going through the interpolated points (red line).

rotated to match the current points of the ice floe being
evaluated. See figure 8 for a comparison of the ice floe points
being evaluated in Cartesian coordinates, the reference points
of the ice floe, and the rotated reference points.
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Fig. 8. The ice floe in the camera image being evaluated versus in the
reference image without any rotation (left). The ice floe in the camera image
being evaluated versus in the reference image rotated to match the first
(right).

The distance and camera-to-object angle to the ice floe
being evaluated is in this case 623 m and 81.4◦ respectively,
and 262 m and 70.1◦ respectively for the reference. The
standard deviation σradiuses is 0.40 m, and σradiuses gr is 0.33 m.

The same algorithm is then applied to the five ice floes in
the selected camera image set. See figure 4 for the numbered
ice floes in the camera image with the smallest camera-to-
object angle. The resulting error metric σradiuses and ground
resolution error metric σradiuses gr are then presented in fig-
ure 9. The ice floe number in the top left corner of each
graph corresponds to the ice floe numbers in figure 4.

The errors generally increase with an increased camera-to-
object angle, as was expected. There is little to be discussed
for ice floe 1 – the error generally increases with an increased
camera-to-object angle, and stays slightly above the ground
resolution error. The difference between the error and the
ground resolution error might be explained by inconsistency
in the pixel selection process and remaining errors from the
camera calibration. The error for ice floe 4 sometimes dips
below the ground resolution error. This might happen when
the ice floe in the camera images line up well with the pixel
edges, or when an error has occurred when selecting the ice
floe pixels in the reference image.

The error for ice floe 5 makes a sudden jump between αc-o
76.5◦ and 77.8◦, and a similar phenomena can be seen for
ice floe 3 between 82◦ and 82.5◦. By analyzing the camera
images, it can be seen that this is because the border between
nearby ice floes can no longer be seen, making them appear
as one ice floe. See figure 10 for a comparison between
the reference image and the fourth image (camera-to-object
angle of 78.8◦) of ice floe 5, where the loss of separation

75 76 77 78 79 80 81 82 83 84
0

0.5

1
1

75 76 77 78 79 80 81 82 83 84
0

1

2

3
2

75 76 77 78 79 80 81 82 83 84
0

1

2

σ
ra

di
us

es
an

d
σ

ra
di

us
es

gr
[m

]

3

75 76 77 78 79 80 81 82 83 84
0

0.5

1
4

75 76 77 78 79 80 81 82 83 84
αc-o [deg]

0

0.5

1
5

Fig. 9. The resulting standard deviations σradiuses (blue line) and σradiuses gr
(red line) versus the camera-to-object angle. The number in the top left
corner of each graph indicates which ice floe is being evaluated, see figure 4.

between the ice floe and a nearby ice floe can be seen.

Fig. 10. Ice floe 5 in the reference camera image (left) and with a camera-
to-object angle of 77.8◦ (right).

The large error produced by diminishing borders indicate
that the separation between ice floes are of high importance
when estimating the size of ice floes.

The errors for ice floe 2 and 3 are overall quite large.
Looking at figure 4, it can be seen that these ice floes are
larger than the others, both contain darker areas, and both
are near brash ice. This pose a problem to both the flood-
fill algorithm and to human segmentation since it is more
difficult to manually correct minor errors for large ice floes,
and ice floes with poorly defined borders.

V. CONCLUSION

In this paper, a method for estimating the size of individual
ice floes has been presented, as well as a metric to evaluate
the accuracy of the size estimation. The method, which was
designed to minimize the errors caused by automatic image
segmentation and attitude estimation algorithms in order to
find the limitations of the camera system when estimating the
size of ice floes at slant angles, is applied to experimental
data collected during the Statoil SKT performed in the
Bothnian Bay in March 2017. During the experiment, the
camera was moved in relation to the ice floes in order to
capture camera images of the same ice floes at different
distances, which allowed for the evaluation of ice floe size



estimation for different camera-to-object angles. Evaluation
of the resulting errors and the camera images conclude that
the size of an ice floe can be estimated with a high accuracy if
some criteria, which allows for the ice floes to be accurately
segmented in the camera images, are met. This makes it
important to take into account not only the size estimation
accuracy of an individual ice floe when designing a camera
system for a certain ground resolution, but also the separation
between ice floes.

Potential future work includes an evaluation of more
automatic image segmentation and size estimation algorithms
for use when estimating the size of ice floes. The camera
images could also be fused with e.g. Synthetic Aperture
Radar (SAR) images in order to find details not visible in
camera images. The geometrical calculations can also be
made more rigorous by e.g. taking into account the effect
of ice ridges on the ice floes, which might affect the results
at a large camera-to-object angle.

APPENDIX I
CAMERA-TO-OBJECT ANGLE

The camera-to-object angle, αc−o, is defined as the angle
between a vector pointing straight down from the camera,
ac-g, and a vector pointing from the camera towards the
object, ac-o. See figure 11 for a visual description.

ac-g

ac-o

objectαc-o

Fig. 11. The camera-to-object angle, αc-o.

The camera-to-object angle can be calculated according to

αc-o = cos−1

(
ac-g · ac-o

||ac-g|| ||ac-o||

)
(3)

APPENDIX II
HORIZON POINTS

The first step in finding a horizon point is to find the angle
between the camera and the horizon, γ, which is given by

γ = cos−1 (R/(R+ a)) (4)

where R is the radius of the Earth, and a is the camera
altitude. See figure 12 for the geometrical derivation of (4).
Note that this approximates the oblate spheroid shape of the
Earth with a spherical shape.

a

γ
R

Fig. 12. The geometric derivation of the angle between the camera and
the horizon, γ.

When the angle γ has been acquired, the yw and zw
position of the horizon, yw horizon and zw horizon, can be
acquired according to

yw horizon =R(1− cos γ)

zw horizon =R sin γ
(5)

See figure 13 for the geometrical derivation of (5). The xw-
coordinate of the horizon point, xw horizon, is simply set to
zero. xw horizon and zw horizon are then rotated around the y-
axis with equidistant angles in order to obtain the world
coordinates of several horizon points.

zw horizon

γ

yw horizon

R− yw horizon

Fig. 13. The geometric derivation of the yw and zw position of the horizon.
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