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Abstract
This thesis studies a multi-factor Heath-Jarrow-Morton model and a LIBOR mar-
ket model on the Norwegian, European and US interest rate market. The main
concerns are the low-rate environment and exposure to negative interest rates in
these models. We begin by introducing financial markets and the mathematical
models explaining them. Further we discuss the problem with the current low-rate
environment and the historical market practice. The focuses are implementations
of two multi-factor interest rate models and the presence of negative interest rates.
The historical data is provided by DNB and consists of zero coupon swap rates for
several maturities in the period 2000-2012. The volatility factors are derived from
historical data using principal component analysis and covariance matrices. With
today’s yield curve the probability of negative rates is highly significant in the HJM
model, whereas it is zero in LMM because of lognormality. Monte Carlo is used on
the models to compare prices of caps and floors. We show that the models do not
produce the same price especially around strikes near the current 3-month rates.
Further we price long butterfly spreads to show the absence of arbitrage in both
models.

Sammendrag
Denne masteroppgaven studerer en multifaktor Heath-Jarrow-Morton modell og en
LIBOR markedsmodell p̊a det norske, europeiske og amerikanske rentemarkedet.
Vi er spesielt interessert i lavrente regimer og risiko for negative renter i disse model-
lene. Vi begynner med å introdusere finansielle markeder og matematiske modeller
som beskriver dem. Videre s̊a diskuterer vi problemet med dagens lavrente regime
og historisk markedspraksis. Hovedfokuset er implementeringer av to multifaktor
rentemodeller og tilstedeværelsen av negative renter. De historiske dataene har vi
f̊att fra DNB og best̊ar av swap renter p̊a statsobligasjoner for flere sluttdatoer i
perioden 2000-2012. Volatilitetsfaktorene er dratt ut fra historiske data med PCA
og kovariansmatriser. Med dagens renter s̊a er sannsynligheten for negative renter
signifikant i HJM-modellen, mens den er null i LMM p̊a grunn av lognormalitet.
Vi bruker Monte Carlo p̊a modellene for å sammenligne priser til caps og floors.
Vi viser at modellene produserer ulike priser spesielt rundt innløsningspriser nær
dagens 3-m̊aneds rente. Videre priser vi long butterfly spreads for å vise at vi ikke
har arbitrasje i modellene v̊are.
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Chapter 1

Introduction

The time value of money plays an important role in finance. One dollar today is
worth more than one dollar in a year, that is why banks pay interests on bank
deposits. If we deposit M(0) dollars into a bank account at time 0, the value at
time t is M(t) = M(0)ert if the interest rate is continuously compounded. The
present value of M(t) dollars in t years is accordingly M(0) = M(t)e−rt. We say
that we have discounted the future value M(t) with the interest rate r.

Stocks (also known as shares or equities) represent a fraction of ownership in
a business or company and we hope that the reader has encountered this term
before. The stocks of a public company are traded on a stock exchange. For
example companies listed in Norway are quoted on the Norwegian Stock Exchange.
Furthermore there have been developed stock market indices, which can measure
how the stock market is doing as a whole. An index usually consists of a basket
of representative stocks. A famous index is S&P 500 which consists of the top 500
most traded publicly stocks in the US and can be a good measure on how the US
economy is doing as a whole.

The behaviour of quoted prices of stocks are far from predictable. We therefore
model them in a probabilistic way. Section 2.3 describes a well known mathematical
model for stock prices which is often called the lognormal walk. This model is not
developed to predict future stock prices but is a tool to price products which depend
on stock prices.

A derivative is a financial instrument whose value is derived from one or more
underlying assets. It is a contract between to parties(buyer and seller) that spec-
ifies conditions under which payments are to be made between the parties. The
conditions usually consist of the payment dates, underlying assets, obligations and
resulting values of the payments. In this report we discuss derivatives with a stock
or some kind of interest rate as the underlying asset.

Call and put options on stocks are the two simplest and most traded stock
derivatives. The buyer of a European call or put option has the right but not the
obligation to buy or sell the stock for a predetermined price on a predetermined
future date. In Norway call and put stock options are both quoted on the Norwegian



2 CHAPTER 1. INTRODUCTION

Stock Exchange and traded over-the-counter. Options quoted on the exchange are
standardized such that the conditions are known in advance. Furthermore the
exchange uses a clearing house to guarantee that the contracts will be fulfilled.
A clearing house stands between the two parties and its purpose is to reduce the
risk between the two parties if one party fails its obligations. The clearing house
requires a security deposit from both parties and it even has an own fund to cover
losses above the deposits if one party defaults. Over-the-counter(OTC ) means that
the two parties meet directly without supervision of any exchange which opens for
discussion of the conditions. OTC contracts do not necessarily use a clearing house
and therefore one of the parties might fail to meet its obligations. This is called
credit risk and therefore OTC contracts are more risky.

Section 3 introduces the Black-Scholes theory which is needed to prize European
style call and put options. This theory is one of the elementary mathematical
models for pricing financial derivatives and was introduced in 1973 by Black and
Scholes[1]. The theory generates a fair price under the assumptions of the model.
The trade in stock options increased heavily after the machinery for fair pricing
was introduced.

The rest of this article is devoted to interest rate models and derivatives. The
interest rate derivatives market is the largest derivatives market in the world. In
Norway interest rate derivatives are traded over-the-counter. The underlying asset
is obviously some kind of interest rate. Almost all companies have debt and are
therefore exposed to interest rates. Interest rate derivatives are used by companies
to control cash flows and to reduce risk. In section 4.2 we introduce an interest
derivative called cap which we will investigate in this report. In short a cap is like
a series of call options on an interest rate for a pre-described amount of periods. If
the interest rate increases the cap will generate cash flow and is hence a security
for companies against increases in interest rates. On the contrary a floor is like a
series of put options on an interest rate which works as a security against declines
in the interest rate.

According to the International Swaps and Derivatives Association, 80% of the
world’s top 500 companies as of April 2003 used interest rate derivatives to con-
trol their cash flows, whereas only 10% used stock options. Likewise with stock
derivatives, the need of a fair pricing methodology is substantial for a trade in in-
terest rate derivatives to be present. This is where the mathematical interest rate
models come in. To model interest rates are much more difficult than to model
stocks. The mathematical models are more complicated and we often need higher
order simulations to get reasonable answers. We are going to focus on the Heath,
Jarrow & Morton framework and the LIBOR market model which have become
very popular. Furthermore we are going to use our models to price derivatives.

Above we argued that the price of a derivative should be fair because few compa-
nies would take an unfavourable position of a contract. In a financial mathematical
perspective this means the absence of arbitrage. Arbitrage can be mathematically
defined as follows. Let Vt be the value of a portfolio at time t. A portfolio is a col-
lection of investments, in our case stocks, derivatives and bank accounts. Arbitrage
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is present if V0 = 0 and

P (Vt ≥ 0) = 1, P (Vt 6= 0) > 0.

It is the possibility of a risk-free profit at zero cost. We find the arbitrage-free price
of a derivative by finding the expected value of its future cash flows discounted with
the risk-free interest rate. Here the risk-free interest rate can be the rate one gets
in a bank account, which typically bears no risk. The models we discuss in this
report possess this future and can therefore obtain fair prices for the derivatives
we present.

Without the models the trade in derivatives would be negligible. The derivatives
market is a place where companies can find products to help them control their cash
flows and reduce their risk. Without the models companies would have to find other
ways to reduce their risk. The models have also given birth and liquidity to exotic
derivatives with more complex payoff structure. If one understands the dynamics
and the risk of exotic derivatives they are not necessarily dangerous. However,
one of the main reasons for the financial crisis in 2007-2008 were an enormous
trade in a handful of such derivatives which very few actually understood. When
these derivatives went from bad to worse many financial institutions and investors
defaulted which resulted in a domino effect in the financial world.

After the financial crisis in 2007-2008 government bonds have been traded at
negative yields in some countries, (e.g. Switzerland, Denmark, Germany, Finland,
the Netherlands and Austria ). This phenomenon contradicts what professors teach
in introductory finance courses, i.e one dollar today is worth more than one dollar
tomorrow. Suggested explanations are desire for protection against the eurozone
breaking up (in which case some eurozone countries might redenominate their debt
into a stronger currency).

Many interest rate models are lognormal, yielding a negative interest rate zero
probability. Such models give 0 % floors zero value. However, on the street this is
indeed not the case. Not before recently dealers started to seriously look at their
exposure to negative rates. The possibility of generating negative interest rates has
traditionally been considered a bad property for interest rate models. It contradicts
common sense, you would never pay someone to lend them money. However, we
need to accept reality, negative interest rates have been traded recently in the
market.

In this thesis we implement a Heath-Jarrow-Morton approach and a LIBOR
market model on the Norwegian, European and US interest rate market. The
purpose is to study how these models behave in the current low-rate environment.
HJM is Gaussian and allows negative rates whereas LMM is lognormal which means
negative rates are impossible. Many interest rate models break down when interest
rates go negative and therefore some adjustments have to be made. We will take a
look on how practitioners have adapted models to negative rates. Furthermore we
will investigate the probabilities of negative interest rates in our models. Lastly we
study how derivative prices behave in the current market.



4 CHAPTER 1. INTRODUCTION



5

Chapter 2

Basic Stochastic Calculus

Before we present the mathematical models we need some basic stochastic calculus
which is used in the modelling of financial assets. From now on a process X is
stochastic if we denote its state at time t as Xt.

2.1 The Brownian Motion and Martingales
We introduce stochastic calculus by defining the Standard Brownian Motion(also
called a Wiener process) which is present in many of the models we are going to
use in this report.

Definition 2.1.1. A stochastic process Wt is a Standard Brownian Motion if the
following conditions hold

1. W0 = 0.

2. Wt has independent increments, i.e. if r < s ≤ t < u then Wu −Wt and
Ws −Wr are independent stochastic variables.

3. For s < t, Wt −Ws is normally distributed with E[Wt −Ws] = 0 and
VAR[Wt −Ws] = t− s.

4. Wt is almost surely continuous.

Although this thesis is not about measure theory we need to introduce some
definitions which will appear when we are dealing with martingales.

• The symbol FXt denotes the information generated by the stochastic process
X on the interval [0, t].

• The event A is FXt -measurable if A ∈ FXt .

• If the stochastic process Y satisfies Yt ∈ FXt for all t ≥ 0, we say that Y is
adapted to the filtration {FXt }t≥0.
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Definition 2.1.2. A stochastic process X is called a martingale with respect to the
filtration Ft if the following conditions hold

1. X is adapted, i.e Xt ∈ Ft.

2. E|Xt| <∞ ∀t.

3. For all s and t where s ≤ t, E[Xt|Fs] = Xs.

2.2 Ito’s Lemma
Assume that the process X is given by the stochastic differential

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (2.1)

where µ(t) and σ(t) are adapted processes. Let f be a C1,2-function and let the
stochastic variable Z be Zt = f(t,Xt). Then dZ is given by

dZt = ∂f

∂t
dt+ ∂f

∂x
dXt + 1

2
∂2f

∂x2 (dXt)2.

When we are using this formula we need some results from stochastic calculus

(dt)2 = 0,
dt · dWt = 0,
(dWt)2 = dt.

2.3 The Lognormal Walk
One of the assumptions in the Black-Scholes model is that the stock follows a
Geometric Brownian Motion (GBM)

dSt = µStdt+ σStdWt. (2.2)

If σ is zero we observe that the solution will be an exponential function. This
motivates us further to investigate the process Zt = f(t, St) = lnSt. Here we have
f(s) = lns. By using Ito’s lemma we obtain

dZt = 0 · dt+ 1
St
dSt −

1
2

1
S2
t

(dSt)2,

dZt = (µ− 1
2σ

2)dt+ σdWt,∫ T

0
dZt =

∫ T

0
(µ− 1

2σ
2)dt+

∫ T

0
σdWt,

ZT − Z0 = (µ− 1
2σ

2)T + σ(WT −W0),

lnST = lnS0 + (µ− 1
2σ

2)T + σWT .
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By taking the exponential on both sides we obtain the lognormal walk

ST = S0exp{(µ− 1
2σ

2)T + σWT }. (2.3)

That is,
ln
ST
S0
∼ N((µ− 1

2σ
2)T,
√
T ).

2.4 Feynman-Kac Formula
Before introducing a very important theorem for pricing financial derivatives we
need to define the class L2:
Definition 2.4.1. A process g belongs to the class L2 if the following conditions
hold
•
∫ t

0 E[g2(s)]ds <∞ for all t > 0.

• g is adapted to the FWt -filtration.
Now we have enough mathematical machinery to introduce Feynman-Kac’s the-

orem.
Theorem 2.4.1. Let X satisfy the SDE in (2.1) with initial condition Xt = x and
assume that V is a solution to the boundary problem

∂V

∂t
(t, x) + µ(t, x)∂V

∂x
(t, x) + 1

2σ
2(t, x)∂

2V

∂x2 − rV (t, x) = 0,

V (T, x) = Φ(x).

Assume furthermore that the process e−rsσ(s,Xs)∂V∂x (s,Xs) is in L2. Then V is
given by:

V (t, x) = e−r(T−t)Et,x[Φ(XT )]. (2.4)

2.5 Change of Numeraire
We can sometimes simplify the pricing of derivatives drastically by change of nu-
meraire. This technique is commonly used when we price interest rate derivatives
under the LIBOR market model.

We assume an arbitrage free market model with asset prices S0, S1,...., Sn where
Si is assumed to be strictly positive.
Theorem 2.5.1. Under the assumptions above the following hold
• The market model is free of arbitrage if and only there exists a martingale

measure, Q0 ∼ P such that the processes
S0(t)
S0(t) ,

S1(t)
S0(t) , ....,

SN (t)
S0(t)

are local martingales under Q0.
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• In order to avoid arbitrage, a T-claim X must be priced according to the
formula

Π(t;X) = E0
[

X

S0(T ) |Ft
]

where E0 denotes the expectation under Q0.

2.6 Monte Carlo
The integral,

α =
∫ 1

0
f(x)dx,

can be considered as an expectation E[f(U)] where U is uniformly distributed
between 0 and 1. We can estimate this integral by drawing n points independently
and uniformly from [0, 1]. Evaluating f at these points produces the Monte Carlo
estimate

α̂n = 1
n

n∑
i=1

f(Ui).

The strong law of large numbers says that

α̂n → α with probability 1 as n→∞.

The Monte Carlo error en = α̂n − α is normally distributed with mean zero and
standard deviation σf√

n
where σf is given by

σ2
f =

∫ 1

0
(f(x)− α)2

dx.

Although σf is unknown we can estimate it with the sample standard deviation

sf =

√√√√ 1
n− 1

n∑
i=1

(f(Ui)− α̂n)2
.

Thus, when we use Monte Carlo we also get an error of the estimate. The conver-
gence rate of Monte Carlo is O( 1√

n
).

2.7 Simulation
There are several strategies when it comes to simulating a system of SDE’s. A
simple and popular method is the Euler scheme.

An Euler scheme for a SDE on a time grid t1, t2, ...., tn for the process

dXt = a(t,Xt)dt+ b(t,Xt)dWt
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is given by

X̂i+1 = X̂i + a(ti, X̂i)(ti+1 − ti) + b(ti, X̂i)
√
tti+1 − tiZi+1

where Zi+1 is standard normal distributed.

2.8 Interpolation Methods
In most cases we have yield points from the yield curve y1, y2, · · · , yn on the nodes
T1, T2, · · · , Tn and need to determine the yield y(T ) where T is not necessarily one
of the Ti’s. Furthermore we need the instantaneous forward rate f(T ) which we
extract from the relation

f(T ) = ∂

∂T
y(T )dT. (2.5)

Suppose we are given some T ∈ (T1, Tn) which is not equal to any of the Ti’s.
Let us define i such that T ∈ (Ti, Ti+1).

Linear interpolation on spot rates :
A simple interpolation method is to use linear interpolation on the yields

y(T ) = T − Ti
Ti+1 − Ti

yi+1 + Ti+1 − T
Ti+1 − Ti

yi.

We now find the instantaneous forward rate from (2.5),

f(T ) = 2T − Ti
Ti+1 − Ti

yi+1 + Ti+1 − 2T
Ti+1 − Ti

yi,

but sadly the forward rates are not continuous with this method.
Raw Interpolation :
This method results in piecewise continuous forward curves and is a popular and
stable method. By solving (2.5) for y(T ) we find that the interpolating function is
y(T ) = K + C

T . Given the two endpoints, we get

f(T ) = K = yi+1Ti+1 − yiTi
Ti+1 − Ti

, C = (yi − yi+1)TiTi+1

Ti+1 − Ti
.

With some manipulation we also find the yield

y(T ) = T − Ti
Ti+1 − Ti

Ti+1

T
yi+1 + Ti+1 − T

Ti+1 − Ti
Ti
T
yi.
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Chapter 3

The Black-Scholes Model

The Black-Scholes is one of the elementary models for valuing and pricing financial
derivatives. The first article about the mathematical model was published in 1973
by Fischer Black and Myron Scholes. They received the Nobel Prize in Economy
for the model which resulted in a dramatical increase in the trade of options and
other financial derivatives.

3.1 Assumptions
The simplest Black-Scholes model assumes that the price of an asset is in possession
of the following features:

• The asset price follows the geometric Brownian motion with con-
stant drift and volatility

dSt
St

= µdt+ σdWt.

The drift term, µ, is here associated with the expected return of the asset.
The volatility, σ, is a measure of the variation in the price. In the equation
above St models the asset price while Wt is a standard Brownian motion.

• The risk-free interest rate is constant and known during the life of
the derivative. This allows traders to borrow and lend cash at a known
rate.

• The market has no transactions costs. This is called a frictionless market
and allows traders to hedge their portfolio without transactions cost.

• The underlying asset does not pay dividends. Dividend payouts change
the asset price, so to simplify the model we assume no dividend payouts in
the life of the derivative.
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• There are no arbitrage opportunities. This means that all riskless port-
folios must have the same return, i.e. the same return as an U.S. Treasury
bond. There is no such thing as a free lunch.

• Trading in the underlying asset happens continuously in time. This
is of course not possible in the real world.

• Short-selling is possible and the assets are divisible. That is, we can
buy or sell a fraction of an asset and we can even sell assets we do not own.

3.2 European Options
We begin with introducing one of the simplest financial derivatives, European op-
tions. There are two different options associated with the European type.

• A European call option is a contract where the buyer has the right, but not
the obligation, to purchase the underlying security at a fixed strike price at
a predescribed date in the future.

• A European put option is a contract where the buyer has the right, but
not the obligation, to sell the underlying security at a fixed strike price at a
predescribed date in the future.

Hence, the buyer of a call option expects the price of the underlying to go up,
whereas the buyer of a put option expects the price to go down. The predescribed
date is often call the maturity of the option, T . The strike price, K, will stay
constant during the time of the contract. From now on we will consider options
with the underlying asset being a stock, S.

Because no person would like to loose money, the buyer of a call option would
only exercise the option if the stock price, S, is greater than the strike price. No
one in their right mind would purchase the stock for K dollars if the market price
of the stock is less. We immediately get the following payoff for a European call
option at maturity

Payoff European Call Option = max(S −K, 0). (3.1)

If S > K at maturity the buyer would buy the stock for K dollars and sell it
for S dollars, obtaining a risk-less profit of S −K dollars.

With the same reasoning as above we can obtain the payoff of a European put
option. If K > S at maturity the buyer would buy the stock for S dollars in the
market and sell it for K dollars, obtaining a risk-less profit of K − S dollars.

Payoff European Put Option = max(K − S, 0).

One of the assumptions of the Black-Scholes model is the absence of arbitrage.
Therefore, the European-style options cannot be free, because then you can obtain
a risk-less profit.
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3.3 The Black-Scholes Analysis
We are now getting closer to the famous Black-Scholes equation which elegantly
gives a unique price for a European option under the assumptions mentioned earlier.

Let us consider the stock to follow (2.2) with initial condition

Su = y when u < t.

Furthermore we assume we have an option with value V (t, St) which depends on t
and St. By using Ito’s lemma we get the following SDE

dV = (µs∂V
∂s

+ 1
2σ

2s2 ∂
2V

∂s2 + ∂V

∂t
)dt+ σs

∂V

∂s
dW. (3.2)

In the above formula the functions’ arguments are excluded to ease the notation.
We now construct a portfolio consisting of one option and −∆ of the underlying
stock. The value of the portfolio, Π, is obviously

Π = V −∆S → dΠ = dV −∆dS. (3.3)

By inserting (3.2) and (2.2) into (3.3) we obtain the differential for the portfolio
value

dΠ = (µs∂V
∂s

+ 1
2σ

2s2 ∂
2V

∂s2 + ∂V

∂t
− µ∆s)dt+ σs(∂V

∂s
−∆)dW.

We now observe that we can get rid of the standard Brownian motion by choosing

∆ = ∂V

∂s
.

This results in a risk-less portfolio whose differential is given by

dΠ = (∂V
∂t

+ 1
2σ

2s2 ∂
2V

∂s2 )dt. (3.4)

One of the assumptions in the Black-Scholes model is the absence of arbitrage.
A risk-less portfolio thus has to generate the same return as an investment in a
bank(here we also need to assume that all banks offer the same interest rate r).
An investment of Π dollars in a bank has the return

dΠ = rΠdt. (3.5)

To avoid arbitrage we need (3.4) to be equal to (3.5),

rΠdt = (∂V∂t + 1
2σ

2s2 ∂2V
∂s2 )dt.

By inserting (3.3) we have reached the famous Black-Scholes equation,

∂V

∂t
+ rS

∂V

∂s
+ 1

2σ
2S2 ∂

2V

∂s2 − rV = 0, (3.6)
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with the terminal condition
V (T, s) = Φ(s). (3.7)

One important fact to mention is that the PDE does not depend on the parameter
µ. With other words, how rapidly/slowly the underlying stock grows does not
affect the option price. We can use Feynman-Kac’s formula because of the form of
(3.6) and (3.7). Hence,

V (t, s) = e−r(T−t)E∗t,s[Φ(ST )], (3.8)

where the stock’s initial value is St = s and the S-process has the dynamics

dSu = rSudu+ σSudW
∗
u .

By using Feynman-Kac’s formula we observe that the new S-process is not the
same as the old process. The local rate of return µ is replaced by the risk-free
interest rate r and W is replaced by W ∗. The old process is the physical process.
The new process is usually called the risk-neutral dynamics of S. The risk-neutral
process is not observed but only used to price options. W is a standard Brownian
motion under the physical measure P whereas W ∗ is a standard Brownian motion
under the risk-neutral measure P∗. From now on E denotes an expectation in the
physical measure while E∗ denotes an expectation in the risk-neutral measure.

From (2.3) we know that the terminal value ST is lognormal

ST = s · exp{(r − 1
2σ

2)(T − t) + σ(W ∗T −W ∗t )},

W ∗T −W ∗t ∼ N(0,
√
T − t).

We are now ready to price a European call option.

3.4 Pricing a European Call Option
Let the price of a European Call option at time t with initial value St = s be given
by C(t, s). By inserting (3.1) into (3.8) we get

C(t, s) = e−r(T−t)E∗t,s[max(ST −K, 0)]

C(t, s) = e−r(T−t)
∫ ∞
−∞

max(se(r− 1
2σ

2)(T−t)+σz −K, 0)f(z)dz,

where z = W ∗T−W ∗t to ease the notation. We observe that if se(r− 1
2σ

2)(T−t)+σz < K
the integrand is zero. We can therefore change the lower limit to z∗ = 1

σ

(
ln(Ks )− (r − 1

2σ
2)(T − t)

)
.

C(t, s) = e−r(T−t)
∫ ∞
z∗

(se(r− 1
2σ

2)(T−t)+σz −K) 1√
2π(T − t)

e−
z2

2(T−t) dz

C(t, s) = s

∫ ∞
z∗

1√
2π(T − t)

e
(z−σ(T−t))2

2(T−t) dz −Ke−r(T−t)
∫ ∞
z∗

1√
2π(T − t)

e−
z2

2(T−t) dz

C(t, s) = sN(d1)−Ke−r(T−t)N(d2)
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Here N() is the cumulative distribution function of the normal distribution. d1
and d2 are given by

d1 =
ln( sK ) + (r + 1

2σ
2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.
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Chapter 4

Stochastic Interest Rate

One of the assumptions in the Black-Scholes analysis was that the risk-free interest
rate was constant and known during the life of the contract. This can be a rea-
sonable assumption for a small interval of time. However, this is seldom the case
for contracts with a long life. Interest rate derivatives (e.g. bonds) have a long life
and we can therefore no longer make this assumption. An example is Norwegian
government bonds, which are typically traded with a time to maturity of 3,5 or 10
years when the contracts are made. It should be clear that the interest rate will
not be constant for such a long period of time. We therefore introduce stochastic
interest rates to be able to price such contracts.

4.1 Short Rate Modelling
We usually model the interest rate with a short rate model. The short rate is the
interest rate we can borrow money for an infinitesimally short period of time. The
short rate, rt, is given by the SDE

drt = µ(t, rt)dt+ σ(t, rt)dWt. (4.1)

Definition 4.1.1. A zero coupon bond with maturity date T, also called a Treasury
bond, is a bond which guarantees the the holder of the contract 1 dollar to be paid
on the date T. From now on p(t, rt;T ) will denote the price of the bond at time t.

It is harder to price a bond than an option because there are no underlying
asset with which to hedge. We can only establish a hedged portfolio by combining
two bonds with different maturity dates. Let p1 and p2 be the price of two different
bonds with maturity dates T1 and T2 respectively. We construct a portfolio,

Π = p1 −∆p2,

where ∆ is chosen such that the portfolio is risk-less. By using Ito’s lemma we find
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the change in the portfolio in a time dt

dΠ = ∂p1

∂t
dt+ ∂p1

∂r
drt + 1

2σ
2 ∂

2p1

∂r2 dt−∆
(
∂p2

∂t
dt+ ∂p2

∂r
drt + 1

2σ
2 ∂

2p2

∂r2 dt

)
.

We observe that we can obtain a risk-less portfolio, that is, remove the random
component in (4.1) by choosing

∂p1

∂r
−∆∂p2

∂r
= 0 → ∆ = ∂p1

∂r

/
∂p2

∂r
. (4.2)

We now use the same reasoning as in the Black-Scholes analysis to avoid arbitrage.
Because this portfolio is risk-less, it must have the same return as a bank account.
That is,

dΠ = rtΠdt.

By using this relation in (4.2) we obtain

∂p1
∂t + 1

2σ
2 ∂2p1
∂r2 − rtp1

∂p1
∂r

=
∂p2
∂t + 1

2σ
2 ∂2p2
∂r2 − rtp2

∂p2
∂r

. (4.3)

We observe that the left-hand side of (4.3) is a function of T1 while the right-
hand side is a function of T2. The only way this can be possible is if each side is
independent of maturity date. We can therefore drop the subscript for the bond
price and let p be the price for a bond with maturity date T

∂p
∂t + 1

2σ
2 ∂2p
∂r2 − rp

∂p
∂r

= σ(t, rt)λ(t, rt)− µ(t, rt). (4.4)

In (4.4) we use the fact that the left-hand side must be independent of the maturity
date. The fraction is thus a function of time and the short rate. We have introduced
a new function, λ(t, rt), called the market price of risk, which we will talk more
about later. We have now finally reached a PDE for the bond price for a Treasury
bond

∂p

∂t
+ 1

2σ
2 ∂

2p

∂r2 + (µ− σλ) ∂p
∂r
− rp = 0, (4.5)

p(r, T ;T ) = 1.

The boundary condition in (4.5) should be clear. The price of a bond at maturity
should be $1 to avoid arbitrage. We observe that the PDE is on the form we need
to be able to use Feynman-Kac’s formula. From (2.4) we get that the price of a
zero coupon bond with maturity date T at time t is

p(t, T ) = E∗
[
e
−
∫ T
t
rsds

]
,
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where the stochastic variable rs is given by the SDE

drs = (µ− λσ)ds+ σdW ∗s ,

rt = r.

The reader should observe that we have once again introduced the risk-neutral
measure P∗ when pricing a contract. The new SDE is not observed but is used
to price the bond. For the zero coupon bond the price at maturity is given by
Φ(rT ) = 1. However, for a bond with a general payoff Φ(rT ) the price at time t
will be given by

p(t, T ) = E∗
[
e
−
∫ T
t
rsdsΦ(rT )

]
.

The drift term in the risk-neutral short rate is not observed. In order to find it we
have to fit the model we use to the actual prices in the market. We typically do
this for all maturity dates to get the best fit. For the moment we introduce α(t, rt)
to ease the notation for the drift

α(t, rt) = µ(t, rt)− λ(t, rt)σ(t, rt). (4.6)

Definition 4.1.2. If the term structure p(t, T ); 0 ≤ t ≤ T, T > 0 has the form

p(t, T ) = eA(t,T )−B(t,T )r (4.7)

where A and B are deterministic functions, then the model is said to possess an
affine term structure (ATS).

If we put (4.6) and (4.7) into (4.5) we get a differential equation involving both
A(t, T ) and B(t, T )

At(t, T )− (1 +Bt(t, T )) r − α(t, r)B(t, T ) + 1
2σ

2(t, r)B2(t, T ) = 0,

A(T, T ) = 0,
B(T, T ) = 0.

From the arguments above it should be clear that we need the risk-neutral short
rate dynamics to be able to price interest rate derivatives. There are several models
which possess an affine term structure. One nice property for a interest rate model
is mean-reversion. A mean-reverting interest rate model will, as the name explains,
tend back to the mean as it oscillates. The model is mean-reverting if α has the
form

α(t, rt) = η(t)− γ(t)rt.

An example is the CIR model, which takes the form

drt = (η − γrt) +
√
θrtdWt.

If η ≥ θ
2 the spot rate will always stay positive, which also has been an important

property historically for an interest rate model.
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4.2 Interest Rate Derivatives
Vanillas
The interest rate derivatives with simplest payoff structure are called vanillas. A
cap is a vanilla interest derivative which is traded in the market. It is a contract
that guarantees the holder that otherwise floating rates will not exceed a specified
amount. For example, an investor might want to secure himself from high rates
when taking up a loan. If the interest rate goes up, the coupon payments will
increase. But, if he has bought a cap, he will receive cash flow as long as the floating
interest rate is above the fixed cap rate. Thus, a cap is used to secure institutions
and investors against an increase in the interest rate. A typical cap contract involves
a payment at times ti, in our case each quarter. The payment(payoff) each quarter
is given by

E

4 max(r − rc, 0). (4.8)

Here r is the floating interest rate, rc is the fixed cap rate and E is called the
principal. The principal is just a constant telling you the size of the cash flows, a
larger E corresponds to a larger price of the contract. The reason the principal is
divided by 4 is because this is the quarterly payoff. In fact, each quarterly payment
is called a caplet. A cap is thus the sum of many caplets. The rate which is paid
on time ti is set at time ti−1.

Floors are to caps as put options are to call options. It is a contract that
guarantees the holder that otherwise floating rates will not go below the fixed floor
rate rf . The payment each quarter is given by

E

4 max(rf − r, 0).

One can construct one payment of a swap with a long caplet and short floorlet
with the same fixed rate(rc = rf ). Each quarterly swap payment thus gives the
holder the amount

E

4 (r − rc).

Exotics
Exotic derivatives are less liquid than more commonly traded instruments. They
have a more complex payoff structure and are usually traded over the counter.
Because the payoff structure is complex the pricing algorithms become more time-
consuming and difficult. There do not exist any closed-form formulas for the prices
and we therefore need simulation to get a reasonable arbitrage-free price. Monte-
Carlo simulation is standard practice in the market.

Detecting Arbitrage
An easy way to detect arbitrage is to find prices of butterfly spreads of stock
options type. For example a long butterfly spread in this report is constructed in
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the following way.

• Buy one cap with cap rate rc − a.

• Sell two caps with cap rate rc.

• Buy one cap with cap rate rc + a.

Let the caplet payment dates coincide and the underlying rates be identical. The
beauty of the butterfly spread is that then the payoff is bounded below by zero.
Figure 4.1 displays this future. Thus, the price today of the derivative should be
positive. If the price is negative (the buyer gets money today) or zero, arbitrage
is possible. One could also do the same with floors instead of caps. Later we will
find prices of butterfly spreads in our investigation of arbitrage.
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Figure 4.1: Payoff diagram of a long butterfly spread.

4.3 Black’s Model
The Black model is one of the fundamental models when one comes across interest
derivatives. The Black formula is to interest rate derivatives like the Black-Scholes
formula is to stock derivatives. The Black model suggests that a forward interest
rate Ft follows

dFt = σBFtdWt (4.9)
F (0) = f.
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The price today of a caplet in T years is the discounted expected payoff of (4.8)
which yields the important Black’s formula

Caplet(0, T + δ) = δp(0, T + δ) (fN(d1)−KN(d2)) (4.10)

d1 =
log( fK ) + σ2

B

2

σB
√
T

d2 = d1 − σB
√
T .

Here δ is the length of the contract, K is the strike price and σB is Black’s volatility.
There is a one-to-one relation relation between the price of a caplet and σB in
Black’s model. Therefore, option prices are often quoted by stating the implied
volatility, the unique volatility which yields the market price when used in Black’s
model. There are many algorithms one can use to obtain the implied volatility, for
example the secant method.

The Black’s model is easy and has few parameters, but this is not necessarily a
good thing. There are very few people who use Black’s model to price derivatives.
It is first of all used for smile calibration purposes.

In practice, caplets with different strike prices K have different implied volatil-
ities σB . The relation between strike price and implied volatility is called the
volatility skew or smile. Fixed income and foreign exchange desks have to handle
these market skews and smiles correctly because they invest across a wide range
of strikes. Black’s model is very time-consuming and old-fashion and better suited
models have been suggested. In the next section we will introduce the SABR-model
which is market practice today.

Another problem with the Black model is that the implied volatility does not
exist for negative rates. In the rate environments we want to study we immedi-
ately approach a difficulty as interest rate derivatives are often quoted in Black’s
volatility. However, the SABR-model can treat negative rates with an elegant and
easy trick.

4.4 SABR Model
The SABR model is a stochastic volatility model, the name stands for ”stochastic
alpha, beta, rho”. In Black’s model the volatility is a constant. Under the SABR
model, the forward interest rate and volatility follow the dynamics

dFt = αtF
β
t dW1, F (0) = f

dαt = ναtdW2, α(0) = α0

dW1dW2 = ρdt.

The skewness parameter, β, is constant and can vary between zero and one. The
price of a caplet is given by Black’s formula. Hagan [8] uses singular perturbation
theory to show that the implied volatility is given by the following relation
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σB(K, f) = α

(fK) 1−β
2

{
1 + (1−β)2

24 log2 f/K + (1−β)4

1920 log4 f/K + ...
} · ( z

x(z)

)
(4.11)

·
{

1 +
[

(1− β)2α2

24(fK)1−β + ρβνα

4(fK)(1−β)/2 + 2− 3ρ2

24 ν2
]
tex + ...

}
,

where

z = ν

α
(fK)(1−β)/2 log f/K

x(z) = log
(√

1− 2ρz + z2 + z − ρ
1− ρ

)
.

That is, (4.11), returns the implied volatility we insert into (4.10) to get the corre-
sponding Black price of the caplet. However, there are also flaws with the SABR
model in connection with negative rates. The model can only generate negative
rates with β = 0, which results in the normal model. Sadly we get no lower bound
on the interest rate. Few traders would for example give a −10% interest rate a
nonzero probability.

Furthermore, regardless of the value of β, the SABR model breaks down in
the current low-rate environment. For low strikes, the model implies negative
probability densities which have no meaning. From (4.11) it should also be clear
that there exists no implied volatility if the strike price and the rate today have
different signs. This will be a problem when we are dealing with negative/low rates.

One way to solve the discussed problems is to use the shifted SABR model.
Consider the dynamics

dF = α(F − S)βdW1, F (0) = f − S
dα = ναdW2, α(0) = α0

dW1dW2 = ρdt.

Under these dynamics the corresponding implied Black’s volatility is

σB(K) =
α log( f−SK )∫ f+S
K

df ′

(f ′−S)β
·
(

ζ

x̂(ζ)

)
· (4.12)

{
1 +

[
2γ2 − γ2

1 + 1/f2
av

24 α2(fav − S)2β + 1
4ρναγ1(fav − S)β + 2− 3ρ2

24 ν2
]
T

}
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where

fav =
√

(f − S)K,

γ1 = β

fav − S
,

γ2 = β(β − 1)
(fav − S)2 ,

ζ = ν(f − S −K)
α(fav − S)β ,

x̂(ζ) = log
(√

1− 2ρζ + ζ2 − ρ+ ζ

1− ρ

)
.

Although the formula seems massive, the computation is actually simple and fast.
Because the use of SABR to obtain volatility smiles has been market practice for
some time, many practitioners use the shifted SABR model when dealing with
low rates and strikes. Another approach has been suggested by Andreasen and
Huge [10], which involves a method for expanding for all strikes simultaneously
using finite differences. It is important to repeat that neither the Black model
or the SABR model are used to price derivatives. They are only used for smile
calibration purposes. Derivatives are priced with term-structure models and the
next chapter is dedicated to one of these models.
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Chapter 5

The Heath, Jarrow &
Morton Framework

The HJM approach models the forward rate curve and is quite different from the
previous mentioned methods. Instead of modelling the short rate and then derive
the forward rates, the HJM approach builds a model for the entire forward rate
curve. The forward rates are known today(from the yield curve) which means that
the yield curve-fitting is contained naturally in the model. The relation between
the forward rate f(t, T ) and a zero coupon bond with maturity T is

p(t;T ) = e
−
∫ T
t
f(t;s)ds → f(t;T ) = − ∂

∂T
log p(t;T ). (5.1)

Now let us assume that all zero coupon bonds satisfy the one-factor model

dp(t;T ) = µ(t, T )p(t;T )dt+ v(t, T )p(t;T )dWt (5.2)

where the maturity date T is fixed. If we use Ito’s lemma on (5.1) and (5.2) we get
a SDE for the forward rate under P

df(t;T ) = ∂

∂T

(
1
2v

2(t, T )− µ(t, T )
)
dt− ∂

∂T
v(t, T )dWt.

When pricing derivatives we need to return to the risk-neutral world. Let the
risk-neutral forward rate curve satisfy

df(t;T ) = α(t, T )dt+ σ(t, T )dW ∗t .

From before we know that the diffusion term is identical under the risk-neutral
measure and the physical measure

σ(t, T ) = − ∂

∂T
v(t, T ).
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The drift term is easily obtained to be

α(t, T ) = σ(t, T )
∫ T

t

σ(t, s)ds,

which is commonly known as the no-arbitrage condition for the HJM model. Hence,
the equation for the evolution of the forward rate curve is

df(t;T ) = σ(t, T )
∫ T

t

σ(t, s)ds+ σ(t, T )dW ∗t ,

f(0, T ) = f∗(0, T )

where f∗(0, T ) is the observed forward rate in the market today.
Above the forward rate curve was only described by one Brownian motion,

which is the case for one-factor interest rate modelling. The HJM framework
becomes much more powerful if we model the forward rate with several Brownian
motions. This is where the multifactor HJM comes into play. A N-factor HJM
model of the forward rate curve satisfies the N-dimensional SDE

df(t, T ) =
(

N∑
i=1

σi(t, T )
∫ T

t

σi(t, s)ds
)
dt+

N∑
i=1

σi(t, T )dW ∗i . (5.3)

In the above representation the Brownian motions are uncorrelated. We can also
interpret the volatility and the Brownian motion as N -dimensional vectors such
that (5.3) takes the form

df(t, T ) =
(

σ(t, T )T
∫ T

t

σ(t, s)ds
)
dt+ σ(t, T )TdW∗.

5.1 Simulation under the HJM Framework
The simulation procedure we use in this article is based on Glasserman[3]. Ideally
we could build a model of an infinite number of bonds with different maturities.
However, the market does not consist of all these bonds. There are of course only
a finite set of bonds sold in the market. Therefore we have to introduce a discrete
approximation of (5.3) to simulate the forward rate dynamics. We start with a
discrete time grid:

0 = t0 ≤ t1 ≤ t2 ≤, .....,≤ tM−1 ≤ tM .

Without loss of generality we are going to let the maturity grid be exactly the
same. That is, we are going to simulate the forward rate for the same set of dates.
First of all we need the forward rate curve today. Let f̂(ti, tj) be the discretized
forward rate for maturity tj as of time ti. The corresponding bond price is given
by

p̂(ti, tj) = exp
(
j−1∑
l=i

f̂(tl, tj)[tl+1 − tl]
)
.
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Because we introduce discretization, we also introduce discretization error. We
minimize this error by choosing initial forward rates such that our estimated bond
prices equal the true bond prices in the market for all the maturities on our time
grid

p̂(0, tj) = p(0, tj) j = 1, .....,M.

Accordingly, our initial forward rates satisfy

f̂(0, tj) = 1
tj+1 − tj

log
(

p(0, tj)
p(0, tj+1)

)
. (5.4)

When we have decided the initial discretized forward rates the multifactor simula-
tion follows

f̂(ti, tj) = f̂(ti−1, tj) + µ̂(ti−1, tj) [ti − ti−1] +
√
ti − ti−1σ(ti−1, tj)TZi , (5.5)

for j = i, ...,M,

where Zi and σ(ti−1, tj) are N-dimensional vectors. Here the discretized drift term
is given by

µ̂(ti−1, tj) =
N∑
k=1

µ̂k(ti−1, tj)

and

µ̂k(ti−1, tj)[tj+1−tj ] = 1
2

(
j∑
l=i

σ̂k(ti−1, tl)[tl+1 − tl]
)2

−1
2

(
j−1∑
l=i

σ̂k(ti−1, tl)[tl+1 − tl)
]2

.

This is the discrete counterpart of the no-arbitrage condition for a multifactor HJM
model. With the iteration scheme in (5.5) we can simulate the forward rates in the
future. What remains to be decided are the initial forward rates and the volatility
structure. We decide the initial forward rates from today’s yield curve. From (5.4)
we see that we can decide the discretized forward rates if we can observe the bond
prices for each maturity on our time grid. There might be some bonds maturing
on some of the dates on our time grid in the market, but seldom all. Therefore
we have to estimate some of the bond prices to get our initial forward rates. We
estimate the unknown bond prices by interpolating the bond prices observed in the
market. By doing this, we get estimates for the initial discretized forward rates.
In this report we have used linear interpolation. When analysing the volatility in
the forward rate curve one usually assumes that the volatility only depends on the
time to maturity. This is called Musiela parametrization,

σ(t, T ) = σ(T − t) = σ(τ).

When it comes to developing the volatility structure, we can use Principal
Component Analysis(PCA) on historical forward rates. Suppose we have historical
time series of forward rates for several maturities. It is intuitive that many of the
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daily movements are common between the rates. For example, a downgrading of
Norway’s creditworthiness would probably affect all Norwegian government bonds
regardless of the time to maturity. The purpose of PCA is to find common move-
ments between these rates. First of all we need to find the daily changes for each
rate. This is easily done when we are in possession of the historical rates. We give
a loose description of how PCA is done in the next section.

5.2 Principal Component Analysis
Suppose we have observations of daily changes in the rates for N different maturi-
ties. PCA is a procedure that uses an orthogonal transformation to convert a set
of observations of N possibly correlated variables into a set of linearly uncorrelated
variables called principal components. This transformation is defined such that
the first principal component has the largest possible variance(it accounts for as
much variability in the data as possible). Furthermore the succeeding principal
components have the largest possible variance with the constraint that they are
orthogonal to the preceding components(that is, they are uncorrelated). Firstly we
find the covariance matrix, C, for the changes in the rates for the N different ma-
turities. This will be a N ×N matrix where Cij represents the covariance between
the daily changes for maturity i and j. Furthermore we find the eigenvalues and
eigenvectors of C,

C = VΛV−1.

Here V is a matrix whose columns are the eigenvectors to C. Λ is a diagonal
matrix with the corresponding eigenvalues. If V and Λ are sorted in order of
decreasing eigenvalue, the jth column of V is the jth principal component of C.
The first eigenvector gives the dominant part in the movement of the rate curve. Its
ith entry represents the movement of the ith maturity. Furthermore the volatility
factors are given by

σj(τi) =
√
λjVij . (5.6)

If we want the volatility for other maturities we need to interpolate between the
ones we already know. In this report we have used linear interpolation. If we
choose n principal components, they describe∑n

j=1 λj∑N
j=1 λj

× 100%

of the variability in the rate curve.
Chapman and Pearson[7] find that three factors can explain 99 % of the vari-

ation in the American yield curve. They found that the first principal component
describes a parallel shift(its entries have the same sign ) in the yield curve. The
second and third component represent respectively a twisting and a bending of the
curve.

However, we do principal component analysis on forward rates. The decay of the
eigenvalues is generally considerably slower so we need to include more factors to be
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able to explain enough variability. Furthermore the intuitive economical meaning
of the factors are not necessarily clear. Kletskin [9] showed that three factors only
explain 73.81 % with PCA on US forward rates in the period 1982-2003.

5.3 Pricing Derivatives
In this thesis we will consider the 3-month rate as the short rate, i.e. the rate on
the bond with shortest possible maturity in the market. The relationship between
the instantaneous forward rate and the short rate is by definition

r(t) = f(t, t).

Hence, we can use (5.5) to simulate the short rate on our time grid. We furthermore
set the payment dates for the derivative we want to price to the dates on our time
grid. Then it is a straightforward procedure to price a derivative using Monte Carlo
simulation. After one simulation of (5.5) we get the short rate r̂(ti) for the dates
i = 0, 1, ...,M − 1. From now on let r̂(ti) = r̂i.

The floating rate in a caplet is usually based on discrete compounding, for
example a LIBOR rate. For the interval [ti, ti+1] the corresponding discretely
compounded rate F̂i satisfies

1
1 + F̂i(ti+1 − ti)

= e−r̂i(ti+1−ti).

Let g(F̂i) denote the simulated cash flow on date ti. We need to find the present
value of the payments to find the fair price of the derivative. The present value of
g(F̂i) is given by

PV (g(F̂i)) = g(F̂i) ·
i∏

n=1
er̂n−1(tn−tn−1).

The price for the derivative is then the sum of the present values of the cash flows.
We do many simulations and take the average to get a price estimate P̂ of the
derivative. P̂ will have unit currency and gives us little information about what
one actually pays for the contract. Because we deal with interest rates it is more
beneficial to present the price as a rate because we can compare this rate with the
rates in the market. Consider a bond with price P̂ paying a fixed coupon rate c on
the same dates as the quarterly paying cap

P̂ = c

4

M∑
i=1

e−yiti . (5.7)

The coupon rate is easily obtained from the above equation and tells us what rate
we pay for the cap. The yi’s are the yields to the future payment dates and is
obtained from today’s yield curve.
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Chapter 6

The LIBOR Market Model

Until now we have considered interest rate models based on infinitesimal interest
rates like the instantaneous short rate. Although they are nice to handle from
a mathematical point of view they can never be observed in the market. LIBOR
rates are discrete market rates which can be observed in the market. LIBOR stands
for London Inter-Bank Offered Rate and is calculated daily through an average of
rates offered by banks in London. LIBOR rates are based on simple interest.

We need to introduce some new definitions in the pursuit of the zero coupon
bond price. If we have a fixed set of maturities in increasing order T0, T1,...., TN
we define δi by

δi = Ti − Ti−1.

The number δi is called a tenor and is typically equal to a quarter of a year.

Definition 6.0.1. Let pi(t) denote the zero coupon price p(t, Ti), that is, the price
of a zero coupon bond at time t which matures at Ti. Let Li(t) denote the LIBOR
forward rate contracted at t for the period [Ti−1, Ti],

Li(t) = pi−1(t)− pi(t)
δipi(t)

i = 0, 1, ....., N (6.1)

If we solve (6.1) for the bond price, we get that the bond price at a tenor date
Tn which matures at Ti (Ti > Tn ) is given by

pi(Tn) =
i−1∏
j=n

1
1 + δjLj(Tn) .

It should be clear that the above bond price is at a tenor date Tn. But what happens
if we want the price of a zero coupon bond at an arbitrary date t? Suppose that
Tn < t < Tn+1 and we want to find the price pi(t) for some i > n+ 1. The factor,

i−1∏
j=n+1

1
1 + δjLj(t)

,
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discounts the cash flow at Ti back to Tn+1 but not back to t. Define the function
η : {0, TM+1} by taking η(t) to satisfy

tη(t)−1 ≤ t ≤ Tη(t).

Using this notation, we get the zero coupon bond price at t

pi(t) = pη(t)(t)
i−1∏
j=η(t)

1
1 + δjLj(t)

0 ≤ t ≤ Ti.

The next step is to formulate the evolution of the forward LIBOR rates. Under
the spot measure the forward LIBOR rates follow a system of SDE’s of the form

dLn(t)
Ln(t) = µn(t)dt+ σn(t)T dW (t), 0 ≤ t ≤ Tn, n = 1, ....,M. (6.2)

Here W (t) is a d-dimensional standard Brownian motion. The coefficients µn(t)
and σn(t) can also depend on the current vector of rates (L1(t), ...., LM (t)). As
in the HJM model, also the LIBOR market model has a drift condition which
eliminates arbitrage. This condition is

µn(t) =
n∑

j=η(t)

δjLj(t)σn(t)Tσj(t)
1 + δjLj(t)

. (6.3)

Furthermore this transforms (6.2) to

dLn(t)
Ln(t) =

n∑
j=η(t)

δjLj(t)σn(t)Tσj(t)
1 + δjLj(t)

dt+ σn(t)T dW (t), 0 ≤ t ≤ Tn, n = 1, ...,M.

(6.4)
The reader should observe that under the spot measure the LIBOR rate is lognor-
mal and hence cannot go negative. Before we introduce simulation algorithms we
need to specify the volatility structure.

6.1 Volatility
6.1.1 Implied Volatility
The LIBOR market model is often calibrated to actively traded derivatives, for
example caps. Assume that the forward rate in (4.9) is a LIBOR forward rate Ln(t).
If the price of a caplet for the interval [Tn, Tn+1] is given we can find the unique
implied volatility vn by inverting (4.10). We choose σn to be any deterministic
Rd-valued function satisfying

1
Tn

∫ Tn

0
||σn(t)||2dt = v2

n.

By imposing this constraint on all the σj ’s the model is calibrated to all caplet
prices.
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6.1.2 Historical Volatility

Because we do not have quoted prices for interest rate derivatives in our possession
we need to find a volatility structure somehow differently. Another possibility is to
find the historical volatility. This process has some similar elements as the PCA
we did in the HJM framework. We assume an instantaneous volatility structure
specified by the matrix

Inst. Vol. t ∈ (T0, T1 ] (T1, T2 ] (T2, T3 ] · · · (TM−1, TM ]
L1(t) σ1,1 expired · · · · · · expired

L2(t) σ2,1 σ2,2 expired · · ·
...

L3(t) σ3,1 σ3,2 σ3,3 · · ·
...

...
...

...
... · · ·

...

Li(t) σi,1 σi,2 σi,3 · · ·
...

...
...

...
... · · · expired

LM (t) σM,1 σM,2 σM,3 · · · σM,M

Table 6.1: Historical volatility structure

The LIBOR rate Li(t) does not vary after Ti and any volatility with this rate
equals zero after this maturity. The next paragraph explains how we can find such
a volatility structure.

We begin by finding the covariance matrix, C, for the daily changes in historical
LIBOR rates for N different maturities. C will be a N × N matrix where Cij

represents the covariance between the daily changes for maturity i and j. We
construct a lower triangular matrix, Ĉ, by setting the entries above the diagonal
equal to zero. This matrix will be of order percent squared but we want our
volatility structure to be of order percent. A proper volatility structure is therefore
the square root matrix of Ĉ. We find the eigenvalues and eigenvectors of Ĉ,

Ĉ = VΛV−1.

Now note that Y = VΛ0.5V−1 will be a square root of Ĉ because

YY = VΛ0.5V−1VΛ0.5V−1 = VΛ0.5Λ0.5V−1 = VΛV−1 = Ĉ,

where simply Λ0.5 is a diagonal matrix with the square root of the eigenvalues on
the diagonal. What remains now is to specify the volatility vectors σj(t) in (6.4).
We assume that the vectors are constants and define them in the following way

σn(ti) = Yin. (6.5)
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6.2 Simulation
We begin by fixing a time grid 0 = t0 ≤ t1 ≤, ....,≤ tm+1 over which to simulate.
To ease the simulations the tenor dates T1, T2, ..., TM+1 will fully coincide with the
time grid. An Euler scheme on (6.2) yields an explicit simulation algorithm

L̂n(ti+1) = L̂n(ti) + µn(L̂n(ti), ti)L̂n(ti)(ti+1 − ti) + L̂n(ti)
√
tti+1 − tiσ(ti)TZi+1,

(6.6)
where µn(L̂n(ti), ti) is given by (6.3) and Z1, Z2,... are independent N(0, I) vectors
in Rd. We assume that we have today’s yield curve (t = 0) and can therefore
initialize the LIBOR forward rates with

L̂n(0) = pn(0)− pn+1(0)
αnpn+1(0) , n = 1, ....,M. (6.7)

6.3 Pricing Derivatives
The pricing algorithm is straightforward. With (6.6) we get simulated paths of the
discretized variables L̂1, L̂2, .., L̂M . Assume that we want to price a derivative with
a cash flow g(L(Tn)) at time Tn. We simulate to time Tn and then calculate the
present value of the payment

PV (g(L̂(Tn)) = g(L̂(Tn)) ·
n−1∏
j=0

1
1 + δjL̂j(Tj)

.

The simulated price of the derivative is then the sum of the present values of all
the cash flows. By averaging over the simulations we get an estimate of the price
at time 0. We denote the price of the derivative as the coupon rate c in (5.7).
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Chapter 7

Data Description

The three data sets are provided by DNB. The first data set represents the daily
quoted yields for Norwegian zero coupon bonds for several maturities in the period
01.03.2000 to 11.29.2012. The second and third data sets represent daily quoted
yields for the European and US zero coupon bonds in the period 01.08.2006 to
15.02.2013. The available maturities for each country were 3 months, 1, 2, 3, 5, 7
and 10 years. Under the Heath-Jarrow-Morton framework we model the instanta-
neous forward rate and then derive the bond prices. In the LIBOR Market Model
we model simple forward rates. The volatility in (5.5) corresponds to the volatility
in the instantaneous forward rate curve. Therefore, we need somehow to find the
volatility of the instantaneous forward rate curve to be able to simulate under (5.5).
In other words, we need to derive the historical instantaneous forward rate curve
from the historical yield curve. Likewise we need the historical LIBOR forward
rates to find the appropriate volatilities in (6.5).

7.1 Inversion from Yield Curve to Forward Rate
Curve

7.1.1 Instantaneous Forward Rate Curve
The shortest maturity in the data is three months. We will therefore consider the
three-month rate as the short rate. The short rate is defined to represent the yield
on a bond with infinitesimal maturity, but in practice one should take this rate to
be the yield on a liquid finite-maturity bond. We will in the same way take the
instantaneous forward rate to be the three-month rate forward in time.

We can obtain an estimate of the instantaneous forward rate curve by the
following procedure. Firstly we set the instantaneous forward rate today equal to
the 3-month rate. Secondly we use interpolation on the initial data to find the
yields for bonds with maturity 1.25, 2.25, 3.25, 5.25 and 7.25 years. Lastly we use
(5.4) to find the 3-month rate in 1, 2, 3, 5 and 7 years.
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Figure 7.1 shows the evolution of the Norwegian instantaneous forward rates in
the period 2000-2012 and the European and US instantaneous forward rates in the
period 2006-2013. We instantly observe that the assumption of a constant interest
rate in the Black-Scholes model must be set aside for long time horizons. Table 7.1
shows the means and standard deviations of the forward rate curves. We observe
that the mean increases with maturity while the standard deviation decreases with
maturity. However, the mean and standard deviation for the daily changes are
much more similar over different maturities. The original time series is clearly not
stationary. This is the reason why we use PCA on the daily changes in the rates
rather than on the rates themselves. Further we note that the US interest rate
market is more volatile than the two other markets.
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Figure 7.1: Instantaneous forward 3-month rate curve in the period 2000-2012 for
NOK rates and for EUR and USD rates in the period 2006-2013.
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Norway 2000-2012
Maturity Mean (%) Std. (%) Mean daily change (%) Std. daily change (%)

3M 4.13 2.01 -0.001183 0.05135
1.25Y 4.54 1.68 -0.001246 0.06132
2.25Y 4.77 1.38 -0.001326 0.06466
3.25Y 4.94 1.23 -0.001178 0.05590
5.25Y 5.21 1.06 -0.001073 0.07048
7.25Y 5.32 1.00 -0.001023 0.06171

Europe 2006-2013
Maturity Mean (%) Std. (%) Mean daily change (%) Std. daily change (%)

3M 1.74 1.61 -0.001805 0.02628
1.25Y 2.06 1.50 -0.002010 0.06382
2.25Y 2.40 1.36 -0.001954 0.08037
3.25Y 2.75 1.18 -0.001714 0.05296
5.25Y 3.26 0.93 -0.001408 0.05346
7.25Y 3.53 0.84 -0.001220 0.06326

US 2006-2013
Maturity Mean (%) Std. (%) Mean daily change (%) Std. daily change (%)

3M 1.88 2.03 -0.003242 0.03232
1.25Y 2.04 1.75 -0.003153 0.07256
2.25Y 2.67 1.56 -0.002875 0.08151
3.25Y 3.15 1.38 -0.002593 0.08029
5.25Y 3.84 1.13 -0.002030 0.08519
7.25Y 4.09 1.02 -0.001744 0.08740

Table 7.1: Statistics for the Norwegian, European and US 3-month instantaneous
forward rates.
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7.1.2 LIBOR Forward Rate Curve
The idea behind the LIBOR market model is to simulate the points on the yield
curve we already have. In other words, we simulate something which is in fact
quoted in the market. In comparison the instantaneous forward rate is something
mathematicians found up to model interest rates, it is completely abstract. Given
the zero coupon bond prices from DNB we can produce seven historical LIBOR
forward rates. Let Li(t) denote the forward LIBOR rate at time t for the interval
(Ti, Ti+1) and let T = {T1, T2, T3, T4, T5, T6, T7} = { 1

4 , 1, 2, 3, 5, 7, 10}. By using
(6.7) we get L̂i(0) for i = 1, 2.., 6. Figure 7.2 displays the historical LIBOR forward
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Figure 7.2: LIBOR forward rate curve for NOK rates in the period 2000-2013 and
for EUR and USD rates in the period 2006-2013.

rates for NOK, EUR and USD. We observe that these are far from constant as well.
Table 7.2 consists of the means and standard deviations for the curves. They have
the same structure as the statistics for the instantaneous forward rates and we
make the same conclusion. The volatility structure should be constructed from the
daily changes in the rates.

7.2 Volatility Structures

7.2.1 PCA on the Instantaneous Forward Rate Curves
We continue our investigation of the instantaneous forward rate curve by finding
the covariance matrix for the daily changes between different maturities. Because
we have 6 different maturities, the covariance matrix will be a 6× 6 matrix. PCA
on the daily changes will leave us with a volatility structure which we can use in
the Heath-Jarrow-Morton framework. Figure 7.3 shows the three most dominant
principal components for the different markets. The first principal component is flat
compared to the other components for all markets. This indicates that a parallel
shift in the forward rate curves is the dominant movement, as it should be. The
second principal component moves in a linear fashion in the NOK and USD rates.
It only changes sign once, and indicates that a twisting of the curve is the second
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Norway 2000-2012
Rate Mean (%) Std. (%) Mean daily change (%) Std. daily change (%)
L1 4.43 1.98 -0.001155 0.07206
L2 4.82 1.65 -0.001371 0.09598
L3 4.99 1.35 -0.001427 0.07981
L4 5.40 1.20 -0.001245 0.07504
L5 5.64 1.10 -0.001141 0.10670
L6 5.94 1.10 -0.001151 0.09241

Europe 2006-2013
Maturity Mean (%) Std. (%) Mean daily change (%) Std. daily change (%)

L1 1.91 1.65 -0.002074 0.05252
L2 2.21 1.48 -0.002066 0.09349
L3 2.57 1.35 -0.001983 0.11090
L4 3.17 1.13 -0.001654 0.07264
L5 3.64 0.88 -0.001353 0.06499
L6 4.04 0.83 -0.001169 0.06831

US 2006-2013
Maturity Mean (%) Std. (%) Mean daily change (%) Std. daily change (%)

L1 2.44 1.67 -0.002978 0.05145
L2 1.93 1.85 -0.003339 0.11936
L3 2.91 1.57 -0.002880 0.09502
L4 3.73 1.38 -0.002544 0.10140
L5 4.36 1.13 -0.001945 0.10370
L6 4.74 1.06 -0.001681 0.11581

Table 7.2: Statistics for the Norwegian, European and US LIBOR forward rates.

most dominant movement in the NOK and USD instantaneous forward rate curves.
The second PC in the EUR rates changes sign twice and indicates that the second
most important feature in the forward rate curve is a bending. The third principal
component has different structure in the three different markets. The Norwegian
and US third PC changes sign three times and their economical meaning is not
clear. The European third PC changes sign once and reflects a twisting of the
curve. These findings suggest that PCA on forward rates give less intuitive results
as with the same procedure on yield curves.

Table 7.3 shows the eigenvalues for the PCA. We observe that the decay of
the eigenvalues is slowest for the Norwegian market and fastest for the US market.
This suggests that the Norwegian interest market is more illiquid than the others.

The volatility structure is easily obtained from (5.6). Figure 7.4 displays the
volatility factors in terms of time to maturity. We observe that the first factors
have more volatility.
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Figure 7.3: The three largest principal components for Norway, Europe and the
US.

Norway
Eigenvalues Value (in 10−3) Cumulative variation Explained (%)

λ1 0.2546 45.3
λ2 0.1313 68.7
λ3 0.0660 80.4
λ4 0.0507 89.4
λ5 0.0369 96.0
λ6 0.0226 100.0

Europe
Eigenvalues Value (in 10−3) Cumulative variation Explained (%)

λ1 0.2582 52.4
λ2 0.1292 78.6
λ3 0.0576 90.3
λ4 0.0189 94.1
λ5 0.0156 97.3
λ6 0.0135 100.0

US
Eigenvalues Value (in 10−3) Cumulative variation Explained (%)

λ1 0.6499 75.8
λ2 0.0874 86.0
λ3 0.0610 93.1
λ4 0.0261 96.1
λ5 0.0183 98.3
λ6 0.0147 100.0

Table 7.3: The eigenvalues of the covariance matrix and amount of cumulative
variation explained for the Norwegian, European and US 3-month instantaneous
forward rates 2000-2012.

7.2.2 Historical Volatility in the LMM
We do the same procedure with our historical LIBOR forward rates and find the
covariance matrix for the daily changes between the maturities, which also will be
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Figure 7.4: Volatility Structure in HJM framework.

a 6 × 6 matrix. The next step is to set the entries above the diagonal to zero,
motivated by the discussion in section 6.1. Lastly we find our volatility structure
by using (6.5). Figure 7.5 shows the volatility structure for the three different
markets. Without doubt the diagonals contribute with most volatility.
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Figure 7.5: Volatility Structure in LMM.
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Chapter 8

Results

With the volatility structure in our possession we are ready to simulate in the HJM
framework and the LMM.

8.1 Simulation
8.1.1 Simulation in the HJM Framework
In the HJM framework we have simulated under (5.5) using the algorithms in
Glasserman[3]. Because we want to incorporate all historical volatility into our
model we use all six factors when we simulate forward in time. Figure 8.1 shows
the distribution of the simulated 3-month rate in seven years for the Norwegian,
European and US market respectively. We observe that the distributions look
normal. The distributions’ means are 3.8 %, 2.32 % and 3.14 % respectively and
the standard deviations are 2.33 %, 2,20 % and 3.15 %.
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Figure 8.1: Distribution of simulated 3-month rate curve in seven years with
1,000,000 Monte Carlo simulations. Means (3.8 %, 2.31 % and 3.14 %)

Because the HJM model uses Gaussian variables it cannot guarantee positive
rates. We observe clearly that the probability of a negative 3-month rate in seven
years is highly significant for all three markets. The probabilities of a negative
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3-month rate in seven years are 5,10 %, 14,65 %, 15.91 % respectively. These
results clearly contradict the classical concept of interest rates. Introductory eco-
nomics books state that one dollar is worth more today than tomorrow but these
distributions suggest otherwise.

In our Heath-Jarrow-Morton model we simulate the short rate forward in time
and there are three months between each node. Later when we price derivatives the
payment dates will typically be equivalent to these nodes and the payoffs depend on
the short rate. The probabilities of a negative short rate on the nodes are therefore
interesting and have the possibility to strongly affect the price. Figure 8.2 clearly
shows the significance of negative rates in the Heath-Jarrow-Morton framework in
the current low-rate environment. We know that negative rates are allowed in the
HJM framework but can we really translate this to the real world? Many argue
that negative rates are impossible. If this indeed is the truth we do a horrible
mistake by pricing interest rate derivatives with our model, for example floors will
get overpriced with our model. We also observe that the closer today’s short rate
is to zero, the higher the probability is of a negative short rate in the future ( there
is a much bigger chance for a negative short rate in EUR or USD rates than in
NOK rates).

Figure 8.2 also shows the probability of the short rate in the future being lower
than the current level. We clearly see the market expectation of a rise in interest
rates in the future because the probability is decreasing with time. With the current
yield curves it is satisfying that the EUR and USD probabilities are generally lower
than the NOK probabilities.
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Figure 8.2: a) Probability of negative 3-month rate forward in time for Norway,
Europe and the US. The probabilities are clearly significant. b) Probability of a
lower rate than the current level. The graphs decline which means the market
expects rises in interest rates.
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8.1.2 Simulation in the LIBOR Market Model
In the LMM we use an Euler scheme and simulate under (6.6) using all six factors.
Figure 8.3 illustrates the distributions for simulated NOK, EUR and USD LIBOR
3-month rates in three months and seven years time. We see that the distributions
for the LIBOR rates in seven years have more volatility. This makes sense, it is
harder to foresee the rate in seven years than in three months. The distributions
are unbiased, i.e. the distributions’ means are equal to the LIBOR forward rates
today. In LMM we only model the the nodes on the yield curve we have today. For
maturities between these nodes we need to interpolate. In this thesis we assumed a
piecewise constant forward rate. For example the LIBOR forward rate simulated in
one year also covers maturities up to two years. We observe that the distributions
do not cover negative interest rates. This is due to the fact that LIBOR rates in
LMM are modelled as lognormal and hence cannot go negative.
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Figure 8.3: Distributions of L1(0.25) and L6(7) for NOK, EUR and USD rates.

8.2 Pricing Derivatives
We now want to investigate the prices our models generate. Rather than quoting
the price in the actual currency we quote the price as the coupon rate in (5.7). A
rate is of course much easier to compare to today’s yield curve. Figure 8.4 shows
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the current yield curves, instantaneous forward rates and LIBOR forward rates in
the three different markets we are investigating. We observe that NOK rates are
a level above the two other markets. The NOK and EUR yield curves represent a
normal yield curve i.e. the yield is an increasing function of maturity. This means
that market participants expect the interest rates to rise in the future. This is
also reflected in figure 8.2. The USD yield curve is normal except that it declines
between 1Y and 2Y. We see that we have discretized away the decline between 1Y
and 2Y in the USD instantaneous forward rate curve.
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Figure 8.4: Current yields, instantaneous forward rates and LIBOR forward rates
for Norway, Europe and the US.

8.2.1 Cap
We begin by pricing a cap with quarterly paying caplets. We use the 3-month
LIBOR rate as the floating rate. Because a cap is a security against rises in interest
rates the price of a cap should decrease with strike price and increase with number
of caplets and volatility factors. Figure 8.5 displays the cap price versus the strike
price rc for NOK, EUR and USD rates.

The price does indeed decrease with the fixed cap rate. For negative strikes
the HJM and LMM models generate approximately the same price. For rc = −5%
the prices differ about 2 basis points. Simulated rates in the HJM model can go
negative and OTM for negative strikes which leads to a smaller Monte Carlo price
than in the LMM. As the strike approaches the current 3-month rate the HJM
price is clearly greater. The reason for this can be explained by the simulated rate
distributions in the two models. Whereas the rate distributions in HJM have more
standard deviation and cover a large range of interest rates the rate distributions
in the LMM are narrow around the LIBOR forward rates today. We observe for
example in figure 8.1 that HJM simulations can end up in the money for strike
prices above rc = 10%, which eventually leads to larger prices than in the LMM.
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Figure 8.5: Cap prices versus strike price on NOK, EUR and USD rates. Number
of caplets is 29 and number of factors is 6 in both HJM and LMM. The prices
clearly differ with strikes near the current 3-month rate.

With the same strike price a cap on NOK rates is most expensive followed by
USD and EUR rates in both HJM and LMM. This is no surprise as the current
NOK rates are a level above USD and EUR rates. This price difference is explained
by dissimilarities in the macroeconomics and not by the differences between HJM
and LMM.
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Figure 8.6: Cap prices versus number of caplets on NOK, EUR and USD rates.
The number of factors is 6 and the strike price is today’s 3-month rate i.e. 1.95%,
0.1% and 0.29% respectively in both HJM and LMM.

Figure 8.6 illustrates how the cap price depends on the number of caplets when
we use today’s 3-month rate as the fixed cap rate. We expect the cap price to
increase strictly with number of caplets and it might seem wrong at first sight that
the LMM price on USD rates is decreasing from 3 to 8 caplets. However, the LMM
price on USD rates reflects the LIBOR forward rates in figure 8.4. By looking at
(5.7) we see that the price in currency does not necessarily decrease even though
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the coupon price decreases. This is the case here, it is just a reflection of the
current yield curve. The prices on USD rates generated by HJM do not have the
same structure. In this model we simulate the USD instantaneous forward rates
which do not have the same trend as the LIBOR forward rates in figure 8.4.

Lastly we include a graph of the HJM prices versus number of volatility factors.
Figure 8.7 shows this relation. As expected the prices are increasing in terms of
factors. The prices increase most from 1 to 3 factors which is the case when one
uses principal component analysis to obtain a volatility structure. Further we note
that the USD price is largest followed by the EUR price.
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Figure 8.7: HJM cap prices versus number of volatility factors on NOK, EUR and
USD rates. The number of factors is 6 and the strike price is today’s 3-month rate
i.e. 1.95%, 0.1% and 0.29% respectively. We see that the first factors contribute
most to the price.

8.2.2 Floor
A more interesting derivative in the current rate environment might be the floor.
The buyer of a floor secures himself from a drop in the interest rate, typically a
lender would find floors necessary to reduce interest rate risk. We let the floor pay
quarterly floorlets and use the 3-month LIBOR rate as the floating rate. The floor
price should increase with the fixed floor rate rf . Figure 8.8 shows that the floor
prices increase with the strike price as expected. The most important observation
without doubt is that the HJM model generates a nonzero price for floors with
strike prices below zero. The HJM prices for floors with rf = 0% are 2, 16 and
21 basis points for NOK, EUR and USD rates respectively. In the LIBOR market
model the rate is modelled lognormal and cannot be zero or negative by definition.
Hence, the LMM prices for 0 % floors are zero. Further we observe that the LMM
and HJM prices differ most in the region around today’s 3-month LIBOR rate. As
the fixed floor rate increases the prices approach each other.

With the same fixed floor rate a floor on EUR rates is more expensive than on
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Figure 8.8: Floor prices versus strike price on NOK, EUR and USD rates. Number
of caplets is 29 and number of factors is 6 in both HJM and LMM.

USD or NOK rates in both models. This is again explained by the current yield
curves and not by the differences between our models. The EUR yield curve is on
a lower level and hence a floor on EUR rates should be more expensive.
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Figure 8.9: HJM floor prices versus number of caplets on NOK, EUR and USD
rates. Number of factors is 29 and strike price is equal to the LIBOR forward
3-month rate in seven years, i.e. 4.27%, 2.72% and 3.56% for NOK, EUR and USD
rates respectively.

Figure 8.9 illustrates how the floor depends on the number of floorlets in the
different markets. Again the LMM price for USD rates reflects the yield curve in
figure 8.4. We observe that the coupon price generally decreases with the number
of floorlets. This observation reflects that the market expects the interest rates
to rise in the future, and hence the relative price of the floor decreases with the
length of the contract. We again observe that the Monte Carlo prices in the Heath-
Jarrow-Morton framework are larger because of the exposure to negative rates.

The HJM prices in terms of number of volatility factors are illustrated in figure
8.10. Also the floor prices are strictly increasing functions of volatility factors. We
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observe that the USD price is largest.
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Figure 8.10: HJM floor prices versus number of factors on NOK, EUR and USD
rates. Number of caplets is 29 and strike price is equal to today’s 3-month rate i.e.
1.95%, 0.1% and 0.29% respectively. The first factors contribute the most to the
price.
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8.2.3 Long Butterfly Spread
An easy way to detect arbitrage is to find prices of butterfly spreads. The long
butterfly spread price is the same regardless if it is constructed with caps or floors.
Figure 8.11 displays the long butterfly spread prices constructed by caps. We
observe that the prices are nowhere negative or zero which means that our models
do not generate arbitrage possibilities. The HJM and LMM prices have the same
profile but they also differ. First of all the HJM prices have fatter tails. The prices
stay significant even though the strike price goes negative or very high. Another
difference is that the LMM prices are less smooth than the HJM prices. The reason
for this can be traced back to how we calibrated our models. The caps are paying
quarterly. Hence, the HJM model discretizes the whole yield curve into points
with 3 months in between and simulate all these points. On the contrary LMM
simulates the real points we have in our data set (3M, 1Y, 2Y, 3Y, 5Y, 7Y and
10Y) and then we have to choose how to estimate the points in between. In this
thesis we assumed a piecewise constant LIBOR rate. In other words, our forward
LIBOR rate is not continuous which result in the non-smooth butterfly prices.

The prices peak when rc is above today’s 3-month rate. For example the HJM
prices peak at rc = 2.15%, rc = 0.33% and rc = 0.40% for NOK, EUR and USD
rates. This is no surprise. A long butterfly spread is a bet on the interest rate
staying inside a region centred at rc with length 2a. Figure 8.4 shows that the
market expectation is that interest rates will rise in all markets in the future.
Hence, the long butterfly spread prices should peak on strikes above the current
3-month rates. The LMM prices peak on larger strikes because the LMM does not
cover negative rates.
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Figure 8.11: Long butterfly spread price versus strike price when a = 1%.
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Chapter 9

Conclusion

The current low-rate environment is very interesting because it challenges the fun-
damental rule in finance that the rate is a positive variable. This motivated us
to implement two advanced term-structure models, Heath-Jarrow-Morton and LI-
BOR market model, to highlight differences under the current market conditions
in Norway, Europe and the US. In the HJM model we used principal component
analysis on historical daily changes in instantaneous forward rates to get an expres-
sion for the volatility structure. The LMM used the square root of the covariance
matrix of historical daily changes in LIBOR forward rates as the volatility struc-
ture. We showed that USD rates were more volatile than NOK and EUR rates.
Furthermore the eigenvalue decay in the PCA showed that the Norwegian market
is more illiquid than the European and US market.

The main differences between the two models were the exposure to negative
rates. The HJM model is Gaussian and we showed that under this framework
a negative 3-month rate was significant in the future. In the LMM the LIBOR
forward rates are modelled lognormal and cannot go negative. The probability
of a negative 3-month rate in the future in HJM depends heavily on the current
3-month rate level. The simulated NOK 3-month rate was negative in the future
with a much lower probability than the USD and EUR 3-month rate, which is not
very surprising.

The differences between the two models became apparent when we used Monte
Carlo simulation to price derivatives. Although the prices only differed with a
few basis points for negative and large strikes the prices started to seriously de-
viate around strikes near the current 3-month rate level. Floors with 0% strike
price were priced to 2bp, 16bp and 21bp with underlying NOK, EUR and USD
rates respectively under the Heath-Jarrow-Morton framework. The LMM obvi-
ously priced these derivatives to zero. Further the long butterfly spreads showed
that both models excluded arbitrage.

Although the two models used the same data sets as starting point, the results
showed that different model assumptions and dynamics lead to different prices.
Firstly we calibrated each model to the current market conditions and constructed
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a volatility structure of historical forward rates. The next step was to simulate
forward rates under these conditions. Using historical volatility is beneficial because
it gives us an insight in the possible risk we take by trading in the rates historically.
However, if these models were to be used for trading they would need to be market
consistent, i.e. produce the same price as the market. An interest rate model built
on historical volatility will not be market consistent. A recalibration to market
prices would suffice, for example in the LIBOR market model we could incorporate
an implied volatility structure.

In low-rate environments the results show that one should avoid using the log-
normal LMM to price low-strike derivatives. Zero strike floors have a value in
certain markets and if a practitioner uses a model which assumes positive rates he
will loose a lot of money. On the contrary one should also be careful when one uses
the HJM under regular market conditions. A 0% floor might be worthless in some
markets. However, as 0% floors are illiquid objects in low-rate environments they
are even more illiquid under regular market conditions. Thus, this might not be
problematic from a practitioner’s perspective.

Further work would be to try to match our models to market prices by recal-
ibrating the volatility structures. It would also be interesting to develop a model
based on LIBOR rates which allows negative interest rates and calibrates to market
prices with for example the shifted SABR model.



Bibliography

[1] Fischer Black and Myron Scholes, The Pricing of Options and Corporate Lia-
bilities. Journal of Political Economy, Vol 81, No. 3, pp. 637-654, 1973.

[2] Heath, Jarrow & Morton, Bond Pricing and the Term Structure of Interest
Rates: A New Methodology for Contingent Claims Valuation. Econometrica,
60(1):77-105, 1992.

[3] Paul Glasserman, Monte Carlo Methods in Financial Engineering. Springer,
New York, First Edition 2004.

[4] Paul Wilmott, On Quantative Finance. John Wiley & Sons Ltd., West Sussex,
Second Edition 2006.

[5] Paul Wilmott, Sam Howson, Jeff Dewynne, The Mathematics of Financial
Derivatives. Cambridge University Press, New York, First Edition 1995.

[6] Thomas Bjork, Arbitrage Theory in Continuous Time. Oxford University Press,
New York, Third Edition 2009.

[7] Chapman and Pearson, Is the Short Rate Drift Actually Nonlinear? Journal of
Finance, 55: 355-388, 2000.

[8] Patrick S. Hagan, Deep Kumar, Andrew S. Lesniewski, Diana E. Woodward,
Managing Smile Risk

[9] Ilona Kletskin, Seung Youn Lee, Hua Li, Mingfei Li, Rongsong Liu, Carlos
Tolmasky, Yujun Wu, Correlation Structures Corresponding to Forward Rates

[10] Jesper Andreasen, Brian Huge, Expanded Forward Volatility, Risk Magazine,
Jan. 2013


