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Problem Description
Study how concepts from optimization theory generalizes to manifolds, in particular
matrix manifolds, and consider how this can be applied to blind source separation
problems.
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Summary
The objective of this thesis have been to study optimization techniques on ma-
trix manifolds. In particular the generalization of steepest descent and Newton’s
method have been taken into consideration. The methods were implemented for
two blind source separation techniques, sparse representation and independent com-
ponent analysis, and compared to established methods. Both techniques assumes
a linear relation between recorded signals and source signals. Independent compo-
nent analysis assumes statistically independent sources, and an equal number of
source signals and recorded signals. Sparse representation can assume more sources
than recorded signals, but requires the sources to have a sparse nature.

First it was studied how geometrical principles from Euclidean geometry can
be generalized to smooth manifolds, and in particular Riemannian manifolds. This
provided an understanding of the geometry of matrix manifolds in terms of concepts
from familiar Euclidean spaces, such as Rn.

It was seen that for the sparse representation problem, performing Newton’s
method had lower complexity than what one might expect, but more work is re-
quired in order to determine how to ensure convergence. Steepest descent showed
promising results, but relatively small step sizes was necessary in order to achieve
stable convergence.

For indepdendent component analysis problems, steepest descent and Newton’s
method outperformed an implementation of the established FastICA method when
it comes to accuracy. The Hessian of the objective function had a block-diagonal
form, causing the Newton’s method to have a relatively low complexity, which
makes the method attractable.
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Sammendrag
Målet med denne oppgaven har vært å studere optimeringsmetoder p̊a matrise-
mangfoldigheter. Mer konkret er generalisering av “steepest descent” og Newtons
metode betraktet. Metodene ble implementert for to “blind source separation”-
teknikker, glissen signalrepresentasjon og uavhengig komponentanalyse, og ble sam-
menlignet med etablerte metoder. Begge teknikkene antar en linear sammenheng
mellom kildesignalene og de m̊alte signalene. Forskjellen ligger i at uavhengig
komponentanalyse antar like mange kilder som m̊alte signaler, samt statistisk
uavhengige kilder, mens glissen signalrepresentasjon kan anta flere kilder enn m̊alte
signaler, men det antas at kildene har en glissen natur.

Først var det sett p̊a hvordan geometriske prinsipper fra Euklidsk geometri
generaliseres til glatte mangfoldigheter, og spesielt Riemannske mangfoldigheter.
Dette ga en forst̊aelse for geometrien av matrisemangfoldigheter ved hjelp av forst̊aelsen
av konspetene i Euklidske rom, slik som Rn.

Det ble observert at for glissen representasjonsproblemet hadde Newtons metode
lavere kompleksitet enn man kan forvente, men mer arbeid er krevd for å kunne
si noe sikkert om konvergens. “Steepest descent” viste lovende resultater, men
relativt sm̊a steg m̊atte taes for å oppn̊a stabil konvergens.

For uavhengig komponentanalyse var ytelsen av Newtons metode og “steep-
est descent” bedre enn en implementering av den etablerte FastICA-metoden, n̊ar
det kom til nøyaktighet. Hessianen av objektfunksjonen hadde en blokk-diagonal
struktur, noe som medfører at Newtons metode har en relativt lav kompleksitet og
gjør den attraktiv for slike problemer.
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Chapter 1

Introduction

The general form of an optimization problem is to minimize (or maximize) a func-
tion, the objective function, under given constraints:

min
x∈Ω

f(x), such that ci(x) = 0, cj(x) ≥ 0, i ∈ E , j ∈ I

The constraints are referred to as the equality and inequality contraints, respec-
tively. Ω is some field over the real numbers, typically Rn or Rn×p. Different forms
of the objective function or the constraints lead to various subfields of optimiza-
tion theory, such as linear and quadratic programming, least-squares problems and
unconstrained optimization. Within these subfields, many of the algorithms are
developed to take advantage of a particular geometry of the problem. The simplex
method, for instance, iterates from vertex to vertex in a hyper-polygon. Another
subclass of problems is considered in this thesis, namely manifold constraints. The
general optimization formulation may in some cases be directly translated to an
optimization problem on a manifold, if the manifold is defined in terms of equal-
ity and/or inequality contraints. The Stiefel manifold, which will be presented in
section 2.2.1, is one such example. In other cases the feasible domain may not be
explicitly defined, such as in the case of the Grassmann matrix manifold. In these
cases, the domain of the objective function is restricted to the manifold instead:

min
x∈M

f(x)

This can be viewed as a generalization of unconstrained optimization, but the space
does not behave as straightforwardly as say Rn. Hence geometrical concepts pop-
ularly used in optimization theory, such as gradients, directional derivaties and
Hessians, have to be studied in the more general context of a manifold.

The intuitive advantage of this approach is that it provides a different, and
perhaps more natural point of view. Instead of focusing on the purely algebraic
formulation of constraints, attention is brought to the geometry of the problem.
Manifolds provide an understanding of abstract geometry on the terms of Euclidean
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spaces. Concepts such as gradients, Hessians and straight lines can be defined on
a manifold (under certain conditions), may can be understood just as in Rn.

Amongst the applications where the geometrical structure stems from physical
contraints are robotics and kinetics, where rotation matrices play an important
role. A similar application is modelling of the human spine(Adler et al.[4]). Image
processing is another popular application, for instance for multi-view images. The
perhaps less intuitive manifolds appears in, amongst others, theoretical physics and
signal processing. Blind source separation is an example of the latter that will be
studied in this thesis.

The outline for the thesis is as follows. Chapter 2 starts with the generalization
of some of the familiar geometrical concepts in optimization theory, before dis-
cussing how these apply to matrix manifolds in particular. The multi-dimensional
Rayleigh quotient is studied as an application. Chapter 3 presents the blind source
separation problem and introduces the two techniques independent component
analysis and sparse representation. It is shown how a steepest descent method
and a Newton method can be applied to the problem, by using the tools from
chapter 2. Chapter 4 presents the construction of the numerical tests. Chapter 5
presents and discusses the results.

For this thesis, Lee[21] has been the primary source for the introduction to
manifolds and do Carmo[9] for details on Riemannian manifolds. The adaption to
matrix manifolds has been covered by Absil et al.[1] and a more practically oriented
approach by Edelman et al.[11]. For the applications to blind source separation,
papers by Hyvarinen et al.[17, 18, 19] for the background of independent component
analysis, and the paper by Kreutz-Delgado et al.[20] for background on sparse
representation. The book by Comon et al.[7] has also been useful for details on
this topic.
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Chapter 2

Matrix Manifold
Optimization

2.1 Manifolds
The reason manifolds are of interest in optimization theory is their applicability to
abstract geometry. Their ability to provide a geometrical understanding of higher
dimensionsional surfaces, curves, volumes and more is the key to better understand
how to develop smart algorithms, not only within optimization theory, but to other
problems with a complicated structure as well.

A rigorous introduction to manifolds will not be given here since a wide range
of literature exists on the topic. The most central elements from an optimizational
point of view will however be repeated here to emphasize which geometrical con-
cepts are of particular interest, and to introduce the terminology used throughout
this thesis. It will always be assumed that the manifolds considered are sufficiently
smooth.

The tangent space of a manifold, M, at a point x is denoted TxM (for a
definition see e.g. [21]). The collection of all points and their respetive tangent
spaces is called the tangent bundle and is denoted by TM. Let f be a real-valued
function on M. The generalization of the directional derivative at x ∈ M in
direction z ∈ TxM is a real-valued function:

Dzf(x) = df(γ(t))
dt

∣∣∣
t=0

,

where γ is a curve on M, satisfying γ(0) = x, γ̇(0) = z.

A Riemannian metric is a collection of inner products, {〈·, ·〉x}x∈M, such that
〈·, ·〉x defines an inner product on TxM. In general, an inner product is an addi-
tional structure to a vector space. Since a manifold is not automatically a vector
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space, the inner product is defined point-wise on the tangent spaces ofM instead.
A manifold equipped with a Riemannian metric is a Riemannian manifold, and the
field of Riemannian manifolds is referred to as Riemannian geometry.

With the notion of an inner product, the normal space of a manifold at x is
defined as the set of vectors orthogonal to TxM. It is denoted (TxM)⊥. For a
submanifold M of Rn, a tangent vector of Rn (which is a vector in Rn), can be
decomposed into its component on TxM and (TxM)⊥. Accordingly, orthogonal
projection onto the tangent space is defined as taking ξ ∈ Rn to its component on
the tangent space. Projection onto the normal space is defined through the relation
Pxξ + P⊥x ξ = ξ.

The tools to define the notion of a gradient are now in place. For a real-valued
function, f : Rn → R, the gradient satisfies Dzf(x) = (grad f(x))T z, where D
denotes the directional derivative, here taken with respect to the vector z. On a
Riemannian manifold, the gradient at the point x is analogously defined as the
(unique) tangent vector satisfying

〈grad f(x), z〉 = Dzf(x) ∀z ∈ TxM,

where 〈·, ·〉 denotes the Riemannian metric at x. Note that the gradient will de-
pend on the choice of metric. Also observe that, just as in Rn, grad f(x) = 0 ⇐⇒
Dzf(x) = 0 ∀ z ∈ TxM ⇐⇒ x is a stationary point of f .

For a submanifold, M, of Rn, the gradient at x is the orthogonal projection of
the gradient from Rn onto TxM ([1], section 3.6.1).

A method that utilizes all of the tools mentioned above is the method of steepest
descent. In Rn it is based on the relatively simple concept of following the direction
in which the objective function decreases most rapidly. The method is iterative, and
in its conceptually simplest form it attempts to find the minimizer of the function
in the direction of steepest descent: minα f(xk − α grad f(xk)), and use this as
the next iterate. On a manifold the principle is the same, but since addition is not
well-defined on an arbitrary manifold, moving to the next iterate (or evaluating
the objective function along a direction for that matter) will have to be redefined.

2.1.1 Geodesics
Iterative methods in Rn are typically moving from one point to another at every
iteration (or adding a vector to a point to arrive at another point). On a manifold
in general, this notion of “moving from one point to another” is not as trivial. The
concept of geodesics is therefore introduced. A geodesic curve, γ : (a, b)→M , is a
generalization of a straight line in Rn in the sense that it is the smooth curve that
minimizes the distance between two points, x and y, defined by

∫ b
a
‖γ̇(t)‖1/2dt,

γ(a) = x, γ(b) = y. ‖ · ‖ is the norm induced by the Riemannian metric. Other
equivalent definitions exist as well, for instance as zero-acceleration curves.
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An extensive study of geodesics for matrix manifolds in particular may be found
in the article by Edelman, Arias and Smith[11]. When it comes to iterative meth-
ods, the idea is to use geodesics to move on the manifold. Given a current iterate,
xk, the next iterate is found by first picking a direction in which it is reasonable
to move, then move along the geodesic in that particular direction until a rea-
sonable next iterate is found. In the case of minimizing an objective function, a
reasonable direction may be the negative gradient direction (that is, the steepest
descent direction), and a reasonable estimate may be the minimizer along that
direction. This makes sense because following the geodesic is the shortest path, in
the Riemannian metric, to any of the points chosen as the successive iterate. As
will be illustrated later, determining a geodesic may be computationally infeasible.
The notion of a retraction is therefore introduced to provide an alternative that
approximates the behavior of the geodesics, but may be computationally less ex-
pensive. It also provides a more general analytical framework than geodesics alone.

2.1.2 Retractions
A retraction can be understood as an approximation of a geodesic. In fact, if M
is a submanifold of a Euclidean space, it can be shown that the distance between
the geodesic and an arbitrary retraction is O(t2) (see reference [2]). If geodesics
are tedious to compute, there may exist retractions of lower complexity, at the cost
of accuracy. A retraction is a smooth mapping, R : TM → M, such that when
restricted to TxM, it satisfies

i) Rx(0x) = x, where 0x denotes the origin of TxM

ii) For every tangent vector z ∈ TxM, the curve γz : t 7→ Rx(tz) satisfies γ̇(0) = z.

It is assumed that the domain of Rx is the whole TxM, but the general definition
is that i) and ii) hold on an open ball containing 0x. One of the earliest definitions
of the term can be found in the article by Shub from 1986[24]. If moreover

iii)
[ D

dt Ṙ(tξ)
]
t=0 = 0, ∀ξ ∈ TxM,

the retraction is termed a second-order retraction[1].

The exponential map (which generally should not be interchanged with the
matrix exponential function) is a particular case of a second-order retraction. For
every ξ ∈ TxM, there is a unique geodesic satisfying γ(0) = x and γ̇(0) = ξ
(see e.g. do Carmo[9], chapter 3.2). The exponential map is defined as evaluat-
ing this geodesic at t = 1. It may be observed that this is a second-order retraction.

Retractions and geodesics provide a natural way of linearizing functions defined
on manifolds. If f is a real-valued function on M and R a retraction, then its
extension f̂ = f ◦ R at a point x is a real-valued function on the Euclidean space
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TxM. In particular, from the definition of a retraction, one has that

f̂(0x) = f(x)
grad f̂(0x) = grad f(x),

As mentioned, one of the most important reasons for introducing retractions is
to have a framework for performing analysis that is wider than requiring geodesics.
Loosely speaking, any numerical method will only be as accurate as its worst
approximation. Hence, it makes sense to have a way of allowing less accurate, but
more efficient update schemes if the rest of the method relies on rough estimates.

Steepest Descent on Manifolds

Finally, the steepest descent method on manifolds is presented. It was argued how
generalizing from Rn to manifolds was not straight forward since addition is not
well-defined. By using geodesics (or retractions) one may translate the algorithm
to

1. α∗ = arg min
α
f (Rxk

(−α grad f(xk)))

2. xk+1 = Rxk
(−α∗ grad f(xk))

Other versions of steepest descent exist as well. α∗ may for instance be chosen
according to some Armijo-Wolfe-like conditions instead, in case step 1 is hard to
solve. The algortihm provides an important practical implication, which is that
most algorithms will consider a minimization problem on the tangent space at xk,
find an appropriate next iterate, then retract the solution to keep it on the manifold.

The manifolds considered in depth in this thesis are either Rn×p or submanifolds
of Rn×p. The next section is an introduction to matrix manifolds, and how the
concepts introduced here specialize.

2.2 Matrix Manifolds
The set of real n×pmatrices is a manifold. This means that the concepts introduced
in the previous section may be applied when studying matrices and in particular
optimization techniques on matrices. In addition, for submanifolds Rn×p, many of
the concepts are naturally inherited from Rn×p. The projection of the gradient, as
mentioned in section 2.1, is one such example.

In the introduction it was mentioned how matrices in various ways can describe
the geometrical properties of the feasible domain. Some examples are given here to
get a clearer idea of what that means. The matrix manifolds are fairly well-known,
so the proofs that they are in fact manifolds are not included.
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Example 1. The (orthogonal) Stiefel manifold, Stn(p), is the set of n× p ma-
trices with orthonormal columns, that is,

Stn(p) = {X ∈ Rn×p : XTX = Ip}.

Special cases are p = 1 and p = n which are, respectively, the hypersphere, Sn−1,
and the Lie group of orthogonal matrices, O(n).

Example 2. The non-compact Stiefel manifold, Rn×p∗ , is the set of n × p
matrices with linearly independent columns. The special case n = p is the general
linear group, GLn, which is the group of invertible matrices.

Example 3. The Grassmann manifold, Grassn(p), is the set of all p-dimensional
subspaces of RN . For instance if f : Stn(p) → R, and in addition f(X) = f(XQ)
for any orthogonal matrix Q, the optimization problem may be interpreted as a
problem on the Grassmann manifold.

Example 4. The 3D Rotation group, SO(3), is the set of 3 × 3 orthogonal
matrices of determinant 1. It represents rotation in R3, preserving length and
orientation.

Example 5. The fixed rank manifold, Mr(n× p), is the set of n× p matrices
of rank r. Its dimension is (n+ p− r)r [3]

The common denominator of all of the above examples, which is also one of
the primary reasons for considering matrices in the manifold context, is that the
constraints they impose are naturally presented using matrices instead of a set of
equality constraints. Let for instance W (t) be a curve on Stn(p). Differentiate the
constraint with respect to t:

d
dt [W (t)TW (t)]

∣∣∣
t=0

= WT
0 Ẇ (0) + ẆT (0)W0 = d

dt (I)
∣∣∣
t=0

= 0,

hence the velocity of the curve throughW0 must satisfyWT
0 Ẇ (0)→ skew-symmetric.

In other words, the tangent space of the Stiefel manifold is the set TZStn(p) = {Z ∈
Rn×p : XTZ = −ZTX}. The normal space is the set of matrices that can be writ-
ten as N = XΩ, for a symmetric matrix Ω. The projection of a matrix A ∈ Rn×p
onto the tangent space is PXA = Xskew (XTA) + (I −XXT )A. Details may be
found in the article by Edelman et al. [11]. The gradient of a function, f , is readily
found, as shown in section 2.1, by projection from the embedding Euclidean space:

grad f(X) = PX∇f(X) = Xskew (XT∇f(X)) + (I −XXT )∇f(X).

Note that a different metric yields a different projection operator.

2.2.1 Advantages of retractions
A simple differential equation may illustrate more explicitly the reason to study
matrices as manifolds. Let X = X(t) be an n× p matrix and consider

Ẋ = AX, A = −AT , X(0) = X0.
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The solution to this equation is X(t) = exp[At]X0 (seen by e.g. insertion), where
exp is the regular exponential function for square matrices. The following holds
for the solution,

XTX = XT
0 exp[AT t] exp[At]X0 = XT

0 exp[−At] exp[At]X0 = XT
0 X0,

thus every element of XTX is invariant in time. Solving this numerically though,
does not guarantee that this property is preserved. Implemented with a forward
Euler scheme of step size h, one may observe that

XT
k+1Xk+1 = Xk

k (I − hA)(I + hA)Xk = XT
k (I − h2A2)Xk.

Hence, an error depending on A and h is introduced in the supposedly invariant
quantity for each time step. For this problem, and others, it may be of greater
importance to have a feasible solution, than an accurate solution. Consider for
instance the hypothetical optimization problem

min
Q∈O(n)

f(Qz),

where z is some known n-dimensional vector and f is a real-valued function.The
objective function assumes that regardless of the argument matrix, Q, the 2-norm
of Qz is preserved1. If a matrix violates the constraints, the model that was as-
sumed to formulate the optimization problem could become invalid.

The two examples above hopefully illustrate why it is important to have an
analytice framework to evaluate the cost of preserving geometrical structure before
accuracy.

Geodesic versus Retraction

As mentioned in the previous section, the computational complexity of geodesics
may be too high and alternative maps from the tangent bundle to the manifold
are considered instead. A particular example can be found for geodesics on Stn(p)
with the canonical metric, which are given by

γ(t) = [γ(0), Q] exp
(
t

[
γ(0)T γ̇(0) −RT

R 0

])[
I
0

]
,

whereQ andR are determined by the compact qr-decomposition of (I−γ(0)γ(0)T )γ̇(0).
The proof may be found in REF:edelman. In addition to a qr-decomposition, a
computation of the matrix exponential is needed. However, the complexity is at
worst of the same order as qr-decomposition which is O(np2) (see for instance the
article by Moler and Van Loan[22] for details on efficient exponential computa-
tions).

1It is a property of the orthogonal group that ‖Qz‖2 = ‖z‖2 for arbitrary Q ∈ O(n).
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An alternative is to use a retraction based on the Cayley transformation, studied
in the article by Wen[25]. Consider the curve on Stn(p),

Y (t) =
(
I + t

2B
)−1(

I − t

2B
)
W, (2.1)

for some W ∈ Stn(p) and B any skew-symmetric matrix. The curve satisfies
Y (0) = W , Ẏ (0) = −BW (see mentioned article for the proofs). If for instance B
can be written as XGT−GXT for some G ∈ Rn×p, then Ẏ (0) is the projection of G
onto the tangent space at X, using the canonical metric2. Moreover, if G = ∇f(X)
(where ∇f(X)ij = ∂f/partialXij), then Y (t) is a curve along the steepest descent
direction. Furthermore, by writing U = [∇fW ,W ] and V = [W,−∇fW ] and
utilizing the Sherman-Morrison-Woodbury formula(see e.g. Demmel[8], question
2.13) for inverting matrices, the curve is rewritten as

Y (t) = W − tU
(
I + t

2V
TU

)−1
V TW,

which only requires the inversion of a 2p×2p-matrix (O(p3) flops), as opposed to the
O(np2)-flops required for the qr-decomposition mentioned above. This illustrates
how the use of a retraction over the geodesic can be beneficial.

2.3 Second-order Geometry and Newton’s Method
A well-known method of optimization theory is Newton’s method for finding zeroes
of a vector field. An important special case is when the vector field is the gradient
of some real-valued function, which corresponds to finding the function’s stationary
points.

In Rn, Newton’s method may be derived from multi-variable Taylor expansion.
Let F = [f1(x), f2(x)...fp(x)]T be a vector field on Rn. Approximate the vector
field around the current iterate by,

F (xk + h) ≈ F (xk) + J(xk)h,

where J is the Jacobian of F , i.e., Jij = ∂fi/∂xj . The successive iterate, xk+1, is
found by setting the approximation (i.e. the left hand side) to zero and solve for
h. This yields the iteration scheme xk+1 = xk +h = xk − J−1(xk)xk. Note that in
the special case F = grad g(x), J becomes the Hessian matrix of g.

There are several ways to interpret the Euclidean Hessian matrix. By definition,
it is the collection of the second-order partial derivatives of g in matrix format.
Alternatively, it can be viewed as a linear operator that takes a vector z to the
directional derivative of all the components of the gradient in direction z. It also

2The definition of the canonical metric is 〈Z1, Z2〉canon = tr(Z1(I − 1
2XX

T )Z2), and the
induced projection is PWZ = Z −WZTW . See the article by Edelman et al.[11] for details.
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satisfies being the quadratic form defined by d2

dt2

∣∣∣
t=0

g(x+ tz), that is the concavity
of g at x, in direction z[11].

2.3.1 The Hessian operator
For manifolds, the Hessian is considered as a linear operator. The intuitive purpose
of the Hessian is to provide information on how the gradient at a point behaves in
tangent directions to the manifold. In standard literature on differential geometry,
the Hessian is usually not covered in great depth since its use is argueably most
seen within optimization theory. The two most used definitions are as a linear
map from the tangent space to itself, or as a bilinear real-valued operator defined
by a quadratic form similar to the one mentioned above. The view that is taken
throughout this thesis is the same as in Absil et al.[1]. In a Euclidean space, the
Hessian is defined as the mapping Hess f(x) : TxM→ TxM, such that

Hess f(x)[z] = Dzgrad f(x) = lim
t→0

grad f(x+ tηx)− grad f(x)
t

,

The gradient of a submanifold of a Euclidean space is found by projection onto the
tangent space. Let E denote the ambient Euclidean space, and M the manifold.
Moreover, denote the projection operator Px : E → TxM. The Hessian of a
submanifold of a Euclidean space is defined similar to the gradient as

Hess f(x)[z] = Px (Dz(Pxgrad f(x))) ,

where it is emphasized that Dz is the directional derivative in the Euclidean space,
applied to the projected gradient3. For submanifolds of Rn×p, the projection oper-
ator is an np× np matrix. It is then clear that the Hessian of matrix submanifold
follows from the product rule,

Hess g(x)[z] = Px [Dz(Px∇g(x))]
= Px [Px(Dz∇g(x)) + (DzPx)∇g(x)]
= Px∂2g(x)[z] + Px(DzPx)∇g(x)),

(2.2)

where the parentheses in the last expression are used to emphasize the differenti-
ation of the projection operator. The operator Dz is the directional derivative in
Rn×p. The last term is in the technical report by Absil et al.[3] shown to be related
to the Weingarten map, this will not be studied further here. ∂2g(x)[z] is the Hes-
sian in Rn×p (the Hessian matrix multiplied by the vector z). This expression is of
often practical when operating on matrix manifolds. It requires the computation of
the Euclidean Hessian, gradient, projection operator and differentiated projection
operator. It is evident by the expression that obtaining the Hessian requires taking
into account how the projection operator changes on the manifold, in addition to
straight forward projecting the Euclidean Hessian.

3The expression comes from the definition of the Hessian through affine connections(see e.g.
do Carmo [9]) which are not discussed here. The definition is justified by proposition 5.3.2[1].
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For completeness, an alternative definition of the Hessian is included. Edelman
et al.[11] define the Hessian by the quadratic form

Hess g(x)[z, z] = d2

dt2
∣∣∣
t=0

g(γ(t)), γ(0) = x, γ̇(0) = z,

where γ(t) is a geodesic. The Hessian operator is determined by the polarization
identity, which given any quadratic form provides a bilinear form associated with
it4. This expression does however require knowledge of the geodesic.

2.3.2 Local approximations on the manifold
By using retractions, it is possible to introduce a model approximation for the
objective function on the manifold. Consider the function f̂x = f ◦Rx : TxM→ R.
Since it is defined on a Euclidean space, its Taylor series is defined. The second-
order approximation is

m̂x(z) := f̂x(0x) + 〈grad f̂x(0x), z〉+ 1
2 〈z,Hess f̂x(0x)[z]〉

= f(x) + 〈grad fx(x), z〉+ 1
2 〈z,Hess f̂x(0x)[z]〉

= f(x) + 〈grad f(x), z〉+ 1
2 〈z,Hess f(x)[z]〉,

where the first equality holds by the properties of a retraction. The last equality
is only true for second-order retractions(proposition 5.5.5[1]).

The idea was to have a model on the manifold that approximates the objective
function. If x is the original point, the approximation is achieved by taking another
point, y ∈M, through the inverse of the retraction to the tangent space at x. On
the tangent space a Taylor expansion is known and it thus holds that

|f̂x(R−1
x (y))− m̂x(R−1

x (y))| ≤ C‖R−1
x (y)‖r+1, (2.3)

with r equals 1 or 2, depending on whether R is a first or second order retraction.
However, by definition, f̂x = f◦Rx such that f̂◦R−1

x = f , and m̂x◦R−1
x is an r-order

approximation of f , that is defined on the manifold. It is also an approximation
that can be expressed using the function value, the gradient and the Hessian of f
at x. In particular, if y comes from retract a tangent vector, z, then the error is
given by the norm of the tangent vector,

|f(Rx(z))− m̂x(z))| = |f(Rx(z))− (f(x) + 〈grad f(x), z〉+ 1
2 〈z,Hess f(x)[z]〉)|

≤ C‖z‖r+1

Furthermore, proposition 7.1.3[1] states that this is equivalent to |f(y)−m̂x(R−1
x (y))| ≤

C∗(dist(x, y))r+1. In other words, m̂x ◦R−1
x defines an approximation of f on the

4For a general quadratic form Q(v), the bilinear form is B(u, v) = 1
4 (Q(u+ v)−Q(u− v))
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manifold itself, and its error is bounded by the distance measured on the manifold.

The message of this section is to show that by using retractions, it is possible
to describe something that on a manifold is analogous to Taylor expansion in
Euclidean space, and to justify why using retractions is a proper alternative to
geodesics.

2.3.3 Newton’s method on manifolds

Just as in Rn, Newton’s method on a manifold seeks to find a tangent vector, η,
such that Hess f(x)[η] = −grad f(x). Updating the current iterate with this solu-
tion presents the same challange as with the steepest descent method. A retraction
is therefore used to map the Newton vector to the manifold. The algorithm is pre-
sented as algorithm 1.

Data: Retraction R, real-valued (objective) function, f
Result: x∗, such that grad f(x∗) = 0
Input: Initial guess x0, Hess f(·)[·], grad f(·)
while not converged do

Solve for ηk:
Hess f(xk)[ηk] = −grad f(xk)

Update iterate:
xk+1 = Rxk

(ηk)

Compute convergence criterion
end

Algorithm 1: Newton’s method for real-valued functions on manifolds.

The previous section provides an important way of understanding Newton’s
method. The Newton vector is the solution to an approximate optimization prob-
lem on the tangent space, where the error in the approximation is given by equation
(2.3). In particular, it is noteworthy that for a Newton vector with large norm, the
error grows cubically. On the other hand, it becomes a very good approximation
close to a true stationary point (which is analogous to Newton’s method in Rn). It
is emphasized again that the bound is after the retraction has been taken into ac-
count, and not the truncation error from the Taylor expansion on the tangent space.

Due to this understanding of the Newton’s method, it becomes clear that it may
be necessary to consider for instance trust-region methods, or an initial gradient
search to ensure that the model equation sufficiently approximates the objective
function.
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2.3.4 The multi-dimensional Rayleigh quotient

To verify the necessity of projecting the Hessian correctly, and to test the quadratic
convergence of Newton’s method, the generalized Rayleigh quotient is considered.
For a square matrix, A, the multi-dimensional Rayleigh quotient is defined as

ρ(X) = tr(XTAX), X ∈ Stn(p).

It holds that X is a stationary point if and only if the columns of X are eigenvectors
of A (Absil[1], section 4.8.1). To test convergence rate, a symmetric positive definite
matrix is generated by defining D = diag(1, 1.01, . . . , 1.99, 2). The spacing was cho-
sen such that the method requried several steps before it converged up to machine
precision. The next section discusses in depth how the spacing affect convergence
rate. Next, an orthogonal matrix, Q, is computed from the qr-decomposition of a
random 100 × 100 matrix. Defining A = QDQT thus yields a summetric positive
definite matrix whose eigenvalues are known. To achieve convergence for Newton’s
method, it is necessary to be close enough to the minimum. This is ensured by
taking sufficiently many steps with a steepest descent method.

Figure 2.1: Convergence rate for the Euclidean Hessian, ∂2ρ(X). ∼350 iterations
performed. Only first order convergence is observed
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Figure 2.2: Convergence rate for the projected Hessian, PX∂2ρ(X). ∼350 itera-
tions. Same as the plain Hessian, only first order convergence.

Figure 2.3: Convergence rate for the full Hessian, PX∂2ρ(X) + PXDZP∇ρ(X).
Less than 10 iterations to machine precision accuracy.

Three ways to compute the Hessian operator have been considered. Without
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taking into account the manifold structure, one may utilize the Euclidean Hessian,
which is AZ, and project the solution after the Newton vector is found. Alterna-
tively, one may project the Hessian onto the tangent space using the projection
operator (see below). The final option is using equation (2.2), which comes from
considering the Riemannian manifold structure.

The projection operator, Px : Rn×p → TxStn(p), applied to a matrix B ∈ Rn×p
is

PXB = Xskew (XTB) + (I −XXT )B,

see for instance Edelman et al.[11]. Alternatively write out skew, collect the terms
and rewrite as

PXB = B −Xsym (XTB). (2.4)

Taking the directional derivative thus yields

(DZPXB) = lim
t→0

PX+tZB − PXB
t

= Zsym (XTB) +Xsym (ZTB).

Moreover, projecting the directional derivative of the projection becomes

PX(DZPXB) =Zsym (XTB) +Xsym (ZTB)
−Xsym (XTZsym (XTB))−Xsym (XTB)

(2.5)

Using ∇ρ(X) = AX and Hess ρ(X)[Z] = AZ, equation (2.2) becomes

Hess ρ(X)[Z] = AZ −Xsym (XTAZ)− Z(XTAX) +Xsym (XTZ(XTAX)).

The convergence rate is determined by running the three versions of Newton’s
method from the same initial point until a stationary point is reached, then use
this as the reference when running the same computations again. The error is
computed for each iteration and plotted with logarithmic scales as seen in figures
2.1, 2.3 and 2.3. It is clear that it is necessary to use the Riemannian manifold
structure to achieve quadratic convergence and that only a few iterations were
needed in order to achieve machine precision. The methods were implemented by
explicitly forming the Hessian matrix and solve the system directly using Matlab.

2.4 Convergence Analysis
The analytical tools that comes with the notion of retractions are as mentioned
important. This section discusses some of the most general results from Absil et
al.[1]. The purpose is to present some of the results available, not to develop new
convergence proofs. A few of the theorems are therefore included without the proof.
The main theorem of this section is quite technical, so an attempt on specializing
it to a steepest descent method is made. This is primarily to address what factors
are of significance when considering optimization methods on manifolds.
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2.4.1 Convergence to stationary points
In Rn, steepest descent is a particular case of a line-search method, that is xk+1 =
xk +αkηk with ηk = ∇f(xk) and a suitable scalar αk. Convergence to a stationary
point is achieved if the Wolfe conditions are satisfied and the gradient is sufficiently
smooth (see e.g. Nocedal and Wright[23]). As addition is not generally well-defined
on a manifold, the manifold will be equipped with a retraction. The line-search
method is generalized to the form

xk+1 = Rxk
(αkηk). (2.6)

It can be shown that convergence to a stationary point is achieved under conditions
that resemble the Rn requirements. The proof is rather tedious, but due to the
importance of the theorem, it will be included without the proof. First, a few
definitions are required. A gradient-related sequence is defined as a collection of
tangent vectors {ηk}, where ηk ∈ Txk

M, such that the following holds:

lim
k→∞

sup
k∈K
〈grad f(xk), ηk〉 < 0, ηk bounded, (2.7)

for any subsequence, {xj}j∈K, of {xk} that converges to a non-stationary point
of f . Note that the argument of (2.7) is the directional derivative of f at xk in
direction ηk, thus an interpretation is that the directions, ηk, should always be
descent directions, unless {xj}j∈K has converged.

Absil et al.[1] shows convergence for a more general method where xk+1 need
not be determined by a retraction. Instead, the function value at the next iterate
should decrease “sufficiently”. This is similar to one of the Wolfe conditions in Rn
stating that xk+1 should satisfy

f(xk+1) ≤ f(xk) + c∇f(xk)T pk,

that is, the next iterate should ensure that the function value is not only less than
(or equal to) the previous iterate, but should also take into account the directional
derivative in the search direction. To generalize this further, the Armijo point is
defined. Let x ∈M and η ∈ TxM and let α > 0, β, σ ∈ (0, 1). The Armijo point is
ηA = tAη = βmαη, where m is determined as the smallest (non-negative) integer
satisfying

f(x)− f(Rx(βmαη)) ≥ −σ〈grad f(x), βmαη〉. (2.8)

tA is the Armijo step size. Note that the Armijo point is a general definition,
not defined on the terms of any algorithm. Also, βm decreases with increasing m.
Given α and β, the Armijo step size is in a sense the largest down-scaling of αη
such that βmαη is a sufficient descent direction. A re-writing of (2.8) yields

f(Rx(βmαη)) ≤ f(x) + σDβmαηf(x).

Thus, since σ > 0, m must ensure that the directional derivative is non-positive
to satisfy the expression. The Armijo point will determine the convergence re-
quirement for the method. Theorem 4.3.1[1] states (and contains the proof) that
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a method whose search directions are gradient based, and whose iterates, {xk}k,
satisfy

f(xk)− f(xk+1) ≥ c(f(xk)− f(Rxk
(tAk ηk))), (2.9)

for c ∈ (0, 1), converges to a stationary point of the function f . The last criteria,
together with the definition in (2.8), implies the necessary condition

f(xk)− f(xk+1) ≥ −cσDtA
k
ηk
f(xk),

which replicates the form of the Rn Wolfe condition. In particular, xk+1 =
Rxk

(tAk ηk), satisfy this condition. A retraction based update, xk+1 = Rxk
(αkηk),

is also satisfactory if αk is chosen such that f(Rxk
(αkηk)) ≤ f(Rxk

(tAk ηk)) (e.g. as
a minimizer along ηk).

The theorem does only guarantee convergence to a stationary point, not neces-
sarily a minimum. This should be kept in mind when performing the analysis.

2.4.2 Convergence rate
A useful theorem that gives a bound on the convergence rate of the line search
method is theorem 4.5.6[1]. The proof is again tedious, but the theorem itself
provides insight into which factors determine convergence rate. The theorem is
stated next.

Guaranteed Convergence Rate (Theorem 4.5.6[1]). Let ηk = −grad f(xk)
and assume the algorithm converges to a point x∗, which is guaranteed to be a
stationary point. Further, let λmin and λmax be the smallest and largest eigenvalue
of the Hessian of f at x∗. Assume λmin > 0, such that x∗ is a local minimizer.
Then there exists an integer K such that for k ≥ K,

f(xk+1)− f(x∗) ≤ (r + (1− r)(1− c)) (f(xk)− f(x∗)) , (2.10)

where r is given in the interval (r∗, 1), with

r∗ = 1−min
{

2σᾱλmin, 4σ(1− σ)β λmin

λmax

}
.

A qualitative analysis of the theorem follows. Let c ≈ 1. This corresponds to
each iteration satisfying f(xk+1) ≤ f(Rxk

(tAk ηk)). Choosing the exact minimizer
at each step is sufficient to achieve this. Equation (2.10) then becomes

f(xk+1)− f(x∗) ≤ r (f(xk)− f(x∗)) (2.11)

σ, α and β are related to the Armijo point. Consider σ = 0 such that the
Armijo point is determined by f(x) ≥ f(Rx(ηA)). This yields a rather trivially
defined Armijo point, which does not contain a lot of information. On the other
hand, consider σ = 1, that is f(x) ≥ f(Rx(ηA)) − DηAf(x). For a concave func-
tion, this would yield ηA = 0 (seen by visualizing such a one-dimensional function).
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For other functions, a steeper descent than the direction derivative at x in
direction η is required to obtain a non-zero Armijo point. Hence, σ should have a
moderate value between (0, 1). It will be assumed that choosing 0.5 can be done
without loss of much generality. α may be interpreted as a scaling of η that decides
an upper bound on the Armijo point. It is hard to determine a general value to
this variable. Since α = 1 corresponds to setting η as the maximum Armijo point,
it is assumed reasonable that α = ω(1) (in O-notation). In particular, if α� 1

λmax
(and σ and c as discussed) the convergence interval from above is determined by

r∗ = 1− β λmin

λmax
= 1− βκ−1

Of course when using the exact minimizer, plausible values for σ are determined
by the shape of the function. However, it is assumed that for any x and direction
η, setting σ = 0.5 will always include the exact minimum. The main purpose of
this section is anyway to consider which parameters play the most important roles
when considering the convergence of the methods. In this case, if the lower bound
on r is attained, and if steepest descent with exact line search is performed, then
equation (2.11) becomes

f(xk+1)− f(x∗)
(f(xk)− f(x∗) ≤ βκ

−1.

It is thus clear that the Hessian has significant impact on the bound on the con-
vergence rate of the objective function.

In this thesis, the exact minimizer (or very close estimates) will be used in most
cases, hence the parameters will not be studied further. Finally it will be noted
that Newton’s method also fits into this framework if the Hessian at every iteration
is positive definite5, because this ensures that the sequence of Newton vectors is
indeed a gradient related sequence. This is seen directly by inserting the Newton
stesps into the definition of a gradient-related sequence,

〈ηk, grad f(xk)〉 = 〈Hess f(xk)−1(grad f(xk)), grad f(xk)〉.

If the Hessian is not positive definite, it can be modified (for instance by adding a
positive multiple of the identity operator) to ensure that the Newton vectors are a
gradient-related sequence. The ideas presented so far in this section are illustrated
by an example using the multi-dimensional Rayleigh quotient.

2.4.3 Rayleigh quotient example
Convergence of the steepest descent algorithm applied to the multi-dimensional
Rayleigh quotient is studied:

f(X) = 1
2tr(XTAX), X ∈ Stn(p),

5Note that the Hessian is by default symmetric (self-adjoint).
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and let A be a symmetric positive definite matrix with distinct eigenvalues. The
eigenvalues of the Hessian operator may be obtained by vectorizing the equation.
Vectorization refers in this thesis exclusively to stacking the columns of a matrix on
top of one another (vec(Z) is the column vector [Z1,1, Z2,1, . . . , Zn,1, Z1,2, . . . , Zn,p]).
The eigenvalue decomposition of A will be ordered such that the p first eigenvalues
are the same as Λ. From equation (2.2), the Hessian operator at a point where
AX = XΛ is

Hess f(X)[Z] = AZ − ZΛ−XΛXTZ,

which can be seen by insertion and using the projection operator and its directional
derivative from section 2.3.4 (equation (2.4) and (2.5), respectively). It follows that,

A = X̂L̂X̂T , X̂ =
[
X,X⊥

]
, L̂ =

[
Λ 0p×(n−p)

0(n−p)×p L

]

Finally, the vectorization of the Hessian is (with ⊗ denoting the Kronecker matrix
product)

vec(Hess f(X)[Z]) = [Ip ⊗ X̂L̂X̂T − Λ⊗ In − Ip ⊗XΛXT ]vec(Z)

= (Ip ⊗ X̂)[Ip ⊗ L̂− Λ⊗ In − Ip ⊗ Λ̂](Ip ⊗ X̂T )vec(Z)

= (Ip ⊗ X̂)[Ip ⊗ (L̂− Λ̂)− Λ⊗ In](Ip ⊗ X̂T )vec(Z),

where Λ̂ is the n × n diagonal matrix retrieved by appending n − p zeroes to the
diagonal of Λ. The eigenvalues of the Hessian operator are thus (since (Ip ⊗ X̂T )
is an orthogonal matrix),

{λi − λj}i=p+1:n,j=1:p ∪ {−λi}i=1:p. (2.12)

Note that by restricting Z to the tangent space, not all of these necessarily applies.
Also note that the λis are not ordered by magnitude, but rather such that λ1, . . . , λp
corresponds to the eigenvalues at the stationary point X. However, if λ1, . . . , λp
do corresponds to the p largest eigenvalues of A, the eigenvalues of the Hessian are
all negative (since the λis are distinct), and X is thus a minimum. Without loss
of much generality, it will in the following be assumed that the smallest eigenvalue
is 1. The condition number of the stationary point is thus the largest eigenvalue
divided by the “gap” from the eigenvalues corresponding to X and the rest.
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Figure 2.4: Convergence bound on the objective function for steepest descent and
its dependence on condition number of the Hessian matrix. It is clear that a higher
condition number for the Hessian matrix implies a slower convergence rate.

Figure 2.4 illustrates how the convergence bound may depend on the condi-
tion number of the Hessian when the objective function is the multi-dimensional
Rayleigh quotient. The matrix was constructed in a similar fashion as in section
2.3.4 by first generating a random orthogonal matrix, Q, then constructing a di-
agonal matrix, N , and letting A = QNQT . This way, the eigenvalues of A were
easily manipulated, and thus the condition number of the Hessian matrix can be
constructed. As seen above, the condition number of the Hessian matrix at the
minimum is

κ = l1
lp+1 − lp

,

where lj is the j-th eigenvalue when sorted in descending order. By setting lp −
lp+1 = δ > 0 and equally spacing the p first and the n − p last diagonal elements
of N , the eigenvalues are ordered and distinct. The eigenvalues of A are also all
positive, thus the considerations above apply.

The y-axis in figure 2.4 is the measured minimum value of (fk+1)−f(x∗))/(fk−
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f(x∗)) when xj is assumed to be relatively close to the minimum (plotted logarith-
mically), taken over all k ≥ j. From the theorem(2.4.2), and the assumption that
c ≈ 1, it holds that

fk+1 − f(x∗)
fk − f(x∗) ≥ Kκ

−1,

where K is some positive constant. This implies that a logarithmic comparison
between the condition number and the lower bound should exhibit a linear re-
lationship of order 1. This is observed to some extent in the figure. When the
condition number lies is between 10 and 103, there is a nice correspondance with
the first order line. Towards larger condition numbers (in particular the three last
data points), the convergence rate was actually better than expected, but it should
be kept in mind that the theoretical bound is a lower bound.

It is interesting that the method performs better for large condition numbers,
but the example is indeed illustrational and constructed. More rigorous testing is
necessary to see if this is something that holds in the general case. Regardless of the
exact order of the convergence rate, the condition number of the Hessian matrix
appears to have a significant impact on the convergence rate, with a generally
faster convergence for a smaller condition number (which is consistent with what
one might expect).
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Chapter 3

Blind Source Separation

In the introduction signal processing was mentioned as an application of optimiza-
tion on manifolds. More specifically blind source separation will be considered.
Consider the problem of determining a set of source signals, from another set of
recorded signals. A typical example is the cocktail party problem. Assuming a
group of individuals are gathered in a room and microphones are placed at ran-
dom locations to record their voices, the objective is to retrieve the voices from
the signals recorded by the microphones. The cocktail party problem is merely an
intuitive explanation of the problem. Various restriction may be imposed without
addressing the issue as a problem of human voices.

One such example is data from MEG (Magnetoencephalography) to remove ef-
fects like eye movement and blinking, amongst other activities that highly affect
the measured brain signal[19]. Another application is underlying factors in eco-
nomical data [6]. The return on a security can be assumed to be a sum of several
underlying factors, such as seasonal variations, gross domestic product or federal
or other tax rates. Blind source separation can be used to determine these factors,
and which are the most significant ones.

Independent component analysis, which is a specific blind source separation
techniqiue, has been used for text mining[14], where a number of news articles
were chosen from certain topics and subtopics. The goal was to determine the top-
ics and subtopics from the given texts. The independent components were assumed
to be the subtopics (defined by a set of words), which were mixed together to the
resulting articles.

A more detailed description of applications can be found in e.g. [19]. It is im-
portant to emphasize the perhaps clearest commonality. In all the examples one is
able to measure several quantities that are assumed to result from the same under-
lying factors. The following sections presents and discuss the manifold approach
of two blind source separation techniques: the sparse representation problem and
independent component analysis.
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3.1 Sparse Representation and Dictionary Learn-
ing

The problem is defined as finding a sparse solution, s, to the underdetermined
(overcomplete) linear inverse problem

x(t) = As(t), A ∈ Rm×n,m ≤ n (3.1)

It is often assumed, and it will be here, that any m columns of A are linearly
independent. The dependence on t may be dropped for notational simplicity. A
is often referred to as the dictionary. The signals are dependent on time, meaning
that under discrete sampling one may write (3.1) as

X = AS, X, S ∈ Rm×T , (3.2)

where T is the number of samples. Time is defined rather abstractly here and may
not refer to actual wall-time, but rather any measurements that can be represented
as the m × T -system above. In the literature it looks as if it is never emphasized
which of the two representations above are considered. In reference [20] it is as-
sumed that equation (3.1) is sufficient, and this practice is also adopted here. The
transition to discrete time sampling is expected to always be clear. A noise-term
can also be added to the model. Only independent and identically distributed
Gaussian noise will be considered here, it is also the most common assumption.

The exact formulation of the noiseless case is

min ‖s‖0, s.t. As = x,

where ‖ · ‖0 is defined as counting the number of non-zero elements (the 0 stems
from the fact that it is the p-norm for p = 0, if one defines 00 = 0). It has been
proved that if A is known, finding the sparsest solution is NP-hard[5], therefore it
is reasonable to assume that the same problem with A unknown is at least as hard.
Alternative formulations are therefore sought.

Note that both s and A are assumed unknown. Finding these is a daunting
task, especially since the norm ‖ · ‖0 is not very suited for numerical computations.
Several approximations of sparsity using continuous functions are suggested in the
literature(see e.g. reference [16] for a comprehensive list of suggestions). Such
measures will in the following be referred to as diversity measures. Diversity is the
opposite of sparsity. The FOCUSS-algorithm, first presented by Gorodnitsky et
al.[13], uses the p-norm for 0 < p ≤ 1, that is d(x) = p

√∑
|x|p. The p-norm is of-

ten denoted by ‖x‖p or lp. This will also be the case in this thesis, and p will be set
to 1. In a technical report by Donoho[10], it was argued that minimizing l1 leads
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to the same sparsity pattern (or support) as using l0. The choice of diversity mea-
sure is revisited later, after some of the most popular methods have been presented.

Assuming one such measure have been chosen, one may view the optimization
problem as the unconstrained problem over A and s:

min
A,s

1
2‖As− x‖

2
2 + λd(s), (3.3)

where λ is a scalar that for now will be interpreted as a weight parameter. An al-
ternative derivation of equation (3.3) can be done from a Bayesian perspective[20]
when A is assumed to be known. In fact, if the sources satisfy being hypergen-
eralized Gaussians1 and the model is assumed to contain Gaussian noise, λ can
be interpreted as the signal-to-noise ratio. The Bayesian perspective will not be
emphasized in this thesis, therefore λ will for now be understood as a weight or
penalty parameter.

Some algorithms consider the case where A is known and s is sought. As men-
tioned earlier such problems are NP-hard, and approximate solutions are sought
instead. The formulation is basically the same as (3.1), except that A is removed
from the argument list. Some of the algorithms in the literature are (Orthogonal)
Matching Pursuit, Basis Pursuit and FOCUSS. The latter is considered in this
thesis for comparison to the manifold-based methods.

If the dictionary is unknown, learning algorithms are implemented instead.
Commonly, the solution is found by a 2-step iterative procedure. For every it-
eration, it is first assumed that the dictionary is given, and the signals are found
using e.g. one of the methods mentioned above. Next, the dictionary is updated to
adapt to the changes that occurred in the previous step. The procedure is continued
until some convergence criterion is met. The two steps are referred to as sparse
coding and codebook update (or dictionary update)[5]. Some of the algorithms
(and references to literature) for the codebook update are:

• Maximum Likelihood Estimates, maximize P (A|x)(see [5] and references therein)

• Method of Optimal Directions (MOD)[12]

• Maximum a posteriori probability[20], P (A|x) ∝ P (x|A)P (A)

• K-SVD[5] (K-means, column-wise update)

3.1.1 The manifold adaption
Observe that the signals may be scaled and ordered arbitrarily,

As = APΛΛ−1Ps = ÃΛ−1Ps = Ãs̃,

1A hypergeneralized Gaussian distribution have a probability density function on the form
P (x) = Z−1 exp(−γd(x)), where Z is a normalization parameter. γ is a scalar, and d(x) must
satisfy d(x) = d(|x|) and d(0) = 0.
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for any diagonal matrix Λ of non-zeros and perturbation matrix P . It therefore
makes sense to impose additional constraints on A. Instead of just assuming A ∈
Rm×n, two other manifold structures are considered:

AF = {A ∈ Rm×n : ‖A‖F = 1}, AC = {A ∈ Rm×n : ‖ai‖2 = 1/
√
n}, (3.4)

where ai are the columns of A, and ‖·‖F denotes the Frobenius norm. ‖·‖2 denotes
the regular 2-norm. Note that AC ⊂ AF . AF is in a sense the (nm−1)-dimensional
sphere when A is vectorized. Let ~A and vec(A) both denote the vectorized version
of A. Due to the sphere-analogy, the projection operator of AF is

P ~A = (Inm − ~A ~AT ),

which applied to a vectorized matrix yields,

P ~A
~Z = ~Z − (~ZT ~A) ~A,

thus the matrix version of the applied projection operator becomes

PAZ = Z − tr(ZTA)A.

Moreover, (A + ZA)/‖A + ZA‖F is a retraction on AF (properties i) and ii) are
readily verified by insertion), but it is not the geodesic. The geodesic that satisfy
γ(0) = A and γ̇(0) = ZA is

γ(t) = A cos (‖ZA‖F · t) + ZA
‖ZA‖F

sin(‖ZA‖F · t),

analogous to the geodesic on the sphere. However, sine and cosine are sensitive for
large values, meaning that if this geodesic is applied it is likely that a renormal-
ization has to be carried out to numerically ensure γ(t) ∈ AF . For this reason,
(A + ZA)/‖A + ZA‖F is used in the following, and since it is a retraction, it is
known from the previous analysis that it is a proper alternative to the geodesic.

Kreutz-Delgado et al.[20] reported that the optimization on AC showed best
performance, followed by AF , and then Rm×n (at least for the FOCUSS-based
method, which will be presented in section 3.1.3).

If the problem is attempted solved by the two steps mentioned, an option is
to use steepest descent on the dictionary update (as done by Kreutz-Delgado et
al.[20]). Following the discussion from section 2.1, the gradient can be computed
by applying the projection operator to the Euclidean gradient. Let φ denote the
objective function,

φ(A,S) = 1
2T ‖AS −X‖

2
F + λd(S). (3.5)

The division by 2 is for computational convenience. A,S and X are as defined in
equation (3.2). Dividing by T ensures that the the first term is the average residual
error, in the 2-norm, sampled at every time step. The diversity measure is assumed
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to apply column-wise, meaning that if the p-norm is used as a diversity measure,
d(S) is the sum of the p-norm over the individual columns. Let ∇A denote taking
the gradient of Rn×p with respect to A. It follows that

∇A‖AS −X‖2F = ∇A(tr((AS −X)T (AS −X))
= ∇A(tr(STATAS − 2XTAS +XTX)
= ∇A(tr(ASSTAT − 2XTAS)
= 2ASST − 2XST ,

thus, the gradient is given by

∇Aφ = 1
T

(ASST −XST ). (3.6)

Note that for a zero-mean signal, SST /T approximates the covariance matrix of
the signals given by S. In case of a different matrix structure, the appropriate
gradient is readily found by projection.

A different approach is considered next. The sparse representation problem was
introduced as a problem depending on both A and s. It is therefore natural to try
and consider it as equally dependent on both A and s. The Cartesian product of
two manifolds can also be given a manifold structure[21], and this will be utilized
here. Consider the minimization of φ defined in (3.5), over the manifold A × S.
For now S = Rn×T , but it may be of interest to consider other possible manifold
structures on the signals. This is not within the scope of this thesis. Recall that T
is the number of time samples. In a similar manner as above, one may show that

∇Sφ = 1
T

(ATAS −ATX) + λ∇Sd. (3.7)

Note that this requires the gradient of the diversity measure. For descriptive pur-
poses, it is possible to consider an element of the manifold A × S as the vector
[vec(A)T , vec(S)T ]T , and accordingly it is natural to identify an element of the tan-
gent space as [vec(ZA)T , vec(ZS)T ]T . The tangent space of the Cartesian product
of two manifolds manifold at a point, is the Cartesian product of the tangent spaces
at that point(see e.g. Lee[21], proposition 3.14). Hence, the projection operator
for the vectorized interpretation is

P ~A~S =
[
P ~A 0
0 P~S

]
=
[
P ~A 0
0 InT

]
It should be emphasized that a practical implementation of the manifold, and
operations on its elements, need not operate with vectorized matrices, but for il-
lustrational purposes, this notation is used. It will often be clear how for instance
projection operators, gradients or Hessians should be implemented using the pure
matrix structure instead. With the projection operator and the gradient defined,
steepest descent is readily implemented, either with a constant step size or using a
more adaptive procedure like exact line search.
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Hessian Computations
Regardless of the manifold, the Hessian is found by first computing the Euclidean
Hessian. Using vector notation, it is

∂2φ( ~A, ~S) =
[
J ~A(∇ ~Aφ) J~S(∇ ~Aφ)
J ~A(∇~Sφ) J~S(∇~Sφ)

]
=
[
J ~A(∇ ~Aφ) J~S(∇ ~Aφ)
J~S(∇ ~Aφ)T J~S(∇~Sφ),

]
where J denotes the Jacobian matrix with respect to its subscript. The last equality
follows either direct calcularion, or the fact that the Euclidean Hessian is symmet-
ric. Consider first the upper left block:

J ~A(∇ ~Aφ) = 1
T
J ~A((SST ⊗ Im) ~A− vec(XST ))

= 1
T

(SST ⊗ Im)

The upper right block can be determined by

J~S(∇ ~Aφ)Z~S = 1
T
J~S((SST ⊗ Im) ~A− vec(XST ))vec(ZS)

= 1
T

vec[DZS
(ASST −XST )]

= 1
T

vec[A(SZTS + ZSS
T )−XZS ]

= 1
T

(In ⊗ (AS −X)σ + S ⊗A)vec(ZS),

where σ is the perturbation operator (or matrix) such that vec(ZTS ) = σvec(ZS)2.
Hence,

J~S(∇ ~Aφ) = 1
T

(In ⊗ (AS −X)σ + S ⊗A),

Finally the lower right block is

J~S(∇~Sφ) = J~S((IT ⊗ATA)~S − vec(ATX) + λ∇~Sd(~S))

= IT ⊗ATA+ λJ~S(∇~Sd(~S)),

which for large time samples is block diagonal when the diversity measure is chosen
as will be discussed in section 3.1.2.

Section 2.3 noted that computing the Hessian on a manifold had to take into
account the variation of the projection operator. Consider the projection of the
Euclidean Hessian (the first term in equation (2.2)):

P ~A~S∂
2φ( ~A, ~S)~Z =

[
P ~A 0
0 InT

] [
J ~A(∇ ~Aφ) J~S(∇ ~Aφ)
J~S(∇ ~Aφ)T J~S(∇~Sφ),

]
=
[
P ~AJ ~A(∇ ~Aφ) P ~AJ~S(∇ ~Aφ)
J~S(∇ ~Aφ)T J~S(∇~Sφ),

]
.

2It can be interpreted as the n2 × n2 identity matrix with its rows permuted as [1 : n]⊗ 1n +
1n ⊗ [0 : n− 1]n. [i : j] is defined as the vector [i, i+ 1...j − 1, j].
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Furthermore, the second term of equation (2.2) is

P ~A~S(D~ZP ~A~S)∇φ = P ~A~S

[
D ~ZA

P ~A 0mn×nT
0nT×mn D ~ZS

P~S

] [
∇ ~Aφ
∇~Sφ

]
= P ~A~S

[
D ~ZA

P ~A∇ ~Aφ

0nT×1

]
=
[
P ~ADZ ~A

P ~A∇ ~Aφ
0nT

]
For AC , the projection operator is P ~A = I− ~A ~AT and D ~ZA

P ~A = −( ~A~ZTA + ~ZA ~A
T ).

Furthermore, P ~AD ~ZA
P ~A = − ~ZA ~A

T . The matrix representation of the Hessian is
thus

Hess φ( ~A, ~S) =
[
P ~AJ ~A(∇ ~Aφ) P ~AJ~S(∇ ~Aφ)
J~S(∇ ~Aφ)T J~S(∇~Sφ)

]
−
[
( ~AT∇ ~Aφ)Imn 0

0 0

]
(3.8)

Observe that due to the projection of the upper right block of the matrix, and
not the lower left block, the matrix itself is no longer symmetric, which appears to
contradict the fact that the Hessian should be symmetric. However, when viewed
as an operator on the tangent space at A, one may verify that the operator is
indeed self-adjoint.

3.1.2 Diversity measures
The choice of diversity measures is not studied in great depth in this thesis since
the l1 measure is assumed to suffice. However, since it is such an essential part
of the optimization formulation, it is important to be wary of the limitations that
follow from the choice of measure.

The goal of the diversity measure is obviously to encourage sparse solutions.
Hurley and Rickard[16] suggests six sparseness properties that a diversity measure
should be able to handle. The study is not directly related to the sparse represen-
tation problem, but how one may determine if (and to what extent) a data set is
sparse.

Gorodnitsky[13] suggests that the gradient of the diversity measure can in many
cases be factorized as

∇sd(s) = α(s)Π(s)s,
where α(s) is a positive scalar function of s and Π(s) is a symmetric positive definite
matrix. For the l1-norm, the gradient is the sign function, sgn(s), thus α(s) = 1,
Π(s) = diag(|s|−1). The FOCUSS algorithm takes explicit use of the factorization,
but the factorization is not useful for the gradient-based ones. The gradient is
discontinuous whenever si = 0, which may be unfortunate for numerical methods.
However since these discontinuities appear almost nowhere, it will be assumed that
this choice is valid even when using gradient and Hessian-based methods. The Hes-
sian of the l1-norm is undefined for any signals that are 0. In the implementation
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the value is set to 0, which is not ideal, but since numerical values are assumed to
rarely be exactly 0, it is assumed to be a good enough ad-hoc fix. It also provides
a much more efficient implementation, since J~S(∇~Sφ) becomes IT ⊗ ATA, which
applied to vec(ZS) becomes ATAZS .

The lack of smoothness of the l1-norm provides challenges for numerical meth-
ods, but it will be assumed that only minor modifications are necessary in order
to make gradient-based methods converge. The elements of the Hessian are all ze-
roes, except if si = 0, where it is undefined. Arguing again that si being identically
zero is a rare case leads to the assumption that setting the Hessian to all zeroes,
regardless of the values of S, is sufficient for a practial implementation of Newton’s
method. It does in particular lead to a very efficient implementation. Smoother
diversity measures could also be studied for such methods, but it is not within the
scope of this thesis.

A final remark is that the diversity measure will sometimes be referred to as
dependent on the vector s, and sometimes on the matrix S. To avoid confusion, it is
clarified here that a diversity measure is evaluated on a vector. If the notation d(S)
is used, it means summing up the diversity of all the columns of S. Potentially, one
may use the average diversity instead, but since the weighting parameter of sparsity,
λ, is considered as a penalty parameter, division by T , or any other constant, will
only alter how λ should be chosen. By assuming this property on the diversity
measure, the Jacobian of d for vectorized S becomes block-diagonal, implying that
the lower right block of the Hessian of φ, B4, is block-diagonal as well. This greatly
improves the efficiency of computing the Hessian.

3.1.3 FOCUSS
The FOCUSS algorithm is designed to solve the sparse representation problem
when the matrix A is known. It is an acronym for Focal Underdetermined System
Solver. Consider equation (3.3), and let A be known, thus not an argument of the
objective function. Setting the gradient with respect to s to 0 yields the generally
non-linear equation for s∗,

AT (As∗ − x) + λ∇sd(s∗) = 0,

which is shown[13] to be equivalent to

s∗ = Π−1(s∗)AT (α(s∗)λI +AΠ−1(s∗)AT )−1x, (3.9)

when the factorization of the gradient of d, introduced above, is used. This be-
comes the basis for a fixed point iteration which is the FOCUSS algorithm. In an
article by He et al.[15], it was shown that the FOCUSS algorithm is a quasi-Newton
method, and that it possesses certain superlinear convergence properties, at least
for 0 < p < 1.
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When implemented on the unknown dictionary case, it was suggested[20] that
one may alternate between using the FOCUSS algorithm and a steepest descent
method with constant step size on the dictionary to ensure convergence. The
constant step size is often referred to as the learning rate. Note that the FOCUSS
algorithm operates on one time sample at a time. It can therefore make sense
to update a batch of the time samples before updating the dictionary, instead of
updating all the time samples before considering the dictionary.

3.1.4 Complexity
To get an idea of the efficieny of the methods, it is necessary to take into consid-
eration complexity and potential run time. Steepest descent requires the compu-
tation of ∇Aφ and ∇Sφ, where the first one is given by equation (3.6), and takes
O(n2T + mn2 + mnT ) = O(n2T ) flops to compute3. ∇Sφ is given by equation
(3.7). By doing AT (AS) instead of (ATA)S, it can be done in O(3nmT ) flops.
The gradient of the diversity measure is not included, but due to the relatively
simple form, its complexity is negligible. The overall complexity for computing the
gradient is thus

O(4mnT + n2T ).

If a manifold structure is imposed on A as well, a retration has to be performed as
well. For AF , a retraction can be to divide A by its Frobenius norm, which is a rela-
tively cheap procedure. The cost of the retraction is therefore considered negligible.

The FOCUSS-based algorithm uses the gradient with respect to A as well, but
this is not the most complex step. The iteration given by (3.9) requires the inversion
of an m×m matrix, which has to be performed independently for each time sample.
There may be some matrix structure to take advantage of, considering the relatively
simple form it takes. However, performing this step on all time samples is a priori
O(Tm3). The gradient is computed every TN time steps, hence the total cost is

O
(
m3T + n2T ·

(
T

TN

))
In a practical case, TN will be relatively high, such that the ratio T/TN is a con-
stant that can be excluded, thus only the first term is necessary to represent the
complexity.

For Newton’s method, it helps to consider the four blocks of the Hessian,

Hess φ(A,S)[ZA, ZS ] =
[
PAB1 PAB2
BT2 B4

] [
ZA
ZS

]
Computing the matrix-vector product means computing PA(B1ZA + B2ZS and
BT2 ZA + B4ZS . Note that the sizes of B1, B2 and B4 are respectively mn ×mn,
mn × nT and nT × nT . The projection operator is relatively cheap, hence the a

3The last equality follow from the assumption m < n and T > n.
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priori complexity is O((mn)2 + 2mn2T + (nT 2)), and that is without taking into
consideration that the matrix has to be formed. However, since B4 is sparse and the
matrix-vector product can be computed by ATAZS , the last term of the complexity
is instead 2mnT . In a similar fashion, B1ZA can be computed in O(n2T ), which
actually is more, but takes into account forming the matrix. Moreover, B2ZS is
done inO(mnT+n2T ), and BT2 ZA isO(mnT+n2T ). Hence, the overall complexity
of computing the matrix-vector product is,

O(2n2T + 2Tmn) = O(n2T ),

which is much lower than compared to a dense Hessian matrix-vector product which
would be O((nm + nT )2) = O(n2T 2). Ideally, an iterative method can be imple-
mented that requries few steps (� nm+nT ) to converge. Alternatively the system
can be solved directly by block-wise inversion, which would also be relatively cheap.

In conclusion, computing the gradient and applying the Hessian is of the same
complexity. Furthermore, performing a Newton step is (approximately) as com-
plex as a steepest descent up to a constant that depends on the required number of
iterations to solve the Newton equation. FOCUSS is, at least for the problem sizes
in this thesis, m times more complex than steepest descent and Newton’s method.

3.2 Independent Component Analysis
Independent Component Analysis(ICA) is another case of blind source separation.
The two main aspects of what separates it from the sparse representation problem
is that the sources are required to be statistically independent and that n = m.
It is also assumed that the variance of s is 1, but this is merely a restriction from
the scale and perturbation invariance of s (as mentioned in the previous section).
In the literature, n < m and n > m are also considered, but n > m is basically
the sparse representation problem with the independence of signals assumption.
To have a clear distinction between ICA and sparse representation, ICA will in
this thesis therefore always imply that n = m. It will also be assumed that s is
a zero-mean signal without loss of generality (in case of a nonzero mean, a simple
pre- and postprocessing step is added).

Due to the independence of signals, pre-whitening the measured signal is a useful
tool. This is done by computing the eigenvalue decomposition of the covariance
matrix of the measured signals,

E(xxT ) = 1
T − 1XX

T = V DV T ,

then premultiply by V D−1/2V T to obtain independent signals. Division by T − 1
is to ensure a biased estimator. Let x̃ denote the pre-processed signals,

x̃ = V D−1/2V Tx =⇒ E(x̃x̃T ) = V D−1/2V TE(xxT )V D−1/2V T = In.
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A reformulation of the blind source separation problem is thus

x̃ = V D−1/2V Tx = V D−1/2V TAs, (3.10)

Since s contains statistically independent signals, it must hold that

E(x̃x̃T ) = (V D−1/2V TA)(V D−1/2V TA)T = I,

hence V D−1/2V TA must be an orthogonal matrix, W , and (3.10) becomes

x̃ = Ws ⇐⇒ s = WT x̃.

The blind source separation formulation is thus rewritten as a problem on the or-
thogonal group.

In the previous problem, finding s was based on the assumption that the sig-
nals were sparse, and an objective function was formed to minimize the error, but
also take into account the sparsity of the solution. Now however, the signals are
explicitly given by WT x̃, hence any objective function will exclusively depend on
W , and not s. A different assumption is therefore imposed on the signals.

The central limit theorem states that the probability distribution function of a
linear combination of random variables, is a priori closer to a Gaussian distribution
than the individual signals. The goal of the objective function is therefore to
measure non-Gaussianity, and accordingly the optimization formulation attempts
to maximize the non-Gaussianity of s. Such an objective function is referred to as
a contrast function.

3.2.1 Contrast functions
The quantification of non-Gaussianity is not straightforward. The sought contrast
function should map a random variable to R. Random variables have probability
distributions, hence it makes sense to consider how various variables can be seper-
ated based on their distributions. The entropy of a random variable is defined
as

H(y) := −
∫
f(y) log f(y)dy,

where f is the probability density function, and it can be shown that no random
variables have a larger entropy than a gaussian variable. It therefore makes sense
to define negentropy:

J(y) = H(ygauss)−H(y),
where ygauss is a Gaussian variable with the same mean and variance as y. The
property of J is now that for a Gaussian variable it is zero and positive for (all) other
distributions. From a statistical point of view, this is optimal [17]. It is however
computationally difficult to compute, hence approximations are made. One such
approximation is obtained by choosing some appropriate functions, Gis, and let

J(y) ≈
k∑
i=1

[E(Gi(y))− E(Gi(ζ))]2.
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Here ζ is a gaussian variable with the same mean and variance as y. In the fol-
lowing, y will have zero mean and unitary variance. Depending on any a priori
knowledge about the independent components, one may adapt the choice of the
Gis. For simplicity, only k = 1 is considered in this thesis. When it is clear from
the context, G may be referred to as the contrast function (since it defines the
approximation function). Hyvarinen and Aapo[17] gives a rigorous explanation
of how to choose the function in practice, at least when implemented using the
FastICA-algorithm. However, several of the ideas apply to the problem regardless
of how the implementation is done. They argue that the following should be kept
in mind when considering the choice of contrast,

1. If the ICA model is correct and G is sufficiently smooth and even, then the
set of local maxima for the approximation, JG(w), includes the ith row of
the orthogonal matrix W .

2. If G is on the form G(u) = k1 log fi(u) + k2u
2 + k3. Where fi is the density

function of si, then the trace of the asymptotic variance of w is minimized.
This can be considered as a criteria to optimize the efficiency of the estimator
(of negentropy).

3. If G is bounded, or at least a function that grows slowly when u becomes
large, it will be robust against outliers.

Point 2) is the optimal choice with respect to the variance property mentioned.
The main idea behind point 2) is that for a finite number of samples there exists a
best approximation to negentropy. Therefore, the approximation function should
preferrably be close to as good as the optimal choice. It is reasonable to assume
that a function behaving similarly (with respect to u) to k1 log fi(u) + k2u

2 + k3 is
such a function.

Next are two particular points to consider. The first is computational complex-
ity (G and its derivatives should be easy to compute). The second is that with a
fixed choice of contrast function, signals with different distributions are weighted
differently, such that certain maxima are “more important” than others. If for
instance only one signal is sought (the optimization is carried out on Stn(1)), cer-
tain basins of attraction can be exceedingly large such that a random initial guess
will in almost all cases converge to the same maxima. This can however be taken
advantage of, if information on the signals is available beforehand. The functions
that were suggested are the following three:

1. G1 = 1
a1

log cosh(a1u)

2. G2 = − 1
a2

exp(−a2u
2/2)

3. G3 = 1
4u

4

Experimentally, a2 = 1 and 1 ≤ a1 ≤ 2 have proven to be convenient choices[17].
Having these three functions to choose from, the following is summarized:

• G1 is a good general-purpose contrast function
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• G2 may be better if the independent components are known to be super-
Gaussian (which are often according to the same article) or when robustness
is important.

• G1 and G2 may be approximated in case they are too computationally ex-
pensive.

• G3 requires practically no presence of outliers

Due to its computational and conceptual simplicity, kurtosis will be used in the
experiments later.

Searching for the least Gaussian signals is just one way of approaching the
ICA problem. Minimization of mutual information is another measure that can be
used. Other contrasts are not studied here, but an interesting common property of
constrast functions is that the Hessian matrix becomes block-diagonal, with n× n
sized blocks. The next section shows what this means for the particular choice of
G3. As will hopefully be clear, the block-diagonal structure is caused by the fact
that it is the distribution of the time sampling of the signal that determines the
value of the contrast function. In other words, reordering the columns of the n×T
matrix X̃ does not affect the value of the contrast function. The linear relationship
between x̃ and s is also necessary.

3.2.2 Manifold adaption
It was mentioned earlier how s is uniquely determined by W . Assuming then that
a contrast function, φ, has been chosen, the optimization formulation is

max
W∈O(n)

φ(WT x̃),

where O(n) is the orthogonal group. It should be noted that if only a few of the
signals are of interest, the optimization may be performed over Stn(p) instead. In
particular, if any statistical properties of the required signal(s) such as expected
kurtosis are known, then a clever choice of contrast, and optimization over Stn(p)
could prove very effective. In the following, it will be assumed that all the signals,
and thus an orthogonal matrix, are sought.

The tools from the previous chapter applies readily. Steepest descent (or ascent,
depending on how the implementation is done) is for instance one method that is
well defined. A retraction is also needed, and several exists in the literature. QR-
factorization, the Cayley-transform related retraction mentioned in section 2.2.1
and the explicit geodesic to mention a few. The projection operator is given by

P(Z) = W skew (WTZ)
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For the computation of the gradient, consider φ(s) = 1/2
∑
i[E(g(si)) − C]2

as the contrast function. With a slight abuse of notation, let yi = yi(t) denote
signal i of the vector y(t), while Yi is the row vector containing the time samples
of yi(t). For a measured signal, the expected value is replaced by the mean of the
signal. Let g(Si) denote the T -dimensional column vector containing the sampling
of g(si). The contrast function is written

φ(S) = 1
2
∑
i

[
1
T

1TT g(Si)− C
]2
,

where 1T is the vector of length T containing only ones. Before computing the
gradient of the expression, note that each term in the above sum depends on
one, and only one, of the signals and thus only one of the columns of W . The
gradient is therefore found term-by-term, through differentiation with respect to
the appropriate column in W . Let z = wi (column i of the matrix W ), such that
Si = wTi X̃ and compute

∇z
[

1
T

1TT g(zT X̃)− C
]2

= 2
[

1
T

1TT g(zT X̃)− C
](
∇z
[

1
T

1TT g(zT X̃)− C
])

= 2
[

1
T

1TT g(zT X̃)− C
](

1
T
X̃g′(zT X̃)

) ,

(3.11)
where the first factor is a scalar, and the second factor is an n-dimensional vector.
Writing out the entire gradient thus yields,

∇Wφ = X̃G′(W )D(W ),

where D(W ) = diag( 1
T 1TT g(wTi X̃) − C) and the ith column of G′(W ) is g′(wiX̃).

In a similar fashion, the Hessian may be computed. Again, due to the lack of
interaction between the columns of W in the contrast function, the Hessian need
only be computed “locally”. Thus it is sufficient to compute the Jacobian of (3.11)
with respect to z,

Jz(∇z(...)) = 1
T 2 (X̃g′(zT X̃))(X̃g′(zT X̃))T + d(z)

T
X̃diag(g′′(zT X̃))X̃T , (3.12)

with d(z) = 1
T 1TT g(zT X̃)−C. Vectorizing W and viewing the Hessian as an n2×n2

matrix yields a block diagonal matrix,

Hess φ(vec(W )) =


Jz(∇z(...))|z=w1

Jz(∇z(...))|z=w2

. . .
Jz(∇z(...))|z=wn


Applying the Hessian is thus of lower complexity, O(n3), than for a potentially
dense Hessian (which is O(n4)). This makes iterative Krylov subspace methods
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suitable, for instance when solving the Newton equation. Such methods need not
form the matrix either, but can apply (3.12) directly. However, this is the Eu-
clidean Hessian. The projection operator onto the tangent space of the orthogonal
group must also be taken into account.

The projection operator is as mentioned

PWA = W skew (WTA) = 1
2(A−WATW ), P ~W

~A = 1
2( ~A− (WT ⊗W )σ( ~A)),

where σ is again the perturbation operator such that vec(ZT ) = σ(vec(Z)). More-
over, the directional derivative and its projection are

(DZP)A = −1
2(ZATW+WATZ), PW (DZP)A = −1

2
(
sym (ATW ) + sym (WAT )

)
By vectorizing all the tools used above, it is possible using equation (2.2) to compute
an explicit Hessian matrix. However, in a practical application it is more convenient
to use it as a linear operator, and use a Krylov subspace solver.

3.2.3 The FastICA algorithm
The arguably most common method to solve the ICA problem, is the FastICA
algorithm proposed by Hyvarinen and Oja[18] in 1997. The method finds the
components one-by-one, followed by a re-orthogonalization procedure to ensure
that the constraint is fulfilled. The derivation of the method is based on con-
strained optimization theory and the Karush-Kuhn-Tucker conditions. Let φ =
0.5E[(g(wT x̃) − C)2] be the one-component contrast. The derivation is not in-
cluded here, since it is readily available in the literature. The algorithm is to
repeat:

1. yk ← E[x̃g′(wTk x̃)]

2. wk+1 ← wk − µ[yk − (wTk yk)wk]/[E(g′′(wTk x̃)− wTk yk]

3. wk+1 ← wk+1/‖wk+1‖.

µ is a learning parameter, where µ = 1 correspond to a full Newton step at every
iteration. It is introduced to be able to stabilize the solution in case the second-
order approximation is poor, and thus the Newton step inaccurate. When searching
for more than one of the signals, a re-orthogonalization have to be performed as
well. This is in principle close to performing a projection and a retraction on the
Stiefel manifold, but the implementation can be done in a variety of ways.
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Chapter 4

Experimental Design

This chapter describes how the numerical experiments in this thesis were per-
formed. Two hypothetical test problems were studied to hopefully provide insight
into how to specialize any of the methods to other problems. The parameters in-
volved are also discussed, some of which have been set according to what has been
done previously in the literature, and some of which had to be studied in depth.
Measures of performance are also discussed, but first the algorithms are restated
for completeness and for an easier comparison.

4.1 Implementation

Sparse Representation
Three implementations were done for the sparse representation problem. A steep-
est descent method, Newton’s method and the FOCUSS-based method described in
Kreutz-Delgado et al.[20] for comparision. Initially, the AF structure was assumed.
Using Rm×n or AC instead would only require minor alterations, as discussed in
section 3.1.

The FOCUSS-based method was presented in section 3.1.3. Choosing l1 as
diversity measure yields the following two steps to alternate:

1. sk+1(t) = Π−1
k ATk (λI +AkΠ−1

k ATk )−1x(t), for t = 1 . . . T

2. Ak+1 = Ak − µ(∇Aφ(Ak, Sk)− tr(∇Aφ(Ak, Sk)TAk)Ak)

Π−1
k = Π−1

k (sk(t)) = diag(|sk(t)|), but the dependence on sk is dropped for readi-
bility. For clarity it is noted that sk(t) refers to iteration number k and time step
t(that it column number t in S). The notation comes from the factorization of the
gradient from section 3.1.2. Step 1 can be done batch-wise. That is, update the
dictionary for every TN updates of s, instead of running all the time samples. The
dictionary update follows from the manifold structure. For all the experiments, TN
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was set to 100 (corresponding to 10% of the total number of time samples).

The steepest descent method was implemented using the projected gradient and
a simple retraction, as described in section 2.1

∇Aφ(Ak, Sk) = 1
T

(AkSkSTk −XSTk )

Ak+1 = Ak − h(∇Aφ(Ak, Sk)− tr(∇Aφ(Ak, Sk)TAk)Ak)

Sk+1 = Sk − h
(

1
T

(ATkAkSk −ATkX) + λ sgn(Sk)
)

Ak+1 ← Ak+1/‖Ak+1‖F

(4.1)

Note that h need not be constant, but can be chosen adaptively.

Newton’s method was implemented when assuming the manifold AF only. The
two steps of the Newton method are given in algorithm 1, but repeated here for
completeness. First, solve

Hess φ(Ak, Sk)[ZA, ZS ] = −grad φ(Ak, Sk),

for ZA ∈ TAAF and ZS ∈ Rn×T . The solution (ZA, ZS) is referred to as the
Newton vector. Next retract the solution onto the manifold, that is

Ak+1 = Ak + µNZA
‖Ak + µNZA‖F

, Sk+1 = Sk + µNZS ,

where µN is a potential step size reduction to ensure stability. The same step size
reduction is used in S and A. Using a different reduction may make more sense, but
this was not investigated here. The Hessian is given in equation (3.8), and it was
implemented both as an operator (a function call in Matlab) and by forming the
matrix explicitly. When solving the system iteratively, the built-in function minres
was used. It requires a self-adjoint operator (which the Hessian by definition is),
but does not require positive-definiteness such as the conjugate gradient method.
It was chosen because it gave low relative residual errors, and the solution satisfied
for the most part being on the tangent space. To ensure that the Newton vector
was on the tangent space, a projection was performed on ZA before the retraction
step.

Independent Component Analysis
For the ICA problem, three methods were implemented, steepest descent, Newton’s
method and FastICA. The contrast used was φ(s) = (E[g(s) − C])2, with g(s) =
1/4s4, such that C = 3/4 (since C is defined as the expected value of g for a
standard Gaussian variable). The one-component FastICA algorithm with learning
rate thus becomes

1. yk ← E[x̃(wTk x̃)3]
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2. wk+1 ← wk − µF [yk − (wTk yk)wk]/[E(3(wTk x̃)2 − wTk yk]

3. wk+1 ← wk+1/‖wk+1‖.

The decorrelation was done after all the iterations had completed and performed
in a similar fashion as the pre-whitening procedure. By using the eigenvalue de-
composition V DV T = E[W̃W̃T ], where W̃ is the matrix of column vectors from
the above iterations, the solution is determined by

W = V D−1/2V T W̃ .

This decorrelation scheme was suggested in the article by Hyvarinen and Oja[19].

The steepest descent implementation, referred to as GradICA (gradient-based
ICA), was implemented with the same contrast function as FastICA. With the
notation introduced in section 3.2, the algorithm is to repeat

1. Compute Euclidean gradient: ∇Wφ(Wk+1) = X̃G′(Wk)D(Wk)

2. Project gradient onto tangent space: ∇Wφ(Wk+1)← PWk
∇Wφ(Wk+1), with

PW : Rn×n → TWO(n) defined as PW (B) = W skew (WTB).

3. Apply retraction for next iterate: Wk+1 = RWk
(h∇Wφ(Wk+1)), with RW :

TWO(n)→ O(n) defined as RW (Z) = exp(ZWT )W .

The step size parameter h may be constant or chosen adaptively.

Newton’s method was implemented by explicitly forming the block diagonal
Hessian, defined in section 3.2 by equation (3.12). This was to ensure consistency
between theory and implementation. A practical large-scale implementation could
use an iterative solver with the Hessian implemented as an operator instead. The
Newton equation was then solved directly by Matlab. The next step is found by
applying a retraction (the same as for steepest descent) to the Newton vector. For
stability, a step size reduction parameter, µH , was introduced, such that the en-
tire Newton step need not be taken at each iteration. In the following, Newton’s
method, with or without Hessian modification, will be referred to as HessICA.

Test Problem 1, Complete Dictionary
The first problem set up was replicated from Kreutz-Delgado et al.[20]. For n = m,
both sparse representation and ICA are valid methods, hence an attempt at a
broad comparison was made. n was set to 20, and 1000 time samples were used.
A was generated with standard Gaussian distributed values, and scaled to have
Frobenius norm 1. S was generated by first uniformly constructing a random
sparse support with 4 non-zeros at each time step. The values were generated
as Gaussian variables. Any entry with absolute value lower than 0.1 were then
removed to have a more distinct sparsity pattern.
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Test Problem 2, Overcomplete Dictionary
The second test problem is specifically oriented towards dictionary learning and
sparse coding. The problem was generated in a similar fashion as above, except
that the dimensions were different. The dimensions were n = 40,m = 20, r = 7. T
was still 1000. The dictionary was again scaled to have Frobenius norm 1.

4.2 Parameters and Practical Considerations

Steepest Descent
Initial empirical tests indicated that the choice of algorithmic parameters is not
straightforward. It was therefore important to determine if there are any stability
issues related to the choice of parameters. In particular, the gradient method re-
quired rigorous testing. A minimum requirement to a method should be that if the
initial guess is sufficiently close to the true solution, then convergence is ensured.
In particular, if λ = 0, that is no penalty on sparsity, then the error should get
close to zero. The first test was therefore to see if the original solution was per-
turbed slightly (by Gaussian noise with variance 0.05), did the method converge
when λ = 0? The tests were performed on problem 2 first.

The penalty term was considered next. Kreutz-Delgado et al.[20] suggested
using a dynamical value, with maximum value 2 · 10−3. For the method to work
on arbitrary data, it would be ideal to be able to choose λ according to a desired
sparsity level. It was therefore interesting to study the effect of λ, and if it could
be set to a constant.

Since the initial data is already sparse, one should expect that the sparsity is
constant for moderate λ. However, if λ→∞, then the error is not weighted at all,
and the optimal solution is S → 0. It is therefore necessary to determine an upper
bound for a reasonable λ. The term λd(S) will perturb the stationary points of
‖AS −X‖F , so the problem will be to find a λ such that the original A and S still
are a solution (or at least very close to a solution) of the optimization formulation.
If this is not the case, the initial guess is not close to a stationary point, thus
convergence may not be expected.

The idea behind the tests was to find a λ that caused divergence. This value
would then be assumed as the maximum bound when the original values are not
available as initial guess.

ICA Methods
One of the advantages of ICA is that when the contrast function is chosen, there
are few parameters left to tune. GradICA requires a step size. For the tests
runned in this thesis, a constant step size is assumed to suffice. Since GradICA
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is only applied to the first test problem, the step size parameter was tuned to en-
sure convergence on that specific example. h = 0.01 turned out to be a good choice.

FastICA has as mentioned a step size parameter, or learning rate, even though
it attempts a Newton step at each iteration. The step size was set to 0.5, which
ensured convergence to a stationary point (but not necessarily a maximum), for
the first test problem.

The Hessian operator was also implemented for the ICA problem. Just as for
the other methods, it was of interest to see if a step size parameter had to be in-
troduced in order to ensure convergence. It was also studied if global convergence
could be assured by introducing a Hessian modification to ensure positive definite-
ness. Only a multiple of the identity matrix was considered as Hessian modification.

Initial Data
After having evaluated performance close to the original solution, it was necessary
to test for global convergence. In this case, that means choosing initial data inde-
pendent of the original A and S, and tune λ and h to achieve optimal performance.
Three ideas were tested out:

1. Choose A and S randomly, perhaps with a scaling of S

2. Choose A randomly and S = A+X, A+ being the Moore-Penrose pseudoin-
verse of A

3. Let A = In and S = X (only valid for the test problem 1, when n = m)

If a manifold structure was assumed on A, this was also taken into account. For
instance for 2), A would be enforced onto the manifold before the pseudoinverse
was computed. For the ICA methods, the initial data was always chosen as random
orthogonal matrices.

4.3 Measures of Performance
To measure performance, one may address the objective function. It is a decent
measure when comparing methods that start from the same initial point, and are
based on the exact same objective. It does not however work well to compare prob-
lems to which both ICA and sparse representation apply. In addition to using the
objective function, measures of performance based on the problem statement can
be used. Two such measures are presented. The first one is sparsity. The sparsity
measure that has been implemented is sometimes referred to as the lε0 measure.
Before taking the number of non-zero elements divided by the number of elements,
all elements with absolute value lower than ε(maxij |Sij |) are set to zero. In these
experiments, ε = 0.05 was used.
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The second measure was root mean square error(RMSE), which is basically the
square root of the first term of the objective function from equation (3.2)

RMSE(Sε) = 1√
T
‖ASε −X‖F ,

where ε emphasizes that the solution is “sparsified” before computing the RMSE,
thus separating it slightly from the objective function. The objective function was
also used, not as a performance measure, but as a way of verifying that the objective
was decreasing. Run time was not investigated since it depends to a great extent
on how the implementation is done. Complexity is however important, it will be
assumed that an effecient implementation reflects the complexity of the method.

Convergence Rate
Convergence rate were measured in some of the cases. In general, if a method
converges to x∗, its convergence rate is given by the maximum r such that,

‖xk+1 − x∗‖
‖xk − x∗‖r

≤ C, (4.2)

where C is some bounded constant. Convergence rate can be measured for both A
and S, and it is assumed that when considering A, it is sufficient to consider the
norm on Rm×n instead of having to computing the distance on the manifold.

x∗ is set to the value of either A or S when the algorithm terminated. That
is, every test case has to be run twice to first identify the stationary point, then
to compute the convergence rate towards it. When doing the analysis it should be
kept in mind that not all final solutions were stationary points. This is discussed
after the presentation of the results.

In a similar manner, one may also consider the convergence rate of the objective
function. That is,

f(xk+1)− f(x∗)
(f(xk)− f(x∗))r ≤M.
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Chapter 5

Results and Discussion

5.1 Local Convergence
Before attempting to achieve global convergence for the sparse representation prob-
lems, local convergence was studied. That is, choose the initial dictionary and
source signal as the ones used to generate X, but add a noise term such that they
are close to, but not exactly the original solution. The ICA problems proved to be
less dependent on initial data and converged for most randomly generated initial
matrices. The penalty term, λ, and the step size parameter for steepest descent
were studied first.

Evaluating λ and h

The first tests were done to find suitable λ for both FOCUSS and the steepest
descent method. A step size parameter, h, was also needed for steepest descent. It
is a necessary criterion that if the initial data is close to the original data, conver-
gence should be assured. As mentioned in the previous chapter an upper bound
on λ must be sought for as well.

λ RMSE ∆Sparsity ∆A ∆S
0 3.033E-2 0% 0.8198 8.65E-12

1E-3 3.028E-2 0% 0.8198 8.225E-8
1E-1 4.053E-3 -0.37% 0.8194 6.2852E-4

Table 5.1: Performance for close initial data. h = 0.01 and 500 iterations. ∆A is
the difference between the final A from the initial one, measured in the same way
as in figure 5.1. ∆S is measured similarly. The original sparsity was 16.073%.

The perturbation was with Gaussian noise of variance 0.05. In hindsight, it
may have been unfortunate to use the same variance when perturbing A and S.
Since the Frobenius norm of A is 1, the elements of A are in general small, such
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that 0.05 variance makes a significant difference. This is the reason why ∆A is
so large in table 5.1. However, it appeared that the optimization of A was very
efficient such that the performance was not affected to a great extent by this.

By increasing λ, the change in S increases. This is consistent with what was ex-
pected. Increasing λ should mean increasing the importance of sparsity. Sparsity is
exclusively determined by S, hence it is reasonable that increasing the penalty also
increased the difference in S from the initial state. h = 0.05 was also tested, but
the solution did not appear to converge, which led to setting h = 0.01. In the tests
it was also seen that decreasing h, but keeping the product of h and the number of
iterations constant produced the same solution. If this holds in the general case, it
means that decreasing h will not increase accuracy, but it must be low enough so
that the method is stable. For now, this will be the assumed conjecture on step size.

From table 5.1 it is clear that λ = 0 and λ = 1E − 3 are both good candidates.
However λ = 0.1 encourages even sparser solutions than the original solution and
may thus be too large (∆Sparsity is the change in sparsity from the initial state).
By iterating further, the sparsity decreases and the RMSE increases. The effect is
the same as for λ = 1 which is discussed next, where it is more accentuated.

Figure 5.1: Closer study of steepest descent performance. For iteration number k,
∆A(k) is defined as 1 − tr(AT

k Ak+1)
‖Ak‖F ‖Ak+1‖F

, and similarily for S, such that a low ∆A
implies a small change in A from iteration k to k + 1, and vice versa.

Figure 5.1 gives an idea of what happens when λ is too large. Initially the
RMSE decreases relatively fast, but after around 100 iterations it increases again.
At its lowest, it is approximately the same as for the lower values of λ. The other
two plots show the change in A and S. The values on the y-axes are not compa-
rable to eachother, but it is clear that the rapid decrease in RMSE is due to the
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adaptability of A (as mentioned above). For λ ≥ 1, the behavior is the same except
that it is magnified. The same test was run with h = 10−3 instead of h−2, but the
results were practically the same.

In practice, it should be possible to stop the iterations close to the minimum
RMSE, at least for this value of λ. When the initial data is not sparse as in this
case, it will be important that λ is large enough such that the solution to the op-
timization formulation is actually sparse, but small enough such that the gradient
with respect to S is not entirely dominated by the diversity term.

Empirical tests were done to evaluate the behavior for λ larger than 10−1. For
the following results, 10−1 is set as the practical upper bound for λ. As mentioned,
the initial decrease of RMSE is attributed to the adaptability of the dictionary,
and not the signals themselves. Recall the gradient with respect to S,

∇Sφ(A,S) = 1
T

(ATAS −ATX) + λ sgn(S).

The elements of the second term, the gradient from the diversity measure, can only
take three values, ±λ and 0. The latter being rare since it requires an element of
S to be exactly 0. This means that an exact stationary point is hard to find since
every discrete value of λ∇Sd(S) must be negated by the smooth gradient of the
error term. Note that the gradient from the error term is the residual of the least
squares equation (ATAx = AT b) divided by T . Intuitively, this can be understood
as for large λ, it is necessary to have a large residual error in the least squares
approximation at a stationary point. Also, when λ becomes large, the updating
of the dictionary is not able to keep up with the rate at which the values of S
decrease. This will not be analyzed further, but the discrete nature of the diversity
gradient is noted as a potential cause for not finding true stationary solutions.

To summarize the initial tests on the gradient method, it is important that λ is
chosen such that the solution becomes sparse enough (that is, λ is not too small),
but also so that when approaching a stationary point, the gradient with respect
to S is affected by both the error term and the diversity term. The convergence
of A is rather efficient in comparison, but it cannot achieve arbitrarily low RMSE
for any S. In conclusion, there appears to be a fine balance between λ and h that
needs to be investigated further when switching to other initial conditions. Due
to the lack of flexibility of the diversity gradient, it will also be important to be
able to stop the iterations on some other criteria than ∇Sφ = 0. Another remedy
may be to consider more flexible parameters. Two suggestions are a more dynamic
choice of λ and a different step size for A and S (that is, the two gradient flows
defined by the steepest descent method depend on different time parameters).

Newton’s Method
As mentioned Newton’s method was also implemented for the sparse representation
problem. However, consistent convergence was hard to achieve. Using Gaussian
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noise as perturbation of the initial data, with variance 5 · 10−7 for A and 5 · 10−5

for S, did not cause consistently decreasing RMSE, even with λ = 0. Step size
reduction was attempted as well, with limited success. It was observed that there
may have been some issues with solving the Newton equation. Forming the matrix
explicitly and using direct solve in Matlab caused the solution to not be obtained
on the manifold. This is generally not a problem since a post-projection can be per-
formed afterwards, but since the forming of the matrix was very slow, this method
was not investigated in great depth. Performing 15 iterations took typically 8-10
seconds with minres, but several minutes when forming the entire matrix. Solving
the system using minres had its issues as well. Using 2000 iterations, which is a
significantly higher number of iterations than was hoped for, the relative residual
was typically of order 10−3, which is relatively inaccurate

The Rayleigh quotient example studied in section 2.3 required getting relatively
close to the stationary solution to achieve convergence. Considering that this linear
system is large, 20800 × 20800 (somewhat sparse, but nonetheless) compared to
2000×2000, it is not unreasonable that the initial state must be very close in order
for a non-modified Newton’s method to work.

Convergence rate

Figure 5.2: h = 0.01, 500 iterations. Linear convergence observed. Signs of super-
linear convergence towards the final solution.
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Figure 5.3: h = 0.01, 500 iterations. Linear convergence for S.

Figure 5.4: h = 0.01, 500 iterations. Linear convergence for A.
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Figure 5.5: h = 0.01, 500 iterations. Problematic behavior towards to the final
iteration, stationary point unlikely.

Another measure of performance mentioned was convergence rate. Figure 5.2 and
5.3 show the measured convergence rate for h = 0.01 and λ = 0. The behavior is
as expected linear. Figure 5.4 and 5.5 on the other hand, show convergence rate
when λ = 0.1. The iterations were stopped when minimum RMSE was reached
since a definite stationary point was not reached. Observe that A exhibit linear
convergence, but S does not. Initially (the north east part of figure 5.5) the con-
vergence rate is consistent, but lower than one. When getting closer to the final
solution, the convergence rate goes out of control. This could be related to the fact
that the solution is compared to iteration number 70 (which corresponds to lowest
RMSE), and considering how much S seemingly oscillates, it is not unreasonable
to observe sublinear convergence at the beginning. This will not be spectulated on
any further, but should be kept in mind. It is noted however, that at least in the
beginning, the behavior is at least nice.

The tests were run from the same initial data as for the results in table 5.1.
This indicates that λ = 0.1 is capable of ensuring low RMSE, but also that it is
not likely to converge to a stationary point (seen from figure 5.5).

5.2 Global Convergence
Both test problems were checked for global convergence. For the first test, a com-
parison was done with the FOCUSS-based method, steepest descent on the ICA

50



formulation and FastICA. Parameter tuning turned out to be necessary in order to
obtain convergence. Substantial testing was done with regards to the parameters.
λ was finally set to 5 ·10−2 and h = 0.01, satisfying what was discussed above. The
choice of initial data appeared to be of great importance as well. The magnitude
of the initial S influenced whether the method would converge or not. Necessary
criteria for global convergence were not sought. Letting A = I, the identity matrix,
and S = X provided satisfactory convergence, at least compared to the other two
suggestions from the previous chapter. This was chosen as the initial data for the
FOCUSS-based method as well. The initial data for FastICA and GradICA were
both chosen as qr-decompositions of random matrices.

It is noted that for this specific problem, it was necessary to tune down the
learning rate of the FOCUSS-based method to achieve convergence. In the article
by Kreutz-Delgado et al.[20] the dictionary update step size was 1, but neither this
nor 0.1 worked here. The learning rate was therefore fixed at 0.01. Considering
that the dictionary update of the FOCUSS-based method is basically the same
as for the gradient based method, it is reasonable that a lower learning rate is
required, considering the analysis above. Also, in the mentioned article, λ was
adaptive which might have mitigated for a large learning rate.

Figure 5.6: Global convergence of RMSE and sparsity for two values of λ. h = 0.01
in both cases. 30000 iterations performed, which is substantial. The form of
λ =1E-2 resembles a “stretched” version of λ =5E-2, which is consistent with the
assumption that a lower h does not increase accuracy.
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To illustrate the dependence on λ and h, sparsity and RMSE have been plotted
in figure 5.6 for the gradient based method. First of all, they illustrate that a
significant number of iterations is necessary for stable convergence. Increasing h
to 0.1 turned out to be unstable. By visual inspection, it seems that for RMSE
higher than 0.4, the error is too large. So regardless of sparsity criterium, a subjec-
tive opinion is that the RMSE should not exceed 0.4 for test problem 1. Note that
RMSE is not a relative measure, thus every application needs a separate evaluation
of performance. However, it is potent at comparing various methods to one another.

Full Scale Comparison

Method Sparsity RMSE Iterations
FOCUSS 17.8% 1.26E-1 5001

Steep. Desc. 62.5% 3.97E-1 5500
GradICA 31.4% - 145
FastICA 43.7% - 6 · 202

Table 5.2: Comparison of performance, global convergence. Initial sparsity was
approximately 90%. Steep.Desc. is steepest descent on the sparse representation
problem, implemented using AF .

The summary of the comparison of the four methods is shown in table 5.2. Since
the ICA methods by construction should satisfy the equation AS = X (after
pre-whitening), the RMSE is not computed. The sparsity does however indicate
whether the solution is the true solution. For comparison, the original signals had
sparsity 18.3%. The number of iterations to convergence is determined subjectively
by inspecting the values of RMSE and sparsity. It should give an indicator for when
a satisfactory solution is reached. In particular, for steepest descent the iterations
were stopped for the lowest sparsity that had an RMSE lower than 0.4.

It is clear that FOCUSS gave the definite best approximation, with a low spar-
sity, low RMSE and relatively few iterations. Steepest descent required a significant
number of iterations, and the sparsity of the solution is moderate at best. It is
however promising that the method is able to provide a solution with around 30%
lower sparsity than A = I and S = X, and still having a (at least visually) accept-
able solution.

The main difference between the steepest descent method and FOCUSS, is that
FOCUSS uses a fixed point iteration on the signals that to a greater extent encour-
ages sparse signals. Table 5.2 thus emphasizes what has been suggested earlier;

1After 100 iterations, the sparsity had already reached 24.8% but lowering RMSE required
more. This is likely due to the reduction of the learning rate.

2Estimated 6 Newton steps on average per signal. Based in visual inspection of the contrast
function for each signal.
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that the dictionary gradient search is rather efficient compared to the signals when
it comes to decreasing RMSE, at least for a constant λ.

Another intersting observation is that GradICA performs better than FastICA.
FastICA is derived for a component-by-component computation, so it may not
be that surprising a method that considers all the signals simultaneously shows
better performance. FastICA also seeks stationary solutions, and not necessarily
minima. From a closer inspection of the individual signals, it becomes clear that
FastICA has indeed converged to a maximum for a few of the signals. On the other
hand, the FastICA implementation was done rather straightforward, and several
papers in the literature addresses the issues of FastICA converging to maxima.
Still, steepest descent is conceptually also a simple method, and it is noteworthy
that the performance is relatively good.

HessICA
As mentioned, Newton’s method was implemented for the ICA problem. First
of all it was of interest to see if quadratic convergence was obtainable close to a
stationary point. A steepest descent (or technically ascent in this case) was per-
formed first, with step size h = 0.01. The Newton’s method was carried on from
there. Quadratic convergence was indeed observed, however the convergence was
very rapid and highly dependent on the initial data. From the point initizalied
by steepest descent, it took 2-3 steps to reach the stationary point, up to machine
precision. As a particular example: from the 128-th step of steepest descent, it
took 3 iterations to converge, but if the starting point was the 127-th step, the
stationary was not obtained. It could be of interest to study larger dimensions, or
manipulate the problem to be harder so that more iterations are required.

Why it is necessary to get so close to the maximum is not investigated further,
but as seen in section 2.4, the answer may lie in the eigenvalues of the Hessian at
the stationary point. As mentioned a Newton’s method with Hessian modification
was tested, where the modification was adding a multiple of the identity. This is
indeed the simplest choice because a Hessian modification must not only be able
to make the Hessian negative definite (since a maximum is sought in this case),
but must also satisfy being a linear map from the tangent space to itself. The
largest eigenvalue of the Hessian matrix was computed and if it was positive, it
was multiplied by I and subtracted from the Hessian matrix. To ensure a nega-
tive definite matrix, and not just semi-negative definite, 1 was added to the largest
eigenvalue before the subtraction was done. The choice of 1 was merely from taking
into consideration the percieved magnitude of the eigenvalues for different itera-
tion steps, and ensuring that the condition number was kept at an acceptable level.

Interestingly, the method with Hessian modification appeared more stable than
steepest descent. By using the same initial point, the Hessian modified Newton’s
method looked to converge faster than steepest descent. However, the convergence
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Method, manifold RMSE Sparsity Iterations
FOCUSS, Rm×n 0.2276 42.4% 250
FOCUSS, AF 0.2935 30.44% 45
FOCUSS, AC 0.3026 23.68% 20
Steepest Descent, Rm×n - - -
Steepest Descent, AF 1.0427 50.93% 22809
Steepest Descent, AC 1.0810 47.48% 23517

Table 5.3: Effect of imposing a manifold structure on A. A dash (-) indicates
the method did not converge. Iterations for FOCUSS is iteration until RMSE
converged, sparsity converged at around 500 iterations for all three manifolds. The
results are from test problem 2.

was only linear, which is likely to be caused by the closeness-to-maximum require-
ment discussed above. More rigorous testing is required in this regard, but it is
clear that the concept works, and that quadratic convergence can be achieved close
enough to a maximum.

Implications of Manifold Structure
To test the implications of imposing a manifold structure on A, test problem 1 was
considered. The FOCUSS-based method and steepest descent were implemented
by imposing the three different manifold structures mentioned in section 3.1. The
original dictionary was normalized such that it was on the manifold AF . It was as-
sumed that this does not benefit any method over the other. The initial data were
chosen by randomly generating Ainitial and enforce it onto the appropriate manifold.
S was then set to Sinitial = A+

initialX, where A+
initial is the Moore-Penrose pseudoin-

verse of Ainitial. The same initial dictionary was used for all methods (before it was
enforced onto the manifold). In hindsight, the initial matrix should probably have
been enforced onto AC such that all methods could have used the exact same ma-
trix as the initial dictionary. Recall that A ∈ AC =⇒ A ∈ AF ( =⇒ A ∈ Rm×n).

Finding appropriate parameters when evaluating the manifold structure was
based on the analysis done in section 5.1. Some adaptation was needed, and the
final choice was based on visual inspection of the solutions. For steepest descent,
the step size was set to 5E-3. λ was set to 0.05 for both problems, and the learning
rate of FOCUSS was set to 0.01. It turned out to be hard for steepest descent
to find a solution that was both accurate and sparse. With these parameters, the
iterations were stopped at the lowest RMSE that also satisfied having a diversity
around or below 50%.

From table 5.3 it is clear that FOCUSS in general outperforms steepest descent.
The solution for steepest descent is not good, but it resembles the true solution.
This is illustrated in figure 5.7, which shows a sample from the matrix AS com-
pared to the original X. Using Rm×n did not work for steepest descent, but this
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Figure 5.7: Sample of the solution after 22809 iterations on AF , h = 0.005 and λ =
0.05. The solution is similar, but in general not good enough for all applications,
considering this was the best solution achieved.

may be due to how the initial matrix was chosen. Without normalizing the initial
matrix to a manifold, the magnitude of the values of S became large (caused by
small singular values of A, which in turn causes large singular values in A+). This
issue was not investigated further, but it is noted that it could be of interest to
study some form of pre-processing. Note that the initial signals may be multiplied
from the right by a matrix without interfering with the manifold structure of A:
(XM) = A(SM), such that the expected order of magnitude of the elements of S
can to some extent be controlled beforehand.

When it comes to the impact of the manifold structure, a better diversity ap-
pears to be achieved from using AC . This is consistent with what was reported in
the article by Kreutz-Delgado[20] et al. The RMSE was slightly higher, but since
both the diversity and the number of iterations (at least for FOCUSS) was lower,
it is assumed to be the generally better choice.

5.3 Concluding Discussion and Further Work
Finally, the potential of taking a manifold approach to an optimization problem is
evaluated. The steepest descent method was studied and showed promising results
for convergence locally, where the step size had to be kept low enough to ensure
stability. A practical implementation may choose the step size in an adaptive
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manner. Global convergence was harder to achieve, and the search for a suitable
dictionary appeared more efficient than updating the signals. This may explain
why the FOCUSS-based algorithm performs so much better; the fixed point itera-
tion for the signals is much more convenient for finding sparse signals.

The sparsity penalty term, λ, was also studied. It was argued that a too large λ
led to problems for the steepest descent method, and especially how hard it can be
to reach an exact stationary solution due to discrete nature of ∇Sd(S) = sgn (S).
An idea may be to enforce some constraints on S or to consider smoother diversity
measures, the latter probably being the most interesting for any further work. Al-
ternatively, choosing λ adaptively have been extensively studied in the literature,
and should be considered also here. FOCUSS can be studied to better understand
why the fixed point iteration on the signals works so well.

For the dictionary learning problem, no clear advantage was seen by optimizing
over both A and S. Considering the discussed adaptability of A compared to S,
it may not be much to gain on doing the update in one step. Also, a reduction
of step size was implemented in most of the cases, indicating that something like
a trust-region method may be necessary in a practical implementation, with an
initial radius that is relatively small.

The results from the manifold-based methods on the ICA problems was promis-
ing, and it could be interesting to see how they perform on a more realistic case. It
may also be of interest to test the performance on other measures of convergence,
since there are some clear disadvantages to using kurtosis, especially sensitivity to
outliers. For HessICA in particular it may be interesting to consider other Hes-
sian modifications, such as BFGS or SR1, which may be adapted to the manifold
implementation[1].

Newton’s method for sparse representation was implemented, but trouble was
met when trying to achieve even local convergence. It may be important to better
understand the steepest descent method and the objective function, especially the
Hessian of the diversity measure, before attempting to achieve local convergence.
This provides another argument for considering smoother diversity measures when
implementing with manifolds. In general it is interesting to study the methods
that rely on second-order information, due to the reduced complexity of applying
the Hessian.
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Chapter 6

Conclusion

Chapter 2 discussed how to interpret an optimization problem through manifolds,
and concepts from Riemannian geometry were introduced to provide a geometrical
understanding of methods on manifolds. The multi-dimensional Rayleigh quotient
was studied since its stationary points are well known. Chapter 3 described two
blind source separation techniques, and how the optimization can be performed
using matrix manifolds. The FOCUSS algorithm and the FastICA methods were
presented for comparison.

The relatively low complexity that was seen in chapter 3, especially for New-
ton’s method, is one the properties that makes the methods attractable for blind
source separation problems. It was seen how the steepest descent method depends
on the choice of initial data as well as other parameters. The method showed po-
tential by achieving local convergence, but global convergence still require some
work, especially with respect to achieving sparser solutions. The manifold-based
methods implemented for independent component analysis worked very well and
outperformed FastICA, at least up to the performance measures used here. Overall,
most of the methods required a step size reduction in order to converge, indicating
that a practical implementation should be done using some sort of trust-region
method.

Further work would be a more rigorous study of the steepest descent method to
better understand the geometry of the sparse representation problem, and hopefully
be able to implement a working Newton’s method. For independent component
analysis it is of interest to see if the manifold-based methods presented here can per-
form as well on a more advanced problem, and perhaps further study the potential
of Newton’s method with Hessian modification.
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