


ships.

To summarize, the shipping company has a given initial fleet in the beginning of the planning
period to service a given number of trades. These trades can be optional and/or contracted,
and they have to decide how many of the optional trades they want to service. For each trade
there can be a requirement on the number of services each year, i.e. a frequency constraint.
Furthermore, for every year in the planning period, in order to satisfy demand, they have to
decide how many new ships to order, how many ships to buy in the second hand market, how
many ships to charter in or out and how many ships to scrap, sell in the second hand market and

put on lay-up.

Each ship has a capacity to carry a certain amount of a certain product, and it can be able to carry
a given number of different product types. A ship has a given speed that will determine the travel
times between the given trades. This together with the demand will be the basis for determining
the fleet composition. This thesis proposes a cash flow control model demonstrating how a
shipping company can use such a model to improve their worst case cash flow. In addition, it

proposes a CVaR model to control the expected cash flow in the worst scenarios.
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Chapter I

Mathematical models

This chapter presents two new mathematical models for the MFRP, namely a cash flow control
model and a CVaR model. There are mainly two improvements made from existing models
such as Mgrch et al. (2016) and Pantuso et al. (2016). Firstly, the payments on ships purchased
are modelled as instalments rather than lump sums. Secondly, the models includes cash flow
control, to control the risk of insolvency. The cash flow control model uses hard constraints
controlling the worst case cash flow, while the CVaR model control the expected cash flow in
the (1—«) worst scenarios. From Section 2.3, recall that « is the confidence level having a value
in the interval (0, 1). The models are presented using a scenario formulation, but in accordance
with Bakkehaug and Eidem (2011) it is later indicated that a node formulation performs better
regarding computational time and is therefore used for the implementation. Thus, the scenario

formulation is solely used for readability and to ease the understanding of the model.

First, the modelling assumptions are described in Section 4.1. Section 4.2 presents the mathe-
matical formulation for the cash flow control model and Section 4.3 presents the mathematical
formulation for the CVaR model. Finally, Section 4.4 compares the scenario formulation to a

node formulation justifying why a node formulation is used for the implementation.

4.1 Modelling assumptions

In this section the modelling assumptions are presented. Consistent with Mgrch et al. (2016) the
variables for orders of new ships, ships scrapped, second hand sales and purchases are assumed
to be integer. The variables for ships put on lay-up, and ships chartered in or out are allowed to
be fractional. This is done in order to represent the situation where a ship is put on lay-up or

chartered in or out for only parts of the period.

In accordance with Pantuso et al. (2016) and Mgrch et al. (2016) the deployment decisions are

modelled by means of loops. A loop consists of one or more trades being serviced on one
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sailing, which forms a closed circle. A trade consists of two geographical regions, one origin
and one destination. At the origin there can be one or more pick-up ports and at the destination
there can be one or more delivery ports. See Figure 4.1 for an illustration. The demand at
each pick-up port is aggregated into a total demand for the trade and delivered at the delivery
ports. For a loop servicing one trade the ship will travel with the products from the origin to the

destination and back to the origin in ballast.

Oakland

0s Angeles
Shanghai

Figure 4.1: Example of a trade between Asia and North-America with three pick-up ports and two
delivery ports. (Mgrch, 2014)

However, it could be the case that the destination region of one trade serves as an origin region
for a second trade, i.e. after delivering the products at the destination region the ship may pick
up new products at the same destination region. Note that this does not necessarily mean the
same port, but the same destination region. Therefore, the ship might have to travel in ballast
from a delivery port to a pick-up port in the same destination region. This second trade could
be included in the loop, and it would save the ship from sailing in ballast between these trades
if they were on two seperate loops. Figure 4.2 illustrates this, where trade TR2 has the same
destination as the origin of trade TR3, and they are both served by one loop. The more trades
that are allowed on one loop, the bigger is the potential for good routing of the ships. The
cardinality, i.e. the number of trades on each loop, is chosen to be maximum two. Pantuso et al.
(2016) show that larger cardinality does not improve the solution much, but results in a large

increase to the computational time.

Moreover, the model does not include ballast sailing between loops which results in an opti-
mistic estimate of the sailing time. This means that after a ship has finished a loop it can get
assigned to a loop that starts in a different region than where the ship finished the previous loop,

without taking into account this inter-loop sailing. This might be necessary in order to obtain
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Trades: TR1, TR2, TR3 Example loop: L1=TR2—TR3

Figure 4.2: Example of three trades and a loop servicing two of them (Pantuso et al., 2016)

a feasible solution. However, every loop has a ballast sailing from the last trade of the loop to
the origin port of the first trade of the loop. If the next loop starts in another port than the origin
port of the previous loop, an actual ship routing decision might want the ship to travel directly
to the origin port of the next loop. In this case there is a pessimistic estimate of the sailing time.
It is assumed that these optimistic and pessimistic estimates balance each other out and gives
a realistic estimate of the tonnage required to satisfy demand. The variables for the number of
loops can take on fractional values in order to represent a loop started in the current period and
finishing in the next. In accordance with Mgrch et al. (2016), once an optional trade is serviced

it has to be serviced for the remaining periods in the planning horizon.

The capacities of a ship consist of the individual capacity of each product and a total capac-
ity. The total capacity of a ship is usually smaller than the sum of the individual capacities.
Normally, the amount of one product can affect the capacities of the other products, but for
simplicity this characteristic is omitted here, and both the individual and total capacities are

assumed to be fixed.

The payments regarding the orders of new ships and purchases of second-hand ships are mod-
elled as M instalments. This means that once a ship is ordered/purchased the company pays a
fixed number of instalments in the future periods. For simplicity the number of instalments are
assumed to be equal for all ships and paid once every period. Setting M to 1 represents paying
a ship with a lump sum up front. Setting it equal to the lead time, it will typically represent
the case described by Stopford (2009) mentioned in Chapter 3. Any other M will typically
represent the case where the company pays instalments to a bank or in form of dividends to

investors.
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Moreover, period 0 is set to be the period before the planning period begins. This means that
no operating activities are included in this period, but ships can be bought, ordered, sold and
scrapped at the end of this period in order to prepare for the future. Due to this modelling
choice a budget B for ordering and purchasing new and second hand ships are included to
allow investments in this period. This budget will typically be the profit the company made
in period O plus any cash reserve they have for investments. Investments in future periods are

assumed to be enabled by retained profit in the respective periods.

4.2 Cash flow control model

This section presents the scenario formulation of the MFRP with cash flow control. First, the
notation is described and then the mathematical model is presented in detail using a stochastic

scenario formulation. A complete summary of this model can be found in Appendix A.

Let 7 be the set of time periods in the planning horizon,indexed by ¢, where |7 | is the number
of periods. Let S be the set of scenarios indexed by s. Furthermore, let S¥* be the set of
all scenarios that are connected to scenario s in period ¢, meaning that the decisions made in
scenario s and period ¢ must be the same for all scenarios in this set. Let /C be the set of products,
indexed by k. Let V; be the set of ship types existing in the market in period ¢, indexed by v.
Note that for the rest of this thesis it is important to distinguish between the terms ship class and
ship type. A ship class is defined as all ships with the same physical characteristics, e.g. weight,
capacity, sailing speed etc., while a ship type is defined as all ships having the same physical
characteristics and the same production year (age). In this way all the information regarding the
lifetime of a ship is handled in this set, i.e. when the ship reaches the expected lifetime it leaves
this set. Thus, age does not need to be handled directly in the model and makes the model easier

to read and implement.

Moreover, let T'* be the lead time of a ship of type v, i.e. the time from an order is placed until
the ship is delivered. Let M} be the set of a new ship types existing in the marked in period t,
indexed by v. These are the ships ordered in period t — T'> and delivered in period t. A negative
number for the time of ordering means that the ship was ordered in the previous planning period
and to be delivered in period t. V¥ is the set of ship types where the company pays instalments
in period t, indexed by v. Let V; be the set of available trades in period ¢, indexed by i. The
subsets N.© and N© are the sets of the contracted trades and the optional trades, respectively,
indexed by 7. Let R; be the set of loops available for sailing in period ¢, indexed by r. The
subset R, is the set of loops that can be sailed by ship v in period ¢, indexed by r. Let R;,; be
the set of loops servicing trade 7 that can be sailed by a ship of type v in period .

Furthermore, let P, be the probability of scenario s to occur. Let R5Y be the sunset value of a

D

ship of type v in scenario s. For a period ¢ and scenario s, let R;;, be the revenue of transporting
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SE

one unit of a product on trade i, let ;)

SC

vts

be the revenue (price) of selling a ship of type v in the
be the scrapping value of a ship of type v, let REU be the lay-up

vts

second hand market, let R
savings for one period for a ship of type v and let RS9 be the charter out revenue of a ship of

vts
type v.

Moreover, for a period ¢ and scenario s, let C$% be the charter in cost of a ship of type v, let C9F

be the operating cost for a ship of type v, let C1% be the cost for a ship of type v to perform a

vrts

loop r and let Ci;F be the space charter cost of transporting one unit of product & on trade 4.

For a ship of type v in period ¢ and scenario s, let C1,;, be the limit on the number of ships
available for charter in and let CO,; be the limit on the number of ships possible to charter out.
Moreover, for a ship of type v in period ¢ and scenario s, let SE,,, be the limit on the number
of ships possible to sell in the second hand market, and let SH.,:s be the limit on the number
of ships available for purchase in the second hand market. These limits reflect the size of the

second hand market.

For a period ¢ and scenario s, let C1,, be the limit on the total number of ships that can be
chartered in for one period, and let CO,, be the limit on the total number of ships that can be
chartered out for one period. Furthermore, for a period ¢ and a scenario s, let SE,, be the limit
on the total number of ships that can be sold in the second hand market, and let SH, be the

limit on the total number of ships that can be bought in the second hand market.

Let (), be the capacity of a product £ on a ship of type v, and let (), be the total capacity on
a ship of type v. Let Z,,. be the time a ship of type v needs to perform a loop r, and let Z, be
the total time available to a ship of type v in one period. Moreover, let D;x;s be the demand on
trade ¢ and product k, in period ¢ and scenario s. Let F}; be the frequency requirement on trade

¢ in period ¢, i.e. the number of times a trade has to be serviced during one period.

The number of ships of type v ordered in the previous planning period, delivered at the begin-
ning of period ¢, is denoted Y,2'?. Let Y,/ be the initial fleet of ships of type v, i.e. the number
of ships at the beginning of the planning period. Furthermore, let C}Y be the instalment paid
in period ¢ and scenario s, on a ship of type v ordered in period ¢’. Let C5* be the instalments
paid in period ¢ and scenario s, on a ship of type v purchased in period #'. CIN represents
the instalment paid for a ship of type v in period ¢ for the ships in the initial fleet, i.e. before
the planning period begins. Note that this parameter is not stochastic, because the ship has al-
ready been bought and thus the instalments are already determined. Let M be the number of

instalments.
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For a ship of type v in period ¢ and scenario s, let y5¢ be the number of ships scrapped, let
y5E and y5! be the number of ships sold and bought in the second hand market, respectively.
Let y¥7 be the number of ships of type v ordered in period ¢’ and scenario s. For a ship of
type v in period ¢ and scenario s, let y_ be the number of ships in the fleet, let ;s be the

number of ships put on lay-up, and let A/,  and h9

ts uts be the number of ships chartered in and

out, respectively. Moreover, let x,,s be the number of loop r performed by a ship of type v in
period ¢ and scenario s. The amount of product k delivered by space charter to trade ¢ in period
t and scenario s is denoted n;s. Let ;5 be set to 1, if the company chooses to service trade 7

in period ¢ and scenario s, and 0 otherwise.

Let F be the worst case cash flow allowed, i.e. no period and scenario are allowed to have
a worse cash flow than this limit. Let B be the budget available for ordering and purchasing
ships in period 0. Finally, to improve readability let f. and f represent the expressions for
cash inflow and outflow, respectively. The cash inflow f! consist of revenue from contracted
and optional trades, revenue from scrapping ships, selling ships in the second hand market,
chartering out ships and savings from putting ships on lay-up. The cash outflow f¢ consist
of the instalments paid on new ships ordered and ships purchased in the second hand market,
chartering in cost, space charter cost, operating cost and sailing cost. The cash inflow and

outflow are summarized below:

flo=>_ > RIDibus+ Y Y RiDis

ieNP keK ieNC ke
CO 1,0 SE SE LU sC, sC
Z ths hvts vts Yuts + ths lUtS + ths yvts) te T\ {O}’ ses
VEV:
O __ IN~N/IP IN NB SH , SH
fts - Z Cvts Y;J + Z Z vt/tsyvt’ Cvt’tsyvt/ )
veVIN t—M<t'<tyeVIN
OP Cli I TR

+ Z Z zk:tsnlkts + Z Cvts yvts + Cvtshvts Z Cvrtsmm“ts le T\ {0}7 sES

ZEN? kel vEVE r€Rvt

The mathematical model is presented and described in detail below.
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Objective function

max z = Z PS( Z ( Z Z RgSDikts(Sits (4.1a)

seS teT ,t>0 z‘e/\/o kex
S
+ Z Z its Dikts — Zktsnzk:ts) (4.1b)
ZENC ke
OP ClyI CO 1,0
o Z Cvts yvts Cvts hvts - ths hvts (4.1¢)
vEVt
TR U
Z Cvrts‘rwts - vtslvts>) (4.1d)
TERvt

>, D avy” (4.1e)

t<M—1yep]N

ST ST (I hE oSyt @.10)

teT t—M<t'<t yepIN

t'+M
+ Y (R Yyl = DY il + Cottysit) (4.1g)
vEVE t=T t'eT
+ SRS + BSESE)) (4.1h)

teT veV,

The objective function maximizes profit using a stochastic scenario formulation. The term
(4.1a) represents the revenue from optional trades. The term (4.1b) gives the revenue from con-
tracted trades minus the space charter cost. Moreover, the term (4.1c) represents the operating
cost, charter in cost and charter out revenue. The sailing costs minus the lay-up revenues are
given in term (4.1d). The term (4.1e) sums up the instalments that still has to be paid on ships
in the initial fleet. Next, term (4.1f) sums up the instalments that has to be paid in the current
planning period on the new and second hand ships ordered and purchased in the current plan-
ning period. The term (4.1g) gives the sunset value minus the sum of the instalments that has
to be paid after the planning period on new and second hand ships ordered and purchased in the
current planning period. Finally, term (4.1h) represents the revenue from scrapping ships and

selling ships in the second hand market.

Demand constraints

Z Z kaxvrts + Nikts zDiktsa te T\ {0}72 € -/\/;507 k € IC) ERS 87 (42)
VEV: TERGwt
Z Z kaxvrts ZDikts(Sitsa te T\ {0}72 € ./\/’tO, k € ij s € Sa (43)
VEV: TER Gt

The demand constraints make sure the demand is satisfied for all products k£ on every trade 7,
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in all periods ¢ and scenarios s. Note however, that ¢ = 0 is before the planning period begins,
and that from ¢ = 1 the operating decisions has to be taken. Constraints (4.2) ensure that the
demand is satisfied for all contracted trades 7, and constraints (4.3) make sure that the demand
is satisfied for all optional trades ¢. The number of loops required to satisfy the demand is

determined in the time constraints (4.8).

Capacity constraints

YN Qutns + > ikt =Y Dias, teT\{0},ie NC seS, (44)

VEVE TER vt ke kex
Z Z vavrts Z Z Diktséitsa te T\ {0}72 € -A/toa s € 87 (45)
VEVE TER vt ke

The capacity constraints make sure that the total capacity is sufficient to cover the demand for
all trades ¢, in all periods ¢ (except for ¢ = 0) and scenarios s. Constraints (4.4) make sure that
the total capacity, i.e. the number of loops performed by the owned fleet and the chartered in
ships plus the amount of goods transported by space charters, is sufficient to satisfy demand
on all contracted trades 7. Constraints (4.5) make sure that the total capacity is sufficient to
cover demand for all optional trades ¢ serviced by the company. Note that space charter is not

available to cover the demand on optional trades.

Frequency constraints

>Nt 2F, te T\{0},ie N s€S, (4.6)
VeV TERut
Z Z Lyrts zFitéitSa S 7-\ {0}72 € MO’ s € S, (47)
VEV TER vt

The frequency constraints make sure that the frequency requirements are fulfilled, i.e. the given
trade is serviced at least as many times as required for all trades ¢ in each period ¢ and scenario
s. Constraints (4.6) ensure that the frequency requirement on the contracted trades are fulfilled,

while constraints (4.7) make sure they are fulfilled for the optional trades.

Time constraints

D Zrurts < Zo(Yigs + My = Bl — luts), teT\{0},veV,seS, (48)

rERvt

The time constraints (4.8) make sure there are enough ships available to service the number of
loops required to satisfy demand. The ships available are the ships owned by the company plus

the ships chartered in minus the ships chartered out minus the ships put on lay-up.
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Optional trades constraints

Oits < Oipr1s te T\{0,T},i e NP, s €S, (4.9)

The optional trades constraints (4.9) ensure that when the company choose to service an optional

trade it is serviced for the rest of the planning period.

Pool constraints

yh. =YIP v eV, s€ES, (4.10)
Yits = Yoi-1s ~ Yoirs FYot1s —Yorrs  tET\{0hweV\VseS, @11
Yors =Yoot teT:t>T," veVN ses, (412
Yts = Yor © tGT:t<TvL,v€VtN,s€S, (4.13)
yb > lys — L, + 1O, teT\{0},veV,seS, (4.14)
Ysts = Ynts te T\{Tho e V,\Vier,s €S, (4.15)

The pool constraints ensure that the pool variables y%, the scrapping variables yvtsSC and

N5 take the correct values. The pool variables are dependent on

the new buildings variable vy ;

decisions made regarding ordering and scrapping in the previous periods. Constraints (4.10)
make sure that the pool of ships in ¢ = 0 is equal to the initial fleet. Constraints (4.11) represent
the pool balance which makes sure that the pool of ships depend on the pool in the previous
period and the decisions made in that period. Note that the scrapping of ships happen at the end
of the period. Constraints (4.12) ensure that the ships ordered in ¢ — T"! become part of the pool
at time of delivery ¢. Constraints (4.13) make sure that the ships ordered prior to the planning
period become part of the pool at time of delivery ¢. Constraints (4.14) ensure that the ships
put on lay up are less than the number of ships in the pool plus the ships chartered in minus
the ships chartered out. Finally, constraints (4.15) make sure that the ships that reaches their
lifetime in period ¢ 4 1 is scrapped at the end of period ¢.
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Charters and second hand constraints

Yo < SH s, te T\{Th,veV,scs, (4.16)

Yore < SEus, te T\{ThveV,seS, 4.17)

Wl < Clys, teT\{0},veV,seS, (4.18)

h$e < COus, teT\{0}h,veV,seS, (4.19)

>yt <SH,, teT\{T}s€eS, (4.20)
UEVt\VtN

> yk < SE,, te T\{T},s€s, 4.21)
vEVt\VtN

> P < Clhs, te T\{0},s €8, (4.22)
UEVt\VtN

> b, < COy, teT\{0},s€sS, (4.23)
UEVt\VtN

The charters and second hand constraints make sure that the charter and second hand market
decisions do not exceed limitations in the market, i.e. how many ships are available for a given
ship type v at a given period ¢ and scenario s. For every ship of type v in period ¢ and scenario
s, constraints (4.16)-(4.19) limit the numbers of ships available for buying, selling, chartering
in and out respectively. Furthermore, for every period ¢ and scenario s, constraints (4.20)-(4.23)
limit the total number of ships that are available for buying, selling, chartering in and out,

respectively.
Cash flow constraints

Skalnes (2016) used a ratio between the cash inflow and cash outflow to control the cash flow.
However, in this thesis the scenarios are generated with a higher degree of uncertainty resulting
in a higher spread between the data. This could result in a higher variance of the cash flow

leading to undesirable solutions.

This is best shown through an example. If, for instance, the cash inflow and outflow in one
period and scenario are 10 and 20 respectively, and 150 and 200 in another, the ratios are 0.5 and
0.75 respectively. Increasing the lowest allowed ratio to 0.6 could lead to both the mentioned
scenarios to have a ratio of 0.6 with the following cash flows as an example: 12 and 20 for the
low case and 120 and 200 for the high case. This means that the 2 units improvement of the cash
flow in the low case come at a cost of —30 units in the high case. This results in a worse cash
flow for the company in absolute terms which is a solution undesirable to them. Therefore, this
thesis will use an absolute measure for the cash flow to avoid this problem. Constraints (4.24)

and (4.25) are the cash flow constraints using an absolute measure for the cash flow.
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D (RiGysos + Rass) — Y (Chivauie? + Coyat) + B > F, sES, (424

vEVp ’UEV({N

fh=12>F, teT\{0},seS, (425

Constraints (4.24) make sure that the cash flow in period 0 plus the budget for ordering and
purchasing ships, stay above a given limit . Note that the operating revenues and expenses are
not included here, because period 0 is before the planning period begins. Moreover, constraints
(4.25) make sure that the cash flow in every period ¢ and scenario s in the remaining periods
stay above the given cash flow limit /. For instance, if F is set to 10 units the cash inflow has

to be 10 units greater than the cash outflow at every period ¢ and scenario s.

Non-anticipativity constraints

Y90 = 5C te T\{T}veV,seS8,5e SV, (4.26)
yNB — N5 tET:tST—TvL,UGVtN,SGS,EGSgA, (4.27)
yIH = g5 te T\{T},veV,secS 58V, (4.28)
ySE = 5E te T\{T},veV,seS,5c8¥4, (4.29)
hl,. =hl., te T\ {0}, veV,seS,5ec8V, (4.30)
ho, =hl_. te T\ {0}, veV,seS,5e8V, (4.31)

Lots = Lits, teT\{0},veV,seS,5e SV, (4.32)
Tyrts = Turts, te T\{0},vEV,rcRy,s€S,5ec SN, (4.33)
Nikts = Mikts: teT\{0},ic NC keK,s€S,5¢c SN, (4.34)

Oits = s, te T\{0},ic NP ,s€S,5e SN, (4.35)

The non-anticipativity constraints (4.26)-(4.35) make sure that future information is not used at
a point in time when it is not yet available. This means that in a period ¢, the same decisions
have to be made in scenario s and all the scenarios which share the same history, represented
by the set SN, This is illustrated in Figure 2.2 in Section 2.1. In Figure 2.2 all the scenarios
in period 0 share the same history and therefore the same decisions have to be made in every

scenario in this period.

31



Convexity and integer constraints

yNB e 7+, teT t<T-T,"veVu.seS, (4.36)
y3¢ e 7, te T\{T},veV,seS, (4.37)
y ol e 7T teT\{T}veV,scS, (4.38)
yoE e mt, teT\{T}veV,scS, (4.39)
yh, e RY, teT,veV,scS, (4.40)
hl. € RT, te T\{0},veV,secS, (4.41)
ho, € RT, teT\{0},veV,seS, (4.42)
ls € R, teT\{0}veV,seS, (4.43)
Tores € R, te T\{0},veV,reRy,seS, (4.44)
Nirs € RT, teT\{0},ice NC keK,s€S, (4.45)
dits € {0, 1}, teT\{0},ie NP ,s€S (4.46)

The convexity and integer constraints ensure that the variables are of the correct type and take
on values according to this. Constraints (4.36)-(4.39) make sure that the variables for new
buildings, scrapping, buying and selling in the second hand market only can take on integer
and non-negative values. Moreover, constraints (4.40)-(4.45) ensure that the variables for the
pool of ships, charters, ships on lay up, number of loops and quantity of products carried by
space charters only take on real and non-negative values. Note that the variables for the pool of
ships, yI_, implicitly becomes an integer from the pool constraints and therefore do not need
to have an explicit integer requirement. Furthermore, note that in practical terms the variables
in constraints (4.40)-(4.45) are integer, but the possible fractional value indicate the situation
where for instance a loop is stared in one period and ended in another, or where a ship only is
chartered in for parts of the period. Finally, constraints (4.46) restrict the optional trade variables

to be binary.

To summarize, this model maximizes expected profit returning the most robust solution for a
given cash flow limit, meaning that the cash flows in all periods and scenarios are required to
be better than the given limit. Note that even though uncertainty is modelled differently from
stochastic programming to robust optimization the intention behind using robust optimization
is usually to ensure feasibility. This model can ensure feasibility in all scenarios in terms of
avoiding insolvency, assuming there is a room for improving the cash flow. Thus, this model

has some of the benefits from robust optimization within a stochastic programming framework.
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4.3 Conditional Value-at-Risk model

This section presents the Conditional Value-at-Risk (CVaR) model. It is based on the cash
flow control model presented in Section 4.2, replacing the cash flow constraints with CVaR
constraints. First, some additional notation is required. Let 7 be the set of periods in the
first stage, i.e. when the parameters are deterministic. Then, let 7 be the set of periods under

uncertainty, i.e. all periods after the first stage.

Using the same notation as in Section 2.3, let o be the confidence level, and let ( and 75 be
the artificial variables used in the CVaR constraints. The artificial variable { is not scenario
dependent, and in an optimal solution it will represent the VaR value. The artificial variables 7;
are defined for each period ¢ and scenario s making these variables scenario dependent. They
will represent the negative margin that the actual cash flow is short of VaR. This means they
represent the cash flows exceeding VaR minus the VaR value. This becomes more clear once
the constraints are presented. Finally, let F,, be the minimum allowed expected cash flow under

confidence level a.

Since CVaR is a probabilistic measure the CVaR constraints are only imposed in the uncertain
periods. For the first stage periods the cash flow constraints from the cash flow control model
still applies. For completeness they are presented here and denoted “hard cash flow constraints”.
Having defined the necessary notation, the constraints replacing the cash flow constraints are

presented:

Hard cash flow constraints

> (RiGusos + Rogs) — Y (Cotull + Coysat) + B> Fo,  s€S, (447)
vEVY UEV({N
FL_fO>F, teTP\{0},s€S, (4.48)

Note that constraints (4.47) and (4.48) are identical to the cash flow constraints in Section 4.2,
except for the minimum allowed expected cash flow F,, and that they only are enforced in the
first stage. However, the deterministic nature of the first stage makes F, equal to F for these

constraints.
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CVaR constraints

1 _
(+——> P > Fu, teT?, (4.49)
11—«
SES
s < fl = 12— ¢, teTS ses, (4.50)
Nis = Nis, teT5%seS, 58SV, (4.51)
N € R7, teT%seS (4.52)

Constraints (4.49), (4.50) and (4.52) are based on the system of inequalities (2.6)-(2.8) presented
in Section 2.3. In Section 2.3 the CVaR constraints are defined using a loss function, but in this
case the CVaR constraints aim at limiting the cash flow. This requires some modifications to
the system of inequalities in Section 2.3, namely multiplying the artificial variables by —1, in
order to express the CVaR constraints in terms of cash flows. The artificial variables 7 are now
defined for only non-positive values instead of non-negative. Notice in constraints (4.50) that
when the cash flow in one period and scenario is lower than (, i.e. the cash flow is short of VaR,
the artificial variable 7,, becomes negative and is included in constraints (4.49). Constraints

(4.51) are non-anticipativity constraints for the artificial variables 7.

Furthermore, it is worth noticing that choosing a confidence level so high that the (1 —«)*100%
worst scenarios only consist of one scenario, the CVaR model translates to the cash flow control
model. Thus, the cash flow control model presented in Section 4.2 is a special case of the CVaR
model when the confidence level is sufficiently high. For instance, having 100 scenarios and
a confidence level of 0.99 the expected cash flow of the (1 — 0.99) % 100% worst scenarios
simplifies to the cash flow of the worst scenario, which is the same as the cash flow control

model.

Even though this relation exists the models are presented separately for two reasons. The cash
flow constraints are easier to comprehend than the CVaR constraints, and from a manager’s
point of view it is easier to use a model he or she understands. Secondly, when using the cash
flow control model there is no need to adjust the confidence level every time the number of
scenarios change in order to get the most robust solution. Robust in this context simply refers
to the solution where the cash flow in all scenarios stays above the cash flow limit, and is not to

be confused with robust optimization.
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4.4 Comparing the scenario formulation to a node formula-

tion

This section compares the scenario formulation in the cash flow control model to a node formu-
lation, justifying why a node formulation is chosen for the implementation. This comparison
focuses mainly on the different number of variables and constraints. The most apparent dif-
ference is that the node formulation does not require any non-anticiapativity constraints which
immediately reduces the number of constraints compared to the scenario formulation. For sim-
plicity both the cash flow constraints and the non-anticipativity constraints are left out from the

expressions and calculations in this section.

To convert the scenario formulation to a node formulation some new notation is needed. The
symbols for the sets, parameters and variables are the same as for the scenario formulation,
except for the indexes. The node formulation use index n instead of ¢s, so for example
becomes ¢,,, However, some additional notation is needed. Let £ be the set of nodes, where
the subset L, is the set of nodes in period ¢. Let a(n,t’) be the ancestor node of node n in the
scenario tree in period t’, with a(n,t — 1) written as a(n). Note that there are no need for non-
anticipativity constraints using this formulation. The mathematical formulation is quite similar
to the scenario formulation, but a complete presentation of the node formulation can be found

in Appendix B.

Starting with the scenario formulation the number of variables NV can be expressed as:

NVE=ISIC YT N+ Y B+ INEIK]+ N2 + )W

teT:t<T-TE teT\{0} teT
+ ) 3+ DD D IRu) (4.53)
teT\{T} teT\{0} vEWV:

Simplifying having constant size of VN, V;, R.;, N and N© this expression simplifies to:

NV =[S|((IT] =TV
(T = DOV + [Ruel Vel + INENIK] + V2] + [ TTVA) (4.54)
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For the node formulation the number of variables NV* can be expressed as:

NVY = STl S ILd G+ INEIIK] + AP

teTt<T-TEL teT\{0}
=LAVl + D B+ YD D LRy (4.55)
teT teT\{T} teT\{0} veVy

For at two-stage scenario tree where the nodes branch in period b, i.e. there are one node
in period b — 1 and several nodes in period b, Expression (4.55) simplifies to the following,
assuming constant size of (Ly,t € T : t > b), VN, Vi, Ry, N and N:

NV =b([VF+4V)) + (0 = DBV + [Rul Vil + INCIIKT+ INZD + LA (T =T = 0)[V]
+(ITT = 0) AV + [Rual Vil + INENIE] + INC]) +3(TT = b = D)Wl (4.56)

Ignoring non-anticipativity and convexity constraints the number of constraints NC* for the

scenario formulation can be expressed as:

NG =[S|( Y (INENK]+ INCIK] + 2N |+ 2N+ VA VY| + 3V +2)

teT\{0}
+ D NP VNV + DD @V 2+ A\ V) @57
teT\{0,T} teT teT\{T}

Let VN, V;, NF and N be constant. Then Expression 4.57 can be simplified to:

NC® =[S|((IT] = DINTNK] + INIK] + 2NE |+ 2N+ VA VY45V + 4+ Ve \ Visa])
+(|T1 = 2)IV2 |+ TV + ) (4.58)

Furthermore, ignoring the convexity constraints the number of constraints NC? for the node

formulation can be expressed as:
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NCY = > |LJINEIK] + INPIK] + 2N+ 2IN2 [+ Vi \ VY] + 3]V + 2)

teT\{0}
= ST WL+ SIEVY D+ S L@V 24 [V Vi)
teT\{0,1} teT teT\{T}

(4.59)

For at two-stage scenario tree where the nodes branch in period b, i.e. there are one node
in period b — 1 and several nodes in period b, Expression (4.59) simplifies to the following,
assuming constant size of (L, t € T : ¢ > b), VN, Vi, Ry, NE and NP:

NCY =(b = D(INENIK] + INCIIK] + 2NV |+ 3N+ VA VT + 3|V +2)
+b([VN| + 3|V + 2+ Vi \ Vig1))
HLA((T] = )N + INCNK] 4+ 2N+ 2ANE [+ WA VI + 4]+ V] +2)
+(IT] = b= D)WV + N2+ 2+ [V \ Vi) (4.60)

To compare the node formulation to the scenario formulation a small instance is constructed to
show the difference between the two formulations. The values of the sets and parameters can
be found in Table 4.2. Note that V; \ V,;;1 = 2 means that 2 ship types are scrapped in each
period. Furthermore, note that this instance solely is constructed to demonstrate the difference

between the two formulations and not as a realistic case.

Table 4.1: Comparison of number of variables and constraints.

Scenario formulation Node formulation

Variables 20660 12072
Constraints | 14 580 8412

Table 4.1 presents the number of variables and constraints for both formulations. For the sce-
nario formulation, the number of variables and the number of constraints are calculated using
Equation (4.54) and (4.58), respectively. For the node formulation the numbers of variables and

constraints are calculated using Equation (4.56) and (4.59), respectively.

The number of variables and constraints are drastically reduced using the node formulation
rather than the scenario formulation. Recall that the non-anticipativity constraints are not in-

cluded in the calculations which make the real difference even greater. Furhtermore, the con-
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vexity constraints will be equal to the number of variables, and adding these to the number
of constraints the difference is further enhanced. In addition, Bakkehaug and Eidem (2011)
demonstrate that the node formulation outperforms the scenario formulation with respect to
computational time for their model. These are two strong indications that the node formulation
will perform better for the cash flow control model as well. Therefore, the node formulation is

used for the implementation and to perform the computational study.

Table 4.2: Instance description.

Set/Parameter Size

Tr 2
T 6
Vi 10
Vi\ Vit 2
Vi \ VY 8
VN 2
NE 10
NY 3
Rt 10
K 3
b 3
S 20
L 20
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Chapter

Computational study

In this chapter the computational study is presented. It is based on data from a major shipping
company in the Roll-on/Roll-off (RORO) shipping market. This is a market that uses highly
specialized ships to cover demand, resulting in a small market for charters and second hand
buying and selling. Therefore, these options are excluded from the model. In addition, this re-
sults in a problem with fewer recourse possibilities, which stresses the importance of controlling
cash flows. Recall that recourse actions are the options the company has to recover from a bad
first-stage decision. The models are implemented as two-stage models except for the cash flow
control model which also is implemented as a three-stage model. However, the computations
are mainly done on the two-stage model, and the three-stage model is used to demonstrate that

the two-stage simplification is reasonable.

Furthermore, the models are implemented using C++ as programming language with CPLEX
callable libraries. These libraries are provided by IBM ILOG CPLEX Optimization Studio
Version 12.6.1. All runs of the implementation were performed on a computer running Windows
10 Pro 64-bit operating system, having an Intel ® Core ™i7-4500U CPU @ 1.8 GHz (2.4 Ghz)
and 8 GB RAM.

The scope of this computational study is to illustrate the effects of cash flow control both using
cash flow constraints and CVaR constraints, to understand how different levels of conservatism
impact the expected profit, and discuss how this can be used to reduce the risk of insolvency.
Both Pantuso et al. (2016) and Mgrch et al. (2016) demonstrated a significant value of the
stochastic solution (VSS) for the MFRP, and this computational study is therefore not includ-
ing this topic. The computational study is based on 12 distinct cases, constructed from three

different instances with four different versions.

Section 5.1 presents the instances used for this computational study. Section 5.2 explains the

scenario generation and the versions of the instances, and Section 5.3 presents the cash flow
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effects for the cash flow control model for the four versions of the large instance. Section 5.4
presents the cash flow effects for the same model for the four versions of the medium and small
instances. In Section 5.5 the results of the CVaR model using different confidence levels « are
presented. Section 5.6 illustrates the difference between a two and three-stage case indicating

that the two-stage simplification made for the implementation is reasonable.

5.1 Test instances

This section presents the three instances which the 12 distinct cases are built upon. All three
instances have a planning horizon of five years. There are 18 ship types available for all in-
stances. However, the number of trades and the size and composition of the initial fleet vary.
The demand for each product on each trade in year 1 is shown in Table 5.1 for each instance.
The symbol “C” indicates that the trade is a contracted trade, while the “O” indicates an op-
tional trade. The symbol “-” indicates that the trade is not included in the given instance. There
exists demand for three product types, namely cars, High & Heavy vehicles (HH) and Break-
Bulk (BB) products. HH are cargo that cannot be stowed in car decks due to their height or
weight, and BB are goods shipped loose in the hold of the ship which does not fall into the
other categories. Demand and capacity are given in the unit RT43, which is a standard unit in
RORO shipping. RT43 is a unit of size in square metres designed to be the equivalent of one
car (based on a 1967 model of a Toyota Corona) including required stowage surrounding space
( 1 RT43 = 7.38975m?).

The large instance has 14 trades representing a total demand of approximately 2.9 millions
RT43 units. The medium instance consists of nine trades covering approximately 65% of the
demand in the large instance, while the small instance consists of five trades covering approxi-
mately 30% of the demand in the large instance. The optional trades hold approximately 10%

of the total demand in each instance.

Table 5.2 presents the initial fleet for each ship class and the respective capacity. The total
capacity for a ship class is set equal to the maximum individual capacity of the same ship class.
Recall that a ship type is a ship class with a specific production year as explained in Section 4.2.

This is why there are 18 ship types for each instance, but only seven ship classes.

The parameters used for the instances are based on data from Mgrch et al. (2016) which is
based on a real case from a major liner shipping company. The demand, sailing cost, operating
cost, lay-up savings, scrapping value and new building price are based on data from the case
company. The lead time T)*, the time from ordering a new ship until it is delivered, is set to
two years. The unit revenue is set as a profit margin on top of the sailing cost for the ship type
with the worst fuel efficiency on each trade. The sailing cost is determined by fuel prices, fuel

consumption and distance travelled. Scrapping value is determined by the lightweight tonnage
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Table 5.1: Demand on each trade and product.

Trades BB Car HH Small Medium Large
AFEU 0 19200 O O C C
ASCE 2166 119397 44120 | - - C
ASEU 5761 435213 77046 |C C C
ASNE 36845 35331 66606 |C O C
ASNW 1939 60158 7400 O O O
EUNAOC | 26 198 297 688 123779 | - C C
EUNE 20075 469379 67853 | - - C
EUNW 7425 89405 21427 |- C C
EUOC 16 776 266 855 55474 | - C C
NAAS 3251 24818 10434 | - - O
NAEU 14115 140508 53928 | - - O
NAME 4476 103048 14200 | - C C
NASA 3404 41036 24419 |- - C
SANA 2689 97999 29239 | C C C

Table 5.2: The initial fleet size and composition displaying the capacities for each product k.

Initial fleet Capacity

Ship class | Small Medium Large | Cars HH BB  Total
PCTC1 2 3 5 4975 2200 300 4975
PCTC2 5 10 15 6800 2500 300 6800
PCTC3 2 9 12 5450 2200 900 5450
PCTC4 1 5 6 6150 1800 200 6150
LCTC1 5 8 9 6000 2000 1500 6000
RORO1 1 2 4 4853 3100 1500 4853
RORO2 0 0 0 5660 4000 2200 5660
SUM 16 37 51

of the ship and the scrap price. The main value of a scrapped ship comes from the steel value,

and the scrap price is therefore assumed to be equal and perfectly correlated to the steel price.
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The instalments paid in each period are detemined by the new building price, the repayment
time and the interest rates offered by banks or as expected return on investments from investors.
Stopford (2009) writes that a normal repayment time is 2 — 8 years, and is therefore set to five
years for the instances in this thesis. Moreover, Stopford (2009) writes that the interest rate on
loans regarding ship financing generally are quoted at a margin over London Interbank Offered
Rate (LIBOR). The spread of this margin typically range from 0.6% to 2.0% (Stopford, 2009).
1.25% is chosen as a margin on top of the LIBOR, and using the 1 year LIBOR rate of 1.75%
(Bankrate, 2017) results in an interest rate of 3.0%.

Furthermore, the ship values in the instances are estimated using linear depreciation based on
the new building cost and an expected lifetime of 30 years. This is consistent with Stopford
(2009) who identified a linear depreciation of the ship value with respect to age for the Panamax
bulk carriers sold in the first nine months of 2002. However, preliminary tests showed that
using the ship value in the last year as the sunset value resulted in unrealistic solutions where
the company drastically over-invests and puts close to half the fleet on lay-up. This kind of
behaviour is assumed to be of no interest to a shipping company and therefore the sunset value
is set to be 70% of the ship value in the last period. This level is found to be sufficient for
preventing such over-investments, while providing the desired modelling characteristics sunset
values are intended to have, namely maintaining a realistic fleet at the end of the planning

horizon.

The space charter price is set to be 2000 USD per unit of goods transported by space charter.
This can be interpreted as a penalty cost for not being able to satisfy demand on a given trade.
Thus, the parameter is assumed to be deterministic. As suggested in Stopford (2009), all input
values are properly discounted using a discount factor of 12%.

The demand, sailing cost, scrapping value and the new building price are implemented as
stochastic parameters, while the remaining parameters are kept deterministic. The budget for
ordering ships in year 0 is set to be 5% of the contracted revenue in period 1, assuming similar
revenues in period 0 and 1. A real company would know this budget with certainty, but for this

thesis an estimate has to be made due to lack of data.
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5.2 Scenario generation

This section describes how the scenario generation is performed. The scenarios in this thesis
are generated using scenario generation with distribution functions and correlations (Hgyland
et al., 2003).

A scenario represents the complete realisation of all the random variables. The random variables

used in this thesis are the relative incremental change in:
e Demand on each trade and product
e New building price
e Fuel price
e Steel price

The relative incremental change is the relative magnitude and direction of change from one
period to the next. For instance, let the realisation of the random variable for the demand on a
given trade ¢ and product k£ be noted 7;x,, at node n in the scenario tree. Then, the parameter
Dy, will have the following value at node n: Djxn, = Diga(ny(1 + 7). Note how the parameter
at node n depend on the value at the ancestor node in the previous period and the realisation of
the relative incremental change for the respective random variable. The large instance has 14

trades and three products resulting in the following number of random variables:
(14%3)+1+1+1=45.

Figure 5.1 illustrates a possible realisation of a random variable for a two-stage problem with
five scenarios. Up to year 2 the random variable takes the value of the initial state, but in the
second stage, i.e. years 3, 4 and 5, the random variable can take the value of the realisation in
any of the five scenarios. Note that a realisation of the random variable consists of a realisation

in all three periods in the second stage, which can be equal or different from period to period.

The reason relative incremental changes are used instead of absolute values is to prevent unre-
alistically rapid changes in the parameters. For instance, if the random variable for the demand
on a given trade and product were absolute and could range from 50 to 150 units the realisation
could change from 50 to 150 in one period which would mean an increase of 200%. If instead
the random variable for the demand on the same trade and product represents the relative incre-
mental change, the absolute value of the realisation can still range between 50 and 150, but the
one-period change is limited. This results in a smoother and more realistic development for the
parameters from period to period.

All random variables in this thesis are assumed to have a triangular distribution with lower limit

of —0.5, upper limit of 0.5 and mode of 0. In coherence with Pantuso et al. (2017), the random
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Figure 5.1: Realisation of a random variable. lllustrating a possible realisation of one random variable
with five scenarios in a two-stage problem, branching in period 3.

variables for the demand and the new building price are assumed to have the same underlying
drivers and thus a strong correlation between themselves. However, the fuel price and the steel
price are affected by a much bigger market than the shipping market itself. Therefore, they are
assumed to be weakly correlated between themselves and to the demand and the new building
price. The strong and weak correlation is assumed to have a correlation coefficient of 0.7 and
0.2 respectively. The correlated correlation matrix is shown in Table 5.3. This table shows
the correlation between all the random variables, where the first columns and rows represent
the incremental change in demand for every trade and product. Then, the column "New build”
represents the incremental change in the new building price, the column “Fuel” represents the
incremental change in the fuel price and finally the column ”Steel” represents the incremental

change in the steel price.

To examine how the effects of cash flow control change with different situations the instances
are solved using one uncorrelated and one correlated correlation matrix. The uncorrelated cor-
relation matrix has the same structure as the correlated correlation matrix in Table 5.3, but all
the numbers off the diagonal are 0. Using these two matrices makes it possible to see how the

cash flow control behaves in one correlated and one uncorrelated world.
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Table 5.3: Correlated correlation matrix.

Trade 1 Trade2 ... TradeN
Car HH BB Car e BB New build Fuel Steel

Car 1 07 07 0.7 e 0.7 0.7 02 02
Trade 1 HH 1 07 0.7 e 0.7 0.7 02 02
BB 1 0.7 e 0.7 0.7 02 02
Trade 2 Car 1 e 0.7 0.7 02 02
Trade N BB 1 0.7 02 02
New build 1 02 02
Fuel 1 0.2

Steel 1

Besides solving the cash flow control model for the correlated and uncorrelated correlation
matrix, the instances are solved with the normal space charter price of 2000 USD and with a

50% reduction in the space charter price. This results in the four versions for each instance:
e Correlated correlation matrix with normal space charter price
e Correlated correlation matrix with reduced space charter price
e Uncorrelated correlation matrix with normal space charter price
e Uncorrelated correlation matrix with reduced space charter price

To determine the numbers of scenarios used on the instances in the computational study an
in-sample stability test is performed. The cash flow control model is solved without cash flow
constraints for 20 scenario trees and then the maximum relative difference between the smallest

and highest expected profit is calculated:

Maximum exp. profit — Minimum exp. profit

Maximum relative difference =
Average exp. profit

Recall from Section 2.1 that the scenario generation is in-sample stable if the objective function
value is approximately equal for all scenario trees. Thus, the relative maximum difference is
used to measure this, because it makes it possible to assess whether it is true for all scenario

trees.

Table 5.4 shows the results of running the in-sample stability test for the large instance with
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uncorrelated correlation matrix and normal space charter price. The correlated correlation ma-
trix is not used for this test, because the scenario generation algorithm requires more than 50
scenarios to complete the generation for this matrix. To get the widest spread of scenarios the
uncorrelated correlation matrix is therefore used. For any version of the large instance the com-
puter runs out of memory before it can reach optimality, but with an optimality gap of 1% the
computational time spans from a couple of minutes for 50 scenarios to 1 — 2 hours for 400

scenarios. All solutions presented in this thesis are therefore solved using a 1% optimality gap.

From Table 5.4 it can be observed that when increasing the numbers of scenarios the scenario
trees become more in-sample stable. However, considering the 1% optimality gap the differ-

ences are considered to be small enough to be in-sample stable for 100 scenarios and higher.

Moreover, for 100 scenarios the computational time stays within 5 — 10 minutes for 1% opti-
mality gap, compared to 1 — 2 hours for 400 scenarios. Therefore 100 scenarios are used for the
computational study in this thesis. However, when including the cash flow constraints the com-
putational time rapidly increases. For the tightest formulation, i.e. the highest cash flow limit
possible without reaching infeasible solutions, the computational time can be as much as 4 — 6
hours. Due to time limitations the in-sample stability test is not performed for increasing cash
flow limits. However, the model performed very well for the large instance without cash flow
constraints and it is therefore assumed to be in-sample stable for increasing cash flow limits and

the other instances.

Table 5.4: In-sample stability test for the large instance with uncorrelated correlation matrix.

Number of scenarios 50 100 200 400

Maximum relative difference | 1.70% 1.09% 0.77% 0.55%

The out-of-sample test is not performed in this thesis, due to the challenges of evaluating the true
objective function. In addition, the scope of this computational study is not to evaluate every
aspect of the scenario generation method. Thus, the in-sample test is found to be sufficient to

indicate some degree of stability.

To summarize, all versions of the instances are solved using a two-stage model with 100 sce-

narios branching in period 3 as illustrated in Figure 5.1, unless stated otherwise.
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5.3 Effects of cash flow control for the large instance

In this section the effects of cash flow control for the large instance are presented, solving the
cash flow control model for increasing cash flow limits F'. Recall that all instances are solved
with 1% optimality gap due to computational considerations. This means that the objective
function value, i.e. the expected profit, for all solutions are within 1% of the best bound. Some
solutions will therefore have an apparent improvement in expected profit for increasing cash
flow limit F'. This happens because the solver terminates at any optimality gap below 1%,

resulting in some solutions being closer to optimality than others.

Furthermore, this section consists of one subsection for each version, i.e. Section 5.3.1-5.3.4.
Each subsection presents the solutions for the cash flow control model with increasing cash
flow limits ranging from the solution without cash flow constraints to the highest cash flow
limit possible without reaching infeasibility. Finally, Section 5.3.5 sums up the findings for the

large instance discussing the managerial insights made from these solutions.

5.3.1 Correlated correlation matrix and normal space charter price

The solution of the cash flow control model for the large instance with correlated correlation
matrix and normal space charter price is shown in Table 5.5. The column “New builds” gives the
average number of ships ordered at the end of the period denoted in column “t”. The transition
from the first stage to the second stage is marked with the horizontal line separating periods 2
and 3. “Scrappings” gives the number of ships scrapped at the end of the period, and ”Pool”
gives the number of ships in the fleet in the beginning of the period. Recall that new ships are
delivered with a lead time of two years in the beginning of the delivery period. Thus, the “pool”
in period 2 is determined by the initial fleet, the ships scrapped at the end of periods 0 and 1,
and the ships ordered at the end of period 0, namely 50 = 51 — 3 — 6 + 8. “Lay-up” gives the
number of ships put on lay up in the given period, and “Space charter” gives the number of units
transported by space charter. “Optional trades” gives the number of optional trades serviced in
the given period. Recall that once an optional trade is serviced it has to be serviced for the rest

of the planning horizon, resulting in non-decreasing numbers in this column.

Note that for this version of the instance, the space charter cost is relatively high compared
to owning and operating a ship. Thus the solution suggests to prepare for the high demand
scenarios in the first stage and scrap the ships not needed when arriving to the second stage. In
addition, the optional trades are used to increase the total demand when the demand is low, and
they are not serviced at all in the high demand scenarios. The ships scrapped in the first stage
are old ships that reach their lifetime during the planning horizon. Furthermore, a significant
number of ships are kept on lay up in period 4 and 5 while using space charter. However, the

space charter used in these periods are in the scenarios with the highest demand and where no
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Table 5.5: Solution of the large instance with correlated correlation matrix and normal space charter
price without cash flow constraints.

t | New builds Scrappings Pool Lay-up Space charter Optional trades
0]8 3 51 0.00 0 0

1110 6 48 0.10 0 0

2|11 0 50 0.27 0 0

31199 15.43 60 9.07 362 1.28

410 3.66 55.57 3.40 6 634 1.56

510 0 539 043 2928 1.82

ships are kept on lay up. The ships kept on lay up in the low demand scenarios prepares for

future increase in demand.

When solving the model with cash flow constraints, the cash flow limit is increased starting with
the limit where the constraints are not yet binding. The starting limit is equivalent to solving the
model without cash flow constraints. Then the limit is increased through an iteration process
and solved repeatedly until infeasibility is reached. The results from this process can be seen
in Table 5.6, where the first row represents the solution without cash flow constraints which is
a summary of the results presented in Table 5.5. The columns “First” and “Second” show the
sum of the first stage decisions and the second stage decisions for the given variables, except
for the “Optional” column, which shows the average number of optional trades serviced. Table
5.5 and 5.7 shows more detailed results of the first and last row in Table 5.6. Thus, the second
stage values for the first row in Table 5.6 are the sums of the corresponding values in periods 3,
4 and 5 in Table 5.5.

The column “Exp. Profit” shows the expected profit for each cash flow limit /. Note that the
expected profit increases from the third row to the fourth row, due to the 1% optimality tolerance
imposed. If solved to optimality the expected profit will be non-increasing with increasing cash
flow limit. The column “New builds” shows the number of ships ordered in the first and second
stage, while the column “Scrappings” shows the number of ships scrapped in the first and second
stage. The columns “Lay-up” and “Space” show the number of ships put on lay-up and number
of units transported by space charter in the first and second stage, respectively. Finally, the
column “Optional” shows the average of the number of optional trades serviced in the first and

second stage.

To increase the worst case cash flow it is mainly three observations from Table 5.6 that is worth

emphasising. Reducing the number of ships ordered in the first stage clearly reduces the worst
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Table 5.6: Solutions for the large instance with correlated correlation matrix and normal space charter
price for increasing cash flow limits F'.

Exp. New builds Scrappings Lay-up Space Optional
F Profit First Second | First Second | First  Second | First Second | First Second
-66.3 | 11094 | 29 1.99 9 19.09 |0.37 129 0 9924 |0 1.55
-59.7 | 1109.0 | 29 2 9 19.19 037 1272 |0 13989 | 0 1.46
-53.1 | 11085 | 29 1.98 9 19.16 | 037 1284 |0 10913 | 0 1.55
-46.4 | 1110.1 | 29 2.08 9 19.28 1037 1261 |0 12416 | 0 1.47
-39.8 | 1109.3 | 29 2.02 9 19.16 037 1272 |0 12912 | O 1.48
-33.2 111049 | 26 2.39 8 17.85 | 041 1256 |0 26709 | 0 1.42
-26.5 | 1094.2 | 26 241 9 16.77 237 1263 |0 35091 | O 1.46
-19.9 | 1078.6 | 26 2.39 9 16.86 | 436 1269 |0 34769 | O 1.46
-13.3 | 10654 | 26 2.37 9 16.71 6.34 1284 |0 38723 | 0 1.52
-6.6 | 10382 |24 2.7 6 18.16 | 10.39 12.64 |0 28493 | 0 1.44
0.0 9557 |23 2.67 5 18.34 | 12.19 15.05 | 42367 36051 |0 1.54

case cash flow. Delaying scrapping decisions provide the same effect, and a more subtle way
of reducing the worst case cash flow is to change the timing of the orders of new ships in the
first stage. This last observation is not that clear, but it can be seen in Table 5.7, which presents
a more detailed result of the solution with cash flow limit F = 0. Comparing Table 5.7 to
Table 5.5 it can be observed that the number of ships ordered in period 0 is doubled in order
to reduce the cash flow in period 5. Recall that the ships are paid with five instalments over
five years, meaning that a ship ordered in period 0 is paid in periods 0, 1, 2, 3 and 4, while a
ship ordered in period 1 is paid in periods 1, 2, 3, 4 and 5. A consequence of ordering the ships
earlier and delaying scrapping decisions is that ships get delivered earlier and are scrapped later
resulting in more ships put on lay up in the first stage. Another result of changing the first stage
decisions is that the use of space charter increases. The three observations mentioned might

occur separately or as a combination, making the task of reducing the cash flow very complex.

Having a closer look at Table 5.7, it is clear that all three observations mentioned occur at the
highest cash flow limit. The total number of ships are reduced, reducing the cash outflow from
instalments. The timing of orders has shifted towards period 0 reducing the cash outflow in
period 5, and the scrapping of old ships are delayed making the need for new ships smaller. A
result from reducing the fleet is the increased use of space charter, increasing the cash outflow.
Note that for this particular case the number of ships scrapped are increased in period 0, thus
increasing the budget for investments, allowing for a greater shift of cash flows from the uncer-

tain and potentially bad period 5 to the certain period 0. This results in a reduction of the fleet
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Table 5.7: Solution for the large instance with correlated correlation matrix and normal space charter
price with the tightest cash flow constraints (F' = 0).

t | New builds Scrappings Pool Lay-up Space charter Optional trades
0] 16 4 51 0 0 0

1)1 1 47 0 42 367 0

216 0 62 1219 0 0

31267 14.02 63 11.16 1430 1.28

410 4.32 54.98 3.46 26 034 1.54

510 0 53.33 044 8 587 1.79

in period 1 worsening the cash flow in this period with increased use of space charter. Note
also that even though the fleet is increased in periods 2 and 3 the fleet composition has changed
resulting in a higher use of space charter in period 3. This illustrates how complex the cash flow

effects can be from changing the first stage decisions.

Figure 5.2 shows the cash flow development for each period and scenario as a box plot com-
paring the solution of the model without cash flow constraints (Figure 5.2a) and the solution of
the model with the tightest cash flow constraints (Figure 5.2b). These solutions correspond to
F = —66.3 and F = 0 in Table 5.6. The red dashed line represents the annualised expected
profit, while the blue dotted line indicates the worst case cash flow. The lower end of the box
represents the first quartile, the upper end of the box represents the third quartile, and the line
inside the box represents the median. The ends of the whiskers represent the minimum and
maximum of all the data. This means that 50% of the scenarios are located inside the box,
while 25% is located on each side of the box between the ends of the box and the ends of the
whiskers. Note how the worst case cash flow, i.e. the bottom whisker in year 5, is improved at
the cost of expected profit loss and a significant reduction of the cash flow in periods 2 and 3.
In addition, the upside in year 4 is reduced significantly, which can be seen as a downward shift
of the box, including the median, and the top whisker. Furthermore, it is interesting to see that
the uncertainty is decreased in period 4 and 5, but increased in period 3, seen by the change in

standard deviation.
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Figure 5.2: The cash flow development for the large instance with correlated correlation matrix and
normal space charter price. The red dashed line is the annualised expected profit, and the numbers
above each whisker is the standard deviation for the given period. The blue dotted line indicates the
worst case cash flow.
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5.3.2 Correlated correlation matrix and reduced space charter price

In this section the large instance with correlated correlation matrix and reduced space charter
price is tested in order to examine what effects lower penalty cost for unfulfilled demand have
on the cash flow. The solutions of the cash flow control model for this version of the large
instance are shown in Table 5.8. Space charter is used to a much higher degree where the
solution prepares for lower demand scenarios than in the version with normal space charter
price. Note how the solutions up to /' = —15.0 are approximately indifferent. This indicates
that relatively small adjustments to the solution without cash flow constraints can make a good
improvement of the worst case cash flow without the cost of loss in expected profit. Moreover,
the three observations made in Section 5.3.1 can also be found here, namely that reducing the
orders of new ships in the first stage, delaying scrapping decisions and changing the timing of
orders lead to improved worst case cash flow. In addition, a fourth observation can be made
here. The optional trades are used more actively where for three of the solutions the company

commits to one optional trade in period 2 in the first stage.

Table 5.8: Solutions for the large instance with correlated correlation matrix and 50% reduction in space
charter price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional

F Profit First Second | First Second | First Second | First Second | First Second

-37.5 | 11595 | 18 2.85 9 10.4 0.37 12.06 0 108 158 | 0 1.53
-33.8 | 1159.1 | 18 2.86 9 10.41 0.27 12.09 7151 106945 | 0 1.5

-30.0 | 1164.1 | 18 2.86 9 10.4 0.1 12.04 2503 118934 | 033 1.72
-26.3 | 1159.1 | 17 3.03 8 10.8 0.1 11.81 4183 123844 | 0.33 1.71
225111640 | 18 2.79 9 10.42 0.1 11.99 2503 121887 | 033 1.72
-18.8 | 1156.8 | 18 2.69 9 10.38 0.1 12.13 18203 107839 | 0 1.44
-15.0 | 1160.8 | 17 2.87 9 9.75 0.27 11.38 7151 131583 |0 1.44
-11.3 | 11558 | 16 3 9 9.23 0.45 10.61 0 166 679 | 0 1.42
-7.5 | 1154.1 |16 2.99 8 10.2 1.37 11.13 0 141487 | 0 1.42
-3.8 | 1143.0 | 15 3.22 8 9.65 2.37 1045 0 176 547 | 0 1.42
0.0 11359 | 17 2.87 9 10.03 436 11.18 0 141195 | 0 1.42
3.8 1126.2 | 15 3.08 8 9.69 444 10.39 0 180343 | 0 1.37
7.5 11159 | 17 2.73 9 9.94 6.24 11.28 31434 141142 | 0 1.42
11.3 | 1085.8 | 15 3.31 7 11.02 824 10.74 43629 160107 | 0 1.31

Most solutions in Table 5.8 are combinations of these four observations. For F = —11.3 the

number of ships ordered are reduced, but the time of purchase is not changed, i.e the same
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number of ships are ordered in period 0, and the scrapping decisions are kept unchanged. For
F = —3.8 the worst case cash flow is improved by reducing the number of ships ordered in the
first stage, making the orders earlier in the first stage, and delaying scrapping of one ship. For
F = 0 the number of ships ordered are only reduced by one ship, ordering them earlier in the
first stage, but not delaying any scrapping decisions. This shows how combinations of the four
observations made can affect the worst case cash flow, and further illustrates how complex this

task is.

Figure 5.3 shows the cash flow development for each period and scenario as a box plot compar-
ing the solutions of the model without cash flow constraints and the model with the tightest cash
flow constraints. Here the worst case cash flow is improved at the cost of expected profit, but
the cash flows in the first stage periods are not affected much. In addition, it can be seen that the

uncertainty is reduced in all second stage periods, seen by the reduction in standard deviation.
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Figure 5.3: The cash flow development for the large instance with correlated correlation matrix and 50%
reduction in space charter price. The red dashed line is the annualised expected profit, and the numbers
above each whisker is the standard deviation for the given period. The blue dotted line indicates the
worst case cash flow.

53



5.3.3 Uncorrelated correlation matrix and normal space charter price

The solutions of the cash flow control model for the large instance with uncorrelated correlation
matrix and normal space charter price are presented in Table 5.9. The observations made for
this version are similar to the correlated version, but there are some interesting differences. The
highest possible cash flow limit is /' = —22.6 for the uncorrelated version, while it is /' = 0
for the correlated version. For this instance, it indicates that the cash flow control model has a

greater potential of benefit in a correlated world than in an uncorrelated world.

Table 5.9: Solutions for the large instance with uncorrelated correlation matrix for increasing cash flow
limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit | First Second | First Second | First Second | First Second | First Second
=753 1 1109.7 | 30 247 9 19.88 | 0.37 1251 | O 3489 |0 1.4
-67.8 | 11099 | 30  2.49 9 19.68 | 037 1288 |0 1978 |0 1.4
-60.2 | 1108.9 | 29 2.65 8 2032 | 041 1196 |0 4510 |0 1.38
-52.7 1 1108.2 | 29 2.7 9 19.3 037 1199 |0 14326 | 0 1.44
-452 | 1103.0 | 28 3.03 8 19.41 1.37 1237 |0 8689 |0 1.38
-37.6 | 1092.4 | 26 3.16 9 17.12 | 037 11.87 |0 48836 | 0 1.4
-30.1 | 1073.8 | 26 3.35 9 17.14 | 336 1207 |0 43956 | 0 1.47
226 1 1041.0 | 24 352 7 17.67 | 7.35 1277 |0 48746 | O 1.44

Figure 5.4 shows the cash flow development for each period and scenario as a box plot compar-
ing the solution of the cash flow control model without cash flow constraints and the solution
of the model with the tightest cash flow constraints. Note how the worst case cash flow, i.e. the
bottom whisker in year 4, is improved at the cost of expected profit loss. In addition, the upside
in year 4 is reduced significantly, which can be seen as a downward shift of the box, including
the median, and the top whisker. Furthermore, it is interesting to observe that the uncertainty is
decreased in periods 4 and 5, but increased in period 3, seen by the change in standard deviation.
This indicates that improving the worst case cash flow and reducing the uncertainty in periods

4 and 5 comes at the additional cost of increased uncertainty in period 3.
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Figure 5.4: The cash flow development for the large instance with correlated correlation matrix and
normal space charter price. The red dashed line is the annualised expected profit, and the numbers
above each whisker is the standard deviation for the given period. The blue dotted line indicates the
worst case cash flow.
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5.3.4 Uncorrelated correlation matrix and reduced space charter price

The solutions for the cash flow control model with uncorrelated correlation matrix and reduced
space charter price are shown in Table 5.10. Comparing to the normal space charter, the use
of space charter has increased drastically while the number of ships ordered is reduced for the
solution without cash flow constraints. In addition, the expected profit has increased and the

worst case cash flow is better.

The four observations mentioned for the other versions of the large instance can also be found
for this version. However, two additional observations are made for the tightest cash flow limit,
i.e. the highest possible cash flow limit /' = 11.5. Here the cash flow limit is actually improved
by making more aggressive decisions, i.e. ordering and scrapping more ships in the first stage.
Most of the ships are ordered in period 0 reducing the cash outflow in period 5, and most of the
ships are scrapped in the same period improving cash inflow in period 0. In addition, the demand
is increased by committing to one optional trade in the first stage, increasing the cash inflow.
Even though these results come from using the uncorrelated correlation matrix, this indicates
that there might exist situations where both conservative and aggressive ordering strategies can
improve the worst case cash flow. Thus, the complexity of this task is demonstrated once again.
Furthermore, the worst case cash flow can be improved significantly without big losses in the
expected profit. Note that all the solutions up to the cash flow limit /' = —3.8 are approximately

indifferent with respect to the expected profit.

The cash flow developments for the solution of this version without cash flow constraints and
the tightest cash flow constraints can be seen in Figure 5.5. Here it can be observed how the
cash flow is reduced in periods 1 and 2 due to the aggressive ordering and scrapping, while these
decisions together with committing to one optional trade prepare for the second stage improving
the worst case cash flow here. Note also that the average cash flows in the second stage barely
change, seen by the small change of the median. Like for the other instances, the cash flow

improvement also comes at the cost of reduced expected profit.
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Table 5.10: Solutions for the large instance with uncorrelated correlation matrix and 50% reduction in
space charter price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit First Second | First Second | First Second | First Second | First Second
-38.4 | 11544 | 18 4.24 9 10.8 0.37 12.31 0 126 199 | 0 1.38
-345 | 11542 | 18 4.46 9 1096 | 0.37 1218 |0 122434 | 0 1.38
-30.7 | 1153.8 | 18 4.43 9 1095 | 0.37 122 0 123936 | 0 1.38
-26.8 | 1153.8 | 18 4.34 9 1096 | 037 1215 |0 126 118 | O 1.38
-23.0 ] 1153.6 | 18 4.28 9 1095 | 037 12.16 |0 127898 | 0 1.38
-19.2 | 1153.0 | 18 4.26 9 1097 | 037 1217 |0 129879 | 0 1.38
-153 1 1153.8 | 19 4.09 9 1184 | 0.1 117 2503 134123 | 0.33 1.69
-11.5 | 11539 | 18 4.05 9 11.17 ] 0.37 11.12 |0 146 538 | O 1.38
77 | 11479 | 18 3.98 9 11.22 | 0.1 11.66 18203 137621 | 0 1.36
3.8 | 1152217 3.97 9 1064 | 037 11.04 |0 171784 | 0 1.36
0.0 1142.8 | 17 4.14 9 10.9 1.37 11.01 0 174 474 | 0 1.33
3.8 11326 | 17 3.93 9 10.73 | 3.36 11.01 0 176 742 | 0 1.36
7.7 10955 | 15 4.11 8 11.03 | 249 7098 0 316925 | O 1.27
115 | 10435 | 22 3.51 10 13.6 5.8 1344 132847 166479 | 0.33 1.68
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Figure 5.5: The cash flow development for the large instance with uncorrelated correlation matrix and
50% reduction in space charter price. The red dashed line represents the annualised expected profit,
and the numbers above each whisker is the standard deviation for the given period. The blue dotted line
indicates the worst case cash flow.
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5.3.5 Managerial insights

To interpret and visualize the four versions of the large instance, the efficient frontiers are plotted
in Figure 5.6. The efficient frontiers are generated based on the relative worst case cash flow
and the relative expected profit loss, calculated from the Tables 5.6, 5.8, 5.9 and 5.10. The
relative measures are used to easier assess the trade-off between improved worst case cash flow
and expected profit loss. The relative expected profit loss is the loss in expected profit from the
solution of the cash flow control model without cash flow constraints to a given cash flow limit
F divided by the expected profit of the solution without cash flow constraints. Since the cash
flows are annual the relative cash flow is given in terms of the annual expected profit to give
both measures in the same units. Thus, the relative worst case cash flow is the worst case cash
flow in a given solution divided by the annualised expected profit of the solution without cash
flow constraints. Note that the relative expected profit loss gives the same results regardless
of using annualised values or not. The nominal values for the worst case cash flow and the
expected profit can be found in the first two columns of Tables 5.6, 5.8, 5.9 and 5.10. Plotting
the expected profit loss to the relative worst case cash flow gives the efficient frontiers presented
in Figure 5.6. Note that the decreasing relative expected profit loss in parts of the curves are
the result of the 1% optimality gap, and not representing the real situation. Thus, in reality the

curves are always non-decreasing if the instances are solved to optimality.

From Figure 5.6 it is clear that all versions of the large instance have the same characteristic.
They have a given section where the worst case cash flow can be improved without significant
loss in expected profit, and a section where the expected profit loss is rapidly increasing as the
worst case cash flow improves. Furthermore, for increasing cash flow limits there is a significant
difference between the uncorrelated and correlated version with normal space charter price.
This illustrates that in a correlated world the benefit of using the cash flow control model is
grater than in an uncorrelated world. For example, the relative worst case cash flow of —10%
has an expected profit loss of approximately 6% and 2% for the uncorrelated and correlated
version, respectively. In addition, the worst case cash flow can be improved by approximately

15% in terms of the annualised expected profit without any significant loss in expected profit.

However, the difference between a correlated and uncorrelated world is not that clear when
having a 50% reduction in space charter price. Even though the efficient frontiers overlap and
cross each other, there is a difference of 3% in the relative expected profit for the relative worst

case cash flow of 5%.

Moreover, these results indicate that regardless of the correlation matrix used and high or low
space charter price, the company has a potential of benefiting from using a cash flow control
model. To improve the worst case cash flow there has been made six observations, namely re-

ducing or increasing the number of ships ordered, changing the timing of investments, delaying
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Figure 5.6: The efficient froniters for the different versions of the large instance. SCP is short for space
charter price.

or increasing scrapping of ships and adjusting demand through optional trades. This makes
assessing whether a given strategy actually improves the worst case cash flow or not a very

complex task, which makes the cash flow control model a valuable tool for the company.

However, this model says nothing about which of the solutions on the efficient frontier the man-
ager should choose, but offers the manager a range of solutions to choose from. To determine
which solution to choose, utility theory (Pindyck and Rubinfeld, 2013) has to be considered.
Based on the situation the company faces, the utility of these solutions will be different. In most
cases the manager will probably prefer to choose the solution furthest to the right in the flat part
of the efficient frontier, because it improves the worst case cash flow with an insignificant re-

duction in expected profit.

Moreover, if the company is low on cash reserves and thus is facing an immediate risk of cash
flow insolvency, the manager will probably choose a solution from some area of the steep part
of the efficient frontier. Then the manager can pick a solution that has the worst case cash flow
above the limit where the company faces cash flow insolvency, and in that way reduce this risk

or eliminate it all together.
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On the other hand, if the company has a big cash reserve for the coming planning period,
but for some reason the value of their assets (for instance ships) dropped to a level were their
liabilities are greater than the asset values, the company would be facing the risk of balance-
sheet insolvency. In this situation the manager would probably choose a solution further to the
left on the efficient frontier in order to maximize the expected profit, thus increasing the value of
the company and reducing the risk of balance-sheet insolvency. However, this comes at the cost

of a reduced cash flow in the worst scenario, thus increasing the risk of cash flow insolvency.

A real situation probably consists of a combination of the two examples mentioned, but it illus-
trates how the cash flow control model can be used as a tool to find the correct trade-off between

expected profit and worst case cash flows in order to reduce the risk of insolvency.
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5.4 Cash flow effects for the medium and small instances

5.4.1 Medium instance

The solutions and the cash flow development for the four versions of the medium instance are
similar to the corresponding versions of the large instance. The observations made for the large
instance are also observed in the medium instance, except for the aggressive solution where
ordering more ships and increasing scrapping improves the worst case cash flow. Therefore,

these results are not discussed in detail in this section, but can be found in Appendix C and D.

Even though similar observations are made in both the medium and large instance, the efficient
frontiers demonstrate the differences that do exist. The efficient frontiers can be seen in Figure
5.7. As for the large instance, it is possible to significantly improve the worst case cash flow in
all versions. However, for the correlated matrix with 50% reduction in the space charter price
the trade-off between the relative worst case cash flow and the relative expected profit loss is
close to linear. Thus, indicating that it might exist situations where there is a small room for

improving the worst case cash flow without equivalent losses in expected profit.

Moreover, comparing the versions of the small instance to the large instance, there is an indi-
cation that a smaller company has less benefit of using the cash flow control model. This can
be seen as the smaller possible improvement of the relative cash flow for all versions except for
the uncorrelated version with reduced space charter price. Here the cash flow improvement is

greater for the medium instance than the large instance.

For the medium instance with normal space charter price the company will have a greater benefit
of the model in a correlated world than in an uncorrelated world, because the relative worst case
cash flow can be improved to a higher relative level and at a lower loss in expected profit for the
same levels. However, the opposite can be observed for the versions with reduced space charter

price.
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Figure 5.7: The efficient froniters for the different versions of the medium instance. SCP is short for
space charter price.
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5.4.2 Small instance

Similar observations can be made between the correlated and uncorrelated versions with normal
space charter price of the small instance and the corresponding versions of the large and medium
instance. These results are therefore not discussed in detail here, and can be found in Appendix
C and D. However, reducing space charter price by 50% leads to a new observation for ordering
new ships for both the uncorrelated and the correlated versions. The results can be seen in Table
5.11 and Table C.7 in Appendix C. The worst case cash flow is here improved by increasing
the orders of ships in the first stage. To understand why this is a reasonable strategy the worst
case scenarios has to be examined more closely. The scenarios with the worst cash flows are
the high demand scenarios where the peak in demand is covered by space charter. The space
charter price is still higher than the unit revenue and use of space charter leads to negative cash
flows in the high demand scenarios. Increasing the number of ships in the fleet reduces the
need for space charter in these scenarios, thus resulting in improved cash flow. However, this
comes at the cost of overcapacity in the low demand scenarios having to pay instalments on
ships scrapped or kept on lay up in these scenarios. The number of ships ordered in the first

stage can therefore be increased until these two effects level each other out.

The cash flow development for the correlated version with reduced space charter price illustrated
in Figure 5.8, shows the impact of increasing the number of ships ordered in the first stage from
the cash flow control model without cash flow constraints to the highest possible cash flow
limit. Note how the cash flow becomes worse in period 2, while the worst case cash flows in the
second stage becomes better. In addition, this improvement of the worst case cash flow comes
at a very low cost of expected profit. The similar results can be seen for the uncorrelated version
with reduced space charter price in Figure D.7 in Appendix D, except for a slightly higher cost
of expected profit.
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Table 5.11: Solutions for the small instance with correlated correlation matrix and reduced space charter
price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit | First Second | First Second | First Second | First Second | First Second
-57.1 | 310.7 | 6 1.31 3 3.96 0.12 4.24 17005 53534 |0 0.71
-51.4 | 309.7 | 6 1.24 3 391 0.12 438 17005 56099 | 0 0.7
-45.7 | 309.1 | 7 1.09 3 4.68 0.12 431 17005 42665 | 0 0.71
-40.0 | 309.1 | 7 1.07 3 4.69 0.12 433 17005 42856 |0 0.71
-34.3 | 3084 | 7 1.06 3 4.72 0.12 4.28 17005 43931 |0 0.66
-28.5 1 307.8 | 7 0.99 3 4.77 0.12 4.21 17005 49098 | 0 0.71
-22.8 | 307.1 | 8 0.93 3 548 0.12 433 17005 32275 |0 0.71
-17.1 | 307.3 | 8 0.93 3 545 0.12 4.37 17005 31848 | 0 0.72
-11.4 | 306.1 | 8 0.89 3 5.45 0.12 4.46 17005 34025 | 0 0.68
-5.7 13052 |9 0.8 3 6.11 0.12 4.48 17005 17955 |0 0.71
0.0 3044 | 8 0.67 3 5.46 0.12 4.38 17005 43995 | 0 0.71
. " BHHS |17 - “HHE

Period [year]

1

(a) Without cash flow constraints

Period [year]

(b) With cash flow constraints (F = 0)

Figure 5.8: The cash flow development for the small instance with correlated correlation matrix and
reduced space charter price. The red dashed line is the annualised expected profit, and the numbers
above each whisker is the standard deviation for the given period. The blue dotted line indicates the
worst case cash flow.
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For the small instance the versions with reduced space charter price have shown that there
could exist situations where the company can improve the worst case cash flow by increasing
the number of ships ordered in the first stage. In this situation the efficient frontiers have a
different characteristic as well. The efficient frontiers for the four versions are shown in Figure
5.9. Note how the efficient frontier for the correlated version with 50% reduction in space
charter price is close to linear for all worst case cash flows. In addition, it is overlapping with
the uncorrelated version except for the last part of the graph. Even though they do not have the
same characteristic as for the large instance it is clear that also a small company could benefit
from using a cash flow control model. For the correlated version with reduction in space charter
price, the relative worst case cash flow can be improved by approximately 90% at a cost of 2%

in relative expected profit loss.
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Figure 5.9: The efficient froniters for the different versions of the small instance. SCP is short for space
charter price.

Furthermore, the uncorrelated version with normal space charter price has a linear efficient
frontier, where no improvement of the worst case cash flow can be made without an equivalent
loss in expected profit. The correlated version has the efficient frontier that resembles the char-
acteristics of the large instance the most. It has a small section where the worst case cash flow

can be improved without any significant cost, but then it behaves as a stepwise function and not
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as a smooth curve demonstrated in the other instances. This is most likely a result from the size
of this instance. Changing any first stage decision in the small instance becomes a much higher
relative change than for the large instance. For instance, adding a ship to the initial fleet in the
small instance would mean a relative increase of 6.25% of the fleet size. Adding one ship to the
large instance would mean an increase of 1.96% in fleet size. This indicates that a change in the
solution of the small instance gets a bigger relative impact in the expected profit than the same

change in the large instance.

Even though the characteristics of the efficient frontiers in the small instance are different from
the corresponding frontiers in the other instances, it is still clear that a company could benefit
from using a cash flow control model. In addition, the observation made about increasing
number of ordered ships in the first stage, further illustrates the complexity of this decision
making process. There is no clear strategy for improving the cash flow and as the 12 cases
presented illustrates the strategy depends on the situation. Thus, to come up with the correct
solution for the desired worst case cash flow the model needs to be solved, indicating how

valuable such a tool can be for a shipping company regardless of the size.
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5.5 Cash flow effects of the CVaR model for the large in-
stance

This section presents the results from solving the CVaR model with confidence levels of 0.99,
0.95 and 0.90 for the large instance with correlated correlation matrix and normal space charter
price. These solutions are compared to the solution of the cash flow control model solved for the
same instance. Note that the instance is solved with 100 scenarios, so the CVaR model solved
with confidence level « = 0.99 is equivalent to the cash flow control model. Even though
these two models are equivalent they have two different set of constraints. This results in the
possibility that the solver chooses different paths through the branch and bound algorithm,
and with 1% optimality gap this explains the small differences found between the solutions.
However, the differences are insignificant, and the solutions for &« = 0.99 is therefore not

presented in detail here, but can be found in Section C.3 in Appendix C.

Table 5.12 presents the solutions for the CVaR model with confidence level of 0.95. When
limiting the expected cash flow of the 5% worst scenarios, the expected profit loss is much
lower than for o = 0.99 for increasing cash flow limits. This can easily be seen comparing
the efficient frontiers in Figure 5.11. Note that the x-axis is different compared to the previous
efficient frontiers presented. Instead of relative worst case cash flow the x-axis represents the
relative expected cash flow limit which is the minimum expected cash flow allowed F,, divided
by annualised expected profit. However, for o = 0.99 in this particular case, it translates into

the worst case cash flow.

The main observation made from Figure 5.11 is that the increase in cash flow limits results in
equal expected profit loss at first, but as the limit increases so does the difference in expected
profit loss. This shows that by accepting a 95% confidence of obtaining cash flows above the
given limit rather than 99% confidence, a significant improvement of the expected profit can be
made. For example, for the relative expected cash flow limit of 0% the relative expected profit
can be improved by approximately 12% by accepting a higher risk regarding the worst case cash

flow.

Figure 5.10 shows the cash flow development for these two solutions. For v = 0.95 the worst
case cash flow is F,, = —27.2, while for o = 0.99 it is 0. In addition, the uncertainty has gotten
larger in periods 4 and 5 as expected when accepting more risk. This is seen by the increase in
standard deviation. However, the increased uncertainty in periods 4 and 5 come with a benefit

of reduced uncertainty in period 3.

Increasing the confidence level further to o = 0.90 the CVaR constraints never become binding
which means that for any F,, the solution stays the same, until infeasibility is reached. This

explains why the efficient frontier for « = 0.90 is flat in Figure 5.11. The decrease in expected
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Table 5.12: Solutions for the large instance with correlated correlation matrix and normal space charter
price for the CVaR model with o = 0.95.

Exp. New builds Scrappings Lay-up Space Optional
F, Profit | First Second | First Second | First Second | First Second | First Second
-66.3 | 1109.4 | 29 1.99 9 19.09 | 037 129 0 9924 |0 1.55
-59.7 | 1109.1 | 29 2 9 19.16 | 037 1285 |0 10162 | O 1.54
-53.1 | 1109.9 | 30 1.99 9 19.58 | 037 13.7 0 454 0 1.46
-46.4 | 11104 | 29 1.99 9 19.1 0.37 128 0 12184 | O 1.46
-39.8 | 1109.1 | 29 2.12 9 19.3 037 1266 |0 12998 | 0 1.46
-33.2| 1110.0 | 29 2.28 9 19.35 | 037 1257 |0 11082 |0 1.47
-26.5 | 1109.4 | 28 2.19 8 19.34 | 041 1262 |0 12642 | 0 1.45
-19.9 | 1108.6 | 29 1.99 9 19.11 | 037 1291 |0 10713 | O 1.55
-13.3 | 1109.1 | 29 2.01 8 20.08 | 041 1276 |0 5811 |0 1.46
-6.6 | 1108.2 | 27 2.26 9 17.58 | 037 1266 |0 26938 | 0 1.45
0 1093.7 | 26 2.39 8 17.86 | 237 1262 |0 26128 | O 1.45
6.6 1078.2 | 27 2.43 9 17.91 441 1271 0 26004 | 0 1.51
13.3 | 1033.0 | 23 3.05 4 19.89 | 827 1269 |5992 32448 |0 1.4
) 200 F e B ______ 4 ) mp T
o : > Pem;[yeaﬂ p 5 e : : Pm;[year] 4 5
(a) Cash flow control model / oo = 0.99 (F = 0) (b) CVaR model with o = 0.95 (F,, = 0)

Figure 5.10: Comparing the cash flow development between the cash flow control model and the CVaR
model with o = 0.95 for the large instance with correlated correlation matrix and normal space charter
price. The red dashed line is the annualised expected profit, and the numbers above each whisker is the
standard deviation for the given period. The blue dotted line indicates the worst case cash flow.

profit loss towards the end is due to the 1% optimality gap, and the solutions can be seen in
detail in Section C.3 in Appendix D. The fact that the CVaR constraints never become binding

means that for this instance solved without cash flow constraints the expected cash flow of the
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10% worst scenarios already are better than 13.3, which is when the CVaR model becomes
infeasible for o = 0.90 and o« = 0.95.

I I I
Confidence level = 0.99 —— 149,
Confidence level = 0.95
Confidence level = 0.90

-1 12%
-1 10%
- 8%
- 6%

+ 4%

Relative expected profit loss

1 2%

———— + 0%

| | | | | | | |
-30% -25% -20% -15% -10% -5% 0% 5% 10%
Relative expected cash flow limit [Expected cash flow limit/annualised expected profit]

Figure 5.11: The efficient froniters for the CVaR model solved for the large instance with correlated
correlation matrix and normal space charter price

Section 5.3.5 discusses how to reduce the risk of insolvency using the cash flow control model,
which equivalently also applies to the CVaR model solved with the highest confidence level
selecting just one scenario, in this case a = 0.99. However, using the CVaR model the risk
of insolvency can be quantified to some extent. This is best illustrated using an example based
on Figure 5.11. Assume the company faces cash flow insolvency if the cash flow becomes
negative in any scenario. Then the CVaR model can be solved for o = 0.99 obtaining a solution
that guarantees the cash flow to be positive for all scenarios, seen at the efficient frontier for
a = 0.99 with relative expected cash flow limit of 0%. Reducing the confidence level leads to
an increase in the expected profit at the cost of increased risk. Reducing the confidence level
to a = 0.95 the company will avoid insolvency with 95% confidence. Moreover, note that
the confidence level is not a direct measure of the probability for insolvency to occur. It only
states that the expected cash flow limited is including the (1 — a) * 100% worst scenarios. This
however implies that the probability of achieving worse cash flows than the expected cash flow

limit is maximum (1 — «) * 100% and minimum 0. For a = 0.95 the maximum number of
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scenarios that can be worse than the expected cash flow limit are 4 in this case, because the
mean or expected value can never be higher than the values it is computed from. On the other
hand, the minimum of scenarios worse than the expected cash flow limit is 0 if all the five worst
scenarios are equal. This shows how the confidence level provides the manager with an upper
limit of the probability for an event to occur, in this case scenarios with worse cash flows than

the expected cash flow limit.

To determine which confidence level a company should choose depends on their current situa-
tion and risk preferences. Like mentioned in Section 5.3.5, the company’s utility of a solution
might change whether they face the risk of cash flow insolvency or balance-sheet insolvency.
In addition, the decision maker’s risk preferences also affect the choice of which confidence
level to choose. A risk averse decision maker will probably choose a high confidence level,
which in this case would be close to 0.99. A risk neutral decision maker will probably maxi-
mize expected profit regardless of the risk, thus not using a binding confidence level at all. A
risk seeking decision maker will probably not use a binding confidence level either. In addition,
he will probably prefer the solution furthest to the left of the efficient frontier in Figure 5.11,
because it is the solution with the highest best case scenarios at the cost of higher risk. Note that
the solutions between —30% and —20% is close to indifferent with respect to expected profit.
Hence, it implies that the higher risk of worse case cash flow has higher best case cash flow,

because the expected profit stays the same.

To summarize, the CVaR model provides the decision maker with the possibility of choosing
a confidence level which can be interpreted as a maximum limit of the risk relative to the risk
faced when solving the cash flow control model. This can serve as a good tool for the company

to choose a risk level matching their situation and risk preference.
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5.6 From a two-stage case to a three-stage case

The instances solved this far in the thesis are solved using a two-stage model, but a multi-stage
model would better describe the reality. In the real world a company experience a continuous
stream of new information, for instance changing fuel prices from day to day. A multi-stage
model will represent this behaviour more accurately. However, a multi-stage model would in-
crease the complexity, making the model harder to solve, and therefore the problem is often
simplified to a two-stage problem and solved using a two-stage model. This section will there-
fore solve the smallest instance as a three-stage model and compare the solution to the two-stage

solution, in order to examine whether the two-stage model is a reasonable simplification.

In the three-stage model the scenarios branch in periods 3 and 5. An example of a realisation
of a random variable with nine scenarios using this scenario tree are shown in Figure 5.12.
Every branch node has to branch into at least as many nodes as there are random variables due
to requirements in the scenario generation algorithm. Therefore, the instance with the fewest
random variables is used to compare a three-stage model to a two-stage model, namely the small
instance. The number of branches in each branch period is therefore set to 20, resulting in the
total number of scenarios to be 20 * 20 = 400. Furthermore, the correlated correlation matrix
requires a higher number of scenarios for the scenario algorithm to work, resulting in very long
computational times for the three-stage model. Moreover, the version with 50% reduction in
space charter price has a wider range where the worst case cash flow can be improved, seen
in Figure 5.9. Therefore, the small instance with uncorrelated correlation matrix and reduced

space charter price is used for this part of the computational study.

The three-stage solutions for the small instance with uncorrelated correlation matrix and 50%
reduction in space charter price can be seen in Table 5.13. Note that ships cannot be ordered
or scrapped in the last period, i.e. in the third stage, and are thus only presented with the first
and second stage decisions. Comparing these results to the two-stage solution in Table C.7 in
Appendix C, the results are similar, but there are some interesting differences. The second stage
orders are increased and the ships scrapped in the second stage are reduced. In addition, the
optional trades are used more actively. There is a significant increase in ships put on lay-up in
the last period as well. This comes from the fact that the company prepares for the third stage
and thus has an overcapacity in the low demand scenarios. In the two-stage model this would be
avoided, because the company would know the demand in period 5 with certainty when arriving
to period 3. Therefore they could scrap the excess ships at the end of period 3 or 4.

The efficient frontiers for the three and two stage solutions are shown in Figure 5.13. They both
have similar characteristics, where there is a section where the worst case cash flow is increased
at a small cost in expected profit loss, and a section where the cost is rapidly increasing with

worst case cash flow improvement. This indicates that the characteristics found in the efficient
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Figure 5.12: Realisation of one random variable in a three-stage model. Illustrating a possible realisa-

tion of one random variable with nine scenarios in a three-stage problem, branching in periods 3 and
5.

frontiers in the two-stage instances are similar also for a three-stage instance.

However, the results do show some differences between the two-stage and three-stage solutions,
but they are mainly in the second stage. The first stage decisions are very similar, and for a ship-
ping company it is mainly the here and now decisions that are of the greatest interest. Therefore,
these results indicate that a two-stage model with 100 scenarios work as a reasonable simpli-
fication of a three-stage model with 400 scenarios. The fact that the 100 scenario two-stage
model gives similar first stage solutions as the 400 scenario three-stage model is an important
finding with respect to computational time. This shows that a larger number of scenarios do not
add much improvements to the first stage decisions, which makes it possible to solve the model

with fewer scenarios saving computational time.

In addition, solving the largest instance with a three-stage model would require minimum 45 *
45 = 2025 scenarios with the scenario generation algorithm used for this thesis, which was
impossible to solve with the computer used for this computational study. Thus, implementing
a multi-stage model increases the computational time drastically. To sum up, the two-stage
simplification seems to be a good trade-off between computational time and quality of the first
stage decisions, at least for the small instance with uncorrelated correlation matrix and reduced

space charter price.
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Table 5.13: Three-stage solutions for the small instance with uncorrelated correlation matrix and 50%
reduction in space charter price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up
F Profit | First Second | First Second | First Second Third
-44.1 | 320.6 | 6 29 3 3.25 0.12 4.32 2.83
-39.7 | 320.6 | 7 245 3 3.65 0 4.6 2.92
-35.3 13206 | 7 24 3 3.65 0 4.6 2.87
-309 | 3214 | 7 2.45 3 3.65 0.12 4.6 292
-26.5 | 3214 |7 2.5 3 3.65 0.12 4.6 2.96
-22.1 13209 | 8 2.05 3 4.25 0.12 4.68 2.9
-17.7 | 319.6 | 8 1.75 3 4.3 0.12 4.61 2.71
-13.2 13175 | 8 1.85 3 4.45 0.12 4.45 2.7
-8.8 | 3120 | 8 1.6 3 4.3 0.87 4.51 2.64
-44 | 2878 |8 1.75 3 4.5 2778 4.5 2.6
Exp. Space Optional

F Profit | First Second Third | First Second Third
-44.1 | 320.6 | 17005 49237 17771 |0 0.63 0.94
-39.7 | 320.6 | 18 736 45130 17252 |0.33 1 1.01
-35.3 | 320.6 | 18 736 45130 17450 | 033 1 1.01
-30.9 | 321.4 | 17005 37829 15978 | 0 0.63 0.94
-26.5 | 321.4 | 17005 37829 15553 |0 0.63 0.91
-22.1 | 3209 | 17005 26709 15966 | O 0.63 0.93
-17.7 | 319.6 | 17005 26709 22513 |0 0.63 0.91
-13.2 | 317.5 | 17005 26384 23403 |0 0.58 0.89
-8.8 | 312.0 17005 33685 27388 |0.33 1 1.01
-44 | 287.8 | 53595 33685 28811033 1 1.01
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Figure 5.13: The efficient frontiers for the three and two stage solutions for the small instance with
uncorrelated correlation matrix and reduced space charter price.
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Chapter

Concluding remarks and future research

This thesis introduces two new models for solving the Maritime Fleet Renewal Problem (MFRP)
focusing on the risk of insolvency. Payments of ships are modelled as instalments rather than
lump sums for both models. The cash flow control model maximises profit while limiting the
worst case cash flow to a given limit. Moreover, the CVaR model replaces the cash flow con-
straints in the cash flow control model with CVaR constraints limiting the expected cash flow of
the (1 — av) * 100% worst scenarios, where « is a predetermined confidence level. The cash flow
control model is proved to be a special case of the CVaR model having such a high confidence
level that just one scenario is included in the expected cash flow. The current literature indicates
that payments modelled as instalments and the control of cash flows have not been applied to

these type of problems before.

This thesis demonstrates that solutions of the cash flow control model for increasing cash flow
limits improve the cash flow in the worst scenario. However, this comes at the cost of reduced
expected profit. Moreover, this thesis shows that the strategy for improving the worst case cash
flow is dependent on the situation. This illustrates how complex the MFRP is and how valuable

operations research are for this problem.

Furthermore, solving the CVaR model for a set of confidence levels demonstrates how the com-
pany can adjust their risk level according to their risk preference when facing the risk of insol-
vency. CVaR is chosen as a risk measure for this thesis, but there exist other measures that also
might be appropriate. In addition, this thesis tests a three-stage implementation of the cash flow

control model indicating that the two-stage simplifications are reasonable.

Regarding future research, there are several directions that can be pursued and some of them
are briefly discussed here. One possible direction is to implement the models also including
second hand ships and charters to see if this affects the cash flow characteristics identified in

this thesis. It would be expected to reduce the need of controlling the cash flows, because the
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number of recourse actions increase. This is anticipated to reduce the consequences of a first
stage decision that turned out to be unfavourable. However, further research is required to verify

this expected behaviour.

Another direction to take could be to develop a model including cash flow reserves. For this
thesis it is assumed that the decision maker is able to come up with the correct cash flow limit
when solving the models. This might not be the case and by including cash flow reserves
the necessary cash flow limit could be imposed. In this way allocation of the profit could be
included as well. Thus, profits from good years can be kept as a reserve to prepare for future

uncertainties.

Focusing on solution algorithms is also a possible direction to pursue. Especially if it is de-
sired to test a multi-stage implementation for larger instances than the three-stage instance that
was solved in this thesis. The computer used for the computational study for this thesis never
found a solution to the large three-stage instance. An improvement of the solution time here can
probably be made improving the algorithms for solving the model, but also on the scenario gen-
eration. The main problem regarding the computational times for the large three-stage instance
were located to the huge number of scenarios required to generate the scenario tree. Improving
the scenario generation making it possible to generate fewer scenarios for the same number of

random variables could possibly improve the computational time.

To summarize, this thesis demonstrates how the models presented can help the decision maker
find a suitable risk level when facing the risk of insolvency. However, as briefly discussed in

this section there are still several topics within the MFRP that can benefit from further research.
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Appendix A

Scenario formulation

A.1 Cash flow control model

Sets
IT
S

NA
Sts

v,
v
VI

N,

MO

R
th

Set of periods, indexed by ¢
Set of scenarios, indexed by s

Set of all scenarios that are connected to scenario s in period ¢, meaning
that decisions made in scenario s in period ¢, must be the same for all

scenarios in this set

Set of products, indexed by &

Set of ship types existing in the market in period ¢, indexed by v
Set of new ship types existing in the market in period ¢

The set of ship types the company pays instalments for in period ¢
Set of trades operated in period ¢, indexed by ¢

Set of contractual trades the shipping company is committed to serve in

period ¢, indexed by ¢

Set of optional trades the shipping company can choose to undertake or

not in period ¢, indexed by ¢
Set of loops in period ¢, indexed by r

Set of loops that can be sailed by a ship of type v in period ¢ , indexed
by r
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Rivt

The set of loops servicing trade ¢ that can be sailed in period ¢ by a ship

of type v, indexed by r

Parameters
Py
RD

its

RSE

vts

RSC’

vts

RLU

vts

SV
Rvs

RCO

vts

OCI

vts

COP

vts

CTR

vrts

Clite
mvts
CO0us
S_Hvts

S_Evts

m1Es

The probability for scenario s to take place

The revenue of transporting one unit of goods on trade ¢, at period ¢,

and scenario s
The selling price of a ship of type v, in period ¢, and scenario s
The scrapping value of ship of type v, in period ¢, and scenario s

The lay-up savings for one period, for ship of type v, in period ¢, and

scenario s
The sunset value of a ship of type v, in scenario s

The charter out revenue for one period, for ship of type v, in period ¢

and scenario s
The charter in cost for ship of type v, in period ¢ and scenario s
The fixed operating cost for ship of type v, in period ¢ and scenario s

The cost of performing a loop r, for ship of type v, in period ¢ and

scenario s

The space charter cost for one unit of product £ on trade ¢ , in period ¢,

and scenario s

The limit on the number of ships of type v available for chartering in in

period ¢ under scenario s

The limit on the number of ships of type v available for chartering out

in period ¢ under scenario s

The limit on the number of ships of type v available for purchasing in

the second hand market in period ¢ under scenario s

The limit on the number of ships of type v, that can be sold in the second

hand market, in period ¢ under scenario s

The limit of the total number of ships that can be chartered in in period

t under scenario s
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The limit of the total number of ships that can be chartered out in period

t under scenario s

SH,, The limit of the total number of ships that can be bought in the second
hand market in period ¢ under scenario s

SFEy, The limit of the total number of ships that can be sold in the second
hand market in period ¢ under scenario s

TE The lead time for building a ship of type v

Qur The total capacity of product & on ship of type v

Qv The total capacity on ship of type v

Loy The time a ship of type v needs to perform a loop r

Ly The total available time in one period for a ship of type v

Do The demand on trade 7 of product £ in period ¢ and scenario s

Fy The frequency requirement on trade ¢ in period ¢

YiB The number of ships of type v ordered in the previous planning period,
delivered at the start of period ¢

Y IP The initial fleet of ships of type v

CIv. The instalment paid in period ¢ and scenario s on the ship of type v
ordered in period ¢’ and scenario s

CIN The instalment paid for a ship of type v in period ¢ for the ships in the
initial fleet, i.e before the planning horizon begins

CoH The instalment paid in period ¢ and scenario s, on a ship of type v bought
in the second hand market at time ¢’ and scenario s

M Number of instalments

F The cash flow limit, i.e. no period and scenario are allowed to have a
worse cash flow than this limit

B The budget available for ordering or purchasing ships in period 0

Variables

yNB The number of new buildings ordered of ships of type v, in period ¢/,

and scenario s
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ySi The number of ships bought in the second hand market of ship of type

v, in period ¢’ and scenario s

yor The number of ships of type v sold in the second hand market , in period

t, and scenario s

y5¢ The number of ships of type v scrapped in period ¢ and scenario s

yl. The number of ships of type v in the pool, in period ¢ and scenario s

hi,. The number of ships of type v chartered in, in period ¢ and scenario s

ho, The number of ships of type v chartered out, in period ¢ and scenario s

Luts The number of ships of type v on lay-up, in period ¢ and scenario s

Torts The number of loops r performed by a ship of type v, in period ¢ and
scenario s

Nikts The amount of product k delivered in period ¢, by space charters on
trade ¢ and scenario s

Oits Set to 1 if the company services optional trade ¢ in period ¢ and scenario
s, 0 otherwise.

1 The cash inflow in period ¢ and scenario s

12 The cash outflow in period ¢ and scenario s

Cash flow expressions

=" REDiubus+ > > REDins

ieNP kek ieNC kek
CO 1,0 SE, SE LU sC, sC
+ Z(ths hvts + ths yvts + ths lUtS + ths yvts )7 13 € 7d\ {O}’ s € S
veEVy
O IN~N/IP IN . NB SH , SH
fts = Z CvtsY;J + Z Z (Cvt/tsyvt’s + Cvt’tsyvt’s)
veVIN =M<t <t yeV]N
SP OP, P CIi I TR
+ Z Z Cik:tsnikts + Z(Cvts Yots + Cvtshvts + Z Cvrtsajm“ts)7 le T\ {O}’ sES
iGNtC keK VEV: TrERvt
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Objective function

maxz:zps(

seS teTt>0 eNQ ke

Z ( Z ZRgsDiktsdits

K

S
+ E : E : zts zkts_ zktsnlk’ts)
ZENC kek
OP CIly I CO1,0
- § : Cvts yvts + Cvts hvts - ths hvts
vEVE
TR U
E : Cm‘tstTtS - vtslvt8>)
r€ERvt

> D e’

t<M—1yep]N

IN NB SH , SH

- § E § CovisYurrs + CorsYr's)

teT t—M<t'<t yepIN

t'+M

2 SV E : 2 [N NB SH SH
+ R vas vt’tsyvt’ vt’tsyvt’ )

vEVE t=T t'eT

E E SC SE SE
+ ths yvts vts yvts )>

teT veV,

Demand constraints

Z Z kamvrts + Nikts zDikts:

VEV: TER vt

Z Z kaxvrts ZDikts(Sitm

VEV TERGut

Capacity constraints

Z Z szvrts + Z Nikts > Z Diktsa

vEVE T€ER vt kek kel

Z Z vavrts Z Z Diktséitm

VEVy TER vt kel

Frequency constraints

Z Z Lyrts ZFita

VeV TERut

Z Z Loyrts zFit(Sitsa

VEVy TER vt

teT\{0},ic NC kek,s€S,

teT\{0},ic NP keK,s€S,

te T\{0},i e NF s €S,

teT\{0},i c NP s€S,

teT\{0},ie NF s€S,

te T\{0},i e NP s€S,

(A.l1a)

(A.1b)

(A.1¢)

(A.1d)

(A.le)

(A.1f)

(A.lg)

(A.1h)

(A.2)

(A.3)

(A.4)

(AS5)

(A.6)

(A7)
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Time constraints

Z ZypTorts < Zv(yquts + hits - hgts — luts),

T‘Eth

Optional trades constraints

Oits < Oitt1.s

Pool constraints

P _ ~IP
yvOs - Y

v

P _ P SC SH SE
Yots — yv,t—l,s - yv,t—l,s + yv,t—l,s - yv,t—l,s

+ho

vts

yqujts Z lvts - hI

vts

P __ _ SC
yvts - yvts

Charters and second hand constraints

yftg < SH s,
yftf < SE oy,
higs < Clugs,
hiots < CO0uss,

< SH,

vts

> oyt

’L)th\vtN

SE Finl
Z Yots S SEtsa
UEVt\VtN

Z h{)ts

veV\VN

> ha

veV\VN

S mtsa

S mtsv

te T\{0},veV,seS,

teT\{0,T},iec NC,s€S,

vEVy,sES,

te T\{0},veV\ VN ses,

tETitZTvL,UEVtN,SES,

tET:t<TvL,v€va,s€S,

te T\{0},veV,seS,

te T\{T},v € V;\ V41,5 €S,

te T\{T},veV,seS,
te T\{T},veV,seS,
te T\{0},veV,seS,
teT\{0},veV,seS,
te T\{T}, s€S,

teT\{T}, s€S,
teT\{0},s€eS,

teT\{0},seS,

(A.8)

(A.9)

(A.10)
(A.11)
(A.12)
(A.13)
(A.14)
(A.15)

(A.16)
(A.17)
(A.18)
(A.19)
(A.20)

(A.21)

(A.22)

(A.23)
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Cash flow constraints

D (RiGyses + Rasisss) — D (Coltsymos + Cosyon) + B > F, s€S, (A24)

vEVy erVéN

fh—f2>F, teT\{0},s€S, (A25)

Non-anticipativity constraints

Yol = 3¢ te T\{T},veV,secS 58SV (A.26)
yNB = o NB tE’T:tﬁT—TvL,vEVtN,SES,EESgA, (A.27)
Yol — g5 te T\{T},veV,seS 58SV, (A.28)
yoB = 58 te T\{T},veV,seS 58SV, (A.29)
hl,. = nt_. teT\{0},veV,seS 58SV, (A.30)
he, = ht,_, teT\{0},veV,seS 58SV, (A31)
Lots = Lits, te T\{0},veV,secS 5SSV (A.32)
Torts = Torts, te T\{0},veV,reRy,s€S,5eSH, (A.33)
Nikts = Nikts, teT\{0},ic NC keK,s€S,5¢c 8N4, (A.34)
dits = Oits, teT\{0},ic NP,s€S,5¢e SN, (A.35)
(A.36)

Convexity and integer constraints

yNB e 7t teT t<T-T,"veVN,. s€eS, (A.37)
yoC ez, te T\{T},veV,seS, (A.38)
yIH e 7T te T\{T}veV,seSs, (A.39)
yE ezt teT\{TYveV,seS, (A.40)
yh. e RY, teT,veV,s€S, (A41)
rl. € RT, teT\{0},veV,se€S, (A.42)
ho, € RT, teT\{0},veV,seS, (A.43)
lus € RT, te T\{0},veV,seS, (A.44)
Torts € RT teT\{0hveV,reRyseS, (A.45)
Nikes € RT, te T\{0},ice NC keK,s€S, (A.46)
Sits € {0, 1}, teT\{0},ic NP secS (A.47)

&9



A.2 Conditional Value-at-Risk model

Replacing the cash flow constraints in the cash flow control model with the following sets,

variables and constraints results in the Conditional Value-at-Risk model.

Sets

TF The set of periods in the first stage

75 The set of periods under uncertainty, i.e. all periods after the first stage
Parameters

« Confidence level

F, The minimum expected cash flow allowed under confidence level «
Variables

¢ Artificial variable for CVaR constraints

Mis Artificial variable for CVaR constraints in period ¢ and scenario s

Hard cash flow constraints

Y (Rogiyso: + Risyss) — D (Clooyms + Comsor) + B> Fa, s €S,
vEVo UEV({N
fh=12>F, teT"\{0},s€S,

CVaR constraints:

é+ﬁ§ams > £, teTs,
ms < fL— 9 —¢, teT ses,
Mis = Nis, tETS,SES,EGSgA,
s € R™, teT%seS

(A.48)

(A.49)

(A.50)

(A.51)
(A.52)
(A.53)
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Appendix B

Node formulation

B.1 Cash flow control model

Sets

T

Vi
v

IN
Vi

Ry

th

Set of periods, indexed by ¢
Set of nodes, indexed by n

Set of nodes in a time period ¢, indexed by n. a(n,t’) is the ancestor
node of node n in the scenario tree in period ¢, with a(n,t — 1) written

as a(n).

Set of products, indexed by k

Set of ship types existing in the market in period ¢, indexed by v
Set of new ship types existing in the market in period ¢

The set of ship types the company pays instalments for in period ¢
Set of trades operated in period ¢, indexed by ¢

Set of contractual trades the shipping company is committed to serve in

period ¢, indexed by ¢

Set of optional trades the shipping company can choose to undertake or

not in period ¢, indexed by 7
Set of loops in period ¢, indexed by r

Set of loops that can be sailed by a ship of type v in period ¢ , indexed
by r
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Rivt

The set of loops servicing trade ¢ that can be sailed in period ¢ by a ship

of type v, indexed by r

Parameters
P, n
Rp
Ry
RyY
Ry
Ry
RGY
cel
RGY
cor
CTR

vrn

csr

ikn

The probability for node n to occur

The revenue of transporting one unit of goods on trade 7, at node n
The selling price for a ship of type v, at node n

The scrapping value of a ship of type v, at node n

The lay-up savings for one period, for a ship of type v, at node n
The sunset value of a ship of type v, at node n

The charter out revenue for one period , for a ship of type v, at node n
The charter in cost for a ship of type v, at node n

The charter out revenue for a ship of v, at node n

The fixed operating cost for a ship of type v, at node n

The cost of performing a loop 7, for a ship of type v, at node n

The space charter cost for one unit of product % on trade ¢ , at node n

The limit on number of ships of type v available for chartering in at

node n

The limit on number of ships of type v available for chartering out at

node n

The limit on number of ships of type v available for purchase in the

second hand market at node n

The limit on number of ships of type v that can be sold in the second

hand market at node n
The limit of the total number of ships that can be chartered in at node n

The limit of the total number of ships that can be chartered out at node

n

The limit of the total number of ships that can be bought in the second

hand market at node n
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The limit of the total number of ships that can be sold in the second

hand market at node n

Tr The lead time for building a ship of type v

Quk The total capacity of product £ on ship of type v

Qo The total capacity on ship of type v

L The time a ship of type v needs to perform a loop r

Ly The total available time in one period for a ship of type v

Dipn The demand on trade ¢ of product % in node n

E, The frequency requirement on trade ¢ in node n

yNB The number of ships of type v ordered in the previous planning period,
delivered at node n in the beginning of the time period

yIr The initial fleet of ships of type v

Cﬁ\(fﬂ #n  Theinstalment paid at node n on a ship of type v ordered at node a(n, ')

CIN The instalment paid for a ship of type v at node n for the ships in the
initial fleet, i.e before the planning horizon begins

Cfaf({n, #n  Theinstalments paid at node n on a ship of type v bought in the second
hand market at node a(n,t')

M Number of instalments

F The cash flow limit, i.e. no period and scenario are allowed to have a
worse cash flow than this limit

B The budget available for ordering or purchasing ships in period 0

Variables

yNB The number of new buildings ordered of ship of type v, at node n

Yo The number of ships of type v bought in the second hand market, at
node n

ySr The number of ships of type v sold in the second hand market at node n

y5¢ The number of ships of type v scrapped at node n

yl The number of ships of type v in the pool, at node n

h! The number of ships of type v chartered in, at period n

vn
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hO

mn

The number of ships of type v chartered out at node n

lon The number of ships of type v on lay-up, at node n

Torn The number of loops r performed by a ship of type v, at node n

Nikn The amount of product % delivered at node n, by space charters on trade
i

Oin Set to 1 if the company services optional trade ¢ at node n, O otherwise.

It The cash inflow at node n

19 The cash outflow at node n

Cash flow expressions

ieNP kek ieNC kek
+ > (RECRS, + RyPysl 4+ REVL,, + RyCys0), teT\{0},ne L
VEV:
an = Z Ciivy'vfp + Z Z va(n t/ nyva(n t')n Cva(n t/ nvaaI{n t'n )
veVIN t—=M<t'<t yePIN
+ 3> i + Y _(COPyh + CSIRL, + Y OBy, teT\{0},neL,
ZENO ke vEVY rERvt
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Objective function

max z = Z Z P Z ZRDDzkn(Sm

teT\{0} n€L: ieENQ ke
+ Z Z R Dzkn - Zk;nnzkn)
zE/\/C ke
oP Cly 1 CO 1,0
- Z C yvn + Cvn hvn Rvn hvn
vEV:
+ ) OBy, — R 1))
r€ERvt

> 2 > honyy”

t<M—1neLs veVIN

- Z Z Z Z szzjzvn ) nyva (n,t") + C’ua(n t/ nyfﬁn t’))

teT t—M<t'<t n€Ls v YN

+ > () PRy,

vEVF nELF
t'+M

- Z Z Z P Cizjzvn ) nyva (n,t") sz(n 4 nyfal{n t’)))

t=T t'€T neLy

+ Z Z Z P Rscyzm + RSEyzm )

teT neLy vEV:

Demand constraints

Z Z kaxvrn + Nikn 2 Dikn> te T\ {0}72 S MC, ke K:,?’L S [,t,
UEVt TEszt
Z Z ka'rvrn = zk:n ny te T\ {O},Z S ./\/;50, ke IC,Tl S Et,

VEVE TER vt

Capacity constraints

Z Z vavrn + Znikn 2 ZDilmu t e T\ {0}72 S Mcyn S £t7

VEVE TER ot kex kel
Z Z vavrn 2 Z Diknéina te T\ {O},Z S ./\/to,n S Et,
VEV: TER vt ke

(B.1a)

(B.1b)

(B.1c)

(B.1d)

(B.le)

(B.11)

(B.1g)

(B.1h)

(B.11)

(B.2)

(B.3)

(B.4)

(B.5)

95



Frequency constraints

E E xvrn - zna

’UEVt TER“Jt

Z Z Lyrn, 2 -an5m7

VEV: TERGwt

Time constraints

E ZT"U:L"UT”N/ —

Teth

Optional trades constraints

5ia(n) < 5in7

Pool constraints

yvO YIP

_ SC SH E
yvn - yv a(n) = Yv,a(n) + Yv,a(n) — Yv,a(n)

(yvn + hzlm - thn — lun

te T\{0},i e N ,ne L,

teT\{0},i e NP, neL,

te T\{0},veV,nelLl,

teT\{0,1},i e NP necL,,

v EVy

te T\{0},ve Vv, \ VN neL,
tGT:tETvL,UGVtN,nGEt,
tET:t<TvL,UEVtN,n€£t,
te T\{0},veV,neLl,

te T\{T},v € Vi\ Viy1,n € Ly,

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)
(B.11)
(B.12)
(B.13)
(B.14)
(B.15)




Charter in constraints

Cash flow constraints

> Ry + Ry

vEVY

Convexity and integer constraints

yol € L7,
Yo €LY,
You! € LY,
Yor' € LT,
Yom € RY,
h! € RY,
ho € RY,
lon € RT,
Ty € RT,
Nikn € R,

din € {0, 1},

te T\{T},veV,neL,
te T\{T},veV,neL,
teT\{0},veV,neL,
teT\{0},veV,neL,
te T\{T},neL,

tGT\{T},nGEt,
tGT\{O},nGEt,

tET\{O},nGEt,

)= D (Clgyn” + Cogyig) + B> F,
UGV({N

fi—anZF, tGT\{0}7n€£t7

tET:tST—TvL,UEVﬁTL7n€£t7
te T\{T},veV,neL,

te T\{T}v € Vy,ne€ L,

te T\{T}v € V;,ne€ L,
teT,veV,ne L,
teT\{0}hveV,nel,
teT\{0},veV,neL,
teT\{0},veV,neL,

te T\{0},veV,reRy,née Ly,
teT\{0},i e NC ke K,necL,
te T\{0},i c NP necLy,

(B.16)
(B.17)
(B.18)
(B.19)
(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)
(B.27)
(B.28)
(B.29)
(B.30)
(B.31)
(B.32)
(B.33)
(B.34)
(B.35)
(B.36)
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B.2 Conditional Value-at-Risk model

Replacing the cash flow constraints in the cash flow control model with the following sets,

variables and constraints results in the Conditional Value-at-Risk model.

Sets

TF The set of periods in the first stage

75 The set of periods under uncertainty, i.e. all periods after the first stage
Parameters

« Confidence level

F, The minimum expected cash flow allowed under confidence level «
Variables

¢ Artificial variable for CVaR constraints

Mn Artificial variable for CVaR constraints at node n

Hard cash flow constraints

S (R sy + RCyss) — > (Chovun” + Coysa') + B > F, (B.37)
vEVY UevéN
ff—f°>F, teTF\{0}ne L, (B.38)

CVaR constraints

1 _

C+1——=2 P> Fo, teTs (B.39)
-« nely

M < fo =17 =G teT%neL, (B.40)

m € R, teT % neL, (B.41)
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Appendix

Tables

C.1 Medium instance

Table C.1: Solutions for the medium instance with correlated correlation matrix and normal space
charter price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit | First Second | First Second | First Second | First Second | First Second
-23.4 1 872.0 | 22 1.58 5 13.58 | 0.24 9.36 0 11340 | O 0.73
-21.1 | 873.0 | 22 1.57 5 13.53 | 0.24 895 0 11169 |0 0.73
-18.7 | 871.4 | 21 1.68 5 12.78 | 0.24 9.31 0 19411 | 0 0.73
-16.4 | 868.7 | 20 1.82 5 1199 | 024 9.28 0 28461 | 0 0.73
-14.1 | 864.4 | 20 1.84 5 1197 | 1.11 9.28 0 26809 | 0 0.73
-11.7 | 859.3 | 21 1.72 5 12.66 | 2.11 9.52 0 17515 | 0 0.73
9.4 1855420 1.91 5 12 2.11 945 0 26019 | O 0.71
-7.0 | 844019 2.3 4 1251 | 3.1 8.6 0 33916 | O 0.73
-4.7 | 833.0 | 18 2.23 2 1359 |51 875 0 25294 | 0 0.73
-2.3 | 801.5 | 18 2.27 2 13.61 585 8.86 22168 24434 | 0 0.72
0.0 755.3 | 18 22 2 133 6.71 9.07 55555 23802 |0 0.73
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Table C.2: Solutions for the medium instance with correlated correlation matrix and 50% reduction in

space charter price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit | First Second | First Second | First Second | First Second | First Second
-63.5 1 899.7 | 14 442 5 8.06 0.24 8.46 0 94002 |0 0.66
-57.2 1 892.8 | 12 5.21 5 7.32 0.24 5.38 0 168 709 | 0 0.65
-50.8 | 885.1 | 11 5.52 5 6.79 1.2 576 0 181021 | O 0.65
-44.5 | 872.6 | 12 5.21 5 7.23 4.08 6.43 0 143805 | O 0.65
-38.1 | 856.4 | 13 4.83 5 7.74 691 7.21 0 115393 | 0 0.65

Table C.3: Solutions for the medium instance with uncorrelated correlation matrix and normal space
charter price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit | First Second | First Second | First Second | First Second | First Second
-44.3 | 885.5 | 23 2.24 5 1429 | 0.24 8.58 0 2542 |0 0.71
-39.8 | 885.2 | 23 22 5 14.3 0.24 9.09 0 2872 |0 0.7
-35.4 | 881.5 | 22 242 5 13.64 | 024 8.94 0 12241 | 0 0.71
-31.0 | 881.0 | 22 2.46 5 13.7 0.24 8.84 0 12706 | 0 0.71
-26.6 | 880.1 | 22 2.36 5 13.73 | 024 8.84 0 13655 | 0 0.7
-22.1 | 871.4 | 20 2.67 5 12.13 | 024 894 0 33579 | 0 0.71
-17.7 | 851.5 | 18 3.22 3 13 22 85 0 38775 | 0 0.68
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Table C.4: Solutions for the medium instance with uncorrelated correlation matrix and reduced space
charter price increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit | First Second | First Second | First Second | First Second | First Second
-28.6 | 921.6 | 14 3.17 5 7.68 024 8.85 0 71562 |0 0.72
-258 19215 | 14 3.12 5 7.7 024 8.81 0 72774 |0 0.72
-22.9 19209 | 14 3.21 5 7.64 0.24 8.97 0 71410 | O 0.72
-20.0 | 9213 | 14 3.08 5 7.7 0.24 8.81 0 74210 |0 0.72
-17.2 1 9204 | 14 3.18 5 7.65 024 8.97 0 74786 |0 0.72
-14.3 | 921.1 | 14 3.03 5 7.7 024 8.81 0 76006 |0 0.72
-11.5 ] 921.0 | 14 3 5 7.7 0.24 8.81 0 77083 |0 0.72
-8.6 920914 295 5 7.7 0.24 8.8 0 78520 |0 0.72
-5.7 19209 | 14 2.93 5 7.7 024 8.79 0 78879 |0 0.72
29 19202 | 14 3.02 5 7.68 024 8.92 0 78344 | 0 0.72
0.0 9205 | 14  2.84 5 7.72 0.24 8.75 0 82168 |0 0.72
2.9 9180 | 14 292 5 8.09 024 8.47 0 83833 |0 0.68
5.7 919.2 | 13 2.98 5 7.32 0 7.57 22824 107749 | 0 0.71
8.6 916.8 | 12 3.08 5 6.66 0 6.93 22824 140725 |0 0.71
11.5 | 911.7 | 12 3.33 5 7.17 0 6.66 22824 148247 | 0 0.7
143 | 901.8 | 12 3.03 5 6.76 096 6.8 56066 143731 |0 0.71
17.2 | 884.3 | 11 3.46 3 8.28 2.87 17.06 56066 129582 |0 0.71
20.0 | 864.6 | 11 3.31 3 8.36 3.86 7.14 88669 135948 | 0 0.69
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C.2 Small instance

Table C.5: Solutions for the small instance with correlated correlation matrix and normal space charter
price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit | First Second | First Second | First Second | First Second | First Second
-10.7 | 295.0 | 10 0.94 3 6.83 026 4.62 0 1283 |0 0.67
-9.6 1293910 0.93 3 6.96 026 451 0 2673 |0 0.68
-8.6 12948 |10 0.93 3 6.83 026 4.72 0 1393 |0 0.64
-7.5 12947 | 10 0.93 3 6.88 026 4.56 0 1461 |0 0.67
-6.4 1 291.6 | 10 0.95 3 6.88 026 5.22 0 3825 | O 0.76
54 1282219 1.03 2 7.15 1.26 5.22 0 8206 |0 0.73
-43 1282419 1.02 2 7.17 1.26 5.16 0 8197 |0 0.75
32 281919 1.02 2 7.13 1.26 5.21 0 9064 |0 0.76
2.1 1258419 1.05 2 7.19 1.87 5.1 17005 14116 | 033 1

Table C.6: Solutions for the small instance with uncorrelated correlation matrix and normal space
charter price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit | First Second | First Second | First Second | First Second | First Second
-26.1 | 301.0 | 10 0.84 3 6.86 0.26 4.54 0 1554 |0 0.69
=235 12947 1 9 1.07 3 6.03 0.26 4.72 0 16223 | 0 0.68
-20.9 | 288.3 |9 1.09 3 6.05 122 5.48 0 12602 | 0 0.8
-18.3 | 280.5 | 10 0.83 3 6.87 322 448 0 2226 |0 0.69
-15.7 1 271.2 | 8 1.13 1 7.2 4.17 5.21 0 6745 |0 0.79
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Table C.7: Solutions for the small instance with uncorrelated correlation matrix and reduced space
charter price for increasing cash flow limits.

Exp. New builds Scrappings Lay-up Space Optional
F Profit | First Second | First Second | First Second | First Second | First Second
-58.2 1 316.0 | 6 1.31 3 3.88 0.12 43 17005 50168 | 0O 0.72
-524 13155 | 6 1.37 3 3.76 0.12 45 17005 48290 |0 0.73
-46.6 | 314.8 | 6 1.31 3 3.92 0.12 4.28 17005 52764 | 0 0.71
-40.8 | 314.6 | 7 1.02 3 4.51 0.12 449 17005 38459 | 0 0.73
-34.9 | 314.1 | 7 0.98 3 4.55 0.12 443 17005 41441 |0 0.73
-29.1 | 314.0 | 7 0.99 3 4.47 0.12 4.56 17005 40273 | 0 0.72
-233 1 313.0 |7 0.98 3 4.63 0.12 434 17005 44074 | 0 0.71
-17.5 13124 | 7 1 3 4.68 0.12 437 17005 45499 | 0 0.67
-11.7 | 311.0 | 8 0.86 3 5.21 0.12 4.53 17005 29746 | 0 0.73
-5.8 12987 |8 0.85 3 5.26 1.82 4.55 17005 39552 | 033 1
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C.3 CVvVaR

Table C.8: Solutions for the large instance with correlated correlation matrix and normal space charter
price for the CVaR model with o = 0.99.

Exp. New builds Scrappings Lay-up Space Optional
F, Profit First Second | First Second | First  Second | First Second | First Second
-66.3 | 1108.8 | 29 1.99 9 19.09 |0.37 129 0 9924 |0 1.55
-59.7 | 1108.7 | 29 1.99 9 19.13 1037 1288 |0 10605 |0 1.55
-53.1 | 1108.7 | 29 1.99 9 19.15 | 037 1286 |0 10606 | O 1.55
-46.4 | 11085 | 29 2.02 8 20.16 | 041 1265 |0 6630 |0 1.45
-39.8 | 1109.0 | 29 2 9 19.24 | 037 1266 |0 13998 | 0 1.46
-332 | 1105.7 | 26 2.35 8 17.75 | 041 1263 |0 26284 | 0 1.45
-26.5 | 1094.1 | 26 24 9 16.76 | 2.37 12,66 |0 3509 | O 1.46
-19.9 | 1080.0 | 26 243 9 1682 436 1273 |0 35533 |0 1.44
-13.3 110634 | 26 243 9 17.03 | 634 1261 |0 36572 | O 1.44
-6.6 | 10379 |24 2.73 6 18.19 1031 1273 |0 30358 | O 1.43
0 9572 |23 2.69 5 18.51 12.19 142 42367 40334 |0 1.52
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Table C.9: Solutions for the large instance with correlated correlation matrix and normal space charter
price for the CVaR model with o = 0.90.

Exp. New builds Scrappings Lay-up Space Optional
F, Profit First Second | First Second | First Second | First Second | First Second
-66.3 | 1109.1 | 29 1.99 9 19.09 | 0.37 129 0 9924 |0 1.55
-59.7 | 1109.1 | 29 2 9 19.16 | 037 1285 |0 10162 |0 1.54
-53.1 | 1109.3 | 30 1.99 9 19.37 | 037 1373 |0 2074 |0 1.46
-46.4 | 1110.2 | 28 2.14 8 1925 | 041 1274 |0 11748 | 0 1.44
-39.8 | 1109.7 | 29 2.31 9 1945 037 1262 |0 10240 |0 1.43
-33.2 1 1109.9 | 28 2.21 8 19.29 | 041 1272 |0 11783 |0 1.46
-26.5 | 1110.5 | 29 2.02 9 19.14 037 1276 |0 12065 |0 1.45
-199 | 1110.2 | 28 2.12 8 19.24 | 041 1275 |0 11857 |0 1.45
-13.3 | 1108.7 | 29 1.99 9 19.12 | 037 1289 |0 10608 |0 1.55
-6.6 | 1108.6 | 29 2.03 9 19.24 037 12,68 |0 14422 | 0 1.48
0 1108.3 | 29 1.99 9 19.13 | 037 1288 |0 10994 | 0 1.55
6.6 1109.6 | 28 232 8 1948 |041 1257 |0 11387 |0 1.4
133 | 1112.6 | 29 2.12 9 1892 | 037 13.19 |0 7732 |0 1.48

105



106



App

endix

Box plots
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Figure D.1: The cash flow development for the medium instance with uncorrelated correlation matrix.
The red dashed line is the annualised expected profit, and the numbers above each whisker is the standard
deviation for the given period. The blue dotted line indicates the worst case cash flow.
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Figure D.2: The cash flow development for the medium instance with uncorrelated correlation matrix
and reduced space charter price. The red dashed line is the annualised expected profit, and the numbers
above each whisker is the standard deviation for the given period. The blue dotted line indicates the
worst case cash flow.
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Figure D.3: The cash flow development for the medium instance with correlated correlation matrix. The
red dashed line is the annualised expected profit, and the numbers above each whisker is the standard
deviation for the given period. The blue dotted line indicates the worst case cash flow.

108



500

500

300 - 300 -

200 | - . 200 |- —
0.0 00 B

Cash flow
Cash flow

100 -

[ s - 0r 4
100 ‘ ‘ ‘ ‘ ‘ 100 ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 1 2 3 4 5
Period [year] Period [year]
(a) Without cash flow constraints (b) With cash flow constraints (F = —38.1)

Figure D.4: The cash flow development for the medium instance with correlated correlation matrix
and 50% reduction in space charter price. The red dashed line is the annualised expected profit, and
the numbers above each whisker is the standard deviation for the given period. The blue dotted line
indicates the worst case cash flow.
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Figure D.5: The cash flow development for the small instance with uncorrelated correlation matrix. The
red dashed line is the annualised expected profit, and the numbers above each whisker is the standard

deviation for the given period. The blue dotted line indicates the worst case cash flow.
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Figure D.6: The cash flow development for the small instance with correlated correlation matrix. The
red dashed line is the annualised expected profit, and the numbers above each whisker is the standard

deviation for the given period. The blue dotted line indicates the worst case cash flow.
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Figure D.7: The cash flow development for the small instance with uncorrelated correlation matrix and
reduced space charter price. The red dashed line is the annualised expected profit, and the numbers
above each whisker is the standard deviation for the given period. The blue dotted line indicates the
worst case cash flow.
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