
Exact and heuristic solution approaches
for a routing problem found within snow
plowing operations

Anders Holmen Gundersen
Magnus Johansen
Benjamin Steffen Kjær

Industrial Economics and Technology Management

Supervisor: Magnus Stålhane, IØT
Co-supervisor: Henrik Andersson, IØT

Department of Industrial Economics and Technology Management

Submission date: June 2017

Norwegian University of Science and Technology

Problem Description

The purpose of the thesis is to develop models and solution methods to determine ef-

fective routes for snow plowing vehicles in urban areas. We consider two homogeneous

fleets of vehicles, respectively dedicated to service traffic lanes, and pedestrian paths.

The fleets are interconnected with synchronization constraints, giving the problem a

high degree of complexity. The cumulative efficiency of the routes is measured by the

makespan (the length of the longest route, measured in time units), which in Norway is

the main constraint contractors are bound to adhere to.

We consider both exact and heuristic solution approaches, which are described, im-

plemented, and evaluated. Most effort is given to a column generation method and a

hybrid genetic algorithm with diversity management.

i

Preface

This master’s thesis concludes our Master of Science degrees at the Norwegian Univer-

sity of Science and Technology (NTNU). We specialize in Managerial Economics and

Operations Research at the Department of Industrial Economics and Technology Man-

agement. The thesis is based on the work we carried out in the subject TIØ4500 - Man-

agerial Economics and Operations Research, in the fall of 2016.

Our motivation for continuing with the problem is mainly due to the possible prac-

tical implications it can have for municipalities throughout Norway and other countries

subject to snowy winters. There is no doubt that one can lower costs for the society as a

whole, and increase safety and mobility for pedestrians and drivers if the right solution

methods are developed and implemented.

We would like to thank Trondheim bydrift for introducing us to the difficulties of the

planning and execution processes involved in snow plowing operations, and particu-

larly the problem explored in this thesis. No less, would we like to express our deepest

gratitude for the interesting discussions, ideas, and the critically important feedback

provided by our supervisors, Associate Professor Magnus Stålhane and Professor Hen-

rik Andersson at the Department of Industrial Economics at NTNU. Without you, and

your interest in this problem, this would not have been possible.

Anders Holmen Gundersen, Magnus Johansen & Benjamin S. Kjær

Trondheim, June 2017

ii

Abstract

The Multi-Fleet Arc Routing Problem with Operation Synchronization (MFARPOS) is

based on a problem faced by Trondheim bydrift when planning for snow plowing op-

erations. The objective of the problem is to design routes for the plowing vehicles such

that a road network is serviced in the shortest possible time. Two factors make the

MFARPOS special with respect to the existing literature. 1) The problem is defined for

two homogeneous fleets of vehicles: one to service the traffic lanes, and one to service

the sidewalks and other pedestrian paths. 2) As all plowing trucks push the snow to their

right hand side, all lanes adjacent to a sidewalk must be serviced prior to the respective

sidewalk. The latter is referred to as the synchronization criterion.

We present a compact and a decomposed mathematical model for the problem.

The arc-flow formulation (compact model) is an intuitive approach that has been im-

plemented as a mixed integer program in a project prior to this thesis. A path-flow

formulation (decomposed model) is also provided in order to obtain improved root

node solutions on more problem instances. It is implemented as a Branch-and-Price

algorithm and extensively tested. Results indicate that a variation of this approach is

paramount to the implementation of the arc-flow model on small instances with many

synchronization constraints and medium sized vehicle fleets. However, due to the com-

plexity of the problem, no exact solutions can be obtained on instances of practical size.

Thus, a Hybrid Genetic Search with Diversity Control (HGSDC), based on the work by

Vidal et al. (2012), is implemented. The framework has shown to yield very good results

on a variety of vehicle routing problems.

Due to the nature of the MFARPOS, we propose a new scheme for the heuristic to

balance the diversity of the population, and test it on instance sizes ranging from small

to large (up to 123 nodes and 836 arcs), all with a significant amount of synchroniza-

tion constraints. Our results indicate that the heuristic is capable of finding optimal

solutions to small instances in a short amount of time. On larger instances, where nei-

ther the optimal nor root node solution are known, the genetic algorithm is capable of

generating solutions (although with some spread in makespan when run several times).

More research need to be conducted in order to validate the performance of the heuris-

tic. However, we note that this is the first known implementation of this framework for

any arc routing problem, and that the results are promising.

As both the problem, and the solution methodology proposed, are new with respect

to the related literature, our focus has been on the technical aspects. Therefore, a tool

for instance generation has been developed in order to test our models thoroughly.

iii

Sammendrag

MFARPOS (The Multi-Fleet Arc Routing Problem with Operation Synchronization) er

basert på et problem hos Trondheim bydrift ved planlegging av snøbrøyteoperasjoner.

Målet er å planlegge ruter for brøytebilene slik at et veinett blir brøytet på kortest mulig

tid. To faktorer gjør MFARPOS spesiell med tanke på eksisterende litteratur: 1) prob-

lemet er definert med to homogene flåter: én flåte til å brøyte veiene, og én flåte som

brøyter fortau og andre stier for fotgjengere. 2) Ettersom brøytebilene skufler snøen til

høyre, må alle veibaner ved siden av et fortau brøytes før det respektive fortauet. Denne

siste sammenhengen kan på norsk kalles for synkroniseringskravet.

Vi presenterer én kompakt og én dekomponert matematisk modell for problemet.

Arc-flow-formuleringen (den kompakte) er en intuitiv fremgangsmåte som ble utviklet

og implementert som et blandet heltallsprogram (MIP) i et tidligere prosjekt. Path-flow-

formuleringen (den dekomponerte) er utviklet i denne hovedoppgaven med et mål om

å oppnå bedre rotnodeløsninger på flere probleminstanser. Den er implementert som

en Branch-and-Price-algoritme, og grundig testet. Resultatene indikerer at en variant

av denne fremgangsmåten er bedre enn MIP-modellen på små instanser med mange

synkroniseringskrav og middels størrelse på flåtene av biler. Derimot kan vi legge til at

på grunn av kompleksiteten til problemet, er det ikke mulig å oppnå optimale løsninger

på instanser av praktisk størrelse. Derfor har en genetisk algritme (HGSDC) blitt imple-

mentert. Rammeverket vi har basert algoritmen på har vist seg å fungere godt for mange

problemer presentert i litteraturen som omhandler VRP (vehicle routing problem).

Grunnet strukturen til MFARPOS foreslår vi en ny fremgangsmåte for heuristikken

for å balansere spredningen til populasjonen av løsninger, og tester den på små til store

instanser (opp til 123 noder og 836 buer), alle med en signifikant mengde synkroniser-

ingskrav. Resultatene indikerer at heuristikken er kapabel til raskt å finne optimale løs-

ninger på små problemer. På større instanser derimot, der verken optimale- eller rotn-

odeløsninger finnes, er den genetiske algoritmen i stand til å generere løsninger (dog

med en viss spredning i korteste rutetid når heuristikken kjører flere ganger). Vi kon-

kluderer med at mer forskning må til for å validere kvaliteten på heuristikken. Uansett

understreker vi at dette er den første kjente implementasjonen av dette rammeverket

for noe ARP (arc routing problem), og at resultatene virker lovende.

Siden både problemet og løsningsmetodene vi har presentert er nye med hensyn til

litteraturen, har vårt fokus vært på tekniske aspekter. Derfor har vi også implementert

en instansgenerator for å kunne teste modellene grundig.

iv

Contents

Problem Description . i

Preface . ii

Abstract . iii

Sammendrag . iv

1 Introduction 1

2 Literature Review 5

2.1 Related arc routing problems . 5

2.2 Graph transformation and column generation 7

2.3 Heuristic algorithms for arc routing problems 9

2.4 Our contribution . 11

3 Problem Description 15

4 Mathematical Model 19

4.1 Arc-flow formulation . 19

5 Dantzig-Wolfe Decomposition 25

5.1 Path-flow formulation . 25

5.2 Solution methodology . 27

5.2.1 Pricing of columns . 28

5.2.2 The subproblems . 28

5.2.3 A labeling algorithm for the subproblems 30

5.2.4 Labels and label extension . 32

5.2.5 Dominance criteria . 35

5.2.6 Acceleration strategies . 39

5.2.7 Branching . 40

v

5.3 Pseudocode for the Branch-and-Price algorithm 40

5.4 Expanding the decomposition . 42

6 Hybrid Genetic Search with Diversity Control 43

6.1 Introduction . 43

6.2 Solution representation . 45

6.2.1 Solution evaluation . 48

6.2.2 Search space . 50

6.2.3 Turn restrictions . 51

6.3 Parent selection and crossover . 51

6.4 Education . 56

6.5 Population management . 57

6.5.1 Initialization . 58

6.5.2 Offspring introduction to the population 58

6.5.3 Survivor Selection . 58

6.5.4 Diversification . 59

7 Generation and Characteristics of Test Instances 61

7.1 Instance generation . 61

7.2 Test instances . 67

7.2.1 Test instances for parameter calibration 67

7.2.2 Test instances to compare the models 68

7.2.3 Test instances for the further evaluation of the exact models 69

7.2.4 Test instances for the genetic algorithm 70

8 Computational Study 73

8.1 Parameter calibration for the genetic algorithm 73

8.1.1 The parameters . 74

8.1.2 The process of calibration . 74

8.1.3 The probability of education . 75

8.1.4 Non-improving iterations and diversification factor 76

8.1.5 The population and generation size 78

8.1.6 The proportion of elite individuals . 79

8.1.7 The neighborhood factor . 80

8.1.8 Parameters not subject to calibration 80

8.2 Exact solution approaches . 82

vi

8.2.1 Comparing the column generation approaches 82

8.2.2 Comparing the path-flow model and the arc-flow model 85

8.2.3 Summarizing the results for the exact models 89

8.3 Evaluating the genetic algorithm . 90

8.3.1 Testing the heuristics on small to medium sized instances 90

8.3.2 Testing the heuristics on large instances 95

8.3.3 Prohibiting U-turns on large instances 99

9 Concluding Remarks and Future Research 101

References 104

A Details of the Branch-and-Price Results on Test Set 2 109

vii

List of Figures

1.1 Snow plowing truck . 3

1.2 Smaller vehicle plowing a sidewalk . 3

3.1 Map of a residential area in Trondheim . 16

3.2 Road network of the residential area in Trondheim 16

6.1 Example road network for chromosome illustration 46

6.2 Chromosome solution, plowing truck 1 . 47

6.3 Chromosome solution, plowing truck 2 . 47

6.4 Chromosome solution, smaller vehicle 1 . 47

6.5 Chromosome solution, smaller vehicle 2 . 47

7.1 Generated road network, initial lanes and sidewalks 64

7.2 Generated road network, all lanes added . 64

7.3 Generated road network, dead ends removed 65

7.4 Generated road network, all lanes and sidewalks 66

7.5 Generated road network, including the artificial depots 66

8.1 Number of generations prior to makespan improvement 77

8.2 Illustration of test instance 8N28A . 87

8.3 Illustration of test instance 10N38A . 87

8.4 Regression plot of the RSD as a function of the number of nodes 94

8.5 Regression plot of the RSD as a function of the number of arcs 94

8.6 Regression plot of the RSD as a function of the number of nodes 94

8.7 Regression plot of the RSD as a function of the number of arcs 94

8.8 The makespan solution for the basic HGSDC on 51N373A 98

8.9 The makespan solution for the HGSDC with adaptiveness on 51N373A . . 98

ix

8.10 The value of nEli te as a function of generations 98

8.11 Makespan as a function of time when prohibiting U-turns for the Basic

HGSDC . 100

x

List of Tables

5.1 Data stored in the labels . 32

6.1 Example of a solution representation . 45

6.2 Partially Mapped Crossover example, stage 1 54

6.3 Partially Mapped Crossover example, stage 2 54

6.4 Partially Mapped Crossover example, stage 3 54

6.5 Partially Mapped Crossover example, stage 4 55

6.6 Partially Mapped Crossover example, stage 5 55

6.7 Partially Mapped Crossover example, stage 6 55

6.8 Partially Mapped Crossover example, stage 7 56

7.1 Characteristics of the test instances in Test set 1 68

7.2 Characteristics of the test instances in Test set 2 69

7.3 Characteristics of the test instances in Test set 3 70

7.4 Characteristics of the test instances in Test set 4 70

7.5 Characteristics of the test instances in Test set 5 71

8.1 Description of parameters in the genetic algorithm 74

8.2 Calibration results for the ηE du parameter 76

8.3 Calibration results for the parameters I n and ηDi v 78

8.4 Calibration results for the parameters λ and µ 79

8.5 Calibration results for the ηEl i te parameter 79

8.6 Calibration results for the ηC l ose parameter 80

8.7 Computational results from running the B&P algorithms on Test set 2 . . . 83

8.8 Results from running the arc-flow and the path-flow model on Test set 2 . 86

8.9 Results from running the arc-flow and the path-flow model on Test set 3 . 87

8.10 Results from running the arc-flow and the path-flow model on Test set 4 . 88

xi

8.11 Summary of the results for the heuristic models on Test set 2 91

8.12 Summary of the results for the heuristic models on Test set 5 96

8.13 Results when disallowing U-turns on Test set 5 99

A.1 Results of running the B&P algorithm with cold start on Test set 2 110

A.2 Results of running the B&P algorithm with warm start on Test set 2 111

A.3 Results of running the B&P algorithm with warm start with columns on

Test set 2 . 112

xii

Chapter 1

Introduction

Each winter, Trondheim has an average of 27 snowy days (Pedersen, 2013). During or

immediately after a snowfall, a fleet of snow plowing vehicles is deployed to clear the

roads, bicycle paths and sidewalks. In Trondheim, there are 90 large plowing trucks

dedicated to service the roughly 860 kilometers of municipal roads (Trondheim Kom-

mune, 2016). In addition, a fleet of smaller vehicles is dedicated to narrower paths, such

as sidewalks, pathways through parks, and other roads that cannot accommodate the

weight or width of the larger trucks. The planning of operations, and the decision to

deploy the assets are taken centrally by Trondheim bydrift, although the trucks are lo-

cated at depots throughout the city. During the snowy months, these trucks are at all

times on stand-by, ready to be called on duty. The rest of the year, the trucks serve other

purposes. Most of the smaller vehicles are also multi-purpose vehicles.

When planning their snow plowing operations, Trondheim bydrift’s paramount ob-

jective is to assign routes to all of the vehicles at their disposal, such that the road net-

work is cleared within a given time limit decided by the municipality. That is, to decide

when a vehicle shall plow which road, path or sidewalk. Today, this planning is per-

formed centrally “by hand”, in the sense that a person makes minor or major adjust-

ments to the routes used the previous year. This is mainly to accommodate changes in

the underlying road network, e.g. new roads, and changes in the vehicle fleet. Accord-

ing to Haarberg and Aleksandersen (2016), whose main responsibility is winter road

maintenance in Trondheim, the drivers of the vehicles are only given a list of road seg-

ments to service. Thus, there exist no information regarding the order in which the

roads shall be serviced. Additionally, most of the routes used today are not connected

in such a way that the vehicles can plow continuously from start to end. Therefore,

2

throughout the workday, the driver has to make several decisions on how to get from

one road segment in the route to the next. This notion of driving without plowing is re-

ferred to as deadheading. Trondheim bydrift emphasizes that it would ease the driver’s

job, and make the overall plowing operations more efficient, if complete routes with all

information regarding when to service and deadhead which roads existed. However, in

order to design such routes, many underlying requirements must be accounted for, and

the right optimization tools must be implemented.

Within the operations research literature, problems concerned with a road network,

where requirements are associated with the roads, are usually modeled as Arc Routing

Problems (ARPs). In these problems, a graph is constructed to mimic the underlying

road network. The arcs or edges in the graph generally represent roads, or parts of

a road, and the vertices represent intersections. In problems of practical matter, the

graph for which the mathematical problem is defined, is usually manipulated to repre-

sent changes on a road and ease the process of route generation. However, the core of

ARPs - and what distinguishes them from the thoroughly studied Vehicle Routing Prob-

lem (VRP) - is that demand in the graph is associated with the arcs and edges, contrary

to the nodes. As snow plowing is mainly concerned with service demand on roads, an

ARP formulation is a natural starting point for an optimization model of the problem

Trondheim bydrift faces.

In this thesis we investigate a new variation of the general ARP, namely the Multi-

Fleet Arc Routing Problem with Operations Synchronization (MFARPOS), which arises

when planning for snow plowing operations for the residential and urban areas of the

City of Trondheim. Within the periphery of the city center, especially, not only cars and

other motorized vehicles are affected by snowfall; the accumulated snow on sidewalks

and pedestrian paths also has to be taken care of for safe travel. A specific problem

arises for such paths (e.g. sidewalks) that are located adjacent to a road. When a vehi-

cle is plowing, it pushes the snow to the right hand side of its direction of traversal, as

shown in Figure 1.1. This implies that the leftmost lane needs to be plowed first when

servicing road segments with multiple lanes in the same direction. When servicing the

rightmost lane, the snow is pushed onto the sidewalk. Therefore, in order not to plow

the sidewalk twice, it must always be serviced after the adjacent traffic lane, which in

turn means that a sidewalk associated with one or more lanes will have to be serviced

after all of these lanes. Figure 1.2 shows a vehicle plowing the sidewalk after the adjacent

lane has been serviced. This relation, which we refer to as the operation synchroniza-

tion criterion, is the underlying constraint that distinguishes the MFARPOS from other

3

Figure 1.1: A snow plowing truck, plow-
ing the outer of two lanes in the same di-
rection. Photo: FEMA/ Michael Rieger,
desaturated from original.

Figure 1.2: A smaller vehicle is plowing
the sidewalk adjacent to a lane. Photo:
Jim Peaco (www.flickr.com), used under
CC BY / desaturated from original.

ARPs studied to date.

In the context of the MFARPOS, a route is heavily dependent on the other routes

spanning the network. Therefore, we argue, all routes within a constrained area should

be constructed together, while accounting for traffic lanes, sidewalks and other pedes-

trian paths simultaneously. Methods to accommodate this will allow planners to free

up assets from excess equipment and personnel, and/or plow the road network more

efficiently; the practical implication being lower overall costs, better and safer driving

conditions, improved mobility, and fewer accidents.

To the best of our knowledge, the MFARPOS is a so far unattended problem in the

published literature. However, there have been some attempts to solve both general

and highly specific problems related to snow plowing. Due to the complexity of these

problems, the most promising solution methodologies to be used on realistic instances

are based on heuristics. Alongside the evolution of heuristics and access to more com-

putational power, the last decades of research have shown that many of these problems

can and should be solved with operations research tools. Many arc routing problems

can be broken down in the same manner, and most of the best heuristics have many

commonalities. Vehicle routing problems, on the other hand, are far more studied; and

a wider spectrum of solution methods have been developed for these problems. Among

the successful solution approaches for larger instances are methods involving column

generation and/or genetic algorithms. Their counterparts within the field of arc routing

are close to non-existing. However, the research conducted within column generation

and genetic algorithm for ARPs have shown promising results.

Computerized optimization tools will allow Trondheim bydrift to better plan their

4

snow plowing operations. However, efficient optimization models that produce high

quality routes need to be developed prior to practical implementation. The purpose of

this thesis is to develop and test better exact models and heuristics in order to solve

larger instances of the MFARPOS. We note that a preliminary study of this problem

has been conducted prior to the thesis. In Gundersen, Johansen, and Kjær (2016), we

developed and implemented a mixed integer program (MIP) alongside a construction

heuristic to solve for larger instances. We continue the development of exact solution

methods by proposing a column generation approach in order to solve larger instances

to optimality, and provide a better bound for even larger instances. To generate routes

for the largest instances, we develop a hybrid genetic algorithm, inspired by state of the

art methods from the literature on vehicle routing problems. Additionally, as there ex-

ist no benchmark instance data for the MFARPOS, we also develop a program for the

purpose of designing instances based on characteristics of real road networks.

The outline of the thesis is as follows. In Chapter 2, we review the relevant literature

associated with problems related to the MFARPOS. We introduce column generation-

and genetic algorithm approaches, and place our work among the existing literature. A

detailed description of the problem is provided in Chapter 3. The general mathematical

model is given in Chapter 4, succeeded by a column generation reformulation in Chap-

ter 5. In Chapter 6 we give an in-depth walkthrough of the genetic algorithm developed

for the MFARPOS, followed by a description of our instance generation tool in Chapter

7. Results and discussion regarding our computational study are provided in Chapter 8.

The thesis is concluded in Chapter 9, where we state our concluding remarks and give

suggestions for further research on the topic.

Chapter 2

Literature Review

In this chapter, we present a brief overview of the existing literature relating to the

MFARPOS. In Section 2.1, we introduce neighboring variations of the MFARPOS, along

with their most significant solution methodologies. Special emphasis is given to prob-

lems concerned with snow plowing. Models where the problems are reformulated and

solved through column generation are discussed in Section 2.2, while Section 2.3 is con-

cerned with heuristic algorithms and their application within related problems. The

chapter is concluded in Section 2.4, were we discuss our contribution. The reader

should bear in mind that in this chapter, and throughout the thesis, nodes and vertices

are used interchangeably.

2.1 Related arc routing problems

The basis of all variations of ARPs is recognizing that many problems are easiest mod-

eled by associating demand with the arcs and edges in the graph, contrary to the nodes

(such as in the VRP). Euler (1741) is credited for the first mathematical formulation of

the ARP. In that problem, the bridges in the town of Königsberg are described as edges,

and likewise the land areas are described as vertices. The goal is to find a single route

from a starting point, that traverses all bridges exactly once (the demand), such that the

traveler ends up in the initial land area. Since then, many variations of the Bridges of

Königsberg problem have been formulated, often adding complexity to previous works.

The Capacitated Arc Routing Problem (CARP), first introduced by Golden and Wong

(1981), form the basis for most of the problems concerned with snow plowing. It is de-

fined as the problem where K vehicles, all with a predefined capacity, Q, and based at

6

the same depot, must encompass a set of required edges. Several objective functions

are interesting for the CARP. However, the makespan-objective, which is to minimize

the length of the longest route, is the most commonly used. As pointed out by Be-

navent et al. (1990), the general case of the CARP is NP-hard, although some simplified

variants that can be solved in polynomial time exists.

Perrier, Langevin, and Amaya (2008) are among the first to describe algorithms that

can handle instances of practical size, for applications within snow plowing. They de-

velop two constructive heuristics for route generation: one that constructs routes for

all vehicles in parallel, and one that split the graph into clusters before assigning one

vehicle to each cluster. A central feature of their problem description is the hierarchical

structure of the graph, commonly denoted as the Hierarchical Chinese Postman Prob-

lem (here with multiple vehicles). The edges in the graph are split into ordered subsets,

such that all edges higher in the hierarchy must be serviced before lower ranked edges

can be traversed. Additionally, their models can accommodate turn restrictions (such

as forbidding U-turns) and tandem service needs, which are often a requirement on

highways. Both of their models produce solutions that outperform the current routes

used in the City of Dieppe, Brunswick, Canada.

Kinable, Hoeve, and Smith (2016) develop three optimization models to solve an

extension of the CARP, where the fleet is heterogeneous - that is, the capacity of the

vehicles may be different from one another. The models can therefore account for ve-

hicles that need to resupply fuel at the depot, and are easily adjusted to the routing of

spreading vehicles as well, such as carriers of salt and sand. The best performing model

uses a constructive heuristic to find initial solutions, and improves upon these solutions

by the use of two local search operators.

Although the aforementioned models perform well on the problems they are de-

signed to solve, many problems concerned with snow plowing have been solved effi-

ciently by using an Adaptive Large Neighborhood Search metaheuristic (ALNS). As de-

scribed by Ropke and Pisinger (2006), the ALNS searches through a larger neighbor-

hood than commonly known local searches, and choose operators (such as swap and

switch) partially based on their previous success. The adaptive choices of operators

make the ALNS a diverse heuristic, and is the main reason for its broad success. Within

snow plowing operations, Salazar-Aguilar, Langevin, and Laporte (2011) introduce an

ALNS heuristic to a problem where routes need to be synchronized in order for two

or more vehicles to service multiple laned roads simultaneously. The authors develop

and evaluate five destroy/repair operators and conclude that their individual success

7

is heavily dependent on the instance size. The heuristic is further evaluated on larger

instances by Salazar-Aguilar, Langevin, and Laporte (2012). Additionally, it proves to

generate realistic routes on a “difficult real example” (Salazar-Aguilar, Langevin, and

Laporte, 2012, p. 1440). The ALNS framework also yields promising results on a variety

of other problems, such as the Synchronized Arc and Node Routing Problem, as de-

scribed by Salazar-Aguilar, Langevin, and Laporte (2013), and the Periodic Capacitated

Arc Routing Problem with Inventory Constraints (Riquelme-Rodríguez, Langevin, and

Gamache, 2014). Although snow plowing problems generally are modeled as determin-

istic, a closely related extension is to describe the amount of snow, and thereby the time

demand on arcs or capacity of vehicles, as stochastic. This relates the problem to other

stochastic problems, such as garbage collection, where the amount of garbage at each

household is uncertain. Laporte, Musmanno, and Vocaturo (2010) implement an ALNS

heuristic on such a problem, concluding that it is superior to other models.

For further reference to problems concerned with snow plowing and road mainte-

nance, we recommend the four-part survey by Perrier, Langevin, and Campbell (2006).

2.2 Graph transformation and column generation

Due to its many applications, vehicle routing problems have been extensively studied in

the literature, and thus many solution methods have been developed both with respect

to exact models and heuristics. Its counter-class, the set of ARPs, has been given much

less attention. For many problems concerned with arc routing, it has therefore been

natural to reformulate the problems as a VRP (for many applications a Traveling Sales-

man Problem), and use known solution methods to solve them. Although the problem

size of the VRP cast is often larger than the original ARP, the effectiveness of the solution

methods have allowed for larger original problem instances. Laporte (1997) provides a

general formulation for casting several classes of arc routing problems as TSP. A com-

putational study is carried out, concluding that the method works well on low density

graphs; that is, graphs with few edges relative to vertices. However, for some ARPs,

e.g. the Mixed Rural Postman Problem and the Stacker Crane Problem, as defined by

Eiselt, Gendreau, and Laporte (1995), this kind of graph transformation constitutes the

only known approach where optimality can be proven. Dror and Langevin (1997) and

Blais and Laporte (2003) propose similar graph transformations for the Clustered Ru-

ral Postman Problem and the Generalized Routing Problem, respectively, both yielding

competitive computational results.

8

Thanks to the last two decades of research on arc routing problems, it is generally

understood that more and more problems can just as efficiently be solved directly -

without graph transformations. This is exemplified by Clossey, Laporte, and Soriano

(2001), who describe a direct way to handle ARPs with turn penalties, which previ-

ously were handled through a VRP cast. As pointed out by Feillet, Dejax, and Gendreau

(2005), such transformations are costly in terms of the graph size, and should as a rule

of thumb be avoided. However, to avoid them altogether requires further research on

many variants of the ARP. For the problem studied in this thesis, the MFARPOS, such

a graph transformation was attempted (Gundersen, Johansen, and Kjær, 2016). The

results were not promising, due to the increased size of the transformed graph.

Inspired by the success of column generation methods (as explained by Desaulniers,

Desrosiers, and Solomon (2006)) to solve larger instances of various VRPs, Feillet, De-

jax, and Gendreau (2005) examine this approach on the Profitable Arc Tour Problem

(PATP). The problem stems from tactical freight transportation planning and has many

commonalities with the aforementioned CARP. However, the PATP is a profit maximiza-

tion problem, such that all demand need not to be accommodated. Additionally, there

is no restriction on fleet size, and the fleet is not associated with a depot. To lessen

the number of variables, the authors exchange the job assignment variables with bi-

nary variables associated with selection of elementary cycles in the graph. Elementary

cycles are closed loops of arcs which can only occur once in the cycle. Note that re-

stricting the cycles to elementary cycles in this problem will not restrict the possible

solution space. The idea of using cycles is further transferred to the Branch-and-Price

(B&P) procedure, called the flow-splitting method, where branching is conducted on

short sequences of arcs instead of single arcs. Although the paper constitutes the initial

research on the PATP, computational results are promising, showing that the column

generation method is able to solve instances with up to 30 vertices and hundreds of

arcs, which “...could not have been tackled by merely transforming the problem into a

node-routing one” (Feillet, Dejax, and Gendreau, 2005, p. 551).

Letchford and Oukil (2009) argue that instances arising in practical applications of

the CARP mostly are defined on sparse graphs, and that this sparsity should be ex-

ploited in pricing routines when solving the problem through a Branch-Cut-and-Price

algorithm. As most graphs in ARPs originate from road networks where vertices cor-

respond to intersections and edges to road segments, these sparse graphs are seen

throughout most variations of this class of problems. Contrary to the methods pre-

sented by Feillet, Dejax, and Gendreau (2005), Letchford and Oukil (2009) argue that

9

pricing with non-elementary cycles can be completed in a reasonable amount of time

on sparse graphs when using Dijkstra’s Single-Source Shortest Path algorithm as a sub-

routine to speed up certain computations. A heuristic approach is nonetheless pro-

vided for larger CARP instances. Albeit a strongly NP-hard problem, the authors also

propose a method for pricing with elementary cycles, arguing that it should be formu-

lated as a mixed-integer program, when the graph is sparse.

Of more recent work, Christiansen, Lysgaard, and Wøhlk (2009) formulate the CARP

with stochastic demands (CARPSD) as a Set Partitioning Problem and solve it through

a Branch-and-Price algorithm (without graph transformation). As the problem is of

stochastic nature, two key elements arise that make the CARPSD different from other

ARPs: 1) the objective is to find the minimum expected cost, and 2) the accumulated

demand along a route might overcome the vehicle capacity. A feature of their solution

method is the construction of shortest path edges between nodes, much like one would

do in a graph transformation. However, the shortest paths generated in the CARPSD can

both consist of deadheading and servicing. The problem description allows for this, as

servicing an edge takes the same amount of time as deadheading it. The algorithm

yields, in general, a very tight dual bound in the root node solution, although the tree

size may become large.

Bode and Irnich (2012) present the first full-fledged B&P algorithm for the CARP.

Their work utilizes many of the recent advances within operations research, such as

symmetry elimination, efficient pricing, and branching on consecutive edges. A one-

index formulation is used to strengthen the LP relaxation, and thus the lower bound. Al-

though the column set in the master problem is significantly enlarged, non-elementary

cycles are used in order to ease the pricing problem and keep the computational efforts

low. Computational experiments underline the efficiency of the algorithm, where it is

tested on several benchmark instances. The algorithm is used to solve the last open

instance of the well-known benchmark set of Belenguer and Benavent (1998).

2.3 Heuristic algorithms for arc routing problems

Most arc routing problems related to the MFARPOS are very hard to solve, and the best

exact solution methodologies generally fail to prove optimality when the graph size ex-

ceed 20-30 nodes (depending on the number of edges, problem type, etc.) Addition-

ally, when the problem size increases even further, many models fail to even obtain a

root node solution in a reasonable amount of time. This is a major problem, as graphs

10

that model road networks of practical size for planners, might surpass several hundred

nodes. Therefore, the advent of heuristics has been essential in order to be able to use

optimization tools as a decision support in the real world. The most popular heuris-

tic framework used for snow plowing problems, namely the ALNS, has already been

discussed. We now continue reviewing heuristic approaches, here focusing on genetic

algorithms (GAs).

Although the popularity, and thereby the use, of GAs have increased significantly

within many branches of computer science, few have attempted to solve arc routing

problems with them. Those of significance to this thesis are all based on the CARP.

These are discussed in the following, before concluding the section by summarizing

some of the more interesting results from genetic algorithms used within vehicle rout-

ing problems.

Lacomme, Prins, and Ramdane-Chérif (2001) present the first GA published for the

CARP. The algorithm is designed to account for several extensions, including prohib-

ited/penalized turns, different costs for deadheading and servicing arcs, and directed

data structures. A local search is included as a mutation operator on each child pro-

duced. The authors argue that “... it is clear nowadays that hybrid GAs are better ...”

(Lacomme, Prins, and Ramdane-Chérif, 2001, p. 478), here referring to the algorithm

as a hybrid due to the local search. Furthermore, they conclude that the algorithm is

very efficient, as it performs at least as good as the best known algorithm at the time

(a tabu search), on two sets of test instances, despite its simple form. Lacomme, Prins,

and Ramdane-Cherif (2004) present a thorough study of several basic components that

can be combined to hybrids GAs (called memetic algorithms in the paper) for the CARP.

All of these components, which of there exist 12, are able to account for the aforemen-

tioned extensions. Unsurprisingly, the best combinations of these basic components

perform very well. However, this is also true for the standard parameter settings used

on all instances, despite the fairly simple methods each component of the GAs rep-

resent. Another hybrid GA is developed by Liu, Jiang, and Geng (2013) for the CARP.

Special for their algorithm is the use of an iterated local search on a child solution de-

pendant on its cost deviation from the best solution in the parent population: if the

cost is close enough to the best solution in the parenting population, the local search is

initiated. Although this increases intensification, several mechanisms, such as allowing

infeasible solutions during the local search process, ensures a diverse population.

The makespan-objective that is generally used for the CARP is often criticized in

the literature, and many authors suggest that alternative objectives may have a higher

11

value for practical purposes, although few present concrete alternatives. Lacomme,

Prins, and Sevaux (2006) investigate the use of a hybrid GA for a specific, multi-objective

extension of the CARP. The algorithm is used to develop a front between two objectives:

the makespan and the total cost of the solution.

While genetic algorithms within arc routing mainly have been focused around the

general CARP, their counterparts in the literature concerned with vehicle routing prob-

lems are far more extensive. Prins (2004) presents a hybrid GA, claiming that it is the

first of its kind to be able to compete with the powerful tabu search methods designed

for the VRP. Again, the author emphasizes that a local search is indeed needed to make

the algorithm this strong. Early convergence that may be caused by the local search

is countered by the use of small, distinct initial solutions, which are created by three

classical heuristics.

We conclude this section with summary of the much referenced work by Vidal et al.

(2012). They present an algorithmic framework called the Hybrid Genetic Search with

Adaptive Diversity Control. The key feature of the heuristic is the combination of evolu-

tionary algorithms, neighborhood-based metaheuristics, and advanced diversity con-

trol. The authors argue that the fitness of a solution should not only be determined

from the cost, but also from a measure of the distance to the other solutions - which

can be understood as the added diversity the specific solution brings to the total pop-

ulation. The algorithm is evaluated on three vehicle routing problems: the multi-depot

VRP, the periodic VRP, and the multi-depot periodic VRP with capacitated vehicles and

constrained route duration. On all of these problems, the algorithm outperforms all of

the currently known metaheuristics on standard literature benchmark instances. The

strong results of the algorithm is generally attributed the population-diversity manage-

ment. It makes it possible to avoid premature population convergence, while leading to

higher quality solutions in reduced computing time, compared to its competitors. The

metaheuristic framework is expected to perform well on other variations of the VRP as

well.

2.4 Our contribution

Problems related to snow plowing are highly diverse in the sense that almost no two

papers investigate the same problem. New research is to a large extent dependent on

what has been conducted before, and is often extending both the problem complexity

and the quality of the solution methods. However, although many approaches have

12

been investigated, it now seems that the methods used to solve problems concerned

with snow plowing somewhat have converged towards neighborhood search heuristics.

Various implementations of the ALNS heuristic framework, first described by Ropke

and Pisinger (2006), is commonly used on most variations of these problems. Two main

reasons present themselves as to why this is so: 1) exact methods have so far been too

weak to solve most problems of practical size close to optimality, and thus they are

not further improved; and 2) the most promising heuristic approaches to many former

studied problems have been based on the ALNS framework.

When reviewing research conducted on problems related to those concerned with

snow plowing, and especially within the VRPs, one quickly finds that researchers have

tackled these problems from many angles. For instance, the use of methods involving

column generation (both exact programs and heuristics) have proven to be useful on a

number of problems. This, however, is not the case for ARPs. Only a few attempts to

use Branch-and-Price on arc routing problems exist in the literature, and only within

the last decade has the CARP been solved with it (we refer to Bode and Irnich (2012)

for details). The question as to why this is so may have many answers, but given the

fairly modest published research on arc routing in general, we strongly believe that al-

gorithms based on column generation can contribute to better solutions on ARPs. Drexl

(2012) underlines the efficiency of column generation approaches to vehicle routing

problems with multiple synchronization constraints - which are closely related to the

problem studied in this thesis. Based on their success within VRPs, we also strongly

believe that genetic algorithms are just beginning to show their strengths within arc

routing. Among work of importance, we find Vidal et al. (2012), whose algorithmic

framework, with its adaptive control of population diversity, yield competitive results

on many variations of VRPs. Yet, it remains neither proved nor disproved whether a

similar approach would yield good solutions on ARPs.

The Multi-Fleet Arc Routing Problem with Operation Synchronization is new with

respect to the existing literature on arc routing problems, in which it fits neatly within

the subset of problems associated with snow plowing. However, this is not to say that

the mathematical problem formulation and the proposed methods for solving it, can-

not be applied to describe and solve other practical problems. With respect to solu-

tion methods, we first implement the problem as a MIP program, based on prior stud-

ies. Additionally, it is reformulated as a Dantzig-Wolfe decomposition, and solved by a

Branch-and-Price algorithm. This is implemented in order to obtain optimal solutions

on larger data instances than the direct MIP implementation, improve bounds, and to

13

assess the value of such a formulation of this ARP. A hybrid genetic algorithm is devel-

oped and implemented to solve instances of practical size, although with the lack of

guaranteeing optimality. Approaching arc routing problems with a column generation

formulation and with the use of genetic algorithms is very unconventional. However,

we strongly believe that these methods may prove their usefulness within arc routing,

as they doubtlessly have on vehicle routing problems. Thus, with respect to solution

methodology, our work is to a large extent new within arc routing. Lastly, since no

benchmark instance data exist for this type of problem, an instance generator is also

developed, and test data is provided.

For the purpose of a more specific classification with respect to problem charac-

teristics, we have named the special features of the MFARPOS based on the problems

discussed by Drexl (2012). In the survey, the author classifies many variants of the VRP

that involve synchronization constraints, and discuss the solution methods that are

commonly used to solve them. Our problem falls within the category of Operations

Synchronization.

Chapter 3

Problem Description

In this thesis, we address the Multi-Fleet Arc Routing Problem with Operation Synchro-

nization - an extension of the Capacitated Arc Routing Problem, found within snow

plowing operations. It originates from the City of Trondheim, where every winter comes

with heavy snowfalls that are challenging to accommodate from both a planning and

operational point of view. This chapter provides a formal description of the MFARPOS,

and addresses the issues that must be accounted for when modelling it.

The area under consideration for the MFARPOS is best described as a road network.

A road network consist of a set of interconnected road segments. Each segment may

have one or two directions, multiple lanes, and a sidewalk in either direction. The ser-

vice demand of each road segment is obtained directly from the number of lanes and

sidewalks. For example, a road segment with two lanes in each direction and two side-

walks (one on both sides), must be serviced a total of six times. A road segment, as we

define it here, differs from a general road in the sense that the demand is constant ev-

erywhere on the segment. This is contrary to roads, where a lane might split into two,

or a sidewalk ceases to exist midway. Additionally, a road segment has only two exits,

one in each end. Therefore, it is not possible to traverse only half a segment. Note that

it is possible for a road segment to only consist of one or two sidewalks, without hav-

ing associated traffic lanes. Although these segments in practice often are pedestrian

paths through parks, or narrow bridges where driving is prohibited or impossible, we

use the term sidewalk whenever we refer to one of these paths, as they are serviced by

the same vehicle type as the true sidewalks. Equally, we use the term lanes for the traffic

lanes on a road segment. Locations where different road segments meet are referred

to as connections. Intersections and roundabouts are typical connections in the road

16

Figure 3.1: Map of a residential area in
Trondheim.

Figure 3.2: Road network of the resi-
dential area in Trondheim.

network. However, with our definition, these locations need not to be explicitly defined

by a cross of multiple roads. Thus, the underlying road network for the problem stud-

ied has at least as many connections as the number of intersections. Figure 3.1 shows a

small road network, found in downtown Trondheim. Figure 3.2 is a graph interpretation

of the same network. Black arrows correspond to single lanes, where the arrowheads in-

dicate the direction of the lane, whereas circles correspond to connections in the road

network. Sidewalks are omitted from this illustration. With the aforementioned defini-

tion, all lanes (and sidewalks) between the same two connections collectively constitute

a road segment.

The traversal times, both servicing and deadheading, for all lanes and sidewalks are

known to the planner. The deadheading and service times for all lanes in the same

direction on the same road segment is equal, respectively. However, deadheading a

road segment always takes equal or shorter time than servicing it. A key feature of the

problem under study is recognizing that all vehicles push the snow to their right hand

side. Therefore, when a lane adjacent to a sidewalk is serviced, the snow will be pushed

onto the sidewalk. If the sidewalk is serviced prior to the lane, it will have to be serviced

again after it is spoiled with snow. Correspondingly, if a road segment has multiple

lanes in the same direction, the snow on the leftmost lane will be pushed onto the lane

to the right. Therefore, a paramount constraint when planning routes is to ensure that

servicing always start in the middle of the road (the leftmost lane in each direction) and

end with the sidewalk, if there is one. Sidewalks next to a lane have directions in order

17

not to push the snow onto the already serviced lane. Road segments only consisting of

sidewalks may have a preferable side that the snow shall be pushed to. In this thesis, we

assume that all sidewalks are to be modelled with a direction.

The vehicles used to plow the lanes are large trucks with an attached plow in the

front that can be lowered and raised for servicing and deadheading, respectively. The

width of the plow is of such a dimension that it is enough to cover the width of a lane,

with a margin for error. A single traversal on a lane with the plow lowered will there-

fore always be enough to service the lane. However, the size and/or the weight of the

trucks makes it impossible for them to service the sidewalks. These are serviced by

smaller (and generally slower) vehicles, which cannot service the lanes due to the width

and capacity of their plows. Within their respective fleet, all vehicles can be used inter-

changeably. It is therefore reasonable to model the fleets as homogeneous. Additionally,

within the planning horizon of this problem, the size of the vehicle fleets are generally

not subject to change. As a result, the number of available vehicles for service should

be modeled constant.

Due to the size of the larger trucks, and the characteristics of the road network, it is

not only problematic and time consuming, but often impossible for them to perform U-

turns in connections. U-turns should therefore be prohibited for these trucks. On the

other hand, the smaller vehicles can easily cross a road on pedestrian crossings, and

turn around on small areas (such as a medium sized sidewalk). U-turns are therefore

allowed for the smaller vehicles. Additionally, left hand turns may be time consuming

and disruptive for the larger vehicles, and may cause them to leave a bank of snow in

the middle of the road. Which turns that should include turn restrictions or impose

extra waiting time for the trucks, is assumed known to the planner.

Common for all vehicles is the depot at which they begin and end their route. In

the road network, this depot is associated with a single connection that represents one

or two things in the underlying area: 1) the true depot location where the vehicles are

located on their idle time, or 2) the location where the vehicles enter the road network

if their true depot is not located in the area under study. In case of the latter, the con-

nection modelling the depot is located at the edge of the road network.

Keeping a road network free from snow is a continuous process. Immediately after

a snowfall, the main priority is to make the roads and sidewalks accessible for vehicles

(buses, cars, motorcycles etc.) and pedestrians and cyclists. In Trondheim, the first re-

sponse to a snowfall is therefore to service a set of predefined road segments. These

are prioritized lanes and sidewalks, and never constitute all of the lanes and sidewalks

18

that eventually need to be cleared from snow. The set of prioritized lanes and sidewalks

is what we refer to as the road network. Since most of the trucks used for the first re-

sponse are owned by contractors, and service is often needed at unfortunate hours, this

is where the majority of the costs lies. The lanes and sidewalks that are not serviced im-

mediately after a snowfall are in most cases serviced during daytime, by vehicles owned

by the municipality.

The aim of the problem studied in this thesis is to design routes for the first re-

sponse, such that the road network is serviced in the least amount of time. This is often

referred to as minimizing the makespan, and can be described as minimizing the time

of the longest route. In the context of this problem, a route is a list of road segments

that have to be serviced or deadheaded in chronological order. If any waiting time oc-

cur between two consecutive road segments for a vehicle, this information should be

included in the route. One route shall be assigned to each vehicle. The routes must be

designed in such a way that all the aforementioned criteria are satisfied. The set of all

the routes shall provide the planner with information regarding the locations of all the

vehicles at all times, and especially when the entire road network has been serviced and

the last vehicle returned to the depot.

Chapter 4

Mathematical Model

In this chapter we introduce a compact mathematical formulation of the problem de-

scribed in Chapter 3. The model is an arc-flow formulation, which we find to be the

most intuitive way of formally presenting the problem under study. It is based on a

mathematical model developed in the project leading to this master’s thesis and pre-

sented in Section 4.1. A brief discussion regarding implementational improvements

and simplifications concludes the chapter.

4.1 Arc-flow formulation

Let G = (V,A) be a directed multi-graph where the vertex set V represents the connec-

tions in the road network (geographic locations with changes in service criteria), and

the arc set A represents the lanes and sidewalks. If there is more than one category

of service demand (both lanes and sidewalks) between two respective nodes, this is

represented with two separate arcs, although belonging to the same road segment. If a

segment has multiple lanes in the same direction, these are represented by one arc only.

Note that all arcs are directed, such that there can be a maximum of four arcs between

two nodes.

The set of vehicles K, is separated into two fleets, KL ∪KS =K. Let KL be the set

of plowing trucks for the lanes, and KS be the set of vehicles that service the sidewalks.

The trucks can only service and deadhead the lanes, while the smaller vehicles can ser-

vice and deadhead the sidewalks and deadhead the lanes. Let AS ⊆ A represent the

arcs that the vehicles for sidewalks can traverse, and let ÂS ⊆AS be the set of arcs that

have sidewalks that demand service. Similarly, let AL ⊆A represent the arcs that can

20

be traversed by the plowing trucks, and let ÂL ⊆AL be the set of lanes which have to be

serviced.

In order to ease the mathematical formulation of the problem (and the implemen-

tation), a parameter T M ax is included in the description, such that in order to fulfill the

service requirements, each vehicle k ∈K has to drive a defined route within the time

limit T M ax . This limit should be set sufficiently high, such that it is not a binding re-

striction on the makespan. Each route starts and ends at the same depot, D , and each

traversal of an arc corresponds to a leg, n, in a route. Since a route can pass through the

depot several times, we define the vertices Ô and D̂ as artificial origin and destination

depots, which are the nodes where all routes start and end, respectively. The artificial

depots are only connected to the original depot D . The maximum number of arcs in-

cluded in a route, often referred to as legs, is given by n, and we define the set of possible

legs, N, as {1, ...,n}. As with T M ax , n should also be set sufficiently high. An arc can have

a number of lanes or sidewalks in the same direction, and we define RL
i j and RS

i j to be

the total number of lanes and sidewalks from node i to j , respectively. Let Tki j be the

time vehicle k uses to service arc (i , j), and T D
ki j be the time vehicle k uses to deadhead

arc (i , j), even if it is serviced or not.

Let the binary variables xki j n be 1 if vehicle k service arc (i , j) on the nth leg of

its route, and 0 otherwise. Similarly, let yki j n be 1 if arc (i , j) is traversed by vehicle k

and appears on the nth leg of the route while deadheading, and 0 otherwise. Variables

τkn indicate the end time of service or traversal of leg n in vehicle k’s route, while the

variable t MS tracks the makespan of the schedule.

Below follows the arc-flow model, which is a mixed integer program. For shorthand

notation, we denote Ak as the set of arcs vehicle k can traverse, and for a given vehicle

k the sets δ+k (i) = { j |(i , j) ∈Ak }, and δ−k (i) = { j |(j , i) ∈Ak }. Let M be a sufficiently large

number.

Objective function

Minimize t MS (4.1)

s.t.∑
j∈δ+k (Ô)

ykÔ j 1 = 1 k ∈K (4.2)

∑
n∈N

∑
j∈δ−k (D̂)

yk j D̂n = 1 k ∈K (4.3)

21

∑
j∈δ+k (Ô)

(
xkÔ j n + ykÔ j n

)
= 0 k ∈K,n ∈N∣∣n > 1 (4.4)

∑
n∈N

∑
k∈KL

xki j n = RL
i j (i , j) ∈ ÂL (4.5)

∑
n∈N

∑
k∈KS

xki j n = RS
i j (i , j) ∈ ÂS (4.6)

∑
i∈δ−k (j)

(
xki j n + yki j n

)
− ∑

i∈δ+k (j)

(
xk j i (n+1) + yk j i (n+1)

)
= 0 k ∈K, j ∈V, (4.7)

n ∈N∣∣n < n∑
(i , j)∈Ak

(
xki j n + yki j n

)
≤ 1 k ∈K,n ∈N (4.8)

τk(n−1) +
∑

(i , j)∈Ak

(
Tki j xki j n +T D

ki j yki j n

)
≤ τkn k ∈K,n ∈N|n > 1 (4.9)

τkn ≤ t MS k ∈K,n ∈N (4.10)

τkn −M
(
1−xki j n

)−Tki j ≤ τk ′n′ +M
(
1−xk ′i j n′

)−Tk ′i j k ∈KL ,k ′ ∈KS , (4.11)

n,n′ ∈N,

(i , j) ∈ ÂL∣∣(i , j) ∈ ÂS

xki j n ∈ {0,1} k ∈K, (i , j) ∈Ak , (4.12)

n ∈N
yki j n ∈ {0,1} k ∈K, (i , j) ∈Ak , (4.13)

n ∈N
τkn ∈ [

0,T M ax]
k ∈K,n ∈N (4.14)

t MS ≥ 0 (4.15)

In the objective function (4.1) the makespan of the schedule is minimized. Equa-

tions (4.2) and (4.3) ensure that each route starts and ends in each vehicle’s depot,

while equations (4.4) provide that each vehicle can only leave the depot in the first

leg. Further, equations (4.5) and (4.6) ensure that all arcs with demands are serviced,

and constraints (4.7) make sure that the plowing routes are connected. Each vehicle

can only traverse one arc in each leg of its route; this is taken care of by constraints

(4.8). Constraints (4.9) state that the vehicles behave consistent according to time, and

constraints (4.10) track the makespan of the schedule, while constraints (4.11) ensure

that the synchronization requirements between the corresponding lanes and sidewalks

hold. The remaining constraints are variable restrictions.

22

Big M

In constraints (4.11) an M-parameter is included, which we now derive in this section.

The big M represents a sufficiently large number and is used to ensure feasible solu-

tions for all allowed values of the variables. In order to tighten the relaxation of the

arc-flow model, we wish to make M as small as possible. When xki j n = 0 the left hand

side should not exceed 0, and thereby M = T M ax −Tki j , as the greatest value for τkn is

T M ax . For the right hand side, this value should at least be T M ax when xk ′i j n′ = 0. To

always ensure this, we let M = T M ax +Tk ′i j , and constraints (4.11) can now be written

as follows:

τkn − (
T M ax −Tki j

)(
1−xki j n

)−Tki j ≤ τk ′n′ + (
T M ax +Tk ′i j

)(
1−xk ′i j n′

)−Tk ′i j

k ∈KL ,k ′ ∈KS ,n,n′ ∈N, (i , j) ∈ ÂL
∣∣(i , j) ∈ ÂS

Improving the implementation of the model

It is fairly straightforward to identify some of the symmetries in the arc-flow formu-

lation of the problem. For example, two vehicles of the same type may swap routes,

yielding an equally good solution. In the project leading up to this thesis, an assess-

ment of several symmetry-breaking constraints were conducted. However, pairwise

sets of constraints were usually mutually exclusive, such that only one set can be imple-

mented without removing unique parts of the solution space. Although all of the sets

of symmetry-breaking constraints cut off significant parts of the solution space, sev-

eral of the options led to longer computation times than if they were omitted from the

implementation. The set that shortened the computation time the most, are given by

constraints (4.16) and (4.17). These constraints ensure a lexicographic ordering of the

plowing vehicles, such that for each of the two vehicle fleets, the vehicle with the lowest

index number service more arcs than the one with the second lowest index number,

and so on. With these constraints, the aforementioned symmetry only exist in the limit

where two vehicles service the same number of arcs. These constraints are included in

the implementation of the arc-flow model in the computational study.

∑
n∈N

∑
(i , j)∈ÂL

xki j n ≥ ∑
n∈N

∑
(i , j)∈ÂL

x(k+1)i j n k ∈KL∣∣k < |KL | (4.16)

23

∑
n∈N

∑
(i , j)∈ÂS

xki j n ≥ ∑
n∈N

∑
(i , j)∈ÂS

x(k+1)i j n k ∈KS ∣∣k < |KS | (4.17)

Simplifications

In accordance with the problem description in Chapter 3, U-turns should be prohibited

for the plowing trucks. Constraints (4.18) will prevent the trucks from going from node i

to j and immediately return to node i . Note that prohibiting U-turns only makes sense

for the larger trucks, as the smaller ones can easily cross roads and return to the node

from where they came.

xki j n + yki j n +xki j (n+1) + yki j (n+1) ≤ 1 k ∈KL , (i , j) ∈AL ,n ∈N, (4.18)∣∣(j , i) ∈AL ,n < |N|

Note that these constraints can only be formulated in this way if the road network

of the underlying problem is actually traversable without having to perform U-turns.

There are several known ways in which one can work its way around exceptions from

this rule, such as adding more node-specific constraints or manipulating the graph.

None of these methods are discussed further, as none of the instances used in our the-

sis require that the larger vehicles perform U-turns. One of the results obtained in our

preliminary study of the MFARPOS was that the computation time was significant neg-

atively affected when the U-turn constraints were added to the implementation. This is

in contrast to actually shrinking the solution space. As the implementation of the arc-

flow model only is meant as a tool for comparison to the column-generation approach

presented in Chapter 5, and since disallowing U-turns is a different process in column

generation, we relax the original problem and simply allow U-turns in both of these

implementations.

With respect to left hand turns, the procedure for prohibiting these are complex,

compared to that of U-turns. One way to solve it is to order pairs of consecutive arcs

that form a left hand turn, and a new set of constraints that prohibit the vehicles from

servicing (or even deadheading for a subset of the arc pairs) these in the order that in-

volves a left hand turn. For problems related to the MFARPOS, using this approach to

include turn restrictions has generally been disappointing with respect to computation

24

time, and are therefore often discouraged. An alternative, and much more popular way

to include all sorts of turn restrictions, is to modify the graph in such a way that no

extra constraints are required. In this case, all nodes that involve a potential forbidden

left hand turn for the vehicles must be duplicated one or several times, where some arcs

are removed from some nodes, and additional arcs are added. For reference, Clossey,

Laporte, and Soriano (2001) describe this approach in detail. In this thesis, we simplify

the problem to have no such turn penalties (U-turns are considered in some instances),

due to the following. Firstly, the implementation would most likely aggravate the com-

putation time for the MIP model, to which we compare the column generation model,

and to improve the MIP implementation is beyond the scope of this thesis. Secondly,

the road networks on which we test our models are fictitious, and no indication on

whether a turn is a left turn exist. We therefore underline that the graphical represen-

tation of the instances used in this thesis can, but should not strictly, be viewed as a

small scale geographical map of the road network they represent. We further elaborate

on this in Chapter 7.

Problem complexity

The MFARPOS is NP-hard, and thus there exists no known solution to solve the prob-

lem in deterministic polynomial time. To see this, consider the directed Rural Postman

Problem (RPP), where a single fleet services a subset of the total number of arcs. This

is equivalent of removing the plowing trucks, and to find the optimal routes for the

smaller vehicles in the MFARPOS without the synchronization constraints. Lenstra and

Kan (1976) prove that the RPP is NP-hard, and since the MFARPOS is an extension of

this, the MFARPOS is NP-hard, as well.

Chapter 5

Dantzig-Wolfe Decomposition

As with many arc routing problems related to the MFARPOS, the computational power

needed to solve a Branch-and-Bound algorithm based on their compact formulation to

optimality, grows rapidly when arcs and vertices are added to the graph. Little research

exists on decomposition of such problems, and we know of no such formulations for

the problem studied in this thesis. In this chapter we therefore present a first-of-its-

kind Dantzig-Wolfe decomposition of the mathematical model presented in Chapter 4.

In Section 5.1 we describe a path-flow formulation of the problem, whereas Section 5.2

is concerned with the solution methodology, summarized in a pseudocode in Section

5.3. The chapter is concluded with a brief note on expansions in Section 5.4.

5.1 Path-flow formulation

In order to formulate the path-flow model, additional notation needs to be introduced.

Let Rk be the set of all feasible routes for vehicle k, Aki j r is the number of times vehicle

k plows arc (i , j) in route r , while T Tot
kr is the total time of route r for vehicle k. For all

the smaller vehicles, we assume that they enter the artificial end depot at time T M ax ,

which means that the smaller vehicle k driving route r leaves the artificial start depot at

time T M ax −T Tot
kr . To maintain the synchronization relations, the smaller vehicles may

have to do some waiting in the route before they can service a given arc (given that they

leave the start depot at time 0). Without degenerating the solution, all necessary waiting

can just as well be deployed before the vehicle starts its route. Let the variables wk state

how much earlier vehicle k ∈KS should leave the artificial start depot when driving a

given route, such that all the waiting time, due to the synchronization relation, is done

26

in the start depot. As all the lanes on a given segment have to be serviced before the

corresponding sidewalk, let Bki j r state the starting time of the last plow job for vehicle

k ∈ KL on arc (i , j) in route r , and the starting time for the first plow job for vehicle

k ∈ KS . Due to the formulation of the constraints including Bki j r ; if arc (i , j) is not

serviced on route r , the value of Bki j r is 0 if k ∈KL , and T M ax if k ∈KS . Further, let the

variables λkr indicate whether vehicle k is assigned to route r or not. Let the variables

t P
i j represent the earliest starting time of service on arc (i , j) for a vehicle k ∈KS if there

is a synchronization requirement associated with the arc.

With this notation, the problem can be formulated as follows:

Objective function

Minimize t MS (5.1)

s.t.∑
k∈KL

∑
r∈Rk

Aki j rλkr ≥ RL
i j (i , j) ∈ ÂL (5.2)

∑
k∈KS

∑
r∈Rk

Aki j rλkr ≥ RS
i j (i , j) ∈ ÂS (5.3)

∑
r∈Rk

λkr = 1 k ∈KL (5.4)

∑
r∈Rk

λkr = 1 k ∈KS (5.5)

∑
r∈Rk

Bki j rλkr ≤ t P
i j k ∈KL , (i , j) ∈ ÂL∣∣(i , j) ∈ ÂS (5.6)

t P
i j −

∑
r∈Rk

Bki j rλkr +wk ≤ 0 k ∈KS , (i , j) ∈ ÂS ∣∣(i , j) ∈ ÂL (5.7)

∑
r∈Rk

T Tot
kr λkr +wk ≤ T M ax k ∈KS (5.8)

∑
r∈Rk

T Tot
kr λkr ≤ t MS k ∈KL (5.9)

T M ax −wk ≤ t MS k ∈KS (5.10)

λkr ∈ {0,1} k ∈K,r ∈Rk (5.11)

t P
i j ≥ 0 (i , j) ∈ ÂL∣∣(i , j) ∈ ÂS (5.12)

wk ≥ 0 k ∈KS (5.13)

27

The objective function (5.1) aims to minimize the makespan of the schedule. Con-

straints (5.2) and (5.3) state that all arcs with service demand shall be serviced, while

equations (5.4) and (5.5) limit each vehicle to drive exactly one route. Constraints (5.6)

and (5.7) ensure that the synchronization relations between the lanes and sidewalks

hold. Constraints (5.8) set an upper bound on the waiting time variables, while con-

straints (5.9) and (5.10) track the makespan of the schedule. Finally, constraints (5.11)

impose binary restrictions on the routes, and constraints (5.12) and (5.13) ensure that

the synchronization time variables and waiting time variables are non-negative.

5.2 Solution methodology

Each λ-variable, henceforth referred to as column in the path-flow formulation, is de-

scribed by a path through the graph G. The number of feasible paths through the graph

grows exponentially with the number of nodes and arcs. Therefore, for large problem

instances, it will be impractical or even impossible, to generate all columns for such a

formulation. To circumvent this problem, we propose solving the path-flow formula-

tion using a Branch-and-Price approach, where only a subset of all columns are explic-

itly considered, while implicitly accounting for the remaining columns.

The Branch-and-Price method implicitly enumerates the set of possible solutions

to the problem, by using a Branch-and-Bound approach. The problem is reformulated

into two types of problems, which are considered in each node in the B&B tree: the

restricted master problem (RMP), which is the linear relaxation of the path-flow formu-

lation, only including a subset of all the possible columns; and one pricing problem per

vehicle (these are generally called the subproblems - SPs). Each of the SPs uses the dual

solution of the RMP to generate new columns with negative reduced cost (for a mini-

mization problem), which is passed on to the RMP. The RMP is solved again with the

new columns, where the new dual solution then is used to re-solve the SPs. These it-

erations between the RMP and the SPs continue until all additional columns generated

by the SPs cease to have a negative reduced cost. At this point, no more columns can

improve the RMP, and the optimal solution to the RMP in the node is obtained. At this

point, three possible outcomes must be considered: 1) the value of the optimal solution

in the node is higher (in a minimization problem) than the best known integer solution

to the problem - at which point no further branching is needed; 2) the value of the so-

lution is better than the best known integer solution and the solution itself is an integer

solution - at which point the solution is noted as the best known integer solution and no

28

further branching is required; and 3) the value of the solution in the node is better than

the best known integer solution, but it violates some of the integral requirements of the

original path-flow formulation - at which point the solution is noted as the new lower

bound in the node and further branching is done by creating two new nodes, based on

some binary properties of the problem. Branching is performed until all possible nodes

have either been branched on, cut off, or contain an integer solution. The best integer

solution is then returned as the optimal solution to the problem.

5.2.1 Pricing of columns

Let αL
i j and αS

i j be the dual values of constraints (5.2) and (5.3) from a given iteration

of the column generation algorithm, and βL
k and βS

k the dual values of constraints (5.4)

and (5.5). Further, let γL
ki j and γS

ki j be the dual values of constraints (5.6) and (5.7), and

σS
k and σL

K the dual values of constraints (5.8) and (5.9). The columns of the path-flow

formulation are priced according to equation (5.14) for the larger trucks, and according

to equation (5.15) for the smaller vehicles.

cL
kr =−βL

k −
∑

(i , j)∈ÂL

Aki j rα
L
i j −

∑
(i , j)∈ÂL

Bki j rγ
L
ki j −T Tot

kr σL
k (5.14)

cS
kr =−βS

k −
∑

(i , j)∈ÂS

Aki j rα
S
i j +

∑
(i , j)∈ÂS

Bki j rγ
S
ki j −T Tot

kr σS
k (5.15)

5.2.2 The subproblems

Two different sets of subproblems are needed - one for each type of vehicle - in the

aforementioned formulation. These subproblems are solved for each of the vehicles in

the corresponding fleet. The two unique subproblems are presented below, both have

the same set of constraints, while their objective function differs. Let t tot
k be the total

time vehicle k uses on its route, while t L
i j tracks the last time arc (i , j) ∈ ÂL is serviced,

and t S
i j tracks the first time arc (i , j) ∈ ÂS is serviced. The subproblem for a vehicle k

may be formulated in the following way:

29

Objective functions

If k ∈KL

Minimize−βL
k −

∑
n∈N

∑
(i , j)∈ÂL

xki j nα
L
i j −

∑
(i , j)∈ÂL

t L
i jγ

L
ki j − t tot

k σL
k (5.16)

If k ∈KS

Minimize−βS
k −

∑
n∈N

∑
(i , j)∈ÂS

xki j nα
S
i j +

∑
(i , j)∈ÂS

t S
i jγ

S
ki j − t tot

k σS
k (5.17)

s.t.∑
j∈δ+k (Ô)

ykÔ j 1 = 1 (5.18)

∑
n∈N

∑
j∈δ−k (D̂)

yk j D̂n = 1 (5.19)

∑
j∈δ+k (Ô)

(
xkÔ j n + ykÔ j n

)
= 0 n ∈N∣∣n > 1 (5.20)

∑
i∈δ−k (j)

(
xki j n + yki j n

)
− ∑

i∈δ+k (j)

(
xk j i (n+1) + yk j i (n+1)

)
= 0 j ∈V, (5.21)

n ∈N∣∣n < n∑
n∈N

xki j n ≤ RL
i j (i , j) ∈ ÂL (5.22)

∑
(i , j)∈Ak

(
xki j n + yki j n

)
≤ 1 n ∈N,n > 1 (5.23)

τk(n−1) +
∑

(i , j)∈Ak

(
Tki j xki j n +T D

ki j yki j n

)
≤ τkn n ∈N|n > 1 (5.24)

τkn −T M ax
(
1−xki j n

)
≤ t L

i j (i , j) ∈ ÂL , (5.25)

n ∈N
τkn ≤ t tot

k n ∈N (5.26)

xki j n ∈ {0,1} (i , j) ∈Ak , (5.27)

n ∈N
yki j n ∈ {0,1} (i , j) ∈Ak , (5.28)

n ∈N
τkn ≥ 0 n ∈N (5.29)

t L
i j ≥ 0 (i , j) ∈ ÂL (5.30)

30

The objective of the subproblems is to find the minimum priced route for a given

vehicle. Constraints (5.18) through (5.23) conserve the flow through the network from

the start depot to the end depot, while constraints (5.24) through (5.26) keep track of

the time. Finally, the remaining constraints force the decision variables xki j n and yki j n

to be binary, and τkn and t L
i j to be non-negative.

The constraints for the subproblem presented above are related to any vehicle k ∈
KL . For a vehicle k ∈KS the constraints are equivalent, except for some minor changes

in constraints (5.22), (5.25) and (5.30). In constraints (5.22), RS
i j and (i , j) ∈ ÂS replace

RL
i j and (i , j) ∈ ÂL , respectively. In constraints (5.30), t S

i j and (i , j) ∈ ÂS replace t L
i j and

(i , j) ∈ ÂL . In order to track the first time an arc is serviced for the smaller vehicles,

constraints (5.31) replace (5.25) in the subproblem for a vehicle k ∈KS .

τkn −T M ax

(
1−xki j n +

n−1∑
n′=1

xki j n′

)
≤ t S

i j (i , j) ∈ ÂS , (5.31)

n ∈N

5.2.3 A labeling algorithm for the subproblems

The subproblems presented in Section 5.2.2 are variations of the Shortest Path Problem

with Resource Constraints (SPPRC), as presented by Irnich and Desaulniers (2005). In

order to solve these, we use a modified version of the Generic Dynamic Programming

(GDP) algorithm suggested by the same authors. As a result of the different pricing of

columns for the two subproblems, a specific labeling algorithm for each of the subprob-

lems has been developed.

The subproblem for the plowing trucks is solved according to the pseudocode pro-

vided in Algorithm 1. Let U be the set of unprocessed labels (initially containing the

artificial starting depot Ô), while Ui and Pi are the sets of unprocessed and processed

labels in node i , respectively. If there are any labels left in U , and the stop criteria is not

met, the function removes the label with the lowest reduced cost. This label is extended

(as described in Section 5.2.4) along all feasible arcs. If the new label, L′, is not domi-

nated (according to the description in Section 5.2.5), it is added to the unprocessed sets.

Should the extended label be in the artificial end depot, D̂ , with a negative reduced cost,

it is added to the list of labels for the RMP (l i stO f Label s). If the number of iterations

since the function last found a new label for the RMP is greater than tr eshol dCounter ,

or the size of the list of labels for RMP is greater than thr eshol dLi st , the list of labels is

31

returned to the RMP. The algorithm returns null if no columns with negative reduced

cost exists when the set U is empty.

Algorithm 1 differs from the GDP in the way that it does not guarantee to return the

path with the most negative reduced cost. As the only thing restricting the resource ex-

tension function is the maximum time of a route, the number of possible extensions in

the algorithm is generally large. Therefore, in order to not try all feasible extensions ev-

ery time the subproblem is solved, an iteration counter is included to store the number

of iterations since a column with negative reduced cost was generated. The algorithm

also includes a parameter indicating the maximum number of columns that potentially

could be sent to the RMP. Preliminary testing shows that including these parameters, al-

most no columns that improve the solution are omitted, while the computation time in

every subproblem is significantly reduced.

With respect to the smaller vehicles, constraints (5.7) in the RMP yield a negative

value to the γS
ki j -term in the pricing of columns for the smaller vehicles in equations

(5.15). Hence, we would like the values of Bki j r to be as large as possible, which in-

dicate that the arcs should be serviced close to the time limit of a route. At the same

time, we would like to minimize the makespan. Therefore, we find the shortest path

for the smaller vehicles by traverse the graph in reversed order. Accordingly, the label-

ing algorithm for the subproblem of the smaller vehicles starts in the end depot at time

T M ax , and traverses the graph backwards, while subtracting the time used. By doing

this, the values of Bki j r are set as large as possible, and at the same time making it pos-

sible to utilize the main features of the GDP algorithm. Briefly, this labeling algorithm

only differ from Algorithm 1 in the initialization phase, where U = {L(D̂)}, and in the

if-statement that tests whether the column has a negative reduced cost. Specifically, it’s

checking if node(L′) = Ô for the smaller vehicles.

Algorithm 1 Labeling algorithm for the plowing trucks

1: U = {L(Ô)}
2: while U 6= ; do
3: sort U on the lowest reduced cost
4: L = removeFirst(U)
5: for each feasible extension of L → L’ do
6: if node(L’) = D̂ and cost(L’) < 0 then
7: add L’ to listOfLabels
8: counter = 0
9: end if

10: i = node(L’)

32

11: if no label in Ui and Pi dominates L’ then
12: remove all labels in Ui and U that are dominated by L’
13: Ui = Ui∪ {L’}
14: U = U ∪ L’
15: end if
16: end for
17: j = node(L)
18: P j = P j ∪L
19: if listOfLabels 6= ; and counter > tr eshol dCounter then
20: return listOfLabels
21: end if
22: if listOfLabels.length > thr eshol dLi st then
23: return listOfLabels
24: end if
25: counter = counter + 1
26: end while
27: if listOfLabels 6= ; then
28: return listOfLabels
29: end if
30: return null

5.2.4 Labels and label extension

The data stored in each label are presented in Table 5.1. We note that for the remain-

der of this thesis, the notation η(L) is used to refer to the node of label L, and similar

notation is used for the rest of the label data.

Table 5.1: The data stored in each label.

Data Description

η The node of the label

φ The predecessing label

t The arriving time at the node

c The accumulated reduced cost

θ
Binary variable indicating whether the vehicle serviced (θ = 1) or
deadheaded (θ = 0) the last traversed arc

Bi j
The starting time of the last plow job of arc (i , j) for the plowing trucks, and
the starting time of the first plow job of arc (i , j) for the smaller vehicles

Ai j The number of times arc (i , j) is serviced

For the plowing trucks, if a label L is extended along an arc (η(L), j), two new labels

L′ are created at node j : one for each value of θ, since the vehicle can either service

33

(θ = 1) or deadhead (θ = 0) the arc from label L to label L′. Let T Depot
ki be the shortest

time from node i to the destination depot. The label data are updated as follows:

η(L′) = j (5.32)

φ(L′) = L (5.33)

t (L′) =

t (L)+Tkη(L) j if θ = 1

t (L)+T D
kη(L) j if θ = 0

(5.34)

c(L′) = c(L)− [
t (L′)− t (L)

]
σL

k +

−βL

k if η(L) = Ô

−αL
η(L) j −

[
t (L)−Bkη(L) j (L)

]
γkη(L) j if θ = 1

0 otherwise

(5.35)

For ∀(i , j) ∈ ÂL

Bki j (L′) =

t (L) if (i , j) = (η(L),η(L′)) ∧ θ = 1

Bki j (L) otherwise

(5.36)

Aki j (L′) = Aki j (L)+θ (5.37)

Equations (5.32) through (5.35) update the current node, the predecessing label,

the time spent, and the cost component of the label, respectively. Equations (5.36) and

(5.37) update the value of the starting time of the arcs’ last service, in addition to the

total number of times they are serviced.

For θ = 1 an extension is feasible if:

Aη(L) j +1 ≤ RL
η(L) j (5.38)

t (L)+Tη(L) j +T Depot
k j ≤ T M ax (5.39)

34

For θ = 0 an extension is feasible if:

t (L)+T D
η(L) j +T Depot

k j ≤ T M ax (5.40)

For the smaller vehicles, the graph is traversed in reverse order. If a label L is ex-

tended along an arc (j ,η(L)), two new labels L′ are created at node j , one for each value

of θ. Let T Depot
ki be the shortest time from the starting depot to node i . The label data is

updated as follows:

η(L′) = j (5.41)

φ(L′) = L (5.42)

t (L′) =

t (L)−Tk jη(L) if θ = 1

t (L)−T D
k jη(L) if θ = 0

(5.43)

c(L′) = c(L)− [
t (L)− t (L′)

]
σS

k +

−βS
k if η(L) = D̂

−αS
jη(L) −γS

k jη(L)t (L′) if θ = 1∧ Aki j (L) = 0

−αS
jη(L) −γS

k jη(L)

[
t (L′)

−Bk jη(L)(L)
]

if θ = 1∧ Aki j (L) > 0

0 otherwise

(5.44)

For ∀(i , j) ∈ ÂS

Bki j (L′) =

t (L′) if (i , j) = (η(L′),η(L)) ∧ θ = 1

Bki j (L) otherwise

(5.45)

Aki j (L′) = Aki j (L)+θ (5.46)

Equations (5.41) through (5.44) update the current node, the predecessing label,

the time spent, and the cost component of the label, respectively. Equations (5.45) and

35

(5.46) update the value of the starting time of the arcs’ last service, in addition to the

total number of times they are serviced.

For θ = 1, an extension is feasible if:

A jη(L) +1 ≤ RS
jη(L) (5.47)

t (L)−T jη(L) −T Depot
k j ≥ 0 (5.48)

For θ = 0, an extension is feasible if:

t (L)−T D
jη(L) −T Depot

k j ≥ 0 (5.49)

5.2.5 Dominance criteria

The dominance criteria used to remove dominated labels for the plowing trucks are

given in Proposition 1. For simplicity let the set Aθ = {
(i , j)

∣∣ Ai j (L1) > Ai j (L2)
}
, and

T ki j be the shortest time from node i to j for vehicle k.

Proposition 1. A label L1 dominates L2 if:

1. η(L1) = η(L2)

2. t (L1) ≤ t (L2)

3. c(L1) ≤ c(L2)+ ∑
(i , j)∈Aθ

mi n
{(
−αL

i j

[
Ai j (L1)− Ai j (L2)

]−[
t (L2)+T kη(L2)i

]
γL

ki j

)
,0

}

Proof. Let p be a feasible path extending L2 from η(L2)
(= η(L1)

)
to a given node i . From

path p we define Ap as the set of the arcs in the path, and ~θp = [θ1, ...,θ|~θ|] as a vector

with the sequence of the traversed arcs, and whether the arc at position m is serviced

(θm = 1), or not (θm = 0). For a compact notation, we use the Kronecker-symbol with

δ j l m = 1 if arc (j , l) is at position m in the vector, and δ j l m = 0 otherwise. And for

simplicity we name p1 = (L1, p) as the concatenation of the partial path represented by

L1 and p, and likewise p2 = (L2, p). Let Lp1 and Lp2 be the labels in node i where their

predecessors have followed the paths p1 and p2, respectively.

First, in events where ∀(j , l) ∈Ap : A j l (L1) ≤ A j l (L2), every feasible extension of L2

fulfill the inequalities (5.50) and (5.51).

36

A j l (L2)+
|~θp |∑

m=1
δ j lmθm ≤ R j l ∀(j , l) ∈Ap (5.50)

t (L2)+ ∑
(j ,l)∈Ap

|~θp |∑
m=1

δ j l m

[
T j l kθm +T D

j lk (1−θm)
]
+T Depot

i ≤ T M ax (5.51)

As ∀(j , l) ∈Ap : A j l (L1) ≤ A j l (L2) and (if criterion 2 holds) t (L1) ≤ t (L2), if inequalities

(5.50) and (5.51) hold, this implies that inequalities (5.52) and (5.53) also hold. And

thereby, every feasible extension of L2 is feasible for L1, as well.

A j l (L1)+
|~θp |∑

m=1
δ j l mθm ≤ R j l ∀(j , l) ∈Ap (5.52)

t (L1)+ ∑
(j ,l)∈Ap

|~θp |∑
m=1

δ j l m

[
T j lkθm +T D

j lk (1−θm)
]
+T Depot

i ≤ T M ax (5.53)

The reduced costs of Lp1 and Lp2 , c(Lp1) and c(Lp2), can be expressed by the equa-

tions (5.54) and (5.55), respectively.

c(Lp1) = c(L1)− ∑
(j ,l)∈Ap

|~θp |∑
m=1

αL
j lδ j lmθm

−σL
k

t (L1)+ ∑
(j ,l)∈Ap

|~θp |∑
m=1

δ j l m

(
Tk j lθm +T D

k j l [1−θm]
)

− ∑
(j ,l)∈Ap

|~θp |∑
m=1

t (L1)+ ∑
(q,r)=

(η(L1),s),
...,(t , j)

m∑
m′=1

δqr m′
(
Tkqrθm′ +T D

kqr [1−θm′]
)
δ j l mθmγL

k j l

(5.54)

37

c(Lp2) = c(L2)− ∑
(j ,l)∈Ap

|~θp |∑
m=1

αL
j lδ j lmθm

−σL
k

t (L2)+ ∑
(j ,l)∈Ap

|~θp |∑
m=1

δ j l m

(
Tk j lθm +T D

k j l [1−θm]
)

− ∑
(j ,l)∈Ap

|~θp |∑
m=1

t (L2)+ ∑
(q,r)=

(η(L2),s),
...,(t , j)

m∑
m′=1

δqr m′
(
Tkqrθm′ +T D

kqr [1−θm′]
)
δ j l mθmγL

k j l

(5.55)

By a pairwise comparison, the following can be obtained. For the first term, crite-

rion 3 simply requires that c(L1) ≤ c(L2), since Aθ = ;. As ~θp is equal for both labels,

the second term is also equal. As criterion 2 demand that t (L1) ≤ t (L2), and since the

labels follow the same route, everything inside the brackets in the third and fourth term

is equal or greater for Lp2 . As both γL
k j l ≤ 0 and σL

k ≤ 0, the third and fourth term will

yield a greater positive value for Lp2 than Lp1 . Thereby, if criteria 1 through 3 is met, for

every feasible extension p of L2 one can conclude that

∀(j , l) ∈Ap : A j l (L1) ≤ A j l (L2)

=⇒ c(Lp1) ≤ c(Lp2)

By looking at a case where ∃(i , j) ∈ Ap : Ai j (L1) > Ai j (L2), for every feasible ex-

tended path p of L2 all Ap are feasible for L1, but not all~θp are feasible, since p1 would

exceed the number of times an arc can be serviced, RL
i j , for some ~θp . But there ex-

ist other vectors that make the extension feasible for L1, and one of those is where

∀(j , l) ∈ Aθ : θm = 0 | δ j lm = 1. We denote this vector as ~θ1
p , where θ1

m is the arc at

position m in the vector. Given that inequalities (5.56) and (5.57) hold, this implies that

inequality (5.58) holds, and we see that extension p with~θ1
p is feasible for L1.

t (L2)+ ∑
(j ,l)∈Ap

|~θp |∑
m=1

δ j lm(T j l kθm +T D
j l k (1−θm))+T Depot

ki ≤ T M ax (5.56)

T D
k j l ≤ Tk j l ∀(j , l) ∈ ÂL (5.57)

38

t (L1)+ ∑
(j ,l)∈Ap

|~θ1
p |∑

m=1
δ j lm(T j l kθ

1
m +T D

j l k (1−θ1
m))+T Depot

ki ≤ T M ax (5.58)

However, since αL
j l ≥ 0, this means that c(Lp2) can add a negative value which c(Lp1)

cannot. Considering this, criterion 3 has the term

∑
(j ,l)∈Aθ

mi n
{(
−αL

j l

[
A j l (L1)− A j l (L2)

]−[
t (L2)+T kη(L2) j

]
γL

k j l

)
,0

}

This term iterates through all of the arcs that L1 has plowed more times than L2, and if

−αL
j l

[
A j l (L1)− A j l (L2)

]< [
t (L2)+T kη(L2) j

]
γL

k j l

this means that Lp2 could have added a negative value to its reduced cost by servicing

the arc as soon as possible, which is at time t (L2)+T kη(L2) j . If Lp2 cannot get a lower

reduced cost than Lp1 by servicing all of these arcs, then

c(L1) ≤ c(L2)+ ∑
(i , j)∈Aθ

mi n
{(
−αL

i j

[
Ai j (L1)− Ai j (L2)

]−[
t (L2)+T kη(L2) j

]
γL

ki j

)
,0

}

for all feasible extensions of L2. As the calculation above assume that the time at which

an arc is serviced is as early as possible, the time at which it is serviced in the path

may be later. That is, in some cases, γL
k j l is multiplied with a number too small, but as

γL
k j l ≤ 0, this also implies that the third dominance criterion is not equally strong in all

situations.

Reviewing the expression for c(Lp1) and c(Lp2) from equations (5.54) and (5.55), re-

spectively, we see that in the first term c(L1) ≤ c(L2) (from criterion 3), since

∑
(j ,l)∈Aθ

mi n
{(
−αL

j l

(
A j l (L1)− A j l (L2)

)− (
t (L2)+T kη(L2) j

)
γL

k j l

)
,0

}
≤ 0

If p2 service some arcs that is left unserved in p1, the value in the second and fourth

term could differ in the two formulations. However, this is considered in the last term

in criterion 3, as described above. As criterion 2 holds, and ∀(j , l) ∈ ÂL : T D
k j l ≤ Tk j l , it

implies that the number inside the bracket in the third term cannot have a value smaller

for Lp2 than it does for Lp1 . Since σL
k ≤ 0, the third term adds a greater value for L2 than

L1. Therefore, given that the three criteria is met, c(Lp1) ≤ c(Lp2), and we can conclude

that label L1 dominates label L2.

39

The subproblem for the smaller vehicles has the dominance criterion as given in

Proposition 2. For simplicity, let the set Aθ =
{
(i , j)

∣∣ Ai j (L1) > Ai j (L2)
}
, and T ki j be the

shortest time from node i to j for vehicle k.

Proposition 2. A label L1 dominates L2 if:

1. η(L1) = η(L2)

2. t (L1) ≥ t (L2)

3. c(L1) ≤ c(L2)+∑
(i , j)∈Aθ

(
−αS

i j

[
Ai j (L1)− Ai j (L2)

]+γS
ki j

[
t (L2)−T k jη(L2) −T D

ki j

])
The proof for Proposition 2 can be derived in a similar fashion as the proof for Proposi-

tion 1.

5.2.6 Acceleration strategies

In order to shorten the computation time and get a better root node solution, the ge-

netic algorithm presented in Chapter 6 can be used to generate a set of columns that

are used when the RMP is initially solved. This is often referred to as a warm start of the

column generation. Depending on the quality of the solutions provided by the heuris-

tic, we expect the number of iterations between the RMP and the subproblems to be

decreased significantly - which can reduce the total computation time. The genetic al-

gorithm always provides a feasible solution, whose objective value is set as the upper

bound, T M ax . Tightening this maximum time parameter makes fewer label extensions

feasible in the subproblems, and the label setting algorithm can exclude more columns.

Note that not only the columns from the best heuristic solution is added to the RMP in

the initial phase. The genetic algorithm has a pool of solutions (a population), where

each solution consists of one column per vehicle. Although all but the best solution may

have a higher makespan value than the best found solution, there is nothing prohibit-

ing single columns in the poorer solutions to have a value on par with or better than

the best makespan of an entire solution. Therefore, all columns with a value less than

or equal to the best solution are also added to the RMP. Should the B&P algorithm find

an integer solution during the search that is better than the best known IP solution, the

T M ax value is updated to be equal that solution, which reduces the number of feasible

labels even more.

40

5.2.7 Branching

For non-integer solutions in the root node, a branching strategy in the B&B tree has to

be devised in order to obtain an integer solution. In this thesis, we consider two branch-

ing strategies used in a hierarchical fashion. The first strategy branches on whether a

given vehicle services a given arc (given that the arc only needs to be serviced once).

The 0-branch is imposed by removing all paths created in the subproblem for the given

vehicle where the given arc is serviced. The 1-branch is imposed by discarding all paths

for the given vehicle that does not service the given arc, and also all paths for the other

vehicles of the same type that do service the arc. For the 1-branch, the dominance crite-

ria must be modified. A path that includes servicing of the respective arc can dominate

all the other paths, while a path that leaves the arc unserviced, can only dominate other

paths where the branched arc is not serviced.

The second branching strategy is to branch on whether a given arc in a vehicle’s

plowing sequence is serviced immediately after another given arc. The 0-branch is im-

posed by removing all paths where the two arcs are consecutive in the vehicle’s plow-

ing sequence. The 1-branch is imposed by removing all the paths for the given vehicle

where the arcs are not subsequent in the plowing sequence. The dominance criteria for

the 1-branch in this branching strategy are modified as well. A path that includes ser-

vicing the subsequent arcs can dominate all the other paths, while a path in which they

are not serviced can only dominate other paths where the arcs are not being serviced.

For both branching strategies, the nodes in the B&B tree are processed in a best first

order, depending on the lower bound of their parent node. The selection among equally

good nodes is done by depth first sequence.

5.3 Pseudocode for the Branch-and-Price algorithm

The pseudocode for the implementation of the B&P model, as described throughout

this chapter, is given in Algorithm 2. The algorithm is fairly similar to other B&P imple-

mentations, starting by initializing the problem with a warm start (line 1 through line

5), and then iterates between the RMP (line 18) and the SPs (line 20 through line 25)

through the B&B tree (line 6 through line 51). In line 39 through line 43 the algorithm

branches on the strategies as described in Section 5.2.7. Our implementation is special

with respect to the general B&P scheme, as it checks whether a better integer solution

is found, such that the labeling algorithm can be modified. In the pseudocode, this is

ensured by line 34 and line 47. If a better integer solution has been found, the value of

41

T M ax is updated. As described in 5.2.6, this reduction affects the possible length of the

columns generated in the SPs, and was therefore included as an acceleration strategy.

Since preliminary runs of the algorithm showed that a lot of branching were needed

in order to get an integer solution, line 44 through 50 were added to the procedure. This

part of the code solves the RMP as a MIP with the set of all columns generated. As this

is a time consuming process, the MIP does not run in every node, but rather in fixed

intervals between nodes. This interval is dependent on the size of the test instance.

Algorithm 2 Branch-and-Price

1: Initialize problem, adding root node to B&B tree
2: Solve heuristic
3: T M ax = heuristic solution
4: Include paths from heuristic that are ≤ T M ax

5: opti mal Soluti on = false
6: while B&B tree not empty or optimalSolution equals false do
7: Sort B&B tree on the lower bound
8: Choose the node with the minimal lower bound
9: Include only generated paths that fulfill the branching

10: opti mal Soluti onInNode = false
11: if lower bound in node rounded up to the nearest integer equals T M ax then
12: opti mal Soluti on = true
13: opti mal Soluti onInNode = true
14: end if
15: counter = 0
16: while not opti mal Soluti onInNode do
17: counter = counter +1
18: Solve RMP and update dual values
19: f ound NewColumn = false
20: for each vehicle k do
21: Solve subproblem for k
22: if subproblem for k returned some new columns then
23: f ound NewColumn = true
24: end if
25: end for
26: if not f ound NewColumn then
27: opti mal Soluti onInNode = true
28: end if
29: end while
30: if optimal solution in node is not feasible then
31: Continue
32: end if
33: if optimal solution in node is integer then
34: if optimal solution in node < T M ax then
35: T M ax = optimal solution in node

42

36: end if
37: Continue
38: end if
39: if some arcs are serviced by more than one vehicle then
40: Branch according to branching scheme
41: else
42: Branch on consecutive arcs for a vehicle with fractional solutions
43: end if
44: if counter > givenNumber then
45: counter = 0
46: Solve RMP as a MIP with all columns generated
47: if MIP solution is better than T M ax then
48: T M ax = MIP solution
49: end if
50: end if
51: end while
52: Return T M ax

5.4 Expanding the decomposition

Not included in the implementation of the column generation algorithm, is the con-

straints that prohibit the larger vehicles from performing U-turns. They were omitted as

we wish to evaluate all of the available models on common ground: simply to produce

routes in a network where operation synchronization is paramount. However, in order

to disallow U-turns for the larger vehicles in the implemented column generation, one

only need to change the subproblem. Specifically, one cannot extend a label in such a

way that a U-turn is included in the route. Therefore, if label L1’s predecessor is in node

i , L1 cannot be extended back to node i . Additionally, a forth dominance criterion must

be included as well, where one of two cases must be maintained. The first case is that

if L2 dominates L1 (based on the three criteria in Section 5.2.5) and η(φ(L1)) = η(φ(L2)),

then L1 can be rejected. For the other case, if it exists two labels L2 and L3, which dom-

inate L1 (based on the three criteria in Section 5.2.5), and η(φ(L2)) 6= η(φ(L3)), then L1

is dominated, as at least one of L2 and L3 can extend to all the nodes that L1 can extend

to.

Other turn restrictions can be implemented in a similar fashion.

Chapter 6

Hybrid Genetic Search with

Diversity Control

In order to obtain solutions to instances of practical size, with sufficiently sized vehi-

cle fleets, a heuristic approach has been considered. In this chapter we introduce a

genetic algorithm based on recently developed methods within the VRP literature. An

introduction to the overall algorithmic framework is given in Section 6.1. Representa-

tion of the solutions is considered in Section 6.2, and we elaborate on parent selection

and crossover in Section 6.3. In section 6.4, the education phase is introduced, followed

by an explanation of the survivor selection process in Section 6.5, which concludes the

chapter.

6.1 Introduction

The proposed genetic algorithm (GA) is based on the paradigm that Holland (1975) is

credited for introducing. The framework of genetic algorithms is built on an underlying

idea of having a set of solutions (a population), and exploit mechanisms based on evo-

lutionary processes to improve these solutions. The Hybrid Genetic Search with Adap-

tive Diversity Control (HGSADC) metaheuristic was introduced by Vidal et al. (2012)

and has proved to be very efficient in many variations of the VRP. It includes a number of

advanced features in terms of solution evaluation, generating and improving offspring,

and population management, which contribute to its originality and high performance

level. The algorithm developed and implemented in this thesis is mainly based on the

44

work by Vidal et al. (2012), and adapted to the MFARPOS. Due to specifics that are dis-

cussed in this chapter, we henceforth refer to our implementation as the Hybrid Genetic

Search with Diversity Control - or simply HGSDC.

The general scheme of the metaheuristic is displayed in Algorithm 3. The algo-

rithm iteratively evolves a group of individual solutions, namely the population. It suc-

cessively applies a number of operators to select two parent individuals and combine

them, yielding new individuals (offspring). The set of offspring are then enhanced by

common local search procedures (education). Of particular interest is the evaluation

mechanism proposed by Vidal et al. (2012), to select parents for mating (line 3 of Al-

gorithm 3), and which individuals that are to survive to the next generation (line 9).

The mechanism account for not only the solution cost, which is the norm within many

evolutionary algorithm approaches, but also the contribution of diversity that the in-

dividual makes to the population. The effect of using a measure of diversity to de-

cide whether an individual is fit to survive, and become a part of the population, is a

paramount feature of the metaheuristic. It contributes to maintaining a wide range of

solutions, thus decreasing the probability of convergence towards a suboptimal solu-

tion early on. With respect to diversity, a large part of the population is also replaced by

random individuals every I Di v iterations without improvement, effectively diversifying

the population and introducing new genetic material. The algorithm runs until a pre-

defined number of iterations without improvement in objective value, I n , have passed,

or until a time limit is reached (M AX T I ME seconds).

Algorithm 3 HGSDC

1: Initialize population
2: while n iterations without improvement < I n or running time < M AX T I ME do
3: Select parents
4: Create offspring
5: for each offspring do
6: Educate offspring
7: end for
8: Add educated offspring to the population
9: Select survivors

10: if best solution not improved for I Di v iterations then
11: Diversify population
12: end if
13: end while
14: Return best solution

45

6.2 Solution representation

Solutions are represented as an array of identifiers. The array stores identifiers of arcs

and information regarding which vehicle that service which arc in which order. Such a

representation within genetic algorithms is often called a chromosome representation,

or simply a chromosome. As all solutions to the MFARPOS involve two homogeneous

fleets, each individual is represented by a set of two chromosomes: the plowing truck

chromosome, which is an ordered list of tasks and trip delimiters for the plowing truck;

and the smaller vehicle chromosome, which is an ordered list of tasks and trip delim-

iters for the smaller vehicles. An example chromosome is provided in Table 6.1, which

represents a solution to the network found in Figure 6.1. The routes for the vehicles are

found in Figures 6.2, 6.3, 6.4, and 6.5.

In the HGSADC developed by Vidal et al. (2012), the chromosomes are divided into

routes by the use of the Split algorithm, as presented by Prins (2004). The Split algo-

rithm takes as input a chromosome without trip delimiters, and returns the optimal

distribution of tasks to the different vehicles. Only when the solution is dependent on a

single fleet will the Split algorithm return the optimal solution. In the MFARPOS, where

the objective function is to minimize the makespan, the best solution for the plowing

trucks may not be the best solution for the smaller vehicles, and vice versa. The Split al-

gorithm is therefore not optimal for this problem, and trip delimiters are a necessity for

our chromosomes. A trip delimiter is a way to separate the vehicles’ task list within the

same fleet from one another. This is often accomplished by the use of a special symbol

in the chromosome, to differ the trip delimiters from the tasks. These trip delimiters

are distributed throughout the chromosome at random in the initial population, and

are indirectly subject to movement by various insertions and swaps of tasks between

vehicles in the Education phase (Section6.4).

Table 6.1: Example of a solution representation where the upper and lower rows show
the chromosome for the larger and smaller vehicles, respectively. Each positive integer
is a unique identifier of a lane or a sidewalk, while -1 is the trip delimiter. This example
is therefore a solution to a problem with a network with a total of 20 arcs, two trucks
and two smaller vehicles.

Plowing Truck 1 3 5 8 4 6 -1 2 7 9 10

Smaller Vehicle 11 13 15 17 18 -1 12 14 16 19 20

With exception of the trip delimiters, each value in the chromosome is referring to

a service demanding arc in the graph. The chromosome comprises each vehicle’s task

46

D

3(13)

5(15)

8(1
7)

4

7(14)

9(16)
10

6
1(11)

(18)

2(1
2)

(19)

(20)

Figure 6.1: A road network for which the chromosome in Table 6.1 is a solution. The
circles represent nodes (D = depot), solid and dotted lines represent the lanes and side-
walks, respectively. The numbers denote the arc identification numbers (sidewalks in
parenthesis).

sequence. A task in this perspective is an arc, and the vehicle with a certain task in its

task sequence is designated to service it. In graphs where each arc only has to be ser-

viced once, the task sequence is unique in the way that no arc exists in more than one

task sequence. If an arc needs to be serviced more than once, the algorithm copies the

respective arc, and gives this copy a new unique identifier. The task sequence is not to

be confused with the routes. The task sequence of a vehicle only indicates which arcs

to service, and in what order. That is, deadheading is omitted from the task sequence.

The route consists of all arcs that the vehicle is both servicing and deadheading, and

therefore, it includes at least as many arcs as the task sequence. That is, the route in-

cludes the path from the depot to the first task in the task sequence, the tasks and the

paths between each of the tasks, and the path from the last task in the sequence back

to the depot. The paths and time used on the paths, between consecutive tasks in the

sequence, are derived using the Floyd-Warshall algorithm (Floyd, 1962), which guaran-

tees that the vehicles always deadhead the shortest path (with respect to time) between

two given tasks. We note that for the heuristic, no artificial depots are needed, and so

these are not included in the routes generated by the algorithm, nor in any illustration

or discussion throughout this chapter.

47

D

Figure 6.2: Illustration of the route for
the first plowing truck on the network
illustrated in Figure 6.1 according to
the chromosome in Table 6.1. The ve-
hicle services arc 1, 3, 5, 8, 4, and 6 back
to the depot.

D

Figure 6.3: Illustration of the route for
the second plowing truck on the net-
work illustrated in Figure 6.1 according
to the chromosome in Table 6.1. The
vehicle services arc 2, 7, 9, and 10 back
to the depot.

D

Figure 6.4: Illustration of the route for
the first smaller vehicle on the network
illustrated in Figure 6.1 according to
the chromosome in Table 6.1. The ve-
hicle services arc 11, 13, 15, 17, and 18
back to the depot.

D

Figure 6.5: Illustration of the route for
the second smaller vehicle in the net-
work illustrated in Figure 6.1 according
to the chromosome in Table 6.1. The
vehicle services arc 12, 14, 16, 19, and
20 back to the depot.

48

When evaluating a solution, a deterministic simulation is performed on the vehi-

cles’ routes from and back to the depot. The algorithm starts with the plowing trucks,

and stores the time each lane is served. Then, for each of the smaller vehicles, a check is

performed to see if a synchronization constraint exists on the arc under consideration

- and whether the corresponding lane is serviced prior to the time at which the smaller

vehicle arrives at the task. If this is not the case, the smaller vehicle must wait for the

truck to arrive. This waiting time is included when calculating the route time. When the

simulation is over, the total time used by each vehicle is compared, and the makespan

of the solution is stored along with the pair of chromosomes that it comprises.

6.2.1 Solution evaluation

The evaluation function seeks to associate each individual in the population with a

value that is calculated with respect to the entire population. Such a function is gen-

erally referred to as a fitness function, and the function value is thus the fitness of the

function argument. As noted by Vidal et al. (2012), such fitness functions are often

based on the objective function of the problem at hand. The authors further note that

the use of a fitness function solely based on the objective function is quite myopic with

respect to the possible impact of the evaluation and selection properties on the diver-

sity of the population. Therefore, they argue that the fitness values created by the fitness

function should reflect two properties of each individual: 1) the fitness with respect to

the objective function, and 2) how much the solution contributes to the diversity of the

population.

We define the Diversity Contribution, 4(Pi), of an individual Pi as the average dis-

tance to its nC l ose closest neighbours, grouped in the set NPi . A normalized Hamming

distance δH (Pi ,P j) is used, based on the differences in the chromosome pair of the dif-

ferent solutions. Let {1, . . . , N } be the tasks (including the trip delimiters) in the problem,

and πku(Pi) be the task for individual Pi at index u in the chromosome type k, where

k is either a plowing truck or a smaller vehicle. The diversity contribution is computed

according to

4 (Pi) = 1

nC l ose

∑
P j ∈NPi

δH (
Pi ,P j

)
where

δH (
Pi ,P j

)= 1

N

∑
k∈K

N∑
u=1

1
(
πku(Pi) 6=πku(P j)

)
and 1 is a binary function that returns 1 if the statement is true, and 0 otherwise.

49

Let P be the set of individuals in the population, and fit(Pi) and dc(Pi) represent the

rank (from 1 to |P|) of an individual Pi in population P with respect to its makespan

and diversity contribution, respectively. The biased fitness function, bf(Pi), combines

the makespan and the diversity contribution, and is given by

b f (Pi) = f i t (Pi)+
(

1− nEli te

|P|

)
dc (Pi)

where nEl i te is a parameter indicating the number of elite solutions in the population.

An elite solution is one of the nEl i te best solutions with respect only to the function

value of fit(Pi). When the biased fitness function is defined as above, all of the elite

solutions will survive to become a part of the next generation. Vidal et al. (2012) provide

a proof for this, which is omitted here. We emphasize that the parameter nEli te

|P| can be

viewed as a factor which controls the trade-off between regular fitness (calculated from

the makespan) and the diversity fitness.

Vidal et al. (2012) allow infeasible solutions, and introduce adaptivity as a way to

increase the penalty of infeasibility over time. While this is not implemented in our

heuristic, as infeasible solutions simply are not created (see Section 6.2.2 for details),

we introduce an alternative approach to adaptivity as an option. Given the aforemen-

tioned definition of the nEl i te parameter, a low parameter value increases the value (or

importance) of diversity, while high nEli te values regular fitness, and thus elitism. Let r

be the number of iterations since the last improvement in makespan. When this value is

low compared to the maximum number of iterations, I n , the search should favor diver-

sification, allowing a more extensive search in the search space, and escape a potential

local optimum. When r is high compared to I n , the search should favor intensification

of the search, exploring the more promising regions of the population to find a better

solution. If a better solution is found, the r counter is reset, and also the nEl i te is set to

its initial value. The parameter is therefore changed dynamically according to

nEl i te =
⌊

r ×|P|
I n

⌋

which allows the search to adapt to how long it has been since it last found an improving

solution. This notion of adaptability is tested in Chapter 8 against a static parameter

value. Note here that when there is a need to differentiate between the models, we refer

to them as the Basic HGSDC and the HGSDC with adaptiveness.

50

6.2.2 Search space

Both Vidal et al. (2012) and Borthen and Loennechen (2016) argue that optimal solu-

tions lies on the boundary of feasibility, and that allowing infeasible solutions enhances

the performance of the search. Infeasible solutions with respect to vehicle capacity con-

straints and maximum route travel time constraints are therefore allowed. However,

breaking other important constraints in their problems is disallowed entirely. The prob-

lem studied in this thesis has some fundamental differences with these vehicle routing

problems. First of all, the MFARPOS does not operate with vehicle load, and there-

fore no vehicle load constraints exists. Secondly, this problem seeks to minimize the

makespan, which means that the model seeks to minimize the route with the longest

travel time in each solution. Solutions breaking this constraint will therefore not be

candidates for good solutions in the case of our problem.

There is, however, an option to allow solutions that break one or more of the syn-

chronization constraints, which is one of the core features of the MFARPOS. Those con-

straints are handled according to the elaboration in Section 6.2, emphasizing that the

smaller vehicles simply need to wait if a lane with an associated synchronization con-

straint has not been serviced when the smaller vehicle arrives at the sidewalk. Let us

define the time each smaller vehicle k has to wait to service arc (i , j) as wki j . The total

waiting time Wk for vehicle k can be expressed by

Wk = ∑
(i , j)∈ÂS

wki j

This means that the vehicle can just wait Wk time units in the depot before it starts its

route, and then complete it without any further waiting. If route r of vehicle k has a

traversal time of τr k , then the total time used by vehicle k becomes

Tk = τr k +Wk

The total waiting time therefore becomes a "cost" of infeasibility. However, this cost is

more than merely a symbolical cost assigned because the solution is infeasible. This is

actually the minimum waiting time one can add to make the solution feasible. Speaking

of infeasible solutions with respect to the synchronization constraint therefore makes

no sense, as every solution can be made feasible by imposing waiting to the smaller

vehicles. In fact, there is even a possibility that all optimal solutions include some wait-

ing time. As infeasible solutions with respect to the synchronization constraints are

51

implicitly considered, and that the infeasibilities considered by others to improve their

heuristic do not apply to our problem, we have chosen to simply avoid evaluating in-

feasible solutions altogether.

6.2.3 Turn restrictions

The implementation of the heuristic comes with the option to disallow U-turns. While

not a primary target for our study, this is implemented as a static penalty for each U-

turn the vehicles perform in the solution. Let uki j be 1 if vehicle k traverses an arc (i , j)

and then directly continues on arc (j , i), and 0 otherwise. Let PU be the U-turn penalty

cost. The total penalty cost for vehicle k becomes

Pk = ∑
(i , j)∈Ak
|(j ,i)∈Ak

PU uki j

When included in the model, the total penalty cost is added to the total time of the

vehicle’s route, which becomes

Tk = τr k +Wk +Pk

In addition to the U-turn restriction, it is also possible to implement other turn re-

strictions. The same procedure as above could be utilized, adding a high penalty for

each illegal turn. One example of this is the left turn restriction, which prohibits the

vehicles to take left turns. In this example, one would need to make binary relations

with each arc and its left turn, if it exists. As these relations are not built into the graph

structure of the problem, this would have to be implemented as well.

As explained, the U-turn penalty is optional, and for the rest of the chapter, we as-

sume that the penalty cost does not apply.

6.3 Parent selection and crossover

The offspring generation scheme of the HGSDC selects two individuals, P1 and P2,

and creates two offspring, O1 and O2. Parent selection is performed through a binary

tournament. Binary tournament is a procedure in which two individuals are randomly

chosen (here with uniform distribution) from the entire population. They are ranked

according to their biased fitness, where the winner (one of the individuals) is the one

52

with the best biased fitness. This is done twice in order to obtain both parents. We note

that in this very process, the individual with the lowest biased fitness in the population

has a probability of 0 to be chosen as a parent. This can be corrected by trivial meth-

ods, but are seen as insignificant in the grand scheme of things, and are therefore not

corrected in any way here. We emphasize that indirectly leaving the individual with the

worst biased fitness out of the parent selection process is equal to, in this step, viewing

the population as simply having one less individual.

To create a feasible individual without the need of repairing it, the mating process

used by the HGSDC for the MFARPOS is the Partially Mapped Crossover (PMX). PMX

was introduced by Goldberg and Lingle (1985), and is widely used for combinatorial

optimization problems. Ting, Su, and Lee (2010, p.1880) state that “...the PMX is one

of the most popular and effective crossovers for order-based genetic algorithms, espe-

cially the TSP”. In our algorithm, the crossover is given two input chromosomes of the

same vehicle type, and it returns an output chromosome. An individual/offspring, on

the other hand, is the combination of a smaller vehicle chromosome and a plowing

truck chromosome.

The Partially Mapped Crossover is described in Algorithm 5. The algorithm gets two

chromosomes of the same vehicle type as input, called Input1 and Input2. Initially,

all the trip delimiters are removed from these chromosomes, such that the each input

consist only of one task list. Then, the PMX proceeds by taking a random substring

from each of the inputs. The index range where these substrings are located is equal for

both inputs, and is referred to as the swath. The substring from Input1 is copied to the

output chromosome, before a second process iteratively searches through Input2’s sub-

string, in order to determine the element values (the arc identification numbers) that

are currently not in the output. Several operations are performed to assign the missing

swath values to the output. In order to make sure that all service demand is accommo-

dated, the last step is to copy all of the remaining element values (equals the values not

included in any of the substrings) from Input2 to the output, and insert the trip delim-

iters from Input1. Note that this process only creates one chromosome, and as each

individual has both a smaller vehicle chromosome and a plowing truck chromosome,

this process must be run twice to create an individual. This is summarized in the Mating

algorithm (Algorithm 4), which runs the Partially Mapped Crossover once for each vehi-

cle type. To create two individual offspring, the two parents (P1 and P2) are swapped in

the Mating algorithm. This means that the Mating algorithm is run twice for each cho-

sen pair of parents, with a newly generated swath for every child chromosome created,

53

and returning two offspring. The following example is made to visualize the process of

the PMX algorithm. Note that the example only creates one output chromosome.

Algorithm 4 Mating(P1, P2)

1: Input1 = Plowing truck chromosome from P1
2: Input2 = Plowing truck chromosome from P2
3: PT Out put = Partially Mapped Crossover(Input1,Input2)
4: Input1 = Smaller vehicle chromosome from P1
5: Input2 = Smaller vehicle chromosome from P2
6: SV C hi ld = Partially Mapped Crossover(Input1,Input2)
7: Combine PT Out put and SV C hi ld to create O1
8: return O1

Algorithm 5 Partially Mapped Crossover(Input1, Input2)

1: Remove all trip delimiters
2: Get a random range from Input1
3: Copy this range to Output1
4: for each value in Input2 in the same range as the swath in Input1 do
5: if value is not in Output1 then
6: next = value
7: tempNext = value
8: while next is not in Output1 do
9: Find the value x at the same index as tempNext in Input1

10: Find the index i where x resides in Input2
11: if index i is not in the swath then
12: Copy next to index i in Output1
13: else
14: tempNext = value at index i in Input2
15: end if
16: end while
17: end if
18: end for
19: Copy everything else from Input2 to Output1
20: Insert the trip delimiters at the same indices as in Input1

54

Table 6.2 presents the first step of the Partially Mapped Crossover, on a very sim-

plified example. The trip delimiters (marked in red) from both input chromosomes are

removed. These are found at index 5 and index 6 in Input1 and Input2, respectively.

These indeces are stored for insertion of the trip delimiters in the last step of the PMX.

Table 6.2: Partially Mapped Crossover example, stage 1.

Input1 1 3 5 6 -1 4 2 7 8

Input2 5 6 2 1 3 -1 4 8 7

Table 6.3 presents the next step of the Partially Mapped Crossover. A random index

sequence - the swath - is selected from the inputs. In the example at hand, the swath is a

list of the consecutive values from 2 to 4. The swath is marked with thick borders in the

table. All of the element values at the index sequence of the swath in Input1 (marked in

red) is copied to the same index numbers in Output1.

Table 6.3: Partially Mapped Crossover example, stage 2.

Input1 1 3 5 6 4 2 7 8

Input2 5 6 2 1 3 4 8 7

Output1 _ 3 5 6 _ _ _ _

Going through the swath values of Input2, the first element that does not already

exist in Output1 is located. In the example, this element has a value of 2, and is on

index 3 in Input2. Algorithm 5 proceeds to step 9, and finds the value 5 at index 3 in

Input1. Step 10 follows, where the index of the value 5 in Input2, which is 1, is located.

This index is not in the swath, and therefore the value of next (= 2) is copied to index 1

in Output1. This step is summarized in Table 6.4, and the values in question are marked

in red.

Table 6.4: Partially Mapped Crossover example, stage 3.

Input1 1 3 5 6 4 2 7 8

Input2 5 6 2 1 3 4 8 7

Output1 2 3 5 6 _ _ _ _

The next (and final) value from the swath range of Input2 not existing in Output1,

is 1. This is found on index 4 in Input2. Step 9 and 10 are now initiated: the value at

index 4 in Input1 is 6, which is placed at index 2 in Input2. As this index is a part of the

swath, and therefore occupied in Output1, Algorithm 5 proceeds to step 14, and repeats

55

the while-loop with 6 as a placeholder, tempNext , for 1. This procedure is visualized

in Table 6.5, and the values in question are marked in red.

Table 6.5: Partially Mapped Crossover example, stage 4.

Input1 1 3 5 6 4 2 7 8

Input2 5 6 2 1 3 4 8 7

Output1 2 3 5 6 _ _ _ _

The placeholder, 6, is located at index 2 in Input2. The value at index 2 in Input1

is 3, which is placed at index 5 in Input2. As this index is not a part of the swath, and

not yet occupied by an element in Output1, step 12 follows, where Algorithm 5 copies

the value of next (= 1) to index 5 in Output1. The result is shown in Table 6.6, and the

values in question are marked in red.

Table 6.6: Partially Mapped Crossover example, stage 5.

Input1 1 3 5 6 4 2 7 8

Input2 5 6 2 1 3 4 8 7

Output1 2 3 5 6 1 _ _ _

As there no longer exists any elements in the swath of Input2 that are not already in

Output1, Algorithm 5 proceeds to step 19, where all of the remaining elements is copied

from Input2 to Output1 at the same indexes as in Input2. The resulting list is shown in

6.7 and the values in question are marked in red.

Table 6.7: Partially Mapped Crossover example, stage 6.

Input1 1 3 5 6 4 2 7 8

Input2 5 6 2 1 3 4 8 7

Output1 2 3 5 6 1 4 8 7

The last step of Algorithm 5 inserts the trip delimiter (marked in red) at the same

index in Output1 as they were located in Input1. In the example, this was at index 5.

The elements at higher index numbers than the trip delimiters are shifted towards the

right, in order to conserve all tasks in the chromosome. Table 6.8 shows the resulting

chromosome after inserting the trip delimiter, and this completes the Partially Mapped

Crossover.

56

Table 6.8: Partially Mapped Crossover example, stage 7.

Output1 2 3 5 6 -1 1 4 8 7

6.4 Education

An education operator is applied with a given probability of ηE du , to improve the quality

of the offspring’s solution. This education procedure goes beyond the classical genetic

algorithm concepts of random mutation and enhancement through hill-climbing tech-

niques, as it includes a number of local search procedures based on neighborhoods

specific for this MFARPOS.

Two sets of local search procedures are defined. Eight route improvement proce-

dures, which are dedicated to optimize the solutions based on the neighborhood, con-

stitute the first set. The second set is based on four new route improvement procedures,

all of which are stochastic. Let k(u) represent the vehicle containing arc u in its given

task list, and (u1,u2) identify the partial route from u1 to u2. Define the neighborhood

of arc u as all arcs which start in the end node of arc u. Let v be a neighbor of u, and

x and y the successors of u in k(u) and v in k(v), respectively. The first route improve-

ment phase iterates, in random order, over each arc u and each of its neighbors v , and

evaluates the implication of the following moves:

(M1) Remove u and place it directly after v

(M2) Remove u and x, then place u directly after v and x directly after u

(M2) Remove u and x, then place x directly after v and u directly after x

(M4) Swap u and v

(M5) Swap u and v , then place x directly after u

(M6) Swap u and v , then swap x and y

(M7) Swap x and v

(M8) If k(u) 6= k(v), replace (u, x) and (v, y) by (u, y) and (x, v)

The first three moves correspond to insertions, whereas M4 through M7 generally

are known as swaps in the literature. M1 through M7 can be applied independently on

the same or different routes, while M8 is an interroute swap. The effects of the moves

are examined in random order, the first yielding an improvement being the one that

57

is implemented. Improvement here being either 1) a reduced makespan, or 2) that the

sum of the involved vehicles’ total time is less than the sum of their total time before the

move (with equal makespan). The first route improvement phase stops when all possi-

ble moves have been successively tried without any of them yielding an improvement.

While the first route improvement phase is based on neighborhoods of the arcs, and

the assumption that an optimal solution will be subject to very little deadheading, the

other phase is an acknowledgement to the fact that the optimal solution may involve

some deadheading, and enables the search to find these solutions as well. The second

route improvement phase only starts if the first phase shows to be unsuccessful. This

phase iterates over each arc i , randomly select arcs j , l and m, and find the task list in

which they are included (k(i), k(j), k(l) and k(m), respectively). It then evaluates the

effect of the following moves:

(M9) Remove arc i and add it after arc j

(M10) Remove arc i and arc l , and add them after arc j and arc m, respectively

(M11) Swap arc i with arc j

(M12) Swap arc i and arc l , with arc j and arc m, respectively

The incentive to iterate over the entire set of arcs, is to ensure that all arcs have been

tried in at least one move, increasing the chances of finding a good move. M10 and M11

are insertion moves, the second being a double insertion. M12 and M13 are swaps, with

the final move being a double swap. Also here are the effect of the moves examined in

random order: the first yielding an improvement being the one that is implemented.

Improvement here meaning the same as above. The second route improvement phase

stops when all possible moves have been tried without success.

6.5 Population management

Population management consists of several phases, whose purpose is to identify and

propagate good solutions, enhance population diversity, and provide the means to do

an efficient and thorough search. Four main phases can be derived for the manage-

ment of the population: Initialization, Offspring introduction to the population, Sur-

vivor Selection, and Diversification. These are discussed in the following. Note that the

initialization phase occurs only once, at the very beginning of the heuristic, in contrary

to the others, which happen routinely.

58

6.5.1 Initialization

To initialize the populationP,µ individuals are created randomly by generating random

task lists and routes. They are then added to the set of solutions which constitutes the

population. All of the individuals in P are subject to the survival selection phase later

on.

6.5.2 Offspring introduction to the population

After going through the education procedure, all λ offspring are entering the phase

where they are introduced to the population. This phase assesses each of the offspring’s

diversity contribution to the population. This is closely related to the solution evalua-

tion part of the heuristic, as discussed in Section 6.2.1. In addition to evaluating diver-

sity, the algorithm also explicitly removes all clones from the population. A clone is a

new individual that is identical to an existing individual in the population. The reason

for removing clones is that they do not contribute to the diversity of the population,

and increases the chances of premature convergence of the search. After assessing the

individuals with respect to diversity and removing the clones, the individuals are added

to the population. We note that two individuals may contain the exact same task lists in

their chromosomes, but in different order. These are not considered as clones, as their

chromosomes differ and may be good candidates for the mating process.

6.5.3 Survivor Selection

Premature convergence of the population is a major concern and challenge with popu-

lation based algorithms. The HGSDC therefore includes a mechanism to deal with this

problem, by giving individuals which contribute more to the diversity of the population

a higher probability of survival to the next generation.

After all offspring have been introduced to the population, there are a total of µ+λ

individuals in P, minus the possible clones that have already been removed. As long

as the population has a size greater than µ, the algorithm finds the individual with the

worst biased fitness, and removes it from the population. However, the algorithm will

never remove the nEli te best solutions, with respect to the objective value, from the

oversized population. This is to ensure enough intensification to the search, as these

solutions may result in more promising solutions with more education, and good par-

ent candidates for the mating process. A pseudocode for the Survival Selection phase is

found in Algorithm 6.

59

Algorithm 6 Survivor Selection

1: while population > µ do
2: Evaluate and sort the population from best to worst biased fitness
3: Remove the member of the population with the worst biased fitness
4: end while

6.5.4 Diversification

A final important aspect of population management is the diversification of the pop-

ulation. When I Di v successive generations without improvement have occurred, the

algorithm "reboots" and removes all but the
⌊µ

3

⌋
best individuals, with respect to bi-

ased fitness, from the population. It proceeds by creating random chromosomes in a

similar fashion as when the heuristic is initialized. The goal of this diversification is to

introduce new genetic material to the population, and prevent it from getting stuck in a

local optimum. These newly added individuals are not likely to improve the makespan

objective once they are added, depending on parameter values etc. However, they may

contribute positively by being good mating options, thus reviving the search in a more

diverse fashion. The denominator in the fraction above (3) follows the example sat by

Vidal et al. (2012).

Chapter 7

Generation and Characteristics

of Test Instances

All data instances used in this thesis are based on fictitious road networks, with char-

acteristics that are designed to mimic those one generally find in urban and residential

areas. As many cities, Trondheim included, share common features, such as a square-

grid plan layout and intersections generally consisting of four roads going in and out,

this is incorporated into the instances, which are generated by a program with random

components determining locations and traversal times of lanes and sidewalks.

In Section 7.1 we introduce the instance generator that has been developed and

implemented to generate data sets. Discussion is centered around functions of the pro-

gram, how the instances are generated, with a brief view on parameter settings, and the

characteristics that the instances are designed to inherit. The different sets of instances

that have been generated, and their application within this thesis, are described in Sec-

tion 7.2.

7.1 Instance generation

The code is written in MATLAB, and has a running time of only a couple of seconds

for data instances of sizes beyond the scope of this thesis. It is designed to stochasti-

cally generate instances that are based on block structures and intersections, with most

blocks being squares and triangles (as found in cities). In the instances generated, no

two road segments form a cross without the existence of a vertex in the intersection.

62

This is equal to saying that bridges and tunnels crossing roads are omitted in these in-

stances, and that the corresponding graph is planar. Additionally, park-structures and

other pedestrian paths are added, such that there can exist a sidewalk without there

being an adjacent lane. However, for simplicity, all nodes in the final graph are end-

points of at least two lanes, such that no connections of only sidewalks are presented.

We emphasize that although the underlying design of the instances is based on roads

and blocks, a node in the graph may not be an intersection, and although the graphical

representations of lanes and sidewalks are straight, they may in reality be curved and

longer or shorter relative to the other arcs in the network. Thus, in this chapter nodes

represent connections as they are defined in the Chapter 3, and the triangle inequality

does not count for the instances generated (even if the associated traversal times would

represent distance). Also, due to the focus of the computational study, instances gen-

erated have a maximum of one lane in each direction in a road segment (between two

nodes). The instance generator can easily be modified to accommodate this, whereas

all models developed already support this feature.

The steps of the instance generator are summarized below, and are discussed in

detail. Note that what is referred to as a pseudo-Markov process, do not fulfill all of the

requirements for a Markov process in the way we model states and transitions. That is,

the process is not completely independent with respect to time. This is elaborated on

in the description of step 4.

1. Initialize with parameters

2. Generate Markov chain

3. Generate initial road segments, and their associated service time

4. Run pseudo-Markov simulation

5. Clean traversal time matrix

6. Log and name active nodes

7. Add sidewalks to the network, and generate service times

8. Generate deadheading times for both vehicle types

9. Add artificial depots

10. Write TikZ-code to file for graphical representation

63

11. Format data and write files for solvers

Step 1 is where the user sets the parameters si ze and nI ter . The si ze parameter

is an odd integer, indicating the dimensions of the underlying network, which is set to

have si ze × si ze nodes. When running the Markov simulation, however, not all of the

nodes are necessarily being used, thus this refers to an upper bound for the number of

nodes in the resulting graph. The two artificial depots are added to the network in step

9. The nI ter parameter corresponds to the number of iterations in the pseudo-Markov

simulation, which generally should be higher for a higher value of si ze.

Step 2 is where the Markov transition matrix is generated. A si ze2 × si ze2 matrix is

constructed, where each element at index (i , j) corresponds to the probability that j is

the next state of the process when the current state is i . Notice here that allowed values

for i and j correspond to two nodes that are within reach of one another in the underly-

ing network - that is vertically, horizontally or diagonally. All other entries in the matrix

are set to zero. To avoid two diagonal paths to overlap, a random process is initiated

to determine which of the two transition matrix elements that is given the non-zero

value. In addition the transition matrix always allows for traversal in two directions. If

for example the entry at (i , j) > 0, then so is the entry at (j , i).

In step 3, a si ze2×si ze2 matrix is initialized (with zeroes in all entries), which is used

to store service times between nodes. Additionally, a set of initial arcs is constructed.

These arcs form a large cross, mimicking two main roads going through the road net-

work. These are two-way road segments which can optionally be set to definitely have

sidewalks on both sides. These arcs form a basis for the instances generated, but are in

step 5 subject to removal if they make the network unable to be serviced without the

necessity of U-turns for the large vehicles. The initial arcs are generated at the same lo-

cation for all instances with the same si ze-parameter. On the other hand, the service-

and deadheading times for these arcs are always determined stochastically, and there-

fore usually vary between instances. Service times are always generated when an arc is

added to the graph (in fact, the non-zero service time is what indicates there being an

arc), and therefore the service times of these initial arcs are generated in this step. The

road network generated in this step is illustrated in Figure 7.1. Solid and dotted lines

represent lanes and sidewalks, respectively.

Step 4 is where all of the remaining lanes are added to the road network. A sim-

ulation is run, where a single vehicle begins in the depot (located at the endpoint of

the initial cross), and moves to one of the neighboring connections (nodes) with the

probability given by the transition matrix. The probability of moving to one node from

64

D

Figure 7.1: The generated road network after the first set of arcs and sidewalks are
added.

another is constant, with one exception in each iteration - which is what distinguishes

this process from a true Markov process (which is time independent). The explanation

for this change in the transition probability stems from wanting the plowing trucks to

be able to service the entire road network without having to perform U-turns. Indeed

there exist very few dead ends in cities where there is demand for snow plowing vehi-

cles immediately after a snowfall, and so they can be omitted from the underlying road

network generated. Therefore, in each iteration of the simulation, the vehicle is denied

access to the node whence it came. Please note that this could have been modeled as

a true Markov process by adding many more states, with more information included in

each state. However, this would cause the nodes to only be implicitly associated with

states in the Markov process. For the sake of the implemented algorithm, there is a one-

to-one correlation between nodes in the road network and states in the pseudo-Markov

process. The network generated to this point is illustrated in Figure 7.2.

D

Figure 7.2: The generated road network after step 4, where the remaining lanes are
added.

In each of the nI ter steps in the pseudo-Markov process, the next node (state) of the

65

simulated vehicle is chosen stochastically. A check is performed to determine whether

the path from the current node to the chosen node already exist. If so, the vehicle

changes position (that is, a variable indicating the current node is set equal to the vari-

able indicating the next node). If the path do not exist, an arc is also added to the road

network by stochastically determine the service time between the nodes, and storing it

in the service time matrix. When nI ter iterations are completed, the vehicle is forced

to return to one of the nodes in the cross that was initially constructed.

Due to the generation of the initial nodes and arcs, and the last step of the simula-

tion (where the vehicle simply stops in a random node), some dead ends might exist in

the network. That is, there might exist nodes that only can be accessed from a single

other node and only be left by returning to the node from where the truck came. All

dead ends are removed in step 5 by setting the traversal times to and from these nodes

to zero (which indicates that they are inactive in the resulting graph). By removing dead

ends, new ones might be generated. Therefore, this step is solved by using a recursive

function, where the deepest step simply confirms that no more dead ends exist, and

returns the input matrix. Figure 7.3 illustrates the network after the dead end in Figure

7.2 has been removed.

D

Figure 7.3: Road network after the dead end has been removed.

In step 6, all of the active nodes, which are the initial nodes and the nodes visited

in the pseudo-Markov simulation minus the dead ends, are logged in a separate matrix.

Each node is given a unique name (an integer) for identification. All nodes that cannot

be visited from the initial nodes are from this point on neglected, and will never be

added to the network.

Sidewalks are added to the network in step 7. A service time matrix for sidewalks

is initiated. Then, a function iterates over all lanes, stochastically (with an adjustable

probability parameter) determining which lanes should be accompanied by a sidewalk,

before adding a randomly generated service time to the matrix. A synchronization cri-

teria will exist for all of these sidewalks. Additionally, sidewalks are randomly added

where no lanes exist between nodes that already exist in the network. The service time

66

of a sidewalk is generally set to be roughly 20% longer than that of the associated lane

(if such a lane exist), with an extra random term. Figure 7.4 shows the example road

network after the remaining sidewalks have been generated.

D

Figure 7.4: Road network after step 7, where the remaining sidewalks are added.

In step 8, two new matrices are generated, indicating the deadheading times for the

larger trucks, and the smaller vehicles, respectively. The larger trucks are able to traverse

only the lanes, whereas the smaller vehicles can deadhead both lanes and sidewalks. As

the main restriction to the speed at which lanes can be driven is the speed limit, all of

the vehicles have the same deadheading time between connections where there exist a

lane, in addition to it always being shorter than the associated service time.

Artificial depots (for both starting and ending) are added to the road network in

step 9. Graphically, the artificial depots are located to the left of the road network, only

connected to the leftmost node in the initial main roads, which always serve as the true

depot. Thus, instances with equal si ze parameter have the artificial depots at the exact

same location with respect to the graphical representation. The complete road network

in our example is illustrated in Figure 7.5, where the nodes marked with Ds and De

are the artificial start and end depot, respectively. This network corresponds to that in

instance 8N21A from Test set 1, which are discussed in Section 7.2.2.

Ds

D

De

Figure 7.5: The complete generated network, with the artificial depots included.

In step 10, the code for a graphical representation of the road network is constructed.

A function takes in all the data generated thus far and outputs a .txt-file with TikZ-

67

commands that can be used with the TikZ package - a powerful tool for including graphic

elements in LATEX, the typesetting system in which this thesis is written. If certain fea-

tures are unwanted in the road network, a graphical inspection is in this case paramount

to carefully oversee the matrices generated.

Final formatting of the matrices is performed in step 11. This is where the data are

written to files that serve as the input for the implementation of both the exact solu-

tion methods, and the genetic algorithm. Two final parameters, namely the number of

trucks and smaller vehicles, are included by hand. This is so, as we want to solve the

same data instance with different fleet sizes.

7.2 Test instances

The test instances used in this thesis are now described. Several sets of instances have

been generated, in order to serve different purposes. The characteristics of each in-

stance are described by the number of nodes in the underlying graph (including the

artificial depots), the number of lanes, sidewalks, and synchronization relations (the

Sync-column in the tables listing the instances), all of which are effectively determined

stochastically by the instance generator. Additionally, the sizes of both vehicle fleets,

|KL | and |KS |, which are chosen after the network is generated, are also included. The

parameters Legs and Max time (12×Leg s) refer to the number of legs that each route

is allowed to have and a predefined upper bound for the makespan, respectively, in the

arc-flow model. The Branch-and-Price algorithm uses the max time parameter, while

the genetic algorithm does not make use of these parameters. The values for Legs and

Max time are simply chosen manually by a heuristic not discussed further, due to the

scope of the thesis. It shall be mentioned though, that this heuristic has no guarantee of

making the number of legs optimal, nor feasible for the optimal solution with respect to

makespan. Initial testing, however, shows that Leg s and Max time are sufficiently large

for Test set 1, and cause no problem for the purpose of this thesis.

7.2.1 Test instances for parameter calibration

The genetic algorithm presented in Chapter 6 has several parameters that needs to be

calibrated in order to obtain the best outcome. In this thesis, we primarily study the

makespan objective, and thus the parameters should be calibrated thereafter. It should

come as no surprise that the heuristic’s parameters would be somewhat different for

other objectives, such as shortest total time (often referred to as the cost objective).

68

Details regarding the parameters, how the calibration is performed, and the outcome

of it, is given in the computational study in Chapter 8. However, to ensure an unbiased

setting of the parameters, a separate set of test instances was generated for this very

purpose. The main characteristics of the set, which is named Test set 1, are summarized

in Table 7.1.

Table 7.1: Characteristics of the test instances in Test set 1.

Test case Nodes Lanes Sidewalks Sync |KL | |KS |

27N135A 27 66 69 54 3 3

27N138A 27 71 67 57 4 4

51N304A 51 160 144 120 5 5

The set consists of three instances, all within the range of medium to large sized.

The smallest instance, with respect to the number of arcs, is also associated with the

smallest number of vehicles in the fleets. The second instance, which merely has three

more arcs than the smallest one, has an extra vehicle in both fleets. The largest instance,

which has more than twice the amount of arcs than its predecessors, also has the largest

fleets, with five vehicles to serve the lanes, and five vehicles to serve the sidewalks. Note

that since the number of vehicles in both fleets are equal for a given instance, and that

the number of lanes are roughly equal to the number of sidewalks; it is likely that it is the

fleet of smaller vehicles that is primarily the constraining factor for the makespan. This

is both due to the fact that sidewalks on average take longer time to service, and that

the sidewalks are more scattered (with no guarantee to be consecutively connected) in

the road network. This is a common feature for most instances in all of the sets gener-

ated to test our models. It could be argued that Test set 1 should involve other features,

such as networks with very few sidewalks, vehicle fleets of different size, or other ten-

dencies found in urban or residential areas. However, due to the number of parameters

that need be set, and in order to do so consistently, we found it reasonable to focus on

medium to large instances with a large degree of synchronization relations, and varied

fleets of significant size.

7.2.2 Test instances to compare the models

Following the parameter calibration in Chapter 8, we compare all of our available mod-

els. That is, not only the B&P and the genetic algorithm developed for this thesis are

tested, but also the mixed integer program (which is the implementation of the arc-

69

flow formulation). In order to do this we relax the U-turn constraints for the plowing

trucks, such that there is no turn restrictions for any of the vehicles. This is so, since lit-

tle effort has been given to formulate turn restrictions in the B&P algorithm. However,

we do argue that such a comparison between the models provides a good indication of

their performance differences. When relaxing these constraints, we refer to the models

as basic models. The test instances for this comparison study are summarized in Table

7.2.

Table 7.2: Characteristics of the test instances in Test set 2.

Test case Nodes Lanes Sidewalks Sync |KL | |KS | Legs Max time

8N21A 8 13 8 8 2 1 16 192

8N28A 8 14 14 12 2 2 16 192

9N27A 9 14 13 9 2 2 16 192

10N38A 10 19 19 15 3 3 16 192

11N33A 11 20 13 12 3 2 16 192

12N37A 12 23 14 14 3 2 20 240

13N46A 13 27 19 16 3 3 20 240

14N46A 14 28 18 16 3 3 20 240

15N44A 15 25 19 14 3 3 20 240

16N52A 16 27 25 17 3 3 20 240

Due to the complexity of the problem, these instances are of small to medium size,

incrementally increasing node by node (after which they are sorted). In order to study

the behavior of the different models for different scenarios of importance to the prob-

lem under study, the ratio of sidewalks to lanes varies, whereas the ratio of lanes to

nodes is about the same for all of the instances. The fleet sizes are also increasing as

the network increases, the largest instances having three vehicles in both fleets. It is ex-

pected that both of the exact implementations are able to solve the smallest instances

to optimality, while having a hard time finding good solutions for the largest instances.

7.2.3 Test instances for the further evaluation of the exact models

In order to further evaluate the performance of the best B&P model on medium sized

instances, Test set 3 was generated. The characteristics of the instances are listed in

Table 7.3. The number of nodes increases throughout the set. Three of the instances

contain more sidewalks than lanes, and so the number of smaller vehicles is greater

than the corresponding size of the fleet of plowing trucks. This is in order to increase

70

the probability that the optimal routes for the two vehicles types are about equal.

Table 7.3: Characteristics of the test instances in Test set 3.

Test case Nodes Lanes Sidewalks Sync |KL | |KS | Legs Max time

22N99A 22 56 43 36 3 3 26 312

22N108A 22 50 58 42 3 4 26 312

24N123A 24 61 62 50 4 5 30 360

26N116A 26 66 50 42 4 4 30 360

27N139A 27 68 71 55 4 5 30 360

As studying the exact models on Test set 2, it uncovered some interesting results for

dense graphs with many synchronization relations, Test set 4 was developed to further

examine how the exact models handle these. The characteristics of this set are pre-

sented in Table 7.4. All instances in Test set 4 have 11 nodes, where the number of arcs

increases throughout the set. To keep the instances as identical as possible, the num-

ber of vehicles is equal with respect to the fleet type, in the three first and the three last

instances.

Table 7.4: Characteristics of the test instances in Test set 4.

Test case Nodes Lanes Sidewalks Sync |KL | |KS | Legs Max time

11N52A 11 24 28 23 3 4 16 192

11N54A 11 25 29 25 3 4 16 192

11N55A 11 26 29 24 3 4 16 192

11N56A 11 25 31 25 4 5 16 192

11N59A 11 27 32 27 4 5 16 192

11N60A 11 28 32 28 4 5 16 192

7.2.4 Test instances for the genetic algorithm

To further evaluate the performance of the genetic algorithm on larger instances, Test

set 5 has been developed. The set includes nine instances, grouped into three subsets

where the graphs have the same number of nodes, and equal size of the vehicle fleets.

Although the parameters of the instance generator remained constant with respect to

each of these subsets, the number of arcs varies slightly throughout the instances. The

characteristics of Test set 5 are presented in Table 7.5.

71

Table 7.5: Characteristics of the test instances in Test set 5.

Test case Nodes Lanes Sidewalks Sync |KL | |KS |

51N373A 51 174 199 168 6 8

51N389A 51 183 206 180 6 8

51N406A 51 192 214 189 6 8

83N557A 83 332 235 210 8 8

83N562A 83 324 238 211 8 8

83N564A 83 328 236 214 8 8

123N829A 123 479 350 310 10 1 0

123N830A 123 477 353 303 10 10

123N836A 123 483 353 310 10 10

Chapter 8

Computational Study

In this chapter we present a computational study of all of the models introduced in

previous chapters. As we use the heuristic to warm start the Branch-and-Price algo-

rithm, we begin the computational study with a parameter calibration of the HGSDC

in Section 8.1. Section 8.2 provides a comparison of the exact models that have been

developed. The chapter is concluded in Section 8.3, with an in-depth examination of

the performance of the HGSDC.

The arc-flow model is implemented in version 1.24.04 of the commercial software

Xpress IVE, with version 3.10.0 of Xpress Mosel, and version 28.01.04 of Xpress Opti-

mizer. The B&P algorithm and the genetic heuristic are coded in Java and run in ver-

sion 2016.3.3 of IntelliJ IDEA, with version 1.8.0_111 of Java SDK. For the B&P, a library

to Xpress IVE with the same versions and features as described above is added. All of

the models are run on a computer with a 3.4 GHz Intel Core i7 processor and 32 GB of

RAM, running Windows 10 Education.

8.1 Parameter calibration for the genetic algorithm

The performance of metaheuristics commonly depends on the values of several input

parameters. This is especially true for evolutionary algorithms, such as the HGSADC

(and our version), due to the amount of parameters. Vidal et al. (2012) perform an ex-

tensive parameter calibration for the initial implementation of the heuristic, using a

meta-calibration approach to find the optimal values for the parameters. There is, of

course, no parameter setting that can be viewed as optimal for all instances. However,

instances with shared features may very well share ranges of the parameter values in

74

which the heuristic works well. Vidal et al. (2012) found that most of the parameters

are independent from one another, although they were calibrated together. We assume

that these independencies hold for our implementation as well, and so they are, with

inspiration drawn from the work of Borthen and Loennechen (2016), mostly calibrated

one by one. Nonetheless, all parameters subject to calibration were ranked according

to their expected contribution to the quality of the solution.

8.1.1 The parameters

The parameters in the HGSDC that have been subject to calibration are listed in Table

8.1, alongside their value after calibration, and a brief description of their function. The

parameters λ, µ, ηE du , I n and ηDi v affect the search space and the number of itera-

tions, and we therefore expect these to affect the performance most. Two parameters

are omitted from the parameter calibration process, as finely adjusting them barely will

influence the performance. These are discussed at the end of this section.

Table 8.1: Description of the parameters in the genetic algorithm that have been cali-
brated, and their associated value. Initial values are listed in parenthesis.

Parameter Value Description

µ 35 (25) Minimum population size

λ 75 (75) Number of offspring in each generation

I n 1,000 (-) Maximum number of iterations without improvement

ηDi v 0.1 (0.1)
Proportion of iterations of improvement prior to
diversification, such that I Di v = ηDi v × I n

ηE du 1 (1) Proportion of offspring subject to education

ηEl i te 0.3 (0.4)
Proportion of elite individuals, such that
nEli te = ηEl i te ×µ

ηC l ose 0.1 (0.2)
Proportion of close individuals evaluated for
distance calibration, such that nC l ose = ηC l ose ×µ

8.1.2 The process of calibration

In order to calibrate the parameters, they were ranked according to their expected con-

tribution to the makespan solution, prioritized in the order of their importance level.

That is, the most important parameter’s value is determined first, before the second pa-

rameter’s value is determined, and so on. In each step, the final value of the parameter

75

is set. Although the underlying argument for this type of calibration is the indepen-

dence of the parameters, we have concluded that four parameters should be calibrated

pairwise, due to their close relations. The ranking of the parameters was found through

preliminary testing, which is not conclusive evidence. Nevertheless, based on the inde-

pendence discussed, we find that this approach to ranking is sufficient for this thesis.

The ranking resulted in this sequence: ηE du , I n and ηDi v ,µ and λ,ηEli te , and ηC l ose .

The three instances in Test set 1 were used for calibration. Since the HGSDC is non-

deterministic, each of the instances were run five times with each of the proposed pa-

rameter settings. For a given setting, the average run time and the average makespan

for each instance is computed. As this is a relative calibration of parameters, the value

of the makespan is not of importance to this discussion. However, the relative differ-

ence between the solutions provides a good indication of which parameter setting that

is the better. Therefore, a gap (in terms of percentages) is computed between the av-

erage value and the best average value, with the following procedure: let api be the

average makespan value of parameter setting p for test instance i , and let ami n
i be the

best average solution (with respect to the makespan) for all parameter settings for test

instance i . The gap for instance i with parameter setting p, gpi , is calculated as

gpi =
api −ami n

i

ami n
i

×100%

Alongside the gap to the best average solution, the average computing time used by the

heuristic given parameter setting p is included in the results. For the assessment of the

parameter values, the gap is given priority over the computational times, as makespan

is the objective. When a choice between two settings is to be made, the computation

times may be taken into account. Anyhow, as these times are averages, they provide

a good indication of how the computational effort is linked to the values given to the

parameters.

8.1.3 The probability of education

The ηE du parameter is the probability each offspring has of going through the educa-

tion phase. The average gap and time for different values of ηE du are provided in Table

8.2. For all three instances, best makespan solution is when education is performed on

all offspring. That is, when ηE du = 1. When ηE du = 0, for all test instances, the heuris-

tic yields average solutions having roughly twice the makespan value of the average

76

solution when the parameter has a value of 1. This is expected, as the algorithm has

no mutation operator, which means that it is impossible to maintain diversity in the

population when no education is initiated. For a parameter value of 0.5, the average

gap is not that significant. However, we note that the average solution on the second

largest test instance is close to zero. Interestingly, the average computation time is in

this case more than doubled compared to the time for ηE du = 1. This is contrary to the

smallest and largest test instance, which have a larger gap for the average solution, but

pairwise roughly equal computation time. We note that although education is a costly

procedure, with respect to time, little doubt exists to whether all individuals should go

through this phase.

Table 8.2: Results from running the HGSDC on Test set 1 for three values of ηE du .

ηE du

Instance 0 0.5 1

27N135A 82.7%-90 2.1%-1,014 0%-906

27N138A 109.8%-490 0.1%-4,116 0%-1,785

51N304A 111.2%-422 5.3%-1,628 0%-2,000

8.1.4 Non-improving iterations and diversification factor

The number of generations without improvement that are allowed to pass before the di-

versification process is initiated, I Di v , is given by a proportion of the maximum number

of generations without improvement. That is, I Di v = ηDi v × I n , where ηDi v is the pro-

portionality constant and I n is the maximum number of consecutive non-improving

generations. Due to this dependency, these are calibrated together. To get an indication

on which values to test for I n , the algorithm was run with I n = 5,000 (a very high value)

and ηDi v = 0.1, several times. Data from one of the runs are plotted in Figure 8.1, which

shows the number of generations, as intervals, before an improvement is found. The

vast majority of the improvements are found within the first 100 generations, whereas

almost none is found after 500 generations have surpassed. We note that the figure only

shows one of several runs to measure this effect. However, the trend is very clear, yield-

ing nearly the same results in all runs on different instance sizes. Between 1,900−5,000

generations, no improvement was found in any of the runs, thus we conclude that there

is no point letting I n have a value of more than roughly 1,900. Testing multiple param-

eters in tandem is a time consuming procedure, quickly leading to many runs. For the

77

sake of the I n parameter, which one would in general want to be as high as possible (as

a lower parameter on average will be worse), we restrain ourselves to test for I n = 1,000

and I n = 2,000. It is clear that setting I n = 2,000 seldom yields any individuals im-

proving the solution. As 0.1×5,000 = 500, a forced diversification of the population is

initiated every 500 iterations, given that no improvement is seen. The bar at 601−700

generations in Figure 8.1 may indicate that the diversity measure is working, after some

generations of mating and education. We note that the histogram shares commonal-

ities with homogeneous Poisson processes (where the arrival rate of improvements is

independent on the past). True or not, initiating a diversification phase can be viewed

as "resetting" this process - although some burn-in time should be expected as the new

individuals often will be poor in terms of makespan. For the parameter test, the average

gaps and times for I n and ηDi v are shown in Table 8.3.

2

4

6

0-
10

0

10
1-

20
0

20
1-

30
0

30
1-

40
0

40
1-

50
0

50
1-

60
0

60
1-

70
0

70
1-

80
0

80
1-

90
0

90
1-

10
00

10
01

-1
10

0

11
01

-1
20

0

12
01

-1
30

0

13
01

-1
40

0

14
01

-1
50

0

15
01

-1
60

0

16
01

-1
70

0

17
01

-1
80

0

18
01

-1
90

0

19
01

-5
00

0

294

7

2

4

2

1

4

1 1 1 1 1 1

Number of generations passing prior to makespan improvement

N
u

m
b

er
o

fo
cc

u
rr

en
ce

s

Figure 8.1: Histogram showing the number of generations prior to makespan improve-
ment for an example run of the genetic algorithm.

The average computation time is in general considerably higher for I n = 2,000 than

for I n = 1,000. This is not unexpected, as the search not only has a higher minimum

number of iterations, but also because the search may find better solutions later than

what is possible with I n = 1,000. The best solution is found for I n = 1,000 and ηD IV =
0.1. This means that the algorithm should diversify every 100 non-improving iteration.

This is the same number of non-improving generations before diversifying as for I n =

78

2,000 and ηD IV = 0.05. It is therefore surprising that this combination of parameters

has a higher objective gap, as having a higher I n implies having a higher number of

total iterations. However, we note that the objective gap from the latter combination

of parameters is under 1% for all test instances, which we view as insignificant. We

conclude that increasing the number of I n beyond 1,000 also increases the solution

time, and has little effect on the objective gap. The parameters are therefore chosen to

be I n = 1,000 and ηD IV = 0.1.

Table 8.3: Results after running the HGSDC on Test set 1 for different values of I n and
ηDi v .

ηDi v

Instance I n 0.05 0.1 0.4 0.7

27N135A

1,000 2.4% - 799 0% - 1,097 2.4% - 1,682 2.7% - 978

2,000 0.1% - 1,447 0.9% - 2,989 3.0% - 1,080 3.1% - 3,667

27N138A

1,000 2.1% - 1,955 0% - 2,081 2.1% - 2,663 0.6% - 2,256

2,000 0.9% - 2,382 5.0% - 1,906 4.3% - 3,870 0.2% - 2,623

51N304A

1,000 1.7% - 2,578 0% - 1,912 0.1% - 2,640 7.8% - 2,008

2,000 0.6% - 5,071 2.9% - 4,998 1.2% - 6,171 2.5% - 4,389

8.1.5 The population and generation size

As both the optimal population size and the generation size adjust the size of the pop-

ulation, they are to some degree dependent on one another, and we have chosen to

perform a coordinated calibration of the two parameters. The objective gap between

the average solutions, and the average running time for a set of predefined parameter

values can be found in Table 8.4. We see that µ= 35 and λ= 75 yield the best solutions

for all of the instances in Test set 1, and they are therefore selected as the parameter

values. We note that the average running times for the algorithm are very fluctuating,

where the trend is increasing computation time with increasing λ. This should be ex-

pected, as a higher λ-value linearly increases the amount of education in each iteration

- which on average is a significantly time consuming procedure.

79

Table 8.4: Results after running the HGSDC on Test set 1 for a range of values of µ and
λ.

µ

Instance λ 15 25 35 50

27N135A

25 3.6%-318 3.3%-306 3.6%-216 5.6%-178

50 11.5%-173 2.5%-3,996 1.6%-539 0.1%-983

75 4.2%-851 0.2%-930 0%-1,062 3.4%-553

100 1.5%-979 0.1%-581 6.1%-948 2.1%-428

27N138A

25 9.0%-352 6.8%-429 8.9%-330 8.8%-266

50 13.8%-1,008 4.1%-2,088 5.0%-675 10.4%-440

75 14.8%-1,190 9.2%-1,331 0%-1,998 2.5%-1,368

100 6.0%-1,056 5.9%-4,220 6.9%-1,967 4.2%-1,104

51N304A

25 13.2%-581 6.6%-693 12.3%-813 8.2%-1,110

50 13.3%-1,371 7.6%-1,397 4.8%-2,693 4.3%-2,315

75 10.2%-1,860 6.7%-2,388 0%-2,238 9.5%-2,451

100 10.3%-2,468 14.7%-2,568 2.7%-2,300 4.6%-2,340

8.1.6 The proportion of elite individuals

Table 8.5: Results when running the HGSDC on instances in Test set 1 for different val-
ues of ηEli te .

ηEl i te

Instance 0.2 0.3 0.4 0.5 0.6

27N135A 2.4%-640 0%-587 1.8%-942 7.0%-497 1.3%-915

27N138A 0.2%-1,432 0%-1,965 1.7%-1,835 3.9%-4,560 1.7%-1,786

51N304A 6.4%-1,582 0%-1,816 3.2%-2,188 3.4%-2,018 1.3%-2,324

The ηEl i te parameter is a measure of the importance of regular fitness versus the im-

portance of biased fitness. A higher parameter value signals that regular fitness should

be given a higher weight than biased fitness. Table 8.5 lists the results from the com-

putations with discrete values of ηEl i te between 0.2 and 0.6. For all of the instances,

the best average solution is obtained with ηEli te = 0.3, seemingly increasing when ad-

justed in any direction. Again, the average running times are to some extent fluctuat-

80

ing, in general increasing for larger test instances. For the two largest instances, the

best parameter value with respect to the average makespan value, also yields the lowest

computation time. Due to the general fluctuation of the computation times, we view

this as insignificant, although noting that on average, the computation time is low for

ηEl i te = 0.3. All in all, there is no doubt that these results indicate that ηEl i te should be

given a value of 0.3.

8.1.7 The neighborhood factor

Table 8.6: Results when running the HGSDC on Test set 1 for different values of ηC l ose .

ηC l ose

Instance 0.1 0.2 0.3 0.4 0.5

27N135A 0%-1,194 4.8%-1,252 8.8%-1,300 7.9%-1,289 3.1%-1,231

27N138A 1.5%-1,815 0%-1,789 13.5%-2,031 6.9%-1,912 3.3%-1,848

51N304A 0%-2,283 6.9%-2,441 4.3%-2,382 3.7%-2,367 8.5%-2,477

The fraction of the closest neighbors each individual is compared with, when as-

sessing to which degree the individual is contributing to the diversity of the population,

is described by the parameter ηC l ose . A lower ηC l ose increases the importance of the

individual having a large distance to its nearest neighbors relative to the importance

of being different to distant neighbors. The average gap and time for different values

of ηC l ose from the calibration runs, can be found in Table 8.6. Seen from the table,

ηC l ose = 0.1 yields the best solutions for two of the three instances, while ηC l ose = 0.2

yields the best solutions for one instance. We view the increase in the gaps of the av-

erage makespan solutions when increasing the parameter value as significant. The av-

erage computation time, however, is about equal for all of the tested parameter values.

Little doubt exists to whether this parameter should be low, which is why ηC l ose = 0.1 is

chosen for the HGSDC.

8.1.8 Parameters not subject to calibration

All but two parameters have been mentioned in the previous sections, as they have been

omitted from the calibration altogether. The maximum runtime is a constant which

indicates at what time the HGSDC shall terminate, if it has not already terminated. This

time limit was never reached during the calibration phase, and is not expected to be

81

reached at any point running the heuristic in instances generated for this thesis. Note

that, for the sake of the results in this thesis, we do not want the heuristic to reach this

upper time limit. Therefore, if the test instances get sufficiently large, the maximum

runtime parameter should be given a higher value.

The problem of prohibiting U-turns has been solved by adding a cost (in terms of

time units) to the individuals that include U-turns. In the case of the MFARPOS, where

we want to disallow all U-turns completely, a sufficiently low cost is equivalent to al-

lowing infeasible solutions. However, when increasing the cost of U-turns by multiple

orders of magnitude, the probability for U-turns to survive in the population is so low

that it is practically equivalent to removing them. Therefore, the static value of 1,000

time units is added to the makespan for each U-turn in the larger vehicles’ routes. Mak-

ing this value larger may influence the burn-in time (the time it takes to remove all

solutions with forbidden turns). However, in a preliminary test, with a U-turn cost of

1,000, all solutions with U-turns ended up having a lower fitness value than those with-

out U-turns. Note that putting a price on U-turns only is considered in the final section

of the computational study.

82

8.2 Exact solution approaches

In this section we examine how the different exact solution methods perform. Three

variations of the B&P algorithm are considered, where the only difference is the starting

point of the column generation in the root node. The cold start model means that the

column generation starts without any preprocessing, or columns added. When refer-

ring to warm start without columns, the basic version of the HGSDC heuristic is initially

run to find a solution to the problem, thus tightening the value of T M ax in the algorithm

- decreasing the maximum time of a label. Warm start with columns uses both the up-

per bound for the makespan, and all of the paths (columns) generated by the heuristic

whose time are shorter than or equal to the heuristic solution. The B&P algorithm with

the best column generation approach is further compared to the MIP model developed

prior to this thesis, in order to evaluate the significance of the method. Test set 2, 3,

and 4 are used for the exact models. A time limit of 36,000 seconds was set for all of the

runs. Note that for the warm start approaches, the computation time of the heuristic is

included in the total time. It is, however, only for the smaller instances that this time is

relatively significant.

8.2.1 Comparing the column generation approaches

The three models were initially run on Test set 2. The computational results from these

runs can be found in Tables A.1, A.2, and A.3 in the appendix. A summary is provided in

Table 8.7. The Total time column shows the total time of running the algorithm before

termination. IP gap measures the percentage gap from the best integer solution found

within the respective algorithm, to the best known dual bound. That is, IP gap = z I P−z∗
z∗ ,

where z I P is the best integer solution found by the respective algorithm, and z∗ is the

best known dual bound for the instance, rounded up to the nearest integer. Note that

for all instances except 16N25A, the dual bound is optimal. Lower gap is the percent-

age gap from the dual bound obtained in the model to the best known dual bound;

as calculated by Lower gap = z∗−zLB

z∗ , where zLB is the best dual bound obtained by

the model, rounded up to the nearest integer. Root gap refers to the percentage gap

from the root node solution of the model to the best known dual bound. It is given

by Root gap = z∗−zRN

z∗ , where zRN is the root node solution, rounded up to the nearest

integer.

83

Table 8.7: Summary of the computational results from running the B&P algorithms on Test set 2. The asterisk indicates that 16N52A is
omitted from the averages, as some models failed to find a root node solution for this instance within the time limit. n/a indicates that the
algorithm did not manage to find the corresponding result within the time limit. The best average values are marked in bold.

Cold start Warm start without columns Warm start with columns

Instance Total IP Lower Root Total IP Lower Root Total IP Lower Root

time(s) gap(%) gap(%) gap(%) time(s) gap(%) gap(%) gap(%) time(s) gap(%) gap(%) gap(%)

8N21A 2 0 0 0 44 0 0 0 43 0 0 0

8N28A 9 0 0 0 590 0 0 0 430 0 0 0

9N27A 162 0 0 1.25 269 0 0 1.25 149 0 0 1.25

10N38A 1,211 0 0 0 501 0 0 0 2,845 0 0 0

11N33A 2,292 0 0 10.42 819 0 0 6.25 761 0 0 6.25

12N37A >36,000 8.11 1.80 6.31 12,317 0 0 0 >36,000 5.41 0 0

13N46A >36,000 6.67 2.22 2.22 >36,000 4.44 0 0 >36,000 5.56 0 0

14N46A >36,000 29.03 5.38 5.38 >36,000 5.38 1.08 1.08 >36,000 4.30 1.08 1.08

15N44A >36,000 8.04 18.75 18.75 >36,000 0 3.57 4.46 >36,000 0 3.57 4.46

16N52A >36,000 n/a n/a n/a >36,000 0.76 n/a n/a >36,000 0.76 2.27 2.27

Average* >16,408 5.76 3.13 4.92 >13,616 1.09 0.52 1.45 >16,000 1.70 0.52 1.45

84

A general observation in all of the models, is that the majority of the computation

time is spent in the subproblems. This is clear from Tables A.1, A.2, and A.3. Our inter-

pretation of this results is that the dominance criteria is not working as well as antici-

pated, such that a vast amount of labels are generated and evaluated in the subprob-

lems. This is a problem in order to prove that the current solution of the RMP is opti-

mal (within the given conditions). In order to do that, the subproblems have to iterate

through all of the undominated labels, and prove that none of them have a negative re-

duced cost, all of which is very time consuming. When comparing the time each model

uses in the subproblems, it is clear that tightening the value of T M ax by including an

upper bound on the makespan will cut the time spent in the subproblems. The time

resource for the labels is tighter in those cases, which reduces the amount of feasible la-

bels. Indeed this also underlines the value of the heuristic solutions. Also, as should be

expected, a tighter T M ax provides a better root node solution, as it restricts the length

of the routes (in terms of time units), and thereby restricts the solution space for the LP

relaxation.

When warm starting the columns generation, the B&B tree grows with a smaller rate

than that of the cold start approach, and the total number of columns generated is cor-

respondingly smaller (roughly half as many as the cold start). It is clear that the number

of nodes generally increases with increasing instance size. However, when comparing

the warm start approaches, the number of nodes with respect to the instance size seems

more fluctuating when including the columns from the heuristic. Thus, the time used

to prove optimality in the nodes varies significantly from instance to instance. In gen-

eral, the tree may become large on instances where the algorithm fails to reach, and

prove, optimality. In order for the tree to grow, there must exist columns with fractional

value in the optimal solution of the upper nodes. Thus, it would seem that further work

can be put into the branching strategy to lessen the number of nodes in the tree.

For the larger instances, a significant portion of the time is spent trying to find new

integer solutions with the known columns. Although being time consuming, the so-

lutions are seemingly good, with a larger bound of 5.56% from the best known dual

solution.

Throughout all models, it is clear that as the size of the test instance increases, al-

though marginally, the computational effort increases significantly. However, all ver-

sions are able to solve and prove optimality in the first half of the test set, where the

smallest instances are solved within a fraction of the time limit. We note that instance

11N33A may be viewed as an outlier among the instances. For all models, the root node

85

solution for this instance is very poor (ranges from 6.25% to 10.42% gap to the optimal

value); and for the warm start approaches, the heuristic solution is weak (8.33% gap).

The computational results indicate that warm starting the column generation, both

with and without columns, significantly improves the Branch-and-Price algorithm. It

is able to find better integer solutions on the larger half of the test set, compared to the

cold start approach. On the other hand, it is hard to argue that adding the columns

provided by the genetic algorithm to the B&P algorithm is very valuable. This method is

able to find the best integer solution in one instance, in addition to solving the root node

of the largest instance within the time limit. When taking the average over all instances,

the better model is that which starts only with an upper bound on the makespan value.

Additionally, this is on average the best model to find integer solutions to the test set,

with an average gap of 1.06%, compared to the second warm start approach, which

has a gap of 1.60% (note that these numbers are not included in the table as they are

averages over all ten test instances). As solutions with the best makespan objective are

the primary goal of our study, we continue with this version of the column generation

in the B&P algorithm for the remaining sections in the computational study of exact

models.

8.2.2 Comparing the path-flow model and the arc-flow model

In Table 8.8, we present results from the implementation of the arc-flow model, along-

side the obtained results from the B&P algorithm with the warm started column gen-

eration (with no columns added), when solving the instances in Test set 2. As seen

from the computational results, the arc-flow model proved optimality for seven test

instances, whereas the path-flow model proved optimal solution for six (it found the

optimal integer value in test instance 15N44A as well, but this was not proved within

the time limit).

Comparing the gap of the root node solutions for the two different models, the aver-

age value for the path-flow formulation (1.53%) is significantly closer to the best known

dual solution than the arc-flow model (5.95%). Barnhart et al. (1998) point out that such

a reformulation, where the number of constraints in the master problem is fewer, al-

though with increasing number of variables, may yield tighter LP relaxations. We there-

fore expected this effect in our problem as well.

On the larger test instances in Test set 2, the arc-flow model outperforms the path-

flow model, when it comes to finding the optimal solution within the time limit. The

arc-flow model proved optimality in three of the four largest instances, with an IP gap

86

Table 8.8: Key results from running the arc-flow model and the path-flow model on
Test set 2. Asterisk indicate that the associated value is taken from the warm start with
columns (as they would be equal) in order to get a better basis of comparison of the root
node solutions.

Arc-flow model Path-flow model

Instance Total
time(s)

IP
gap(%)

Root
gap(%)

Total
time(s)

IP
gap(%)

Root
gap(%)

8N21A 2 0 0 44 0 0

8N28A >36,000 1.15 0 590 0 0

9N27A 26 0 1.25 269 0 1.25

10N38A >36,000 3.90 0 501 0 0

11N33A 66 0 10.42 819 0 6.25

12N37A 93 0 6.31 12,317 0 0

13N46A 5,538 0 2.22 >36,000 4.44 0

14N46A 24,590 0 5.38 >36,000 5.38 1.08

15N44A 3,257 0 18.75 >36,000 0 4.46

16N52A >36,000 0.76 15.15 >36,000 0.76 2.27*

Average >14,157 0.58 5.95 >15,854 1.06 1.53

of 0.76% in the largest, whereas the path-flow failed to prove optimality in all of them

(and not even solved the root node in 16N52A). As discussed in the previous section, the

computation time for the B&P algorithm increases rapidly when the number of nodes

in the graph increases.

The models are tested on yet another set of larger instances, namely Test set 3. The

results are summarized in Table 8.9. Best IP sol is the makespan value of the test set

when solved by the respective model, and the numbers inside the brackets show the

heuristic solutions for the path-flow model. Root sol is the root node solution rounded

up to the nearest integer. The path-flow model is unable to solve the root node to op-

timality in all of the instances, and thereby improve its heuristic solution. The arc-flow

model, on the contrary, manage to find an integer solution on the two smallest of the

five instances, although the IP solution on test instance 22N108A is very poor, with 46%

gap to the heuristic solution. We conclude, with special emphasis on the path-flow ap-

proach, that these models are very weak for instances above roughly 20 nodes and 100

arcs.

A final observation from Table 8.8 is that the arc-flow model is unable to prove opti-

mality in test instance 8N28A and 10N38A, two of the instances with the lowest number

87

Table 8.9: Key results from running the best warm started column generation model
and the arc-flow model on Test set 3. Numbers in brackets show the heuristic solution
for the path-flow model. n/a indicates that the algorithm did not manage to find the
corresponding result within the time limit.

Arc-flow model Path-flow model

Instance Total
time (s)

Best IP sol Root sol Total
time (s)

Best IP sol Root sol

22N99A >36,000 230 187 >36,000 233 (233) n/a

22N108A >36,000 312 173 >36,000 213 (213) n/a

24N123A >36,000 n/a 174 >36,000 202 (202) n/a

26N116A >36,000 n/a 188 >36,000 246 (246) n/a

27N139A >36,000 n/a 162 >36,000 251 (251) n/a

Ds

D 1 2

De 3 4 5

Figure 8.2: Illustration of the graph de-
scribing the road network in test in-
stance 8N28A. Solid and dotted arrows
represent lanes and sidewalks, respec-
tively.

Ds 1 2

D 3 4

De 5 6 7

Figure 8.3: Illustration of the graph de-
scribing the road network in test in-
stance 10N38A. Solid and dotted ar-
rows represent lanes and sidewalks, re-
spectively.

of nodes, within the time limit of 36,000 seconds. This is so, even if the gap from the

root node solution to the optimal solution is 0%. The road networks for these instances

are presented in Figures 8.2 and 8.3. As one can clearly see in the graphical represen-

tations, these graphs are very dense, with synchronization constraints associated with

almost every lane. As the path-flow model solves these instances to optimality within

600 seconds, this may be an indication that there is a significant difference on the qual-

ity of the models on such graphs. We therefore continue our comparison study on Test

set 4, which comprises instances where the road networks are small and dense, with

many synchronization constraints.

Table 8.10 provides a summary of the results from running the arc-flow model and

the path-flow model on Test set 4. Best IP sol (%) refers to the percentage gap be-

tween the best integer solutions obtained with the models. It is calculated according

88

to Best IP sol (%) = z I P
AF −z I P

PF

z I P
PF

, where z I P
AF and z I P

PF are the best integer solutions of the arc-

flow and path-flow model, respectively. Root sol (%) is the percentage gap between the

root node solutions in both models, and is calculated as Root sol (%) = zR
PF −zR

AF

zR
PF

, where

zR
AF and zR

PF are the rounded root node solutions of the arc-flow and path-flow model,

respectively. A positive value of Best IP sol (%) and Root sol (%) indicate that the path-

flow model found the lowest integer solution, and the tightest root node solution, re-

spectively.

Inspecting the results clearly reveal that the implementation of the arc-flow formu-

lation does not perform well, relative to the path-flow model. In all instances included

in the set, the best integer solution is given by the path-flow model, leaving the average

gap of the best integer solution at 13.35%. As the gap for all instances is > 5%, which is

a lower bound for the gap to the optimal solution, this implies that the arc-flow model

in all instances did not even come close to finding the optimal solution. The root node

solution, on the contrary, is insignificantly (< 1% difference on average) in favor of the

path-flow model. We also note that for all but two instances, the path-flow formula-

tion was able to improve the makespan solution provided by the heuristic. In instance

11N60A, this improvement was 15%, indicating not only that the heuristic provided a

not-so-good solution, but also that the path-flow model’s ability to perform such an

improvement even when the value of T M ax is far from the optimal makespan solution.

Table 8.10: Results from running the arc-flow model and the path-flow model on Test
set 4. Numbers in brackets show the heuristic solution for the path-flow model.

Arc-flow model Path-flow model Difference

Instance Total
time(s)

Best
IP sol

Root
sol

Total
time(s)

Best IP
sol

Root
sol

Best IP
sol(%)

Root
sol(%)

11N52A >36,000 94 80 >36,000 88 (91) 80 6.82 0

11N54A >36,000 99 82 >36,000 94 (94) 83 5.32 1.20

11N55A >36,000 104 84 >36,000 96 (96) 84 8.33 0

11N56A >36,000 91 66 >36,000 76 (79) 67 19.74 1.49

11N59A >36,000 91 64 >36,000 85 (86) 66 7.06 3.03

11N60A >36,000 93 63 >36,000 70 (82) 63 32.86 0

Average 13.35 0.95

We motivate the difference of the quality of the models by the following reasoning.

In the decomposed model (path-flow model), the routes in the SPs are made with no

concern to the synchronization criteria, as the SPs only get dual values from the syn-

89

chronization constraints in the RMP. In effect, these dual values make the SPs prioritize

some arcs above others. This stands in clear contrast to the arc-flow model, where syn-

chronization constraints are complicating the structure of the formulation, and must

be continuously accounted for when the routes are being constructed.

8.2.3 Summarizing the results for the exact models

To summarize the computational study of the exact models, we conclude from the re-

sults on Test set 2 that the path-flow model yield better root node solutions than the

arc-flow model on small instances. For the medium sized instances in Test set 3 the

path-flow model failed to reach a root node solution within the time limit (and the arc-

flow model fail to reach an IP solution in 3 of 5 instances). Thus, it is clear that the size

of the instances is in the limit of what these models can handle. As seen from the com-

parison of the different column generation approaches for the B&P algorithm, the value

of T M ax influences the quality of the root node solution significantly. Therefore, it can

be the case that the maximum parameter values simply were not tight enough when

running Test set 4, making the observed difference in the root solution biased towards

the MIP’s.

The perhaps most interesting result from this comparison is the fact that the warm

started column generation approach is paramount to the arc-flow model on instances

with small and dense road networks with many synchronization constraints. Thus, we

can conclude that the decomposed formulation is very sensitive to the number of nodes

in the instance graph, whereas the compact formulation is more sensitive to the num-

ber of arcs (often associated with many synchronization relations). However, in order

to find good solutions for MFARPOS on realistic instances, heuristic solution methods

are needed.

90

8.3 Evaluating the genetic algorithm

The rest of the computational study is concerned with an evaluation of the HGSDC.

The Basic HGSDC refers to the version of the heuristic that has been used in all previ-

ous analysis (as the pre-solver for the warm start approaches). We emphasize that this

model does not have adaptive diversity control, as the framework presented by Vidal et

al. (2012), which adaptively changed the number of infeasible solutions allowed in the

population, do not apply for the MFARPOS. HGSDC with adaptiveness refers to the ge-

netic algorithm including the adaptiveness measure we proposed in Chapter 6.2.1 for

this specific problem. Initial findings, which are the results obtained when using the

Basic HGSDC to warm start the column generation models, are promising. In this sec-

tion, we evaluate the performance of the HGSDC on these instances, now with ten runs

on each instance in Test set 2. The heuristic is further tested on the largest instances

generated, namely Test set 5. The stability of the heuristic and U-turn constraints are

also considered in this section.

8.3.1 Testing the heuristics on small to medium sized instances

For each instance in Test set 2, both the Basic HGSDC and the HGSDC with adaptive-

ness were run a total of ten times each. Key results are presented in Table 8.11. As a

measure of stability, the relative standard deviation (RSD) is used. That is, RSD = Sx
x̄ ,

where Sx is the sample standard deviation given by Sx =
√∑

(xi−x̄)2

N−1 , where N is the sam-

ple size (10), and x̄ is the sample mean, which is given by x̄ =
∑

xi
N . The sigmas indicates

that summations include all of the makespan values, given by xi , where i = {1, . . . , N }. In

the table, the RSD is multiplied by 100, thus providing the size of the standard deviation

compared to the mean value, in terms of percentages. The Gap-column represents the

percentage deviation to the best known dual solution of the instance, and is calculated

by the same formula as the IP gap for the exact models. In the Average-columns, the gap

refers to the gap of the average solution to the best dual bound known. The maximum

run time for this test set is 6,000 seconds.

91

Table 8.11: Summary of the computational results from running the Basic HGSDC and HGSDC with adaptiveness on Test set 2. The best
average values are marked in bold.

Basic HGSDC HGSDC with adaptiveness

Average Best Average Best

Instance Gap(%) Time(s) Gap(%) Time(s) RSD ×100 Gap(%) Time(s) Gap(%) Time(s) RSD ×100

8N21A 0 33 0 33 0 0 60 0 60 0

8N28A 1.15 447 0 441 1.69 3.68 243 0 297 2.57

9N72A 3.50 376 0 504 3.54 3.37 220 0 234 3.61

10N38A 8.57 445 5.19 780 3.20 10.91 307 5.19 654 2.98

11N33A 4.69 267 0 473 5.14 6.67 186 0 238 3.94

12N37A 6.67 310 0 659 6.32 8.11 231 0 351 5.10

13N46A 9.89 1,057 4.44 1,221 3.91 13.33 513 2.22 1,047 4.09

14N46A 7.42 1,020 5.38 1,196 1.10 8.82 654 1.08 964 3.99

15N44A 5.71 642 3.57 986 1.89 8.21 406 3.57 645 3.19

16N52A 3.91 630 0.76 886 3.10 10.91 538 4.55 842 4.18

Average 5.15 523 1.93 718 2.98 7.40 336 1.66 533 3.36

92

Five of the instances in Test set 2 were solved to optimality with both versions of the

heuristic. The smallest instance, 8N21A, was solved to optimality in all 20 runs. Thus,

we conclude that below a certain limit, the search space is small enough to find the

optimal solution, whatever the starting point of the heuristic. For the basic version of

the heuristic, the gaps of the average solutions to the best known dual bounds are on

average 5.15%, while the average gap of the best solutions within each of the ten respec-

tive runs, is 1.97%. For the adaptive version, the average gap of the average solutions is

higher, with a value of 7.40%, while the average gap of the best solutions is lower, with a

value of 1.66%. The difference may be due to the low amount of time spent diversifying

for the version that adaptively changes the nEli te parameter. If nEl i te increases too fast,

the search in many runs may converge to a "bad" local optimum. The average value

can therefore be worse than if diversification was valued more throughout the genera-

tions, which would lead to more exploration of the solution space. On the off-chances

where the region of convergence is near the optimal solution, having a high nEl i te is

better. This increases the importance of elitism when an increasing number of gener-

ations have passed, and focuses the search deeper into this region of the search space

by allowing more solutions with similarities, thus leading to better solutions. Such a

statement should of course be backed by a statistical analysis, or a deeper inspection of

the behavior of the heuristic. However, we view this result as quite weak, and leave it

with the above comments.

When inspecting elements in Table 8.11 further, one can clearly see a trend in the

gaps of the average solution in each instance. For all but instance 9N72A, the gap of the

average solution is smaller for the Basic HGSDC heuristic. As the same denominator is

used to calculate the gaps for both versions of the heuristic, this result can only be true

if the average values are equally better for the Basic HGSDC. A simple statistical analysis

can be carried out on this observation. Let the null hypothesis, H0, be that the mean

(average) values should be equal. We can now compute the p-value that eight or more

out of the ten instances would yield a better mean in favor of the Basic HGSDC (we use

eight out of ten, not eight out of nine to favor the uncertainty). If H0 is true, then there

should in all instances be a maximum 50% chance that the best average gap should be

for any of the two heuristics (since we do not know the probability of the means being

equal). Note that this holds no matter what the respective distributions or standard

deviations are. As the instances are independent, then in the limit, the outcomes follow

a binomial distribution with a probability of 0.5 of the Basic HGSDC having the smallest

93

mean. Thus, a strict upper limit for the p-value can be computed as

10∑
k=8

10!

(10−k)!k !
0.5k (1−0.5)10−k = 0.0547

This indicates that H0 would not been rejected in a 95% confidence interval. However,

we note there is a high probability that the Basic HGSDC is in fact better on average.

With respect to the increase in the gaps when increasing the graph size of the net-

work, it is reasonable that this should happen - although unclear to what extent. We

now investigate whether the spread, when scaled by the mean, increases when increas-

ing the size of the road network. Four linear regressions have therefore been carried

out. Figure 8.4 is the linear regression plot of the RSD×100 as a function of nodes for

the Basic HGSDC, where Figure 8.5 is the linear regression plot of the RSD×100 as a

function of arcs in the graph. Figure 8.6 and Figure 8.7 show similar regressions for the

HGSDC with adaptiveness. In all cases, the regression is carried out by minimizing the

sum of the squared errors. By mere inspection, it is clear that the RSDs are more scat-

tered for the Basic HGSDC, making the regression line more sensitive to the outliers.

In fact, the slope of the regression line is negative in Figure 8.4 and Figure 8.5 if one

removes the data point corresponding to instance 8N21A. This is not the case for the

HGSDC with adaptiveness. For these plots, we simply note that this is so, as our anal-

ysis show that the data available is not enough to show a statistical significance either

way. This is mainly due to the fact that although the RSD is on average very close for the

two heuristics, the data points for the Basic HGSDC deviate more from the regression

line.

Another interesting observation from Table 8.11 is recognizing that the computation

time for all of the best makespan solutions, is longer than the average computation

time. This is true in nine out of ten instances for the basic version, and in all instances

for the version with adaptiveness. This may be an indication that the solution space for

this problem is complex, and that improvements to find the best solution generally may

come after many generations, or iterations without improvement, and thus increasing

the computation time.

With respect to the fleet sizes in the instances, we note that both versions are able to

solve all instances with five or less vehicles to optimality. None of the instances with six

vehicles (which is the maximum for this set) was solved to optimality. When there are

nearly as many synchronization relations as there are lanes, and fewer smaller vehicles

than plowing trucks, the importance of finding a good route for the plowing trucks is

94

8 10 12 14 16

0

2

4

6

Number of nodes

R
SD

×1
00

Figure 8.4: Regression plot of the rel-
ative standard deviation as a function
of the number of nodes for the Basic
HGSDC. Black dots indicate data points,
whereas the blue line is the regression
line.

20 30 40 50

0

2

4

6

Number of arcs

R
SD

×1
00

Figure 8.5: Regression plot of the rel-
ative standard deviation as a function
of the number of arcs for the Basic
HGSDC. Black dots indicate data points,
whereas the blue line is the regression
line.

8 10 12 14 16

0

2

4

6

Number of nodes

R
SD

×1
00

Figure 8.6: Regression plot of the rel-
ative standard deviation as a function
of the number of nodes for the HGSDC
with adaptiveness. Black dots indicate
data points, whereas the blue line is the
regression line.

20 30 40 50

0

2

4

6

Number of arcs

R
SD

×1
00

Figure 8.7: Regression plot of the rela-
tive standard deviation as a function of
the number of arcs for the HGSDC with
adaptiveness. Black dots indicate data
points, whereas the blue line is the re-
gression line.

less critical. As there are both more plowing trucks, and the time used to plow a lane

is less than the corresponding sidewalk, many routes for the plowing trucks are very

good and may even be candidates for optimal solutions. In effect, this should make the

search primarily a search for good routes for the smaller vehicles. When the number

of smaller vehicles is the same as the number of larger vehicles, the probability that

the plowing trucks set the makespan increases. This, in turn, increases the importance

95

of finding good routes for vehicles of both fleets, decreasing the number of optimal

solutions, and most likely the probability of finding one of them. As there are three

vehicles in both fleets in all of the five instances that were not solved to optimality by

the heuristic, this effect may be significant.

8.3.2 Testing the heuristics on large instances

In this section follows an evaluation of the two version of the heuristic when solving the

instances in Test set 5, a set containing medium to large instances. Due to the size of

the graphs, no lower bound was possible to obtain for any of these instances. Thus, the

following discussion is primarily centered around the solutions (in terms of makespan

value), the time to obtain the solutions, and the measure of stability as introduced in

the previous section. All of the instances were solved a total of five times per model.

The key results obtained from running the two versions of the heuristic on Test set 5

are summarized in Table 8.12. The Solution column indicates the solution in terms

of makespan, whereas the RSD×100 is again the measure used to analyze the spread

of the solutions. To make sure the searches would be capable of terminating within

the maximum run time limit, the maximum run time on these instances was further

increased to 10,000 seconds.

It is clear that on the larger instances, the HGSDC with adaptiveness perform just as

well as the Basic model. It has the best makespan solution and the best average solution

in five out of the nine instances, with seemingly no preference regarding instance size.

In contrast to the findings in the previous section, the spread of the solutions are in gen-

eral better for the adaptive version of the heuristic on these instances. This is especially

noticeable in the runs of instance 51N373A, in which the solutions have a remarkably

low spread value of 2.33%. This stands in great contrast to the basic version, where the

sample standard deviations is 11.69% of the sample mean. The heuristic with adap-

tiveness has the lowest relative spread in six out of the nine instance, often being much

lower than its counterpart. It is tempting to carry out a statistical analysis to test the

hypothesis that the spread is different for the two models. This should be performed

with a χ-squared test. However, we would have to assume that the makespan solutions

are normally distributed, which is not feasible to verify with only five data points. Ad-

ditionally, the associated distribution of the test statistic will have too few degrees of

freedom to yield any significant results.

96

Table 8.12: Summary of the computational results from running the Basic HGSDC and HGSDC with adaptiveness on Test set 5. The asterisk
marks that the run terminated as result of surpassing the maximum run time. We note that this happened only on the respective run of the
heuristic.

Basic HGSDC HGSDC with adaptiveness

Average Best Average Best

Instance Solution Time(s) Solution Time(s) RSD ×100 Solution Time(s) Solution Time(s) RSD ×100

51N373A 523 2,066 437 2,596 11.69 454 3,676 440 2,308 2.33

51N389A 494 3,079 440 3,305 12.89 485 4,517 438 9,298 6.94

51N406A 519 3,553 460 6,995 10.00 524 2,929 492 2,086 7.59

83N557A 710 1,806 625 829 10.07 646 4,616 589 7,768 7.62

83N562A 712 1,532 674 1,256 5.53 774 3,937 668 4,637 9.69

83N564A 682 1,714 627 3,513 8.14 647 4,358 593 4,133 8.22

123N829A 947 2,856 810 4,612 12.64 960 5,317 877 10,000* 6.63

123N830A 915 2,091 779 1,621 15.95 920 2,818 801 4,544 8.52

123N836A 1,125 1,576 980 1,623 7.26 1,025 2,692 910 3,968 9.30

Average 2,253 2,928 10.46 3,873 5,416 7.43

97

The solution development of the heuristic solutions for instance 51N373A is plotted

in Figure 8.8 and Figure 8.9, for the Basic HGSDC and the HGSDC with adaptiveness,

respectively. Each line in the plots shows the development of the makespan value dur-

ing one run of the heuristic. The plots indicate that the heuristic with adaptiveness

has on average a steeper slope in the first few hundred seconds, indicating that valu-

ating elitism low initially, is a good idea. Additionally, all but two of the runs with the

adaptive version of the heuristic last for quite a long time. The ones terminating first

corresponds to the ones with the best solution at the termination point. This is con-

trary to the basic HGSDC, where the first run terminating (the orange line in Figure 8.8)

also is the run with the worst return value of the makespan at the termination run time.

By graphing the results from other instances, the development of the makespan shared

these properties more often than not.

On these larger instances, we find no clear correlation between the size of the graphs

in the instances and the computation time. In fact, the average time used to solve the

smallest instance (51N373A) is greater than the time to solve the largest (123N836), for

both versions of the heuristic, even though the latter contains more than twice the num-

ber of both nodes and arcs than the former. When comparing the solution methods, the

HGSDC with adaptiveness has the longest average run time in eight out of the nine in-

stances. This is an important notice, since long computation time often is associated

with better solutions. In seven out of the nine instances in Test set 5, the best solution

was also associated with the longest computation time, with respect to the version of

the heuristic. To clarify, consider instance 123N836A. The HGSDC with adaptiveness

obtained the best makespan solution of 910 with a computation time of 3,968 seconds,

whereas the Basic HGSDC obtained its best solution (980) in 1,623 seconds, which is

significantly lower.

Figure 8.10 illustrates the corresponding nEl i te value for the runs of the HGSDC with

adaptiveness on instance 51N373A. Note that the horizontal axis in this figure is the

number of generations since initialization, not the computing time. There is no guaran-

tee that varying the nEli te parameter yield better solutions, but we note that for several

instances, the nEli te value reached above 20 before an improvement in the makespan

occurred. This correspond to an eliteness percentage of at least 20
35 = 0.6, which means

that at least 60% of the population will survive due to makespan value - with no regard

to their contribution of diversity. We conclude that in some instances, a higher parame-

ter value, and thus a more intensified search, may be positive with respect to improving

the makespan.

98

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

500

1,000

1,500

Computation time(s)

M
ak

es
p

an

Figure 8.8: The objective value of the best solution in the population as a function of
computing time in the five runs on 51N373A for the basic HGSDC.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

500

1,000

1,500

Computation time(s)

M
ak

es
p

an

Figure 8.9: The objective value of the best solution in the population as a function of
computing time in the five runs on 51N373A the HGSDC with adaptiveness.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0

10

20

30

Generations

n
E

li
te

Figure 8.10: The value of nEli te in the five runs on 51N373A as a function of generations,
for the HGSDC with adaptiveness.

99

Table 8.13: Results from running the Basic HGSDC on Test set 5 when prohibiting U-
turns. The asterisk marks that the run terminated as result of surpassing the maximum
run time. This was a one-time occurrence when costs for U-turns were included.

HGSDC with U-turns forbidden

Average Best

Instance Solution Time(s) Solution Time(s) RSD ×100 Gap (%)

51N373A 577 4,950 524 3,045 8.40 15.4

51N389A 582 3,728 554 4,789 5.77 14.2

51N406A 623 4,051 580 4,197 5.04 10.7

83N557A 847 3,196 776 2,996 9.61 20.1

83N562A 966 1,976 834 3,996 10.86 7.75

83N564A 950 2,036 825 3,227 12.37 27.5

123N829A 1,297 5,469 1,134 9,155 15.90 18.1

123N830A 1,260 5,270 1,095 10,000* 9.02 19.0

123N836A 1,394 5,160 1,207 5,411 11.90 17.8

Average 944 3,982 837 5,202 9.87 16.74

8.3.3 Prohibiting U-turns on large instances

Finally, the Basic HGSDC was run on Test set 5, while putting a cost on U-turns for the

larger vehicles. The results are summarized in Table 8.13. Gap (%) is the percentage

gap between the the best solution from the HGSDC with adaptiveness (zA) and the best

solution when adding a U-turns cost (zU) as given by Gap (%) = zU−zA
zA

× 100. In or-

der to forbid U-turns, the cost per U-turn in the makespan solution was set to 1,000

time units. As the solution space when removing U-turns effectively is smaller than

the solution space when they are allowed, it is expected that the makespan solution

should be worse than those previously presented for the same instances. However, so-

lutions obtained with no U-turns have an increased makespan of approximately 17%

on average. Findings from previous studies on smaller instances tells us that the per-

centage obtained here is far too high. Although we do not know the optimal solution,

we strongly suspect this to be an indicator that the heuristic is not particularly well-

performing when disallowing U-turns in this way.

The relative spread of the heuristic solutions when penalizing U-turns, cannot be

said to increase. Thus, it seems that the heuristic is fairly robust to such changes with re-

spect to this specific measure. Computation time is on average increased when adding

a cost for U-turns. The initial best solution generated usually contains loads of U-turns,

100

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

500

1,000

1,500

Computation time(s)

M
ak

es
p

an

Figure 8.11: Makespan as a function on time for the Basic HGSDC when forbidding
U-turns in instance 51N373A. The red dotted line at 200 seconds of computation time
indicate where the burn-in period for all instances is over.

thus a burn-in period is needed in order to remove these solutions from the population,

and start to improve "legal" solutions. Figure 8.11 shows the makespan of the best solu-

tion found over time for the heuristic with U-turn constraints, where the dotted line at

200 seconds of computations corresponds to the end of the burn-in period. Compared

to the corresponding Figures 8.8 and 8.9 for the heuristic without the U-turn constraint

the slopes of the curves after finding feasible solutions are also less negative, meaning

that the U-turn constrained heuristic uses more time to improve the makespan solu-

tion. Neither this is unexpected, as the U-turn constraint removes a large part of the

solution space, but not the search space. We therefore conclude that other approaches

to removing U-turns should be considered.

Chapter 9

Concluding Remarks and Future

Research

In this master’s thesis, we have described the Multi-Fleet Arc Routing Problem with Syn-

chronization Constraints (MFARPOS). The problem is found when planning routes for

snow plowing vehicles in urban and residential areas. Special for the MFARPOS is the

use of two homogeneous vehicle fleets - one fleet to service the lanes, and one to ser-

vice sidewalks and pedestrian paths. As snow plowing vehicles push the snow to their

right hand side, servicing some lanes will cause a snowbank to build up on the side-

walk. Therefore, the sidewalk should be serviced after the associated lane. This syn-

chronization relation makes the fleets interdependent, and the MFARPOS a problem

where computational effort grows rapidly with the size increase of the road network.

The objective of the problem is to minimize the makespan of the routes generated, such

that the road network is cleared in the least amount of time. To solve the problem, we

have proposed and implemented a Branch-and-Price model, and a genetic algorithm,

which have been tested on instances generated by an instance generator developed for

the purpose of this thesis. The study has been carried out from a theoretical perspec-

tive.

Compared to a previously developed arc-flow model, implemented as a mixed inte-

ger program, the decomposed model did not yield very promising results. As there are

few resource constraints to the labels in the subproblems, many label extensions are

allowed. This increases the computation time in the subproblems, which again affects

the Branch-and-Price algorithm’s ability to solve large instances. When the path-flow

102

and arc-flow models were compared, the path-flow model’s upper hand was its better

handling of dense road networks, with a lot of synchronization. As the synchronization

constraints to a larger extent complicate the MIP model than the Branch-and-Price al-

gorithm, this was as expected. However, none of the models came close to solving in-

stances with more than 20 nodes within a time limit of 36,000 seconds. This result

speaks in favor of the development of heuristic approaches for the MFARPOS.

A genetic algorithm, the Hybrid Genetic Search with Diversity Control, based on the

work of Vidal et al. (2012), was proposed and implemented. The heuristic, on average,

yields an optimality gap of 5% for instances where the optimal solution is known. It

is also able to generate routes on instances with up to 123 nodes and 800+ arcs, with

10 vehicles in both fleets; which is the size of large real-life instances. The framework

that we have based our heuristic on, has unarguably proved to work well on different

variants of the VRP, and we conclude that this thesis shows that such an approach is

promising within ARPs as well. As infeasible solutions were disallowed in our imple-

mentation, we have proposed a new adaptivity measure, which changes the importance

of makespan (in contrast to diversity contribution) in the population throughout the

search. Although more testing needs to be carried out in order to validate these results,

it seems that adapting the diversity may lower the spread, and thus yield more con-

sistent performance. This indicates that for larger instances, a better balance between

diversification and intensification in the solution space is needed. The heuristic is also

capable of generating feasible solutions when forbidding U-turns, although with some

increase in the computation time. For all variants of the heuristic proposed, solutions

should be expected within 10,000 seconds.

Future research

There are many interesting areas for future development of the Branch-and-Price al-

gorithm described in this thesis. The main problem uncovered with this implemen-

tation was the time used in the subproblems. Therefore, methods to reduce the com-

putation time in the subproblems could make the algorithm more applicable for the

MFARPOS. In order to do this, we propose using heuristic based methods to find good

columns in the subproblems, and thereafter use the framework of the column gener-

ation as a matheuristic in order to find good integer solutions. Other dominance cri-

teria should also be considered. With respect to branching, the B&B trees in some

instances grew very big, although the root node solutions were close to optimal. We

therefore recommend evaluating different branching strategies for this particular prob-

103

lem. As approaching ARPs with a Branch-and-Price solution methodology rarely has

been attempted, and since our results show that such approach may indeed yield bet-

ter bounds to instances where standard MIPs fail, we recommend further studying this

framework on other ARPs. Finally, further improving the developed MIP model may

also make this model able to solve larger instances to optimality. One such approach

could be to explore possible valid inequalities for the problem.

As the computational results from the heuristic proposed in this thesis show that

the framework proposed by Vidal et al. (2012) may also work well on Arc Routing Prob-

lems, we highly recommend considering similar genetic algorithm approaches to solve

other variants of the ARP. Experimenting with the heuristic proposed in this thesis may

also improve the search on the MFARPOS. Creating a specialized crossover operation

dedicated for the MFARPOS would probably further improve the performance. With

respect to adaptiveness, we recommend trying further evaluating the diversity strat-

egy proposed, e.g. with an exponential or logarithmic increase instead of the proposed

linear increase. Allowing for infeasible solutions, and thereby inherit the adaptive di-

versity control proposed by Vidal et al. (2012), should also be considered. In terms of

special relations suited for real-life instances, more research on ways to include turn

restrictions, would also greatly improve the relevance to the underlying real-life prob-

lem. Adaptation and implementation of other meta-heuristics, like the Adaptive Large

Neighborhood Search, which has performed well on other problems concerned with

snow plowing, may also work well on the MFARPOS.

References

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and Vance, P. H. 1998.

“Branch-and-price: Column generation for solving huge integer programs”. In: Op-

erations research 46.3, pp. 316–329.

Belenguer, J.-M. and Benavent, E. 1998. “The capacitated arc routing problem: Valid

inequalities and facets”. In: Computational Optimization and Applications 10.2,

pp. 165–187.

Benavent, E., Campos, V., Corberán, Á., and Mota, E. 1990. “The capacitated arc rout-

ing problem. A heuristic algorithm”. In: Questiió: Quaderns dÉstadíistica, Sistemes,

Informatica i Investigació Operativa 14.1, pp. 107–122.

Blais, M. and Laporte, G. 2003. “Exact solution of the generalized routing problem

through graph transformations”. In: Journal of the Operational Research Society

54.8, pp. 906–910.

Bode, C. and Irnich, S. 2012. “Cut-first branch-and-price-second for the capacitated

arc-routing problem”. In: Operations research 60.5, pp. 1167–1182.

Borthen, T. and Loennechen, H. 2016. “The Multi-objective Supply Vessel Planning

Problem-A Hybrid Genetic Search Approach”. MA thesis. NTNU.

Christiansen, C. H., Lysgaard, J., and Wøhlk, S. 2009. “A branch-and-price algorithm

for the capacitated arc routing problem with stochastic demands”. In: Operations

Research Letters 37.6, pp. 392–398.

Clossey, J., Laporte, G., and Soriano, P. 2001. “Solving arc routing problems with turn

penalties”. In: Journal of the Operational Research Society 52.4, pp. 433–439.

Desaulniers, G., Desrosiers, J., and Solomon, M. M. 2006. Column generation. Vol. 5.

Springer Science & Business Media.

Drexl, M. 2012. “Synchronization in vehicle routing—a survey of VRPs with multiple

synchronization constraints”. In: Transportation Science 46.3, pp. 297–316.

106

Dror, M. and Langevin, A. 1997. “A generalized traveling salesman problem approach

to the directed clustered rural postman problem”. In: Transportation Science 31.2,

pp. 187–192.

Eiselt, H. A., Gendreau, M., and Laporte, G. 1995. “Arc routing problems, part II: The

rural postman problem”. In: Operations research 43.3, pp. 399–414.

Euler, L. 1741. “Solutio problematis ad geometriam situs pertinentis”. In: Commentarii

academiae scientiarum Petropolitanae 8, pp. 128–140.

Feillet, D., Dejax, P., and Gendreau, M. 2005. “The profitable arc tour problem: solution

with a branch-and-price algorithm”. In: Transportation Science 39.4, pp. 539–552.

Floyd, R. W. 1962. “Algorithm 97: shortest path”. In: Communications of the ACM 5.6,

p. 345.

Goldberg, D. E. and Lingle, R. 1985. “Alleles, loci, and the traveling salesman problem”.

In: Proceedings of an International Conference on Genetic Algorithms and Their Ap-

plications. Vol. 154. Lawrence Erlbaum, Hillsdale, NJ, pp. 154–159.

Golden, B. L. and Wong, R. T. 1981. “Capacitated arc routing problems”. In: Networks

11.3, pp. 305–315.

Gundersen, A. H., Johansen, M., and Kjær, B. S. 2016. Solving an Arc Routing Problem

with Precedence Relations for Snow Plowing Operations. NTNU.

Haarberg, K. and Aleksandersen, I. 2016. Diskusjon rundt oppgave og dagens system.

Meeting. Tempevegen 22.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. The University of

Michigan Press.

Irnich, S. and Desaulniers, G. 2005. “Shortest path problems with resource constraints”.

In: Column generation. Springer, pp. 33–65.

Kinable, J., Hoeve, W.-J. van, and Smith, S. F. 2016. “Optimization Models for a Real-

World Snow Plow Routing Problem”. In: International Conference on AI and OR

Techniques in Constriant Programming for Combinatorial Optimization Problems,

pp. 229–245.

Lacomme, P., Prins, C., and Ramdane-Cherif, W. 2004. “Competitive memetic algo-

rithms for arc routing problems”. In: Annals of Operations Research 131.1-4, pp. 159–

185.

Lacomme, P., Prins, C., and Ramdane-Chérif, W. 2001. “A genetic algorithm for the ca-

pacitated arc routing problem and its extensions”. In: Workshops on Applications of

Evolutionary Computation. Springer, pp. 473–483.

107

Lacomme, P., Prins, C., and Sevaux, M. 2006. “A genetic algorithm for a bi-objective

capacitated arc routing problem”. In: Computers & Operations Research 33.12,

pp. 3473–3493.

Laporte, G. 1997. “Modeling and solving several classes of arc routing problems as trav-

eling salesman problems”. In: Computers & Operations Research 24.11, pp. 1057–

1061.

Laporte, G., Musmanno, R., and Vocaturo, F. 2010. “An adaptive large neighbourhood

search heuristic for the capacitated arc-routing problem with stochastic demands”.

In: Transportation Science 44.1, pp. 125–135.

Lenstra, J. K. and Kan, A. H. G. R. 1976. “On general routing problems”. In: Networks 6.3,

pp. 273–280.

Letchford, A. N. and Oukil, A. 2009. “Exploiting sparsity in pricing routines for the ca-

pacitated arc routing problem”. In: Computers & Operations Research 36.7, pp. 2320–

2327.

Liu, T., Jiang, Z., and Geng, N. 2013. “A memetic algorithm with iterated local search

for the capacitated arc routing problem”. In: International Journal of Production

Research 51.10, pp. 3075–3084.

Pedersen, K. 2013. Så mye snø kan du få i vinter. YR. URL: http : / / www . yr . no /

artikkel/sa- mye- sno- kan- det- komme- i- vinter- 1.11312139 (visited

on 09/28/2016).

Perrier, N., Langevin, A., and Amaya, C.-A. 2008. “Vehicle routing for urban snow plow-

ing operations”. In: Transportation Science 42.1, pp. 44–56.

Perrier, N., Langevin, A., and Campbell, J. F. 2006. “A survey of models and algorithms

for winter road maintenance. Part I: system design for spreading and plowing”. In:

Computers & Operations Research 33.1, pp. 209–238.

Prins, C. 2004. “A simple and effective evolutionary algorithm for the vehicle routing

problem”. In: Computers & Operations Research 31.12, pp. 1985–2002.

Riquelme-Rodríguez, J.-P., Langevin, A., and Gamache, M. 2014. “Adaptive large neigh-

borhood search for the periodic capacitated arc routing problem with inventory

constraints”. In: Networks 64.2, pp. 125–139.

Ropke, S. and Pisinger, D. 2006. “An adaptive large neighborhood search heuristic for

the pickup and delivery problem with time windows”. In: Transportation science

40.4, pp. 455–472.

http://www.yr.no/artikkel/sa-mye-sno-kan-det-komme-i-vinter-1.11312139
http://www.yr.no/artikkel/sa-mye-sno-kan-det-komme-i-vinter-1.11312139

108

Salazar-Aguilar, M. A., Langevin, A., and Laporte, G. 2011. “An adaptive large neighbor-

hood search heuristic for a snow plowing problem with synchronized routes”. In:

pp. 406–411.

Salazar-Aguilar, M. A., Langevin, A., and Laporte, G. 2012. “Synchronized arc routing

for snow plowing operations”. In: Computers & Operations Research 39.7, pp. 1432–

1440.

Salazar-Aguilar, M. A., Langevin, A., and Laporte, G. 2013. “The synchronized arc and

node routing problem: Application to road marking”. In: Computers & Operations

Research 40.7, pp. 1708–1715.

Ting, C.-K., Su, C.-H., and Lee, C.-N. 2010. “Multi-parent extension of partially mapped

crossover for combinatorial optimization problems”. In: Expert Systems with Appli-

cations 37.3, pp. 1879–1886.

Trondheim Kommune. 2016. Brøyting. URL: https://www.trondheim.kommune.no/

content/1117712643/Broyting (visited on 10/01/2016).

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. 2012. “A hybrid genetic

algorithm for multidepot and periodic vehicle routing problems”. In: Operations Re-

search 60.3, pp. 611–624.

https://www.trondheim.kommune.no/content/1117712643/Broyting
https://www.trondheim.kommune.no/content/1117712643/Broyting

Appendix A

Details of the Branch-and-Price

Results on Test Set 2

In Tables A.1, A.2, and A.3, a detailed description of the results when running the dif-

ferent versions of B&P algorithm on Test set 2 is shown. Table A.1 shows the results for

the B&P algorithm with the cold started column generation, while Table A.2 summa-

rizes the results when the column generation is warm started with the basic version of

HGSDC heuristic, but none of the heuristic’s solutions are added as columns. In Table

A.3 the column generation is warm started, and the columns are added as well.

In order to calculate the gaps in the tables, the best dual bound known is used.

IP gap measures the percentage gap from the best integer solution found within the

respective algorithm, to the best known dual bound. That is, IP gap = z I P−z∗
z∗ , where

z I P is the best integer solution found by the respective algorithm, and z∗ is the best

known dual bound for the instance, rounded up to the nearest integer. Note that for

all instances except 16N25A, the dual bound is optimal. Lower gap is the percentage

gap from the dual bound obtained in the model to the best known dual bound; as

calculated by Lower gap = z∗−zLB

z∗ , where zLB is the best dual bound obtained by the

model, rounded up to the nearest integer. Heu gap shows the percentage gap from

the heuristic solution used as the warm start to the best known dual bound. That is,

Heu gap = zHS−z∗
z∗ , where zHS is the heuristic solution. Root gap refers to the percentage

gap from the root node solution of the model to the best known dual bound. It is given

by Root gap = z∗−zRN

z∗ , where zRN is the root node solution, rounded up to the nearest

integer.

110

Table A.1: Results of running Test set 2 in the B&P algorithm with cold start.Total time, Time RMP, Time SPs, Time Heu and Time MIP show
the total time used, and the time used in the RMP, SPs, the heuristic, and the time spent solving the RMP as a MIP, respectively. #Nodes
in B&B is the total number of nodes in the B&B tree, while #Paths Sub and #Paths Heu indicate the number of paths generated in the
subproblem and heuristic, respectively. n/a indicates that the algorithm did not manage to prove optimality of the root node within the
time limit. *) as the algorithm did not solve the root node to optimality within the time limit for test instance 16N52A, the results from this
instance are not included in the average values.

Total Time Time Time Time #Nodes #Paths #Paths IP Lower Heu Root

Instance time(s) RMP(s) SPs(s) Heu(s) MIP(s) in B&B SPs Heu gap(%) gap(%) gap(%) gap(%)

8N21A 2 0 1 - 0 21 392 - 0 0 - 0

8N28A 9 0 6 - 3 101 1,154 - 0 0 - 0

9N27A 162 12 91 - 3 1,391 5,575 - 0 0 - 1.25

10N38A 1,211 22 867 - 56 1,041 5,609 - 0 0 - 0

11N33A 2,292 29 1,491 - 762 4,155 5,945 - 0 0 - 10.42

12N37A >36,000 7 35,918 - 76 335 3,567 - 8.11 1.80 - 6.31

13N46A >36,000 28 35,301 - 76 541 6,330 - 6.67 2.22 - 2.22

14N46A >36,000 2 35,996 - 3 13 2,234 - 29.03 5.38 - 5.38

15N44A >36,000 21 35,866 - 115 107 5,748 - 8.04 18.75 - 18.75

16N52A >36,000 92 35,909 - 0 1 10,309 - n/a n/a - n/a

Average* >16,408 13 16,171 - 121 856 4,062 - 5.76 3.13 - 4.92

111

Table A.2: Results of running the B&P algorithm on Test set 2 with warm start without using any of the columns from the heuristic solution.
Total time, Time RMP, Time SPs, Time Heu and Time MIP show the total time used, and the time used in the RMP, SPs, the heuristic, and the
time spent solving the RMP as a MIP, respectively. #Nodes in B&B is the total number of nodes in the B&B tree, while #Paths Sub and #Paths
Heu indicate the number of paths generated in the subproblem and heuristic, respectively. n/a indicates that the algorithm did not manage
to prove optimality of the root node within the time limit. *) as the algorithm did not solve the root node to optimality within the time limit
for test instance 16N52A, the results from this instance are not included in the average values.

Total Time Time Time Time #Nodes #Paths #Paths IP Lower Heu Root

Instance time(s) RMP(s) SPs(s) Heu(s) MIP(s) in B&B SPs Heu gap(%) gap(%) gap(%) gap(%)

8N21A 44 0 0 43 0 1 204 - 0 0 0 0

8N28A 590 1 288 297 3 101 1,529 - 0 0 1.15 0

9N27A 269 0 0 269 0 1 480 - 0 0 0 1.25

10N38A 501 3 200 269 29 119 2,297 - 0 0 7.79 0

11N33A 819 5 373 334 107 441 2,637 - 0 0 8.33 6.25

12N37A 12,317 8 11,942 259 108 985 2,622 - 0 0 5.41 0

13N46A >36,000 18 35,330 388 265 447 3,885 - 4.44 0 5.56 0

14N46A >36,000 15 29,862 989 5,135 599 4,182 - 5.38 1.08 5.38 1.08

15N44A >36,000 56 30,398 294 5,248 1,979 7,579 - 0 3.57 5.36 4.46

16N52A >36,000 14 35,471 514 0 1 2,739 - 0.76 n/a 0.76 n/a

Average* >13,616 12 12,044 349 1,211 519 2,824 - 1.09 0.52 4,33 1.45

112

Table A.3: Results of running the B&P algorithm on Test set 2 with warm start that includes the columns from the heuristic population. Total
time, Time RMP, Time SPs, Time Heu and Time MIP show the total time used, and the time used in the RMP, SPs, the heuristic, and the time
spent solving the RMP as a MIP, respectively. #Nodes in B&B is the total number of nodes in the B&B tree, while #Paths Sub and #Paths Heu
indicate the number of paths generated in the subproblem and heuristic, respectively. The root node solution is rounded up to the nearest
integer value. n/a indicates that the algorithm did not manage to prove optimality of the root node within the time limit.

Total Time Time Time Time #Nodes #Paths #Paths Upper Lower Heu Root

Instance time(s) RMP(s) SPs(s) Heu(s) MIP(s) B&B SPs Heu gap(%) gap(%) gap(%) gap(%)

8N21A 43 0 0 43 0 1 77 175 0 0 0 0

8N28A 430 1 132 297 1 41 1,203 280 0 0 1.15 0

9N27A 149 0 1 269 0 1 705 280 0 0 0 0

10N38A 2,845 14 2,395 269 166 629 4,392 630 0 0 7.79 0

11N33A 761 4 384 334 38 321 2,314 455 0 0 8.33 6.25

12N37A >36,000 60 22,770 259 12,893 3,749 6,590 455 5.41 0 5.41 0

13N46A >36,000 5 35,596 388 12 47 3,229 630 5.56 0 5.56 0

14N46A >36,000 21 32,218 989 2,772 561 4,573 630 4.30 1.08 5.38 1.08

15N44A >36,000 185 21,515 294 13,972 6,623 9,906 630 0 3.57 5.36 4.46

16N52A >36,000 39 35,446 514 1 11 7,710 630 0.76 2.27 0.76 2.27

Average >18,423 33 15,446 366 2,985 1,198 4,070 480 1.60 0.69 3.97 1.53

	Problem Description
	Preface
	Abstract
	Sammendrag
	Introduction
	Literature Review
	Related arc routing problems
	Graph transformation and column generation
	Heuristic algorithms for arc routing problems
	Our contribution

	Problem Description
	Mathematical Model
	Arc-flow formulation

	Dantzig-Wolfe Decomposition
	Path-flow formulation
	Solution methodology
	Pricing of columns
	The subproblems
	A labeling algorithm for the subproblems
	Labels and label extension
	Dominance criteria
	Acceleration strategies
	Branching

	Pseudocode for the Branch-and-Price algorithm
	Expanding the decomposition

	Hybrid Genetic Search with Diversity Control
	Introduction
	Solution representation
	Solution evaluation
	Search space
	Turn restrictions

	Parent selection and crossover
	Education
	Population management
	Initialization
	Offspring introduction to the population
	Survivor Selection
	Diversification

	Generation and Characteristics of Test Instances
	Instance generation
	Test instances
	Test instances for parameter calibration
	Test instances to compare the models
	Test instances for the further evaluation of the exact models
	Test instances for the genetic algorithm

	Computational Study
	Parameter calibration for the genetic algorithm
	The parameters
	The process of calibration
	The probability of education
	Non-improving iterations and diversification factor
	The population and generation size
	The proportion of elite individuals
	The neighborhood factor
	Parameters not subject to calibration

	Exact solution approaches
	Comparing the column generation approaches
	Comparing the path-flow model and the arc-flow model
	Summarizing the results for the exact models

	Evaluating the genetic algorithm
	Testing the heuristics on small to medium sized instances
	Testing the heuristics on large instances
	Prohibiting U-turns on large instances

	Concluding Remarks and Future Research
	References
	Details of the Branch-and-Price Results on Test Set 2

