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Abstract

We present a study of modern security proofs of quantum key distribution based on comple-
mentarity. This is a quantum communication protocol allowing for provable, unconditional
security, although there is still a gap between theoretical analyses and real, operational sys-
tems. We focus on a recent argument by Koashi, which enables the treatment of individual,
basis-dependent imperfections in the source. A detailed review is given based partly on an
alternate derivation, with the goal of providing a more accessible approach to utilizing the
strength of the complementarity-based proof. Some subtleties in the argument are then
pointed out, particularly regarding the requirement of perfectly independent states in the
random sampling. A numerical approach is implemented to simulate arbitrary protocols in
order to investigate the necessity of this requirement. For independent states, the results
provide strong evidence in support of the established security bounds. We then focus on
imperfect sources with basis-independent correlations, which reveals concrete counterexam-
ples to the security claims, even in the operational regime. This increases the understanding
of why security relies critically on perfect independence of the states. We also predict the
possibility of attacking real-world devices as the results show a necessary, although not
sufficient, condition for exploiting small, but finite basis-independent correlations in an im-
perfect source. Furthermore, we argue that analyzing such systems and finding capable
attack operations is difficult to achieve by analytic methods; instead we develop further nu-
merical techniques for sampling the parameter space of source states and attack operations
in a computationally efficient manner. These parameters are then iteratively improved using
a hybrid uniform search and genetic optimization routine. The numerical methods prove
to be effective in both uncovering sources that are prone to correlation attacks as well as
constructing explicit attack operations for a given system.





Sammendrag

Vi studerer moderne sikkerhetsbevis av kvantenøkkeldistribusjon (quantum key distribu-
tion) basert på et argument om komplementaritet. Dette er en kvantemekanisk kommuni-
kasjonsprotokoll som muliggjør beviselig, ubetinget sikkerhet, men hvor nåværende teore-
tiske modeller imidlertid fremdeles ikke fullt kan beskrive operative systemer. Vi fokuserer
på et nylig argument fra Koashi, som gjør det mulig å analysere kilder med individuelle,
basis-avhengige feil. Beviset gis en detaljert gjennomgang, delvis basert på en alternativ
utledning, med et mål om å gjøre styrken til komplementaritetsbeviset mer tilgjengelig.
Vi påpeker deretter noen subtile konsekvenser av sikkerhetsargumentet, spesielt med tanke
på kravet om perfekt uavhengighet mellom tilstandene i den tilfeldige utvalgsprøven. For
å undersøke nødvendigheten til dette kravet implementerer vi en numerisk metode for å
simulere vilkårlige protokoller innen kvantekommunikasjon. For uavhengige tilstander viser
resultatene utmerket overenstemmelse med etablerte sikkerhetsgrenser. Vi fokuserer deret-
ter på basis-uavhengig korrelerte kilder med feil, hvor vi finner konkrete eksempler på svikt
i sikkerheten selv for realistiske parametere. Dette bidrar til en økt forståelse for hvorfor
sikkerheten er kritisk avhengig av tilstander som er perfekt uavhengige. Vi foreslår også
muligheten for et angrep mot realistiske system, da resultatene viser en nødvendig, skjønt
ikke tilstrekkelig, betingelse for å utnytte små, men endelige basis-uavhengige korrelasjoner
i kilder med feil. Å bruke rene analytiske metoder for å analysere slike system og finne ka-
pable angrepsoperasjoner viser seg imidlertid å være vanskelig. Vi utvikler derfor numeriske
teknikker for å effektiv gjøre tilfeldig samplinger av parameterområde for kildetilstander
og angrepsoperasjoner. Disse parameterne forbedres deretter iterativt ved hjelp av en kom-
binasjon av uniformt søk og en genetisk optimeringsrutine. De numeriske metodene vises
å være effektive for å kartlegge hvilke kilder som er utsatt for korrelasjonsangrep, samt å
konstruere eksplisitte angrep mot konkrete system.
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Nomenclature and notation

During this work we will frequently use terms such as “classical cryptography”, “classical
information” or similar. This is not referring to techniques that are old or outdated in some
way, but rather techniques that are quantum mechanical in nature.

We will make reference to two types of vectors: Quantum states, which are represented by
vectors on a complex Hilbert space, are given in the standard bra(c)ket notation |ψ〉. Any
ordered collection of numbers in the format of a column vector are denoted by conventional
vector notation x. In particular this applies regardless of the number of elements xi and
their transformation properties (e.g. they may not even transform at all).

Distinguishing labeled vectors from labeled components of vectors is done by denoting com-
ponents of a named vector a by ai, whereas a collection of vectors will be denoted ai. De-
noting components of an unnamed or modified vector is done with parenthesis, e.g. (a− b)i
or
(
k̂
)
i
, whereas k̂i = ki/‖ki‖ is a vector.

In the bra(c)ket notation, we will differentiate between subscripts within and outside the
bracket. Inner subscripts will label different bras / kets, such as |ψn〉. Outer subscripts
will label the associated structure of the particular bra / ket, e.g. |ψ〉A symbolizes that it
belongs to a particular Hilbert space HA or |ψ〉I indicates that its dynamics is governed by
the interaction picture.

Operators are denoted by capital letters, with A,B, . . . usually representing general opera-
tors, and U, V, . . . usually representing unitary operators.

Quantum operations will be denoted in calligraphic font as E ,F , . . . .

The computational basis for qubits is defined in the mathematical convention:

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
(1)

We define σ0 as the 2 × 2 identity matrix, so that σµ; µ = 0, . . . , 3 are the components of a
Pauli 4-vector. The Pauli matrices will also be denoted as X,Y, Z.

Summation convention is assumed for indexed quantities unless otherwise stated. Whenever
a contraction is possible but not performed should be clear for the expression.

Below is an explanation of various symbols used throughout this work.
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General

log binary logarithm
ln natural logarithm
c∗ complex conjugate of c
δij Kronecker delta
εijk permutation symbol (Levi-Civita)
R set of real numbers
C set of complex numbers
Re{c} real value of c
Im{c} complex value of c
PrE probability of an event E

Bra(c)ket

|ψ〉 state vector (ket)
〈ψ| functional (bra) corresponding to the state vector |ψ〉
〈ψ|φ〉 inner product between state vectors |ψ〉 and |φ〉
‖|ψ〉‖ norm of the state vector |ψ〉

Linear algebra

tr(A) trace of operator A
supp(A) support of operator A
rank(A) rank of operator A
ran(A) range of operator A
ker(A) kernel of operator A
E(A) eigenspace of operator A

Operators

I identity operator
σµ Pauli matrix µ; µ = 0, . . . , 3
L(V ) set of linear operators on vector space V
P(V ) set of positive operators of unit trace (density operators) on vector

space V
U(n) group of n× n unitary matrices
A† adjoint of operator A

Distance measures

D(px, qx) classical trace distance between distributions px and qx
F (px, qx) classical fidelity between distributions px and qx
D(ρ, σ) quantum trace distance between states ρ and σ
F (ρ, σ) quantum fidelity between states ρ and σ

xviii



Entropy

h(δ) binary entropy of δ
H(X) classical (Shannon) entropy of distribution X
H(X,Y ) classical joint entropy of distributions X and Y
H(Y |X) classical conditional entropy of distribution Y given distribution X
D(p||q) classical relative entropy of distribution px with respect to distribu-

tion qx
I(X : Y ) classical mutual information between distributions X and Y
S(ρ) quantum (von Neumann) entropy of state ρ
S(A,B)ρ quantum joint entropy of state ρAB
S(A|B)ρ quantum conditional entropy of the reduced state ρA given the re-

duced state ρB
S(ρ||σ) quantum relative entropy of state ρ with respect to the state σ
I(A : B)ρ quantum mutual information between reduced states ρA and ρB

Vectors

v vector
v̂ unit vector
ei Cartesian unit vector in the i-direction; i = x, y, z
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Chapter 1

Introduction

Can two parties communicating only through a channel open to the public, exchange mes-
sages with guaranteed secrecy? If so, what resources need to be established between the
parties in order to achieve this? The incessant search for secure communication plays an
integral part of our history and seems to be more important than ever in today’s digital
society. At the same time, the field of cryptography is currently undergoing a rapid, fun-
damental shift from classical information theory to that of quantum information. In this
framework, information is inherently physical, and as such, security analyses must account
for fundamental properties of physical representations, among others notably imperfections.
Understanding the implications of device imperfections on cryptographic security in the
quantum realm is only in the beginning stages, but its importance and intrinsic relevance
can hardly be overstated.

This work aims to investigate some recent developments in the security analysis of quantum
cryptography, specifically the BB84 protocol, with device imperfections. A detailed review
of existing proofs is given and numerical procedures are developed to validate the models
by performing explicit simulation of the system in question. The results support the secu-
rity proofs, but point out a possibility for attacking real systems with slightly correlated
imperfections.

This chapter attempts to outline the context in which this work falls under. The first section
introduces the core problem which cryptography aims to address as well as some important
results and terminology. The second section then gives a brief account of the historical
development of classical and quantum cryptography leading up to this point. The final
section presents this work: its motivation, how it relates to other works in the field and the
structure of this document.
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1.1. THE CRYPTOGRAPHIC PROBLEM

1.1 The cryptographic problem

The defining goal of a cryptographic system is to secure a transmission of information along
an unsafe communication line, i.e. there is a possibility of a third party accessing any
or all messages sent across the line [DK07]. Physically, this could either be realized by
an unauthorized access to a private communication line or, as is typically the case, the
line being fully public, e.g. when transmitting over EM signals or through the Internet.
Cryptography is the study of constructing and applying protocols to such unsafe lines in a
way that still renders the message secure.

This section introduces the basics principles of cryptography, including security criteria,
classification of security categories and the fundamental limits of cryptography. A descrip-
tion of the principle and importance of the Vernam one-time pad is also given.

1.1.1 Setup

In the standard setup in cryptography [DK07], as depicted in Figure 1.1, we consider two
parties: person A (Alice) and person B (Bob). Alice seeks to transmit a message, called the
plaintext, to Bob over some communication channel. An eavesdropper (Eve) also has access
to the line of communication and has some degree of control over the transmissions through
it. In the case where Eve has full control over the line, she has the capacity to read, block
or alter any transmission through the line, as well as sending her own messages to any of
the parties.

To secure the message, Alice and Bob adopt some scheme to convert the plaintext into
some (seemingly) unintelligible text, called the ciphertext. The process of converting from
the plaintext to the ciphertext is known as encryption and the reverse as decryption. Com-
monly, an algorithm designed for encryption and decryption is also referred to as a cipher.
The details of the conversion is typically governed by two parts: a set of instructions (the
algorithm), which is universal for all messages, and a key, which is individual to each mes-
sage [KL08]. The key is usually a sequence of random numbers that Alice or Bob generate
and need to be kept hidden from any other parties.

Alice Bob

Eve

communication channel

Figure 1.1: Schematic diagram of the classical setup in cryptography: person A (Alice) seeks to
securely communicate a message to person B (Bob) over some channel. An eavesdropper (Eve) has
access to the communication channel.
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1.1.2 Security criteria

The criteria of what exactly “securing” the message entails was first formalized by Shannon
in 1949 [Sha49]. The modern theory identifies 4 main goals of cryptography [DK07]:

• Confidentiality: Ensuring that the message can only be read by the intended parties,
and equivalently that it is unreadable by everyone else.

• Authenticity: Allowing accurate identification of the message’s sender, such that no
other party can pretend to be the original sender.

• Integrity: Preventing modifications of the message during transmission, or alterna-
tively allowing the receiver to verify whether the received message was modified from
the original.

• Non-repudiation: Providing a reliable mechanism to prove that the sender did send
the message, such that the sender cannot later deny sending it.

1.1.3 Security classes

Shannon was also the first to introduce different classes of security, based on the assumptions
made in the security proofs [Sha49]. Today we distinguish between unconditional security
and computational security [KL08]. The latter applies to protocols that remain secure
given reasonable assumptions about the attackers computing power. The former, on the
other hand, promises that security holds for any attack, specifically against attackers with
unlimited computing power. This form of security is of course attractive in its absoluteness;
yet, computational security is often sufficient, e.g. when the best attacks are projected to
take several thousand years of computation.

The real problem with computational security comes however from the fact that the theo-
retical foundation of computational hardness is so far limited. Particularly, most modern
encryption schemes attain their secrecy from the computational cost of certain mathemat-
ical problems. The problem is however that it is typically not yet known exactly how
difficult these underlying problems are to compute [KL08]. In addition, the whole area of
computational complexity classes is not completely understood, most notably in the lack of
determining whether P 6= NP. This has the consequence that the underlying mathematical
problems could in principle admit an efficient solution, even when they are shown to be
equally intractable as other computationally hard problems.

Note also that one interesting feature of unconditional security is that it in particular holds
against even brute-force attacks. This term is used to describe strategies where an attacker
simply searches through and tries all possible keys. Although it is typically extraordinary
unlikely to guess the correct key by chance, the attacker could of course in theory do so.
Unconditionally secure ciphers are however resistant to brute-force attacks, because even if
the attacker does manage to guess the correct key, there is no way for the attacker to verify
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this is indeed the case. Even when part of the plaintext is known on beforehand, there is
no way to verify if a key was correctly guessed.

1.1.4 Vernam one-time pad

The simplest classical cipher that is known to be unconditionally secure is the Vernam one-
time pad [KL08]. It consists of combining the plaintext with a truly random bits sequence of
equal length, thus requiring a one-time, pre-shared key for all information being transmitted.
First, the plaintext is represented in binary form as m ∈ {0, 1}l, where l its length. Second,
a random key k is chosen from a uniform probability distribution of bit strings over {1, 0}l.
The ciphertext c is then computed as

c = k ⊕m, (1.1)

and the plaintext can similarly be recovered from the ciphertext by

m = k ⊕ c, (1.2)

where ⊕ is the logical XOR operator.

The difficulty with distributing such massive amount of key material makes the Vernam
cipher not very much used in practice.

1.1.5 Limits of cryptography

One of the fundamental insights necessary to analyze cryptographic systems is related to
what it can, and what it cannot accomplish. Such fundamental limits are always present in
any cryptographic system, and can in particular not be solved by quantum techniques either.
One example of this is the noteworthy exception to the list of cryptographic goals, namely
to guarantee delivery of the message. Another relevant example concerns an important,
reoccurring concept in cryptography: how much information Alice and Bob share prior to
initiating the protocol.

To fully capture all possible attacks, e.g. Eve having physical access to the line, Eve must be
allowed full control over the communication channel. In particular this implies that Eve has
the option to block the transmission of signals, cutting of the communication completely.
As such, there is no method available to Alice and Bob to prevent this; Eve will always
have to option of jamming the communication. Consequently, Alice and Bob must consider
methods for securing their communication, in the case that Eve does not jam the line. This
fundamental limit of cryptography is notably present also in the quantum case, where Alice
and Bob need to estimate the interference by Eve.

The other limit is related to the information shared by Alice and Bob at the beginning
of the protocol. As an example, establishing a secure connection to a web page never
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previously visited leaves Alice and Bob with no pre-shared information. On the other hand,
credit cards issued by a bank establishes a secret number shared between the user and the
bank. Any information shared by communicating parties prior to the initialization of the
communication protocol is labeled their pre-shared key. The amount of information in this
key is called the key material and dictates what level of security Alice and Bob can achieve.

In the event of Alice and Bob having no pre-shared key, any level of secrecy is impossible.
This resides in the possibility of Eve performing a perfect man-in-the-middle attack. In this
scenario, Eve intercepts the connection to Bob, redirects it to herself and simply follows
the details of the protocol Alice and Bob use. If there is no pre-shared key at all, then by
definition Alice has no way of distinguishing Bob from Eve. No cryptographic system can
overcome this limit; Alice will therefore have no way of detecting Eve’s interference and the
security is necessarily broken. This limit will become apparent also in the quantum case,
but it is important to realize its general validity to all cryptography1.

1.2 Background

Ever since we first started recording and storing information, there has been an accompany-
ing need to secure it. Examples of early attempts at cryptography are found as far back as
1500 BC [Kah96]. Since then, a myriad of cryptographic techniques were developed over the
centuries, starting with simple substitution ciphers and gradually spawning more sophisti-
cated techniques. Alongside the development of new methods of securing information was
the accompanying effort to break them. Thousands of years of an unfaltering cryptographic
arms race has blossomed into a rich field of study on its own, as well as spawning other
areas of research [Gol01]. This section gives a brief overview of the history of cryptographic
development.

1.2.1 Classical cryptography

In the past, attention was often directed towards inventing new, “clever” schemes for encryp-
tion [KL08]. Cryptography was then primarily an art, relaying on ingenuity and creativity
to come up with new, convoluted substitution codes. The security of such methods relied
on keeping the operations of the encryption scheme secret and the belief that discovering
and recreating it in all its detail would be too difficult. This cryptographic approach is
generally known as security through obscurity, and has the disadvantage that weaknesses in
the system can go unnoticed for a long time. Despite new, real-world cases of such secu-
rity attempts resurfacing with alarming frequency, the scientific community has generally
abandoned obscurity techniques in favor of Kerkhoff’s Principle [DK07]; this states that
a cryptographic system should remain secure if an adversary learns the full detail of the

1See also the discussion in Section 1.2.1
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system. Such systems attain their security based on the secrecy of only the key and has the
advantage of the scientific community’s continuous scrutiny and improvement.

Apart from increasing the efficiency of existing techniques, the theoretical foundation of
cryptography remained relatively untouched up until after the end of the Second World War.
A major breakthrough occurred in 1948 - 19492 however with the publication of Shannon’s
papers [Sha48; Sha49], initiating the era of information theory and modern cryptography
(see Section 3.3.1). Shannon’s key idea was evaluating the information content of a message
in terms of its likelihood given the set of all possible messages that could have been selected.
He then introduced “entropy” as a quantitative measure of this content, with units named
the “bit”. He also established the systematic classification of attacks against a cryptographic
system as described in Section 1.1.3, marking the final transition of cryptography from art
to science.

Shannon’s work also provided definite proof that the already-known technique of the Ver-
nam one-time pad was in fact unconditionally secure [Sha49]. As mentioned, the caveat is
however that it requires a unique shared key of equal length as the message to be estab-
lished between the communicating parties. This makes the one-time pad highly impractical
in practice. Since Shannon’s proof, the development of new cryptographic techniques has
largely addressed this trade-of between security and practicality [KL08].

Today we have a suite of well-developed cryptographic techniques available. One of the most
popular methods is the Advanced Encryption Standard (AES), a substitution-permutation
encryption method with no known, feasible vulnerabilities [KL08]. It is an example of a
symmetric-key algorithm, where a single, secret key shared by the communicating parties is
used to both encrypt and decrypt the message. It is in a sense the modern equivalent to the
traditional ciphers, where the two parties agree on a secret recipe for encryption, prior to
communicating. As a contrast, there is also today a whole different class of cryptographic
techniques labeled public-key, where the two communicating parties need not have a shared
secret on beforehand. It functions by constructing two keys, such that finding the second
key from the first is computationally trivial, whereas the other way has no known efficient
solution [KL08]. Security is then provided by the fact that there exists a scheme by which
a message encrypted by the second key can only be decrypted with the first.

There is a precaution to be made about the preceding claims about public-key cryptography.
As remarked in Section 1.1.5, any messaging scheme in which the two parties start out with
no shared secret at all, will always be vulnerable to a man-in-the-middle attack. This is
simply due to the fact that sharing no initial secret information makes distinguishing the
other party from an attacker impossible. In the case of public-key cryptography, this is in
practice typically solved by establishing certificate authorities: centralized agencies whose
public key is already known and that are contacted during the protocol in order to verify
other public keys. Later, when designing quantum cryptographic protocols, we will take
the different approach by making the existence of a small, shared initial secret an explicit

2[Sha49] was originally written in 1945, but declassified only in 1949 [Gol01].
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requirement of the protocol.

In summary, since the work of Shannon, an incredible amount of progress has been made in
both the application and theoretical understanding of cryptography. At the end of the 20th
century however, one blind spot remained: the one-time pad was still the only cryptographic
protocol with a strict proof of its security. In line with the discussions in Section 1.3.1, the
core issue is that the modern cryptographic techniques only provide computational security.

1.2.2 Quantum cryptography

The situation was completely overturned with the discovery of quantum information, be-
ginning a new era of cryptographic research. Following the discovery of quantum mechanics
around the beginning of the 20th century, the application to information processing sys-
tems was not immediately realized. The first signs started appearing in the 1970s, with
the Holevo bound [Hol73] and on the difference between classical and quantum informa-
tion [Ing76]. In 1981 Feynman famously called for the construction of special “quantum
computers” in order to make efficient simulations of nature [Fey82]. In 1984 Bennett and
Brassard published their article [BB84], describing for the first time a complete quantum
cryptographic protocol. Deutsch then introduced the theoretical construct of the “universal
quantum computer” in 1985 [Deu85], and within a few years he also provided one of the first
examples of a “quantum algorithm“ that runs more efficiently than any classical counterpart
[DJ92]. In 1994 the power of quantum computers made headlines as Shor discovered how
they can be used to do integer factorization in polynomial time [Sho94].

Since then, research on quantum information has seen a massive boom. New algorithms and
communication protocols for quantum systems have been developed in the past decades as
the theoretical foundation of quantum information is explored. At the same time, extensive
effort has been put into realizing these techniques. Through advances in NMR, optical
cavities and ion traps, several quantum algorithms have been experimentally verified [NC10].
This process is however still slow, and scaling up the number of qubits in a physical device
to make a large-scale quantum computer is still some time into the future.

1.3 Motivation

The motivation for this work can be understood from two perspectives. In the arena of
quantum cryptography, understanding the effects of imperfections is immensely important,
not only from a theoretical standpoint, but also for bridging the gap between the analytical
proofs and real-world implementations. In a broader sense, the field of cryptography in
general also underpins the information infrastructure of modern society. In a world of
increasingly specialized research, it can be helpful to take a step back and assess the work’s
social implications.
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1.3.1 Social importance

As indicated in the previous section, the development of cryptography has played an im-
portant role in our history and science. Today, its importance also comes from the last
decades explosive expansion of the use of digital networks and devices. In step with the
proliferation of the Internet, an ever-growing number of our social and commercial arenas
are now digital and perpetually interconnected. Cryptography stands as one of the cor-
nerstones to these applications as it provides procedures such as access control, message
confidentiality and user identification. In this way, cryptography has gone from being a
tool employed by military and intelligence organizations, to being the workhorse of all our
digital communication systems. Its importance does however go much deeper, and the use
of pseudo-randomness, one-way functions, hashing and digital signatures clearly shows how
interconnected cryptography is to our information systems.

There is however an unsettling gap between the reliance on and the theoretical founda-
tion of modern cryptography; despite their widespread use, the most commonly deployed
cryptographic protocols, such as RSA, is not strictly known to be secure. In line with
the earlier discussion of security classes, modern cryptographic techniques typically aim for
attaining computational security. The RSA algorithm fits into this paradigm nicely as it
relies on the computational hardness of integer factorization, for which there is currently
no known, feasible3, efficient algorithm. The existence of an efficient factoring algorithm
has however never been disproved, meaning that although RSA has been extensively tested,
its security currently has no formal proof. Furthermore, even if we were to successfully
identify the complexity class of integer factorization, the broader problem of determining
whether P 6= NP still prevents the formal security proof. Moreover still, cryptographic pro-
tocols whose proofs rely on computational security are potentially vulnerable to advances in
computational power. Although such advances are usually gradual, the discovery of Shor’s
algorithm is an example of precisely this worry [SP00].

Quantum information theory brings with it the promise of a solution to this obstacle. After
the publication of the BB84 protocol, and its subsequent analyses and proofs, it became
apparent that quantum cryptography allows for unconditional security. Specifically this
applies to protocols of quantum key distribution (QKD), that is cryptographic techniques
utilizing a public quantum communication channel in order to establish a secret key between
two parties. Even when allowing for any attack by the eavesdropper, the proofs assert the
security of QKD. This means that the protocol offers not only computational security, but
remains secure against an attacker with arbitrary computational power. Granted, it relies
on our laws of physics being correct, as well as on the actual protocol being correctly
implemented (as is always the case); however, as long as these conditions are met, QKD will
resist any attacks, including new mathematical algorithms for integer factoring or advances
in computational power.

In this way, quantum information theory is expanding our understanding of the theoretical
3We are here referring to classical algorithms.
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foundation of cryptography. One of its most important features however comes from the
fact that it is not only attainable in theory; rather, the quantum theory provides us with
the tools to exploit this power for cryptographic purposes in real life. Unlike with the
construction of large-scale quantum computers, which seems unattainable for the foreseeable
future, quantum cryptography can be physically realized today. In fact, there are already
commercial systems available (see Section 4.1).

1.3.2 Importance to the field

There is however still a gap between the theoretical protocols with unconditional security,
and actual, operational systems. The BB84 protocol makes several assumptions about the
apparatus, e.g. that it leaks no information about the basis choice and that the source and
detector are perfect. This is however, of course unattainable in practice; imperfections in
the source and detector will always exits, even if they are very small.

The original proposal of the BB84 protocol [BB84] also provided the first proof of its security.
This was however limited to certain types of attacks [SP00] and thus did not yet reveal the
true power of quantum cryptography. One of the earliest proofs of unconditional security
of BB84 was provided by [May96], which also had the additional benefit of allowing for an
uncharacterized detector, as long as the detector’s efficiency is basis-independent. It has
since become a highly desirable feature of security proofs to allow for the apparatus to be
uncharacterized, since it is indeed impossible to fully represent all the degrees of freedom in
a real device [KP03].

One disadvantage of [May96] is however the complexity of the proof [Koa09]. An approach
which is much easier to follow was given by [LC99], although it requires a quantum computer
to run the protocol [SP00]. A security argument without this requirement was then given
in [SP00], which provided a simple proof based on reduction to an entanglement protocol
and quantum error correcting codes (QECC) [Koa09]. This proof however assumes that
the imperfections of the apparatus could always be absorbed into Eve’s basis-independent
attack [KP03]. Finally, [KP03] combined the efforts of [SP00] and [May96] and described a
complementarity-based proof allowing for uncharacterized sources.

Much research has later been directed towards imperfect devices, particularly looking at
security when their operation is basis-dependent. A proof for uncharacterized sources with
basis-dependent imperfections was given by [Koa06]. This also has the advantage of avoiding
the use of QECC by decoupling the error correction and the privacy amplification by classical
encryption techniques [Lo03]. The case of imperfections in both the source and detector was
analyzed in [Got+04], although it only allowed for limited detector imperfections [MLS10b].
Recent work has been done to cover arbitrary imperfections in both the source and detector
[MLS10b].

All the above proofs however are limited to imperfections that are uncorrelated. This means
that even though the devices can be fully uncharacterized except for a few parameters, their
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operation must be completely independent from earlier signals [MLS10b]. The effects of
correlations on the apparatus is largely an open problem, although it is not immediately
clear how such correlations can be attacked. We aim to investigate the necessity of requiring
individual imperfections in the security of quantum key distribution.

1.3.3 Personal motivation

Lastly, a word about the personal motivation for this work. I consider myself incredibly
lucky to be given the opportunity to work on this project. Quantum information science is
truly a unique field, where my fascination for physics can be combined with the prospect of
immediate applications of great social importance.

1.4 Structure of this document

This document is decided into 8 chapters. Chapter 2 and Chapter 3 is largely a review of
material from [NC10]. To avoid cluttering the text, explicit references to this work have
been omitted, but these chapters are to be understood as both implicitly referencing it.

Chapter 1 (this chapter) has introduced the core principles of cryptography, outlined its
historical developments and presented the motivation for its study. Then an overview of
other work related to this was given.

Chapter 2 introduces the fundamental concepts of quantum computation, starting from the
postulates of quantum mechanics and quantum measurement. It also introduces density
operators, composite systems, quantum circuits and some important theorems for analyzing
quantum systems.

Chapter 3 gives a detailed account of chosen topics form quantum information theory,
including the quantum operation formalism and quantum state distance measures. A com-
prehensive introduction to classical and quantum entropy is also provided.

Chapter 4 introduces the application of quantum communication channels for cryptographic
purposes, covering quantum key distribution and the modern security definition. The def-
inition of the BB84 protocol is then provided, before presenting a detailed review of its
security proof by [Koa09].

Chapter 5 describes the formalism used to describe devices that have basis-dependent imper-
fections, specifically generalizing the operation of the source. It is then argued that security
is still guaranteed as long as the source states are independent, but it is not immediately
clear whether this restriction is in fact necessary.

Chapter 6 then investigates this claim by numerical procedures. Various algorithms are
described and the outcomes are provided in plots or in listings in Appendix A. The results
show concrete counterexamples to the previous claim, even for realistic conditions.
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Chapter 7 presents an analysis of the numerical findings. First, the validity of the results is
addressed, in the context of the theoretical model. Then the assumptions of the model are
evaluated, motivating the interpretation of the main results. Finally, suggestions for further
work is provided.

Chapter 8 concludes this document and attempts to summarize the work, its results and its
consequences.

11





Chapter 2

Fundamentals

Before presenting topics from quantum information and then quantum cryptography, a
review of the fundamentals is included. The underlying theory is that of quantum computa-
tion, which combines computer science and physics to analyze computing systems exhibiting
quantum effects [NC10]. It relies heavily on results from linear algebra, which is assumed
to be known at the level of operator functions and singular value decomposition in finite
dimensions. Although some of the topics in this chapter are considered rudimentary, they
are included here for completion and because their interpretation are crucial for the later
topics.

This chapter reviews some fundamentals concepts in the theory of quantum computation,
starting at the postulates of quantum mechanics, quantum operators and quantum measure-
ment. Then the topic of density operators is introduced, together with their connection to
composite quantum systems and purification. A summary of the quantum circuit model is
also presented, before the chapter is concluded with a few, useful theorems about quantum
systems.

2.1 Quantum mechanics

Quantum mechanics is a framework for describing the physics of the very small. It exhibits
a range of counterintuitive properties such as superposition of states, inherent random-
ness, history creation, and non-locality. This section presents the postulates of quantum
mechanics and outlines some of their immediate consequences.

2.1.1 Postulates

Quantum mechanics can be formulated in a variety of ways. We will begin with the for-
mulation of physical postulates [NC10] that mostly assert which mathematical framework
correctly represents the physical quantum reality.
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Postulate 1. Any isolated physical system is associated with a complex, complete
inner-product space (Hilbert space) H, called the state space. The state of the system
is completely characterized by a complex unit vector |ψ〉 in this vector space.

A system is considered isolated when it is not interacting with any other system. We
will restrict ourselves to the case of H being finite-dimensional, which is equivalent to the
physical system having a finite number of discrete degrees of freedom.

Postulate 2. The state of an isolated quantum system evolves in time from an initial
state |ψ(t = t0; t0)〉 to a final state |ψ(t = t1; t0)〉 according to

|ψ(t = t1; t0)〉 = U(t1, t0) |ψ(t = t0; t0)〉 , (2.1)

where U(t1, t0) is a unitary operator on the state space that only depends on the initial
and final times.

Furthermore, if the dynamics can be described by continuous time, then the time evo-
lution of the state |ψ〉 is governed by the Schrödinger equation

i~
d |ψ〉
dt

= H |ψ〉 , (2.2)

where ~ is the reduced Planck constant and H is known as the Hamiltonian of the
system.

Postulate 3. A quantum measurement is characterized by a set {Mm,m} where m
labels the possible outcomes of the measurement. To each label m there is a corre-
sponding linear operator on the state space denotedMm called a measurement operator.
The measurement operators must satisfy the completeness relation

∑
m

M †mMm = I. (2.3)

A measurement on |ψ〉 produces, at random, one of the results m with probability

p(m) = ‖Mm |ψ〉‖2 = 〈ψ|M †mMm |ψ〉 (2.4)

and maps the state |ψ〉 to |ψm〉 immediately after the measurement, given by

|ψm〉 = Mm |ψ〉√
p(m)

= Mm |ψ〉√
〈ψ|M †mMm |ψ〉

. (2.5)

It is seen from the spectral decomposition theorem that the often-used condition of quantum
observables being represented by Hermitian operators is a special case of the quantum mea-
surement postulate. Posulate 3 is however more general, describing all possible measurement
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processes allowed in physics.

Postulate 4. A composite physical system, made out of combining distinct component
systems with state spaces {Hi}ni=1, is described by a composite state spaceH constructed
from the tensor product of the component systems

H =
n⊗
i=1
Hi. (2.6)

If the component systems are all in definite states |ψ〉1 , |ψ〉2 , . . . , |ψ〉n respectively, the
state of the composite system |ψ〉 is similarly given by the tensor product

|ψ〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ · · · ⊗ |ψ〉n . (2.7)

The full range of implications of these postulates is contained in the mathematical properties
of their various components, such as Hilbert space, unitary operators and tensor products.
The basic properties of these mathematical objects are assumed known.

2.1.2 Physical consequences

Some important physical consequences can already be seen from the postulates of quantum
mechanics:

• Superposition

Because the state space of quantum systems is a linear vector space, the states of
the system satisfy the superposition principle. This means that linear combinations
of valid states are also all valid states. This gives the notorious notion of quantum
objects being in “two places at once”.

• Operator Linearity

Both time evolution and measurement is described by linear operators. This means
that any physical operation, including quantum gates, is described by an appropriate
linear operator on the state space.

• Reversibility

An important property of a unitary operator is its guaranteed, well-defined inverse,
namely its adjoint. Since time evolution in quantum systems is described by a unitary
operator, this has the consequence that any physical operation, except measurement,
is in theory completely reversible. In particular it means that any quantum gate must
be reversible, unlike classical logic gates.

The notable exception of measurement to this property is one of the more unsettling
aspects of quantum mechanics, often treated under the term “wave function collapse”.
This means that a measurement represents something fundamentally different from

15



2.1. QUANTUM MECHANICS

time evolution, and measuring some quantity will potentially subject the system to
irreversible change.

• Randomness

A quantum measurement is described by a set of outcomes and corresponding oper-
ators that predict probabilities for these outcomes. Yet, the action of performing a
measurement has no dynamic process assigned to it. Instead the outcome is said to be
selected at random, as if modeled by a random variable. This assertion of an intrinsic
randomness in quantum mechanics can be hard to grasp, and its interpretation has
bothered many minds in pursuit of understanding quantum mechanics.

An important pitfall should be avoided here: quantum processes are not random. Time
evolution is not only completely deterministic, but also always reversible. Only when
the system is measured does the randomness manifest. This paradoxical interplay
between the inherent randomness of measurement and the reversible, determinism of
time evolution is at the very heart of quantum mechanics [NC10].

In summary, it is seen that the stage of quantum mechanics is set in a complex vector
space, its states described by vectors, its physical operations by linear operators and its
measurement dynamics by random processes. The study of quantum mechanics is thus
intimately tied to the study of linear vector spaces and random variables.

2.1.3 The qubit

In classical logic the basic unit of information is labeled a bit. It takes a single binary value,
either 0 or 1. Together with the classical logic operators of conjunction, disjunction and
negation, it forms a Boolean algebra. In this framework states are discrete, and operations
and systems are characterized by logic tables.

In the quantum world the basic unit of information is label a qubit, short for quantum bit.
It manifests as the state of the simplest quantum system imaginable: a state space allowing
only two states |0〉 and |1〉. Although seemingly identical to the classical case, quantum
systems are not characterized by logic tables, but rather a complex linear vector space.
This has the pivotal consequence that the state of the system cannot only take on the two
base states, but in fact any linear combination of them

|ψ〉 = α |0〉+ β |1〉 , (2.8)

where α and β are arbitrary complex numbers satisfying the normalization condition |α|2 +
|β|2 = 1. Equation 2.8 is indeed the defining equation for the qubit. The state space of a
qubit will typically be denoted as K 3 |ψ〉.

As a short precaution, it should be noted that this is not only a funny mathematical ab-
straction, but can be achieved physically. Using trapped ions for instance, a state space can
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be achieved that has this property, and in this way the qubit is made real.

Unlike the classical bit, it is not immediately clear how much information a qubit encodes.
Since α and β are arbitrary complex constants, an infinite amount of information could
in theory be encoded in their binary expansion. This however has the caveat that any
measurement will necessarily only reveal one classical bit of information about the state
[NC10]. Thus to determine α and β to arbitrary precision and thus recovering the infinite
amount of information encoded in them would require an infinite number of measurements
on an infinite number of prepared copies of the state.

This “infinite” amount of information is however somehow contained in the state as long
as it is not measured. Although not directly accessible, the exact values of α and β cer-
tainly matter and have physically real consequences. This duality of the discrete and the
continuous nature of quantum systems and the “hidden” information of infinite precision
they encode is one of the fundamental concepts of quantum information.

2.1.4 Interpreting uncertainty

Probability typically arises in two different contexts, each with their own corresponding
interpretation. In the context of repeated experiments, probabilities assigned to various
outcomes are interpreted as that in the limit of a large number of trials, the relative frequency
of the particular outcome approaches its assigned probability value. In the context of
information theory, probabilities represent knowledge, or rather lack of knowledge, about a
system. Associated with this last interpretation is the notion of uncertainty, understood as
the lack of distinguishability between unknown, distinct possibilities.

Classically, there is no clear notion of objective uncertainty, as the laws of physics in theory
completely determine any physical process. For a collection of trials however, it is possible
to introduce probabilities to different possibilities. This is not to be understood as implying
that there is a lack of distinguishability in any particular trial; in fact it is always completely
determined. Rather, it is a mathematical tool which allows subsequent effects to be assigned
probabilities, which give the expectation values of the relative frequency they will occur at
in repeated trials.

Quantum mechanics introduces the concept of an intrinsic uncertainty, a lack of knowledge
not by the observers, but by the state itself. A quantum state can be repeatedly prepared
to give probabilistic random outcomes when measured, yet the initial state is understood as
completely determined. In particular, this uncertainty is present for all (possible) observers.

When analyzing quantum systems it is frequently desirable to subject the system also to
classical uncertainty, e.g. when modeling quantum noise. In these cases it is important to
keep in mind the physical origin of the various uncertainties and probabilities in the model.
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2.2 Quantum computation

Quantum computation is the study of physical systems exhibiting quantum effects, with
states used for encoding information. This is most naturally done by constructing a physi-
cal state space consisting of a collection of qubits and analyzing operations on these through
the framework of linear algebra. This section reviews basic quantities and techniques used
to describe quantum computation, such as quantum operators, quantum measurement and
density operators. A table of quantum circuit elements is also given. Lastly, three highly
useful theorems on general measurement implementation, no-cloning and deferred measure-
ments are stated.

The state space Vi for a single qubit is one that allows only two base states |0〉i and |1〉i.
In line with Posulate 4, the state space for n qubits is then formed as the tensor prod-
uct of single-qubit spaces V =

⊗n
i=1 Vi with corresponding basis {|i1 i2 . . . in〉}i1,i2,...,in .

Choosing the computational basis {|00 . . . 0〉 , |00 . . . 1〉 , . . . , |11 . . . 1〉} as convention has the
consequence that states, functionals and operators can be uniquely represented by vectors
and matrices.

Some useful quantum states are:

|+〉 = 1√
2(|0〉+ |1〉)

|−〉 = 1√
2(|0〉 − |1〉)

X-basis states (2.9)

|ψ−〉 = 1√
2(|01〉 − |10〉)

|ψ+〉 = 1√
2(|01〉+ |10〉)

|φ−〉 = 1√
2(|00〉 − |11〉)

|φ+〉 = 1√
2(|00〉+ |11〉)


Bell states (2.10)

2.2.1 Bloch sphere

Recall Equation 2.8 for the qubit: |ψ〉 = α |0〉+β |1〉, which has a total of 4 real parameters
(2 complex). Considering the constraint |α|2 + |β|2 = 1 and noting that global phase has
no physical significance, the expression for the qubit can be decomposed as

|ψ〉 = cos
(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 , (2.11)

which is characterized by only 2 cyclic parameters θ, φ ∈ R. This allows a pleasant visual-
ization of one qubit as a point on a spherical shell of unit radius.
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2.2.2 Operators

The dimensionality of linear operators on a single qubit is 22 = 4. A conventional basis for
single-qubit operators is the {I,X, Y, Z}-basis, given by

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, (2.12)

where X,Y, Z are known as the Pauli matrices, also denoted σ = [X,Y, Z]. They are
Hermitian and unitary but not positive, with properties

[σi, σj ] = 2iεijkσk (2.13)

{σi, σj} = 0 (2.14)

σiσj = δijI + iεijkσk. (2.15)

In this document, linear operators on a Hilbert space V will be denoted L(V ).

Posulate 2 states that quantum operations on a single qubit are described by unitary oper-
ators U ∈ U(2), which has the general matrix representation

U =
[

a b

−eiθb∗ eiθa∗

]
; |a|2 + |b|2 = 1, (2.16)

with a, b ∈ C and θ ∈ R. It can be decomposed as

U = eiα
[
e−iβ/2 0

0 eiβ/2

][
cos
(γ

2
)
− sin

(γ
2
)

sin
(γ

2
)

cos
(γ

2
) ][e−iδ/2 0

0 eiδ/2

]
= eiαRZ(β)RY (γ)RZ(δ),

(2.17)

for α, β, γ, δ ∈ R. The operators RXi(θ) are rotations about the X̂i-axis as visualized on
the Bloch sphere. This decomposition is equivalent to the concept of Euler angles.

Rotations on the Bloch sphere of an angle θ about an arbitrary n̂-axis is generated by

Rn̂(θ) = e−i
θ
2 n̂·σ = cos

(
θ

2

)
I − i sin

(
θ

2

)
n̂ · σ. (2.18)

Note that the factor θ
2 gives the correct expression for a rotation of θ.

2.2.3 Measurement

As noted in Posulate 3, quantum measurement is described by a collection of measure-
ment operators {Mm} satisfying the completeness relation

∑
mM

†
mMm = I, which predict

probabilities for each measurement outcome as well as the associated post-measurement
state. Also note that the case of just a single measurement operator (only one possible
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outcome) implies it must be unitary, and as such the measurement operators also describe
any quantum operation.

If a system is left in an unknown but definite state, measurement can be used to determine
in which state the system is. A measurement can always be made which will never give an
incorrect value, but only in the case of distinguishing orthogonal states can the measure-
ment be guaranteed to succeed. Non-orthogonal states cannot be perfectly distinguished by
measurement, as there will always be either a non-zero probability of obtaining an incorrect
value, or a non-zero probability of obtaining no value at all.

Projective measurement

A special class of measurement is known as projective measurement.

Definition 2.1. A projective measurement is represented by a set of orthogonal projec-
tors {Pm}; PmPm′ = δm,m′Pm that satisfy the completeness relation

∑
m Pm = I.

Alternatively, it is also described by an observable: a Hermitian operator M , that has
spectral decomposition

M =
∑
m

mPm, (2.19)

where Pm is the projector onto the eigenspace ofM with eigenvaluem. Both representations
are equivalent.

The probability of obtaining outcome m when measuring state |ψ〉 is then

p(m) = 〈ψ|Pm |ψ〉 , (2.20)

with post-measurement state
|ψm〉 = Pm |ψ〉√

p(m)
. (2.21)

There is furthermore a convenient expression for the expectation value of the observableM ,
given by

〈M〉 =
∑
m

mp(m) = 〈ψ|M |ψ〉 , (2.22)

which is sometimes misunderstood as valid for all measurement.

The concept of “measuring in basis |m〉”, where {|m〉} is an orthonormal basis, simply refers
to a projective measurement with projectors Pm = |m〉 〈m|.

Projective measurement on a single qubit can visualized as measuring along a particular
axis of choice n̂ on the Bloch sphere. The observable for this measurement is then given by

Mn̂ = n̂ · σ, (2.23)

with eigenvalues ±1 and corresponding projectors P±1 = (I ± r · σ)/2.

20



2.2. QUANTUM COMPUTATION

Comparing with the general measurement operators Mm, it is seen that projective mea-
surement corresponds to the special case of the different Mm’s being projectors as well as
being orthogonal. Although projective measurement corresponds nicely to easily realizable
physical measurements, there are measurement processes that can only be described by the
general operators Mm.

An important difference between general and projective measurements regards the question
of repeatability. When performing the same measurement repeatedly on the same system,
a general measurement {Mm} will generally give different outcomes, whereas the outcomes
of a repeated projective measurement {Pm} will always be the same.

POVM measurement

Another class of measurement is known as POVM (Positive Operator-Valued Measure)
measurement.

Definition 2.2. A POVMmeasurement is described by a set {Em} of positive operators
Em, known as POVM elements, satisfying the completeness relation

∑
mEm = I.

The probability of outcome m is then given by

p(m) = 〈ψ|Em |ψ〉 . (2.24)

By inspection of Posulate 3 it is seen that the POVM elements can be constructed from the
general measurement operators as

Em = M †mMm. (2.25)

By the uniqueness of the square root of a positive linear operator, the measurement operators
Mm can also easily be constructed from the POVM elements. Since both representations
can easily and uniquely be converted to each other it is evident that they are equivalent and
can both describe any form of general physical measurement.

2.2.4 Density operators

The postulates of quantum mechanics were formulated with states represented by vectors.
This is a very common starting point, as it is perhaps the most intuitive and mathemati-
cally straightforward approach. There is however an alternative formalism for representing
quantum states, namely the density operator. It captures the notion of a quantum state
in a mathematically equivalent manner as the vector formalism, but offers more powerful
methods for treating probabilistic mixtures of states.

A quantum state that can be described by a vector |ψ〉 is termed a pure state. All states
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encountered so far have been pure states. In general the exact state of a system may not
be known, but rather it is known to be in one of several possible states |ψ1〉 , |ψ2〉 , . . . with
corresponding probabilities p1, p2, . . . . Such a probabilistic state ensemble is specified by a
set of possible states and probabilities as {pi, |ψi〉} and has an associated density operator

ρ =
∑
i

pi |ψi〉 〈ψi| . (2.26)

Note that any pure state |ψ〉 consequently has its corresponding density operator given
simply by the outer product |ψ〉 〈ψ|. A such, the density operator is able to represent
any quantum state encountered so far, as well as probabilistic mixtures of these states. A
quantum state whose density operator cannot be represented as an outer product is said to
be mixed.

It is easily shown that Equation 2.26 implies two universal, important properties for any
density operator ρ. First, it is a positive operator, meaning that all its eigenvalues are non-
negative. Second, it has unit trace: tr(ρ) = 1. Moreover, any density operator corresponding
to a pure state will always satisfy the condition tr

(
ρ2) = 1, whereas a mixed state satisfies

tr
(
ρ2) < 1.

In general it is not convenient to require density operators to be defined in terms of the
underlying ensemble. Equivalent to the fact that any density operator satisfies positivity
and unit trace, it is easily shown that the reverse also holds. Thus, any operator satisfying
these properties will necessarily correspond to a state ensemble, and hence forms a suitable
requirement for the general definition of the density operator.

Definition 2.3. A density operator is a positive operator ρ with unit trace: tr(ρ) = 1.

In this document, the set of all density operators on Hilbert space V will be denoted by
P(V ).

Postulates

All the defining postulates of quantum mechanics can now be reformulated in terms of
density operators. Time evolution of a closed quantum system is described by a unitary
operator U which evolve the initial state ρ to a final state ρ′ according to

ρ′ = UρU †. (2.27)

Quantum measurement is described by a set of measurement operators {Mm} that satisfy
the completeness relation in Equation 2.3. The probability of obtaining result m is then

p(m) = tr
(
M †mMmρ

)
, (2.28)
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with corresponding post-measurement state

ρm = MmρM
†
m

p(m) = MmρM
†
m

tr
(
M †mMmρ

) . (2.29)

Finally, the state ρ of a composite physical system with component states ρ1, ρ2, . . . , ρn is
given by

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn. (2.30)

Unitary freedom

An important property of density operators is their non-bijective mapping to the state
ensembles. In fact, any given density operator can correspond to many different ensembles.
The precise condition for when two different ensembles generate the same density operator
turns out to rely on unitary transformations.

Theorem 2.4 (Density operator freedom). The two state ensembles {pi, |ψi〉} and
{qj , |φj〉} generate the same density matrix if and only if

√
pi |ψi〉 =

∑
j

uij
√
qj |φj〉 , (2.31)

for some unitary matrix with components uij, and whichever set of vectors is smallest
has additional 0-vectors added to it to make the sets have the same number of elements.

Remark. Note that this implies that density matrices for pure states have a unique ensem-
ble interpretation.

Figure 2.1 gives an overview of some important mathematical properties of various quantities
encountered in this section.
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normal

Hermitian

positive

projection

unitary

σi

I

tr = 1 tr = 0
Mm

Pm

ρ

M

U(t1, t0) eiH

Em

0

0

∅I1

P{|i〉}

Figure 2.1: Euler diagram of properties of common quantities in quantum computation:

• Mm: measurement operator

• M : observable

• Em: POVM element

• Pm: projective measurement operator

• U(t1, t0): time development operator

• eiH : exponentiated skew-Hermitian operator

• ρ: density matrix

• P{|i〉}: projective measurement operator to a one-dimensional vector space

• I1: one-dimensional identity operator

• σi: Pauli matrix

2.2.5 Composite systems and entanglement

When multiple systems are put together to form a composite system, it is convenient to
distinguish between the different types of states in which it can be. If the component states
|ψ〉A ∈ VA and |ψ〉B ∈ VB are known, it is postulated in Equation 2.7 that the composite
state |ψ〉AB ∈ V = VA ⊗ VB is simply |ψ〉AB = |ψ〉A ⊗ |ψ〉B. However, this does not include
all possible states in which the composite system can in fact be.

If {|ek〉A}
n
k=1 and {|el〉B}

m
l=1 form bases for VA and VB respectively, their tensor product

{|ek el〉AB}
k=n,l=m
k=1,l=1 forms a basis for the composite space V . Hence any possible state can
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be expanded in this basis
|ψ〉AB =

∑
k,l

ckl |ek el〉AB . (2.32)

In general it is possible that there is no |ψ〉A ∈ VA and |ψ〉B ∈ VB such that |ψ〉AB =
|ψ〉A ⊗ |ψ〉B. In that case |ψ〉 is known as an entangled state.

A mixed state of a composite Hilbert space V = VA⊗VB is described by a density operator
ρAB ∈ P(V ). If this state can be expanded as a probabilistic mixture of component states

ρAB =
∑
i

piρ
A
i ⊗ ρBi ;

∑
i

pi = 1, (2.33)

for pi > 0 and ρAi ∈ P(VA), ρBi ∈ P(VB) it is called separable [Hay06]. If it cannot be
written in this form it is an entangled state.

Similarly, measurements on the composite space V are given by a set of operators {Mm}. If
it can be expanded in terms of measurement operatorsMA

i andMB
i on only the component

systems VA and VB respectively as

Mm =
∑
i

MA
i ⊗MB

i (2.34)

it is called separable. Otherwise it is a collective measurement [Hay06].

Reduced density operator

A common task when dealing with a composite system V = VA ⊗ VB is to describe the
dynamics of only one part of the system, say VA. The dynamics of VB are not relevant in
this case and may not even be known at all. Due to the non-local structure of quantum
mechanics, it is however not immediately clear that such a construction is possible; the state
in VA does in general depend on processes and measurements applied to VB if the states
are initially entangled. It is nevertheless possible to find a density operator that correctly
predicts the physics of only interacting with VA, namely the reduced density operator

ρA = trB
(
ρAB

)
, (2.35)

where the partial trace is defined as a linear map such that

trB(|a1〉 〈a2| ⊗ |b1〉 〈b2|)
def= |a1〉 〈a2| tr(|b1〉 〈b2|). (2.36)

The use of reduced states must however be carefully applied in order to ensure a correct
description. In particular, a reduced state on one subsystem can only be used to predict
probabilities on that subsystem. Formally, let V = VA ⊗ VB be a composite system in
the state ρAB. Now, label any event on system VA by Ai and any event on system VB by
Bi. Then the reduced state ρA can only be used to predict probabilities of the form p(Ai),
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and ρB to predict probabilities p(Bi). Predicting probabilities across both systems, such as
p(Ai, Bj) or p(Ai|Bj) cannot be done using either reduced state, but only from the total
state ρAB. As the models get more complex, it is important to keep this principle in mind.

Schmidt decomposition and purification

This section is concluded with two key theorems for composite quantum systems. The
first, Schmidt decomposition, provides a convenient rephrasing of Equation 2.32 with some
important consequences.

Theorem 2.5 (Schmidt decomposition). Consider a composite system V = VA ⊗ VB
where VA and VB have the same dimensionality n. For any pure state |ψ〉 ∈ V there
exists orthonormal bases {|ei〉A}

n
i=1 and {|ei〉B}

n
i=1 for VA and VB respectively, such that

|ψ〉 =
n∑
i=1

λi |ei〉A |ei〉B , (2.37)

where the Schmidt coefficients λi satisfy λi ≥ 0 and
∑
i λ

2
i = 1.

The bases {|ei〉A} and {|ei〉B} are known as the Schmidt bases under |ψ〉 for VA and VB

respectively. The number of non-zero Schmidt coefficients λi, known as the Schmidt number
for |ψ〉, quantifies the entanglement |ψ〉 exhibits between the component systems. If |ψ〉
is maximally entangled, the Schmidt number equals the dimensionality of the component
space.

A very useful technique related to the Schmidt decomposition is the purification of a
mixed quantum state ρA ∈ P(VA). Since ρA is positive, its spectral decomposition ρA =∑
i pi |ei〉A 〈ei|A defines an orthonormal basis {|ei〉A} for VA. Introducing an ancilla system

VB with the same state space as VA it is clear that it has the same orthonormal basis {|ei〉B}.
The purification |ψ〉AB of ρA into VA ⊗ VB is then defined

|ψ〉AB =
∑
i

√
pi |ei〉A |ei〉B . (2.38)

The usefulness of Equation 2.38 is captured in the following theorem.

Theorem 2.6 (Purification). The reduced density operator on VA of the purification
|ψ〉AB of ρA ∈ P(VA), is equal to ρA, i.e.

trB(|ψ〉AB 〈ψ|AB ) = ρA. (2.39)
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2.2.6 Quantum circuits

Quantum circuit diagrams are a frequent tool for designing and analyzing quantum pro-
cesses. In this model, one qubit is represented by a single wire. Then various gates on the
qubits are added left to right, according to the sequential steps of the algorithm or protocol
in question. Note that fan-out, fan-in or loops are not permitted in the diagrams, as they
do not correspond to anything real. Finally measurement elements are given for the qubits
that produce the desired output of the algorithm.

Tables of the standard quantum circuit elements are given below.

Table 2.1: Basic quantum circuit elements.

Name Circuit element

measurement |q0〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

qubit |q0〉

classical bit c0

multiple qubits |q0〉 /

Table 2.2: Single-qubit quantum gates.

Name
Circuit
element

Matrix

Hadamard |q0〉 H
1√
2

[
1 1
1 −1

]

Pauli-X
(NOT)

|q0〉 X

[
0 1
1 0

]

Pauli-Y |q0〉 Y

[
0 −i
i 0

]

Pauli-Z |q0〉 Z

[
1 0
0 −1

]

Phase
(
√
Z)

|q0〉 S

[
1 0
0 i

]
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π/8
( 4√Z)

|q0〉 T

[
1 0
0 eiπ/4

]
√

NOT

(
√
X)

|q0〉
√¬ 1

2

[
1 + i 1− i
1− i 1 + i

]

X-rotation|q0〉 RX(θ)

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) 

Y -rotation|q0〉 RY (θ)

cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) 

Z-rotation |q0〉 RZ(θ)

e− iθ2 0
0 e

iθ
2



Table 2.3: Multi-qubit quantum gates.

Name
Circuit
element

Matrix

CNOT

(controlled-X)

|q0〉 •

|q1〉 ⊕


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



controlled-Z
|q0〉 •

|q1〉 Z


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



controlled-U
|q0〉 •

|q1〉 U


1 0
0 1

0 0
0 0

0 0
0 0

U



swap
|q0〉 ×

|q1〉 ×


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
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Toffoli
(CCNOT)

|q0〉 •

|q1〉 •

|q2〉 ⊕



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



Fredkin
(controlled-swap)

|q0〉 •

|q1〉 ×

|q2〉 ×



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1



In addition to the conventional circuit elements, we will find it convenient to introduce a
few additions. The description of some of the circuit elements are not given until later, but
are included here for reference. Note also that the notation for these circuit elements has
not been universally standardized and might differ from that in other works.

Table 2.4: Additional quantum circuit elements.

Name
Circuit
element

Explanation

Quantum
operation

|q0〉 E
Applies the quantum operation E to the qubit
(see Section 3.1).

POVM
measurement

Performs a general POVM measurement on
the qubit, given by the POVM elements {Em}
(see Section 2.2.3).

29



2.2. QUANTUM COMPUTATION

2.2.7 Useful theorems

We conclude this chapter with a few, famous theorems. They form useful tools for analyzing
all types of quantum systems, but are included here as they are most conveniently formulated
in the quantum circuit formalism.

Theorem 2.7 (General measurement). Any general measurement, described by mea-
surement operators {Mm}, can be realized by a unitary transformation on an enlarged
system, followed by a projective measurement.

This has important consequences for the physical realization of quantum algorithms, as
any general measurement can be implemented by first evolving the system together with an
ancilla system according to some unitary operation and then performing a simple projective
measurement. The ancilla system is an “extra” quantum system with the required properties
and state space in question. This implementation is illustrated in Figure 2.2, where ρ denotes
the initial state of the principal system, ρenv denotes the initial state of the ancilla system
and U denotes the total unitary operator.

Figure 2.2: Quantum circuit for implementing a general quantum measurement: a unitary oper-
ator on an enlarged system, followed by a projective measurement.

Theorem 2.8 (Deferred measurement). Quantum measurements can always be deferred
to the end of the quantum circuit. Any classical operations, including controlled opera-
tors, that are applied to the resulting bit values can be replaced by corresponding quantum
operators.

Theorem 2.9 (No cloning). An unknown quantum state cannot be copied. Formally,
let |ψ〉 be some unknown quantum state of the principal system and |s〉 be the initial state
of the target system. Then there exists no quantom operation that maps |ψ〉 ⊗ |s〉 →
|ψ〉 ⊗ |ψ〉 ; ∀ |ψ〉.

Remark. In the case of only processing mutually orthogonal states, there does exist a
quantum procedure for copying them. The previous theorem simply asserts that if one aims
to construct a single copying machine for copying e.g. |0〉 and |+〉, this cannot be done.
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Chapter 3

Quantum information

Information theory is essentially the study of the most fundamental, or most granular,
pieces of information one can store or transmit. Quantum information technology (QIT)
is then the application of this study to the most fundamental and granular description of
the physical world. In this sense QIT describes information in its most essential form and
teaches us to think physically about information and computation [NC10].

This chapter is meant to provide a detailed account of chosen topics underlying quantum
cryptography. This includes the quantum operation formalism and quantum state dis-
tance measures. Then a comprehensive overview of classical as well as quantum entropy is
provided. The chapter concludes with an important theorem for the transmission rate of
classical information over quantum communication channels.

3.1 Quantum operations

Starting with the postulates of quantummechanics, the above sections have developed a solid
theory for describing closed quantum systems. Real systems are however rarely perfectly
non-interacting with the environment, and it would be useful to be able to describe such
open systems from a quantum mechanics perspective. This section reviews the quantum
operation formalism, including the axiomatic approach and the operator-sum representation.

3.1.1 System-environment model

The procedure for describing open systems is to model its interaction with some external
environment and then average over the dynamics of this environment. The system of interest
is modeled by a Hilbert space Q and has some initial state ρ ∈ P(Q). It is free to interact
with some other, environment system E which is in a state ρenv ∈ P(E). Implicitly this
assumes that the state of the total system QE is a product state ρ ⊗ ρenv, i.e. that the
system is not entangled with the environment. This is a common condition satisfied for
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experimental realizations, as the setup typically begins by isolating the system so that it
is in fact uncorrelated with the environment. There is no restriction on the system or the
environment starting in a pure state.

Creating a model for open system dynamics is relatively straight-forward by using the
tools of Section 2.2.5. The evolution of the whole system-plus-environment QE follows the
familiar closed system dynamics and therefore has an associated unitary time evolution
operator U ∈ L(Q⊗ E). After applying the time evolution to the initial state ρ⊗ ρenv, the
density operator for the system state, averaged over the environment, is simply given by the
partial trace. This process, as depicted in Figure 3.1, is called a quantum operation E .

Definition 3.1. A quantum operation E describes the time evolution of a open quantum
system, i.e. a system interacting with an environment. E maps the initial system state
ρ ∈ P(Q) to E(ρ) ∈ P(Q) according to

E(ρ) = trenv
[
U(ρ⊗ ρenv)U †

]
. (3.1)

Figure 3.1: Quantum circuit of the defining process for a quantum operation: an open interaction
between a system and an environment.

3.1.2 Operator-sum representation

A simple analysis of the expression in Equation 3.1 shows that any quantum operation E
can always be expanded as a sum of operation elements Ek acting only on the system Q.
This is known as the operator-sum representation

E(ρ) = trenv
[
U(ρ⊗ ρenv)U †

]
(3.2)

=
∑
k

〈ek|U [ρ⊗ |e0〉 〈e0|]U † |ek〉 (3.3)

=
∑
k

EkρE
†
k, (3.4)

where the vectors {|ek〉} constitute a basis for a purification of the environment, |e0〉 is the
purified initial state and Ek are any linear operators Ek ∈ L(Q) satisfying the completeness
relation ∑

k

E†kEk = I. (3.5)
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It can be shown [NC10] that the maximum number of quantum operation elements necessary
to describe any quantum operation on a system Q of dimensionality dimQ = d is d2.

This expression reveals the physical intuition behind the quantum operation formalism. The
operation elements Ek can be interpreted as the general measurement operators described
in Section 2.2.3. Equation 3.4 then describes a process in which a general measurementMm

is performed on the system, but the outcome m is not recorded. This is also illustrated by
the difference between Figure 3.1 and Figure 2.2. This interpretation highlights how the
open dynamics interaction manifests as random noise in the system as well as the parallels
between quantum operations and classical Markov processes. It furthermore indicates that
quantum operations indeed can describe all closed system dynamics, but also a whole set of
processes that are not describable by closed system dynamics.

3.1.3 Axioms

A detailed analysis in [NC10] identifies three key properties of the quantum operation map
E from Equation 3.5, which are in turn considered axioms for the definition of quantum
operations.

Axiom 3.1. Quantum operations are trace preserving, i.e. tr(E(ρ)) = 1. Generally
tr(E(ρ)) is the probability of the process occurring, and an alternative definition which
includes projective measurements on the entire system-plus-environment is possible.
This alternate definition relaxes the requirement to 0 ≤ tr(E(ρ)) ≤ 1.

Axiom 3.2. The quantum operation map E on a system Q is convex-linear on the
density matrices, i.e.

E
(∑

i

piρi

)
=
∑
i

piE(ρi), (3.6)

for probabilities pi and ρi ∈ P(Q).

Axiom 3.3. On a system Q, the quantum operation map E for states ρ ∈ P(Q) is
completely positive. This means that for any extra system R of arbitrary dimensionality,
all positive operators A ∈ L(Q⊗R) must remain positive, i.e. (E ⊗ I) (A) is positive.

The analysis in [NC10] is concluded with a theorem assuring the equivalence of the operator-
sum representation and the above axioms.

Theorem 3.2 (Quantum operations). The map E on Q satisfies Axiom 3.1, Axiom 3.2
and Axiom 3.3 if and only if E(ρ) =

∑
k EkρE

†
k where the Ek’s are any linear operators

on Q satisfying the completeness relation
∑
k E
†
kEk = I. Alternatively, if the generalized

definition of E is used, which includes system-plus-environment projective measurements,
the condition is relaxed to

∑
k E
†
kEk ≤ I.
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3.1.4 Operator-sum freedom

Similarly to the fact that a single density operator can correspond to a number of dif-
ferent pure state ensembles {pi, |ψi〉}, there is also a freedom in the operator-sum rep-
resentation. It turns out that a single underlying process U ∈ L(Q⊗R) on the whole
system-environment QR can be represented by many different sets of operator elements
{Ek}. This non-uniqueness in the operator-sum representation is captured in the following
theorem. The proof [NC10] is a consequence of the unitary freedom of density operators
(Theorem 2.4).

Theorem 3.3 (Freedom of the operator-sum representation). Two quantum opera-
tions E and F on a system Q have operator elements {Ei}mi=1 and {Fj}nj=1 respectively.
Padding whichever set contains the least number of elements with zero-operators ensures
that m = n. Then the two operations E and F are equal if and only if

Ei =
∑
j

uijFj , (3.7)

for some unitary matrix with elements uij.

3.2 Distance measures

Before analyzing information change in a dynamical process, it is first necessary to develop
a precise procedure for measuring how “similar” two different quantum states are. Some
properties, such as two equal states being the most similar, are apparent, but it is not
immediately clear how to quantify the difference in general. At the same time, there is
an intuitive expectation that states that produce almost the same probabilities for some
measurement outcomes are indeed more “similar” than states whose outcome probabilities
differ greatly. This section introduces various methods to evaluate the distance between
arbitrary quantum states.

3.2.1 Classical distance measures

To motivate the quantum state distance measures, a short summary of two classical distance
measures is given. Many different forms of measures are possible, both in the classical and
in the quantum case, and choosing among them is simply a matter of convention. Two
measures however stand out as the most popular today in quantum information science:
the trace distance and the fidelity.

Classical distance measures are concerned with quantifying how different two information
sources are. In accordance with Section 3.3.1, sources are understood as probability dis-
tributions. Hence, classical distance measures will be various forms of discrete “counting”
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distances between probability functions.

Given two probability distributions {px} and {qx}, two common classical distance measures
are:

• The trace distance is defined by

D(px, qx) = 1
2
∑
x

|px − qx|

= max
S

(∑
x∈S

px −
∑
x∈S

qx

)
,

(3.8)

where S is any subset of the index set {x}. It is also known as the L1 metric.

The trace distance is non-negative, symmetric and satisfies the triangle identity for
probability functions. Hence it is a metric.

• The fidelity is given by
F (px, qx) =

∑
x

√
pxqx. (3.9)

The fidelity is not a metric.

3.2.2 Trace distance

The classical trace distance has an intuitive generalization to the quantum case.

Definition 3.4. The quantum trace distance between two states ρ, σ ∈ P(Q) is defined

D(ρ, σ) = 1
2 tr(|ρ− σ|) (3.10)

= 1
2
∑
k

〈ek|
√

(ρ− σ)†(ρ− σ) |ek〉 , (3.11)

where Equation 3.11 is simply an explicit expansion of Equation 3.10 in terms of a basis
{|ek〉} for Q using the standard operator function |A| =

√
A†A.

Remark. In the case that the two states ρ and σ commute, their quantum trace distance is
simply equal to the classical trace distance between their generating probability distributions
in the shared basis.

The trace distance always falls within the bound

0 ≤ D(ρ, σ) ≤ 1, (3.12)

where D(ρ, σ) = 0 implies that ρ = σ, and D(ρ, σ) = 1 implies that ρ and σ are orthogonal.
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Properties

The trace distance exhibits a range of convenient properties which makes it a powerful tool
for analyzing quantum operations. For any two states ρ, σ ∈ P(Q) their trace distance
satisfies the following properties

• Metric properties

The trace distance is symmetric, non-negative and satisfies the triangle inequality for
density operators. Hence it is a metric.

• Unitary invariance

The trace distance is invariant under unitary transformations

D
(
UρU †, UσU †

)
= D(ρ, σ), (3.13)

so that time evolving the states does not alter their distance.

• Generating positive operator

The trace distance is achieved by the maximization

D(ρ, σ) = max
P

tr(P (ρ− σ)), (3.14)

where P is any positive operator on Q such that P ≤ I. In particular Equation 3.14
states that such an operator P must always exist, which provides a invaluable tool for
evaluating distance quantities.

• POVM maximization

Analogous to the previous point, there is a close relationship between the quantum
and the classical trace distance. Let {Em} be a POVM on Q with the probabilities
for the m-th outcome pm = tr(ρEm) and qm = tr(σEm). Maximizing over all possible
POVM’s {Em} yields the equivalence

D(ρ, σ) = max
{Em}

D(pm, qm). (3.15)

This highlights the fact that the trace distance gives an upper bound on the distin-
guishability of the states by measurement.

Contractivity under quantum operations

The main theorem for the trace distance measure is a generalization from its unitary invari-
ance to its behavior under general quantum operations, as explored in Section 3.1.
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Theorem 3.5 (Contractivity of the trace distance). For two states ρ, σ ∈ P(Q), let E
be a trace-preserving quantum operation on Q. E will then be a contractive operations
on the trace distance between the states, i.e.

D(E(ρ), E(σ)) ≤ D(ρ, σ). (3.16)

This has profound applications for quantum cryptography. As noted, the trace distance
provides an upper bound on the distinguishability between quantum states that any mea-
surement can provide. In addition, as long as the state is prepared to be uncorrelated with
the environment, any physical process applied to it will follow the dynamics of quantum
operations, which by Theorem 3.5 cannot increase the trace distance. In particular this
means that if an upper bound on the trace distance between two states is found, there is no
method for any observer to distinguish the states better than this bound.

3.2.3 Fidelity

The fidelity measure has a similar quantum generalization, although the form is slightly
altered to ensure it is symmetric.

Definition 3.6. The quantum fidelity distance between two states ρ, σ ∈ P(Q) is defined

F (ρ, σ) = tr
(√

ρ1/2σρ1/2
)
. (3.17)

Remark. As with the trace distance, in the case that the two states ρ and σ commute, their
quantum fidelity is simply equal to the classical fidelity distance between their generating
probability distributions in the shared basis.

The fidelity between a general state ρ and a pure state |ψ〉 〈ψ| takes a particularly convenient
form. Using F (|ψ〉 , ρ) as a shorthand for F (|ψ〉 〈ψ| , ρ) it is seen that

F (|ψ〉 , ρ) =
√
〈ψ| ρ |ψ〉. (3.18)

The fidelity always falls within the bound

0 ≤ F (ρ, σ) ≤ 1, (3.19)

where F (ρ, σ) = 1 implies that ρ = σ, and F (ρ, σ) = 0 implies that ρ and σ have orthogonal
support, i.e. they are perfectly distinguishable.
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Properties

The fidelity measure exhibits some properties similar to the trace distance. However, unlike
the trace distance which increases as the states become more distinguishable, the fidelity
has the opposite behavior. As such, some properties of the fidelity are similar but mirrored
with respect to their trace distance counterpart. Also note that the fidelity is not a metric.

For any two states ρ, σ ∈ P(Q) their fidelity satisfies the following properties

• Symmetry

Similarly to the trace distance, the fidelity is symmetric in its inputs, i.e.

F (ρ, σ) = F (σ, ρ). (3.20)

• Unitary invariance

Similarly to the trace distance, the fidelity is invariant under unitary transformations

F
(
UρU †, UσU †

)
= F (ρ, σ). (3.21)

• Uhlmann’s theorem

As with the trace distance, the fidelity can also be achieved by a maximization pro-
cedure. Introducing a second quantum system R as a copy of the principal system Q,
then

F (ρ, σ) = max
|φ〉
|〈ψ|φ〉|, (3.22)

where |ψ〉 and |φ〉 are purifications of ρ and σ into QR respectively. This is a slightly
modified version of Uhlmann’s theorem.

• POVM minimization

Similarly to the trace distance, there is a close relationship between the quantum and
the classical fidelity measures. However, unlike the trace distance, the equivalence is
achieved by minimizing over POVM operators. More precisely, let {Em} be a POVM
on Q with the probabilities for the m-th outcome pm = tr(ρEm) and qm = tr(σEm).
Then

F (ρ, σ) = min
{Em}

F (pm, qm). (3.23)

As with the trace distance, this highlights the fact that the fidelity gives an upper
bound on the distinguishability of the states by measurement.
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Monotonicity under quantum operations

The fidelity behaves in a similar way as the trace distance under quantum operations. The
following theorem mirrors that of Theorem 3.5.

Theorem 3.7 (Monotonicity of fidelity). For two states ρ, σ ∈ P(Q), let E be a trace-
preserving quantum operation on Q. E will then be a monotonically increasing operation
on the fidelity between the states, i.e.

F (E(ρ), E(σ)) ≥ F (ρ, σ). (3.24)

3.2.4 Distance measure equivalence

This section is concluded with a theorem that supports the notion that the two distance
measures explored in this section are in many ways equivalent. In view of their many shared
properties, especially the behavior under quantum operations, choosing between them is
purely a matter of preference. They are both valuable tools for analyzing quantum channels
and their security.

The following theorem substantiates the above claims and gives explicit bounds on the
relation between the two distance measures

Theorem 3.8 (Distance measure equivalence). For any two states ρ, σ ∈ P(Q), the
trace distance D(ρ, σ) and fidelity F (ρ, σ) satisfy

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− [F (ρ, σ)]2. (3.25)

3.3 Information theory

Information theory concerns the storage and transmission messages [Sha48]. The defining
goal is to reproduce some message, i.e. a sequence of characters, at another time or place
than its creation. The message is always chosen among a set of possible messages, and
selecting the correct message is then only possible when additional information is available.
This section provides brief summary of common quantities in classical information theory
and their quantum analogues, before presenting the Holevo bound for evaluating how much
classical information can be encoded in a quantum state.

3.3.1 Classical information

Classically, information is described by probabilities, measured in bits. Shannon’s influential
paper [Sha48] on noiseless and noisy channel coding provides the mathematical framework
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for describing information and gives explicit bounds for how compactly it is possible to store
it as well as how efficiently it can be transmitted through a communication channel subject
to noise.

Information source

A classical information source is described by a generator of random messages, or more
precisely, successive stochastic characters [Sha48]. When discussing information sources we
shall usually refer to a memoryless information source, where each message is an indepen-
dent identically-distributed discrete random variable X. The message can be generated in
discrete chunks or continuously, each with their own type of source. In line with our fi-
nite dimensionality of the state spaces, we are mostly concerned with discrete information
sources, so that X : S → {x} ⊂ R on a sample space S, with probability distribution
pX : {x} → [0, 1] : x 7→ pX(x) such that

pX(x) = Pr{s ∈ S : X(s) = x}. (3.26)

The set of possible values for X is denoted {x}.

The message is then a sequence of characters from the sample space S, each distributed
according to the random variable X. One fundamental question is to consider how much
information is carried by an average message of this sort, given the probability distribution
of X. Equivalently, using the properties of X, how much can a message be compressed on
average.

Shannon entropy

The Shannon entropy H(X) is a measure of the amount of information present in a message.

Definition 3.9. A discrete, memoryless information source is characterized by a ran-
dom variable X with possible values {x} and probability distribution pX(x). Then the
Shannon entropy of the information source is given by

H(X) = −
∑
x

pX(x) log pX(x), (3.27)

where it is implicitly assumed that indeterminate expressions of the form 0 log 0 are
treated in accordance with the limit.

Shannon’s noiseless coding theorem [Sha48] asserts that the Shannon entropy is the upper
limit for lossless compression of a information source. This means that the least amount
of bits per character needed to represent a message by a information source X is given by
H(X), establishing entropy as the measure of information rate.
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Intuitively, entropy is therefore a measure of the information contained on average in a
message by the source in question. More precisely, the entropy is the average information
gain after learning the true value of the random variable X when only the possible values
and the associated probability distribution was known. Alternatively, the entropy can also
be interpreted as the uncertainty in the random variable before learning the true value.

Below is a summary of noteworthy properties of the Shannon entropy for a random variable
X.

• Information is non-negative
, H(X) ≥ 0 (3.28)

with equality only if the outcome is already certain H(X) = 0.

• The entropy is maximized when all outcomes are equally likely. Formally, if X is a
random variable with d outcomes then

H(X) ≤ log d, (3.29)

with equality if and only if X is uniformly distributed.

3.3.2 Classical multivariate entropy

For treating combinations of information sources, there is a range of other quantities related
to the entropy. These expressions are highly useful for instance in describing information
gain when some previous information is already available. A few of the most important
quantities are surveyed below, all under the assumption of discrete, memoryless information
sources.

Joint entropy

The joint entropy of two discrete random variables X and Y respectively is simply the
entropy of the pair. That is, the two variables produce messages as a sequence of pairs of
characters. If the joint probability distribution of X and Y is given by p(x, y), the joint
entropy is given by

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y). (3.30)

The joint entropy is non-negative H(X,Y ) ≥ 0, symmetric H(X,Y ) = H(Y,X) and is
bounded by

max [H(X), H(Y )] ≤ H(X,Y ) ≤ H(X) +H(Y ), (3.31)

where the last equality holds if and only if X and Y are independent.
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Conditional entropy

Conditional entropy occurs in a similar fashion when there are two random variables, but
some information is already known. Given two random variables X and Y with joint
probability distribution p(x, y), suppose the value of X is already known to be X = x.
The conditional entropy of Y given X = x is then

H(Y |X = x) = −
∑
y

p(y|x) log p(y|x). (3.32)

The conditional entropy of Y on average is then given as the weighted sum of conditional
entropies H(Y |X = x) for all values of x, i.e.

H(Y |X) = −
∑
x

p(x)H(Y |X = x)

= −
∑
x,y

p(x, y) log p(x, y)
p(x) ,

(3.33)

where p(x) is the marginal probability distribution p(x) =
∑
y p(x, y).

Intuitively, the conditional entropy H(Y |X) measures the average information gained by
obtaining the value of Y given that the value of X is already known. Equivalently, it also
measures the information needed on average to describe Y given that X is already known.

The conditional entropy satisfies the bound

0 ≤ H(Y |X) ≤ H(Y ), (3.34)

with the first equality holding if Y is completely determined by X and the second equality
holding if and only if X and Y are independent. It also satisfies

H(Y |X) = H(X,Y )−H(X). (3.35)

Mutual information

Mutual information measures the mutual dependence of two random variables X and Y

with joint probability distribution p(x, y). The mutual information between them is then
given by

I(X : Y ) =
∑
x,y

p(x, y) log p(x, y)
p(x)p(y) , (3.36)

where p(x) and p(y) are the respective marginal probabilities.

Intuitively, mutual information measures how much information is gained on average about
one of the variables when the value of the other is known. Equivalently, it also measure
the information saved on average for describing X given that Y is known, compared to not
knowing Y .
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The mutual information is symmetric I(X : Y ) = I(Y : X) and satisfies the bound

0 ≤ I(X : Y ) ≤ H(Y ), (3.37)

with the first equality holding if and only if X and Y are independent and the second
equality holding if and only if Y is completely determined by X. It also satisfies

I(X : Y ) = H(X) +H(Y )−H(X,Y ). (3.38)

Relative entropy

The Kullback-Leibler divergence, also known as the relative entropy, measures the informa-
tion contained in a refinement from one model to a new model. Suppose a random variable
X is modeled to have probability distribution p(x), yet its true probability follows q(x).
The relative entropy of p with respect to q is then

D(p||q) =
∑
x

p(x) log p(x)
q(x) . (3.39)

Intuitively, the relative entropy measures how much information is gained on average when
revising the probability model. Equivalently, it measures the average number of extra
information needed to encode samples from p(x) using a code optimized for q(x) instead of
for p(x).

The relative entropy is always non-negative D(p||q) ≥ 0.

3.3.3 Quantum information

The classical expressions for entropy are extended to measure the information contained
in quantum states. These new quantities typically involve operator functions such as
log ρ; ρ ∈ P(V ). As long as the operator is normal, which e.g. density operators are,
the operator function can be evaluated by spectral decomposition, instead of the usual
series representation. More precisely, if a normal operator A has spectral decomposition∑
i λi |ei〉 〈ei|, the operator function f(A) takes the form f(A) =

∑
i f(λi) |ei〉 〈ei|. This

gives expressions involving operator functions a convenient, explicit representation.

Von Neumann entropy

Analogous to the classical case, the von Neumann entropy quantifies the information content
of a single quantum state.
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Definition 3.10. The von Neumann entropy for a density operator ρ ∈ P(V ) is defined

S(V )ρ = S(ρ) = − tr(ρ log ρ). (3.40)

As a concrete example to the above discussion of operator functions, Equation 3.40 takes
the explicit form

S(ρ) = −
∑
i

λi log λi, (3.41)

when the density operator has spectral decomposition ρ =
∑
i λi |ei〉 〈ei|. This gives an

intuitive motivation for the definition of quantum entropy by highlighting the parallels to
the classical Shannon entropy.

The von Neumann entropy exhibits similar properties as the Shannon entropy, which has
some important physical interpretations. The following properties hold for any density
operator ρ ∈ P(V ).

• The entropy is non-negative
S(ρ) ≥ 0, (3.42)

with equality if and only if the state is pure ρ = |ψ〉 〈ψ|. This provides an important
illustration of the point made in Section 2.1.4. Assigning entropy as a measure of
“randomness”, it is perhaps tempting to associate the quantum entropy with the
intrinsic uncertainty of the quantum state, i.e. the randomness of outcomes from
measuring in some basis. The entropy is however only related to the quantum state’s
information content, through its generating probability distribution.

• The entropy is maximized for a completely random quantum state. Formally, if the
dimensionality of the state space is dimV = d then

S(ρ) ≤ log d, (3.43)

with equality if and only if the state is completely mixed ρ = I/2.

• The entropy is invariant under unitary transformations

S
(
UρU †

)
= S(ρ). (3.44)

• The entropy is concave in the density operators

S

(∑
i

piρi

)
≥
∑
i

piS(ρi). (3.45)
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3.3.4 Quantum multi-state entropy

The familiar expressions for treating multivariate entropy in the classical case all have
analogues to the quantum case. The relative and joint entropy carry over in a straight-
forward manner. The conditional entropy and mutual information find their most natural
definitions by treating the properties of the classical entropy (see Section 3.3.2) as defining
axioms for the quantum case.

Joint entropy

In a composite system AB, the joint entropy of a density operator ρAB ∈ P(A⊗B) is
defined

S(A,B)ρ = S
(
ρAB

)
= − tr

(
ρAB log ρAB

)
. (3.46)

Similarly to the classical case, it is symmetric S(A,B)ρ = S(B,A)ρ and is bounded by

∣∣∣S(A)ρ − S(B)ρ
∣∣∣ ≤ S(A,B)ρ ≤ S(A)ρ + S(B)ρ, (3.47)

where the last equality holds if the component states are uncorrelated ρAB = ρA ⊗ ρB.

Also note that by Schmidt decomposition (Theorem 2.5), if the composite state is pure
ρAB = |ψ〉 〈ψ| then S(A)ρ = S(B)ρ.

Conditional entropy

Given a composite state ρAB ∈ P(A⊗B), the component states ρA and ρB are given by the
reduced density operators of their respective system. The conditional entropy of ρA given
ρB is then

S(A|B)ρ = S
(
ρA
∣∣∣ρB) = S(A,B)ρ − S(B)ρ. (3.48)

It is bounded by above by
S(A|B)ρ ≤ S(A)ρ. (3.49)

However, unlike the classical case, the conditional quantum entropy can be negative, i.e.
S(A|B)ρ < 0. This holds whenever the two component systems are in an entangled state.

Mutual information

Given a composite state ρAB ∈ P(A⊗B) with reduced states ρA and ρB, the mutual
information between the component systems is given by

I(A : B)ρ = I
(
ρA : ρB

)
= S(A)ρ + S(B)ρ − S(A,B)ρ. (3.50)
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It is symmetric I(A : B)ρ = I(B : A)ρ, but unlike the classical case it is bounded by

0 ≤ I(A : B)ρ ≤ min
{
S(A)ρ, S(B)ρ

}
, (3.51)

where the last inequality mirrors the fact that the conditional entropy can be negative for
entangled states.

Relative entropy

Given two states ρ, σ ∈ P(V ), the relative entropy of ρ with respect to σ is then

S(ρ||σ) = tr(ρ log ρ)− tr(ρ log σ). (3.52)

Similarly to the classical case, it is non-negative S(ρ||σ) ≥ 0.

3.3.5 Encoding classical information

Finally, one of the key questions of classical and quantum information can be addressed;
how can information be encoded in and extracted from quantum states. This is a big topic
in quantum information, and only a few, basic results will be given here.

Analogous to the classical case, the information is stored as a sequence of characters that
constitutes a message. Each character is now however not simply a number x from a
distribution {px, x}, but rather a quantum state ρx drawn from some distribution {px, ρx}.
The measure of how much information is stored in such a quantum message is given in
qubits. The difference between storing information with classical numbers and quantum
states resides in the lack of distinguishability between non-orthogonal quantum states.

A variety of situations can now be considered, depending on the nature of the information
to be encoded in the quantum states. For instance, one may ask what rate of qubits is
needed to store a sequence of quantum pure states drawn from some distribution {px, |ψx〉}.
The answer to this turns out to be given by the von Neumann entropy S(ρ) of the density
operator generated by the distribution ρ =

∑
x px |ψx〉 〈ψx|. The focus here will however be

on how the quantum message can be used to encode classical information.

The classical information to be encoded in a quantum message is described by the random
variable X with distribution {px, x}. The general scheme for encoding this information is to
assign one quantum state ρx to each classical character x. The quantum state describing the
average encoded character is then simply the weighted sum

∑
x pxρx which is immediately

recognized as the density operator generated by the distribution ρ =
∑
x pxρx. This means

that the encoding ρ does not only depend on the classical information to be stored, but also
on our encoding scheme {ρx}. The choice of quantum states for encoding the message will
generally impact its recoverability.
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As a direct consequence of the no-cloning theorem, it is seen that the quantum message
cannot offer an improved storage rate over classical encoding schemes, i.e.

H(X) ≥ S(ρ), (3.53)

where H(X) is the Shannon entropy of the classical source and S(ρ) is the von Neumann
entropy of the encoded qubits. The equality is satisfied if and only if the states are orthogonal
tr(ρxρy) = 0; x 6= y. This formalizes the fact that quantum states cannot be used to encode
classical information better than what is classically possible. Furthermore, if non-orthogonal
state are used, the information rate is strictly lower as some information can no longer be
recovered.

3.3.6 The Holevo bound

This section is concluded with a key theorem of quantum information, namely the Holevo
bound. This result takes the previous consideration of storing classical information with
quantum states to its natural conclusion. In addition to the encoding rate already ex-
plored in the previous section, the Holevo bound evaluates the actual recoverable classical
information rate by considering an explicit measurement scheme.

As before, the classical information to be encoded is described by the random variable X
with distribution {px, x}. The encoded characters of the quantum message is described by
the generated density operator ρ =

∑
x pxρx, given our choice of encoding scheme {ρx}.

Finally, a measurement is done on the quantum message, described by POVM elements
{Ey}. The measurement outcomes y and their associated probabilities py generate a new,
classical random variable Y with distribution {py, y}.

A detailed analysis in [NC10] proves a series of results regarding strong subadditivity of the
von Neumann entropy, which establishes the fact that quantum operations cannot increase
mutual quantum information. This in turn is the basis for proving the Holevo bound.

Theorem 3.11 (Holevo bound). Consider a quantum message ρ =
∑
x pxρx constructed

from an encoding scheme {ρx} and a classical source X with distribution {px, x}. A
measurement procedure with POVM elements {Ey} on the message then generates a
random variable Y according to the distribution p(y) = tr(Eyρ). The mutual classical
information between the source variable X and the measurement variable Y then satisfies

I(X : Y ) ≤ S(ρ)−
∑
x

pxS(ρx). (3.54)

In light of Equation 3.38 and Equation 3.53, it is evident that I(X : Y ) ≤ S(ρ). Whether
this bound is tight for orthogonal quantum states is however not immediately obvious, but
it is at least clear that the inequality definitely becomes strict in the case of non-orthogonal
states. Holevo’s theorem offers an improvement on this bound.
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Chapter 4

Quantum cryptography

Increased awareness about the power of quantum computers has had far-reaching conse-
quences for the field of cryptography [All+14]. The majority of today’s need for securing
communication is addressed with classical cryptographic techniques, e.g. by public-key
cryptography. The implementation of a large-scale quantum computer poses serious chal-
lenges to the security of these protocols [Sho94]. At the same time, the theory of quantum
information reveals a completely new type of cryptographic system. Using quantum states
to encode the information and exploiting the dynamics of quantum measurement, a promise
of unconditionally secure communication is made [SP00].

This chapter is divided into two parts. First, the ideas of quantum key distribution are
presented, looking specifically at the modern security definition [RK05] and the BB84 pro-
tocol [BB84]. The second part presents a detailed account of the security proof of BB84 as
presented in [Koa09].

Figure 4.1: Clavis 2: commercial quantum key distribution system manufactured by ID Quantique
[MLS10a].
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4.1 Quantum key distribution

Quantum cryptography is the application of quantum communication channels for the pur-
pose of secure communication. Concretely this is done by establishing some physical line of
communication that is capable of sharing physical states exhibiting quantum behavior be-
tween the participants. This can for instance be done by sending polarized photons through
an optical fiber [NC10]. Already there are commercial systems available by e.g. ID Quan-
tique in Geneva, Switzerland (see Figure 4.1) and MagiQ Technologies in Massachusetts,
USA.

The possibilities offered by quantum mechanics to secure communication are just beginning
to be explored. In line with the study of quantum computation at large, it is evident
that exploiting the advantages of quantum mechanics in the design of algorithms is not
an easy task [NC10]. The known, useful quantum algorithms have largely been discovered
by considering specific problems. It is therefore not unjustified to claim that the field
of quantum cryptography is in an early state, with new possible techniques still awaiting
discovery. In this section we will specialize to studying the so-far most established quantum
cryptographic technique, namely quantum key distribution.

4.1.1 Setup and goals

Quantum key distribution (QKD) is a quantum cryptographic protocol for performing key
exchange [NC10]. That is, it provides a mechanism for two parties to establish a shared
secret key between them by use of a public (insecure) quantum communication channel. In
line with the security criteria in Section 1.1.2, the QKD protocol does not offer to secure
messages on its own. Rather, it provides a method for distributing key information among
the parties, so that conventional symmetric-key methods, such as the one-time pad, may be
deployed.

Alice Bob

Eve

quantum channel

classical broadcast channel

Figure 4.2: Schematic diagram of the setup in quantum key distribution: Alice and Bob commu-
nicate by the use of a quantum channel plus an authenticated, but open classical broadcast channel.
An eavesdropper (Eve) has access to read both channels, but can only interfere with the quantum
one.

Analogous to Section 1.1, the standard setup in QKD [All+14], as depicted in Figure 4.2,
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considers two parties Alice and Bob. Their goal is to agree on a secret key that they did
not share before. Available to their disposal is a quantum communication channel, which is
not secure, i.e. an eavesdropper Eve has full access to control the line.

There is however an additional assumption of a public (broadcast) channel, where Alice
and Bob may freely publish information. Although the broadcast channel is completely
open (it offers no confidentiality), it is assumed to provide authentication and integrity of
transmitted messages. This means that although Eve is free to read both channels, she can
only interfere with the quantum one. That is, in this analysis Eve is not capable of faking
or modifying messages sent by Alice or Bob over the broadcast channel.

The goal of this scheme is to establish new key material shared by Alice and Bob that
they can verify is secure [All+14]. As QKD satisfies the strongest security definition of
unconditional security, it in fact promises that no information at all about the key is available
to any other party, except for some exponentially small probability1. Note also that QKD
makes no promise to succeed in establishing this key. As mentioned in Section 1.1.5 this is
however not specific to QKD, but rather a general limit of cryptography; Eve is free to jam
the channel and thereby making communication impossible. The goal of QKD is rather to
detect any tampering that would compromise the security of the key, with absolute accuracy.

4.1.2 Assumptions

In line with the reasoning in Section 1.1.5 it is evident that in order to achieve authenti-
cation over the public channel, Alice and Bob must have a pre-shared key. Another option
would be to use public-key protocols to authenticate the broadcast channel, although this
decreases the security of the proof while also allowing for man-in-middle attacks. Instead,
it is customary to take the different approach of making a small amount of key material
pre-shared between Alice and Bob an explicit assumption of the protocol.

This may seem contradictory for two reasons; first, what is the purpose of the QKD protocol
if Alice and Bob already share a key? The answer to this is simply: to produce a longer
key. It is true that the pre-shared key may be used to achieve secrecy for a while, yet
perfect security quickly consumes all the key material. QKD however stands as the only
unconditionally provable method to gain key material over an insecure channel. In this way,
an almost logarithmically small2 [All+14] initial pre-shared key will allow Alice and Bob
to produce arbitrary amounts of shared key material. The shared key can then be used to
deploy conventional symmetric-key encryption to secure their communication. This is the
true hallmark of QKD

The second question regards the actual security benefit of the protocol. As it stands,

1“Exponentially small” here means that the probability decreases exponentially with the number of
qubits transmitted through the protocol. In this way, Alice and Bob can control the failure probability and
make it as small as they wish.

2Similarly, “logarithmically small” here means that the necessary minimum length of the initial pre-
shared key scales only logarithmically with the length of the desired length of the final key.
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classical encryption techniques are to be used for both the public channel authentication as
well as for the actual encryption following successful execution of the QKD protocol. As any
cryptographic system is only as secure as its weakest link, this may seem paradoxical in light
of the challenges to classical encryption methods. The answer to the authentication issue
comes from the fact that unlike for the case of confidentiality, there are classical schemes
for authentication that consume little key material. Second, QKD allows Alice and Bob to
agree on a shared, secret key of an arbitrary length. Once established, this key can then
be used in any classical encryption algorithm with a security strength of their choice. In
particular, Alice and Bob can choose to use the Vernam cipher (see Section 1.1.4), making
the whole protocol unconditionally secure [All+14].

4.1.3 Proving security

A large number of techniques have been used to provide security proofs of QKD protocols.
All proofs are based on the key property that distinguishes quantum cryptography from
the classical case, namely the non-orthogonality of quantum states [All+14]. By the no-
cloning theorem for general, non-orthogonal states (see Theorem 2.9), it follows that any
measurement capable of obtaining information about the state will necessarily disturb it
[NC10]. This has the consequence that any attempts by Eve to observe the messages on the
line will necessarily produce detectable disturbances in the message. In this way, Alice and
Bob can monitor the channel for interference to estimate the amount of information Eve has
extracted. If the interference is below a certain threshold, they can successfully establish a
shared, secure key with an information leak to other parties that is exponentially decreasing
with the number of qubits transmitted.

One of the most attractive features of QKD is that it is proven to be unconditionally secure.
In line with the discussion in Section 1.1.3, this is the strongest form of security possible.
Compare this to the contrasting case of e.g. public-key encryption such as RSA, where the
security is provided by assumption of the attackers’ computational power. The goal for
QKD proofs is to avoid such assumptions, so that unconditional security is only dependent
on correct implementation of the system and the laws of physics [All+14].

4.1.4 The modern security definition

Early proofs of QKD were typically related to the Holevo bound [LC99] (see Section 3.3.6).
These techniques aimed at establishing an upper bound on the mutual information any
attacker could share with the key. It was however realized that security definitions based on
mutual information were insufficient; although it allows for any measurement by Eve, it does
assume that Eve in fact makes a measurement. In general this may not be the case, as Eve
can apply some scheme to entangle the intercepted quantum states with her own quantum
system and simply keep the quantum states. It is desirable to be able to characterize the
security of the key even if no measurement has been done yet.
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The modern security definition [RK05] remedies this fact. In this model, Alice and Bob
deploys some key distribution protocol that establishes the shared key s∗ between Alice
and Bob. The key belongs to some key space S 3 s∗ over all possible distributable keys.
The joint quantum state of Alice and Bob after running the protocol is represented by
ρS ∈ P(HS) for some key-Hilbert space HS . The dimensionality of HS equals that of the
key space S, i.e. dimHS = |S|, so there exists some probability distribution p(s) such that

ρS =
∑
s∈S

p(s) |s〉 〈s| , (4.1)

with {|s〉}s∈S as an orthonormal basis for HS . Let Eve’s quantum state after running the
protocol be given by ρE ∈ P(HE). The final combined state ρSE for Alice, Bob and Eve
then takes the form

ρSE =
∑
s∈S

p(s) |s〉 〈s| ⊗ ρE(s), (4.2)

where Eve may in general be correlated with the different key values.

The cryptographically ideal situation occurs when Eve’s state is equally correlated with all
possible key values s ∈ S. Formally, define the ideal density operator ρ′SE as

ρ′SE = 1
|S|

(∑
s∈S
|s〉 〈s|

)
⊗ ρE , (4.3)

where ρE is independent of s.

Definition 4.1. A key distribution protocol leaves Alice, Bob and Eve with the key
state ρSE and corresponding ideal state ρ′SE . The protocol is said to be ε-secure if

1
2
∥∥ρSE − ρ′SE∥∥ ≤ ε, (4.4)

where the norm is given as ‖M‖ = tr(|M |), so that the left-hand side of Equation 4.4 is
simply the trace distance from Definition 3.4.

As seen from Chapter 3 (and also argued in [RK05]), this security definition is solid; it
provides an upper bound on the distinguishability between the ideal and the actual key by
any observer. This means that there is a fundamental limit to the amount of information an
attacker can possibly have about the key. Also note that by the contractivity of the trace
distance under quantum operations (Theorem 3.5), no further action on the state cannot
be used to increase distinguishability.

4.1.5 BB84

A variety of specific QKD protocols have been proposed. One of the most common im-
plementations is known as BB84, after its authors Bennet and Brassard [BB84]. In this
protocol, Alice prepares a collection of qubits that encode the random key she wishes to
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share with Bob. The qubits are then transmitted across some quantum communication
channel, where Bob receives and measures them. The physical realization is typically done
with sending photons through an optical fiber, with the photons’ polarization states repre-
senting the qubits.

The steps of the protocol are presented below. Note in particular the importance of the
public broadcast channel; whenever the algorithm calls for a “public announcement” of
some information, it is to be understood that it is transmitted over the authenticated,
public channel. The importance of authenticity is made explicitly clear from the algorithm:
if for instance Eve could spoof Bob’s acknowledgment of receipt, Alice may reveal her basis
selection before any measurement has been done. This would allow Eve to measure the
qubit without the risk of altering it, thus breaking the security of the protocol.

The basis states used in the protocol can for example be

|Z; 0〉 = |0〉

|Z; 1〉 = |1〉

|X; 0〉 = 1√
2

(|0〉+ |1〉)

|X; 1〉 = 1√
2

(|0〉 − |1〉)

(4.5)

Protocol

The protocol is formulated in the algorithmic steps [NC10; Koa09]:

1. Alice begins with generating a random bit string b of length |b| = (4 + γ)N . This is
the key that she aims to share with Bob by applying the protocol. She also generates
another random bit string a of equal length, that will determine the encoding into the
qubit states.

2. For each digit k of a, Alice then prepares a separate qubit in the Z or X-basis de-
pending on the value ak ∈ {0, 1}. The direction of the qubit is determined by the
corresponding value of bk ∈ {0, 1}. Formally, this leaves Alice with the state

|ψ〉 =
(4+γ)N⊗
k=1

|ψakbk〉 ;

|ψ0i〉 = |Z; i〉

|ψ1i〉 = |X; i〉
(4.6)

3. Alice transmits |ψ〉 through the quantum communication channel. The presence of
noise and the actions of Eve will generally perturb the state.

4. Bob generates his own random bit string a′; |a′| = |a|. He then performs a Z or X-
basis measurement on the quantum state received through the channel according to the
value of a′k ∈ {0, 1}. The results are recorded as b′ that can take values b′k ∈ {0, 1,⊥}.
Here, ⊥ represents no result, or “vacuum”, which corresponds to Bob’s detector not
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making any detection. This can occur due to noise in the channel, jamming by Eve
or imperfections in the instruments. Whenever Bob obtains an outcome 0 or 1 he
publicly acknowledges receipt.

5. Alice and Bob then publicly announces a and a′.

6. Alice and Bob keep the bits where ak = a′k, i.e. when Bob did obtain an outcome
0/1 and also happened to measure in the same basis as Alice prepared the state in.
Depending on the choice of γ, Alice and Bob will at this point be left with 2N bits,
except for a failure probability φ. Given a reasonable rate for successful transmission
over the channel3, γ can be chosen so that the failure probability φ is exponentially
decreasing in γ [NC10].

7. Alice then randomly selects half4 of her bits to sacrifice for error estimation. She
publicly announces the selection of these N bits.

8. Alice and Bob both publicly announce the values of their bit strings according to
the selection made by Alice in the previous step. These check bits satisfy ak = a′k,
which means that in the presence of no imperfections, noise or interference, all N of
them would be equal. In practice there will however be errors, and the number of
non-matching bits are labeled nz and nx for the Z and X-basis respectively. Since
the check bits were publicly announced, Alice and Bob will agree on the number of
non-matching bits.

9. After removing the N check bits, Alice and Bob are left with each their own N -bit
sifted key, labeled κA,sif and κB,sif respectively. If the check bits show an error rate
above a certain threshold, Alice and Bob will both declare failure and the protocol
is aborted. Otherwise, if the error rate is below the threshold, Alice and Bob can
proceed from their N -bit sifted keys with information reconciliation to agree on a
reconciled key κrec. Finally, privacy amplification is used to establish the final, shared
(N −m)-bit key κfin.

Key gain

Authenticating all the public announcement messages consumes some of the pre-shared
secret key of Alice and Bob. In addition, the last steps of reconciling errors and distilling
an ε-secure key from κA,sif and κB,sif will also consume pre-shared key material. Security
proofs of the protocol will however typically ignore the details of the authentication, as it

3There is no additional assumption about the channel being made here. For any particular BB84 protocol
(that is, including the reconciliation and amplification steps), we will find a minimum transmission rate for
the channel that still allows security of the protocol. Using this rate, γ is then simply chosen to make the
probability 1− φ of being left with 2N bits as desired.

4Sacrificing half the qubits is a very stringent requirement; in practice, much less is typically needed
to still provide the required security. Still, out of simplicity of the argument, we will here assume half the
qubits are sacrificed for error estimation.
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is a purely classical cryptographic problem. As such, the broadcast channel is assumed to
already be authenticated.

Denoting the number of bits of pre-shared key material needed for error correction in the
reconciliation step by r, the secret key gain G of the protocol is seen to be

G = N − r −m, (4.7)

since the protocol produces a key of length G−m by consuming a key of length r. As long
as G > 0, the protocol promises to distribute more key material than it consumes in the
process. This is illustrated by an example in Figure 4.3

0 1 1 0 1 0 0 0 1 1 1 0 1 1 0

1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1

Figure 4.3: Illustration of the key gain for an example key: the gain is found by subtracting the
consumed key material r and sacrificed key material m, from the established key length N .

4.2 Security proof

Amodern proof of BB84 was given recently by Koashi [Koa09]. Earlier proofs typically relied
on constructing specific quantum error-correcting codes (QECC) for the error correction and
privacy amplification steps. In this paper however, both these objectives are accomplished
by classical techniques, notably by the use of classical encryption and universal hashing. One
remarkable consequence of this approach is how conveniently it can be shown to hold true
for other protocols. In particular, we will later consider protocols with source imperfections,
which forms the topic of the next chapter.

This section presents a detailed review of the proof in [Koa09]. This is a updated version
of an original article [Koa06] which was modernized to fit the new security definition (see
Section 4.1.4). We first present the idea of the proof, explain how it is structured and
describe a few of the underlying principles. The subsequent parts then go through the steps
of the proof.

4.2.1 Idea

The aim is to prove security of the BB84 protocol, specifically satisfying the requirements
for unconditional security. This is achieved by making us of Definition 4.1 to show that
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the protocol is ε-secure for an ε that Alice and Bob can make arbitrarily small. As ar-
gued in Section 4.1.4, this property is a sufficient conditions for satisfying the requirements
unconditional security.

The proof functions by establishing a set of Hilbert spaces and accompanying measurement
operators for Alice and Bob. In this language, the original BB84 protocol is converted into
an equivalent entanglement-based protocol with an explicit procedure for constructing κfin
by choosing a specific method for information reconciliation and privacy amplification. We
will then construct a set of key assumptions relating to the protocol. The proof is conducted
in 2 steps: First, it is shown that the BB84 protocol satisfies these assumptions. Second, it
is the shown that any protocol satisfying the assumptions is consistent with Definition 4.1.

The core idea of the proof is to consider complementary measurement variables. In this line
of reasoning, one of the bases, say Z, is fixed as the measurement operator for obtaining the
secret key. This is the principle procedure of the actual protocol. Then one tries to establish
a method for estimating a complementary measurement outcome X to as high degree as
possible. This is then called the virtual protocol. The main contribution by [Koa09] is
providing such a modern, elegant method for proving the security.

4.2.2 Principles

In order to prove security, it will be necessary to give Eve access to a lot of the information
that Alice and Bob see. As the proof progresses, the roles of the various parties of the
protocol might get hard to distinguish. It is therefore helpful to start out by consider a
few, underlying principles to this style of proof. Although some will find these principles
obvious, they are included mainly because the author spent some time contemplating them
when trying to understand the proof himself.

The first principle relates to the meaning of the virtual protocol. It represents a different
protocol to the actual one and is in fact not physically carried out at all. Rather, it rep-
resents a protocol that in principle could have been carried out instead. It does however
have the pivotal and only restriction that it is allowed only as long as it is theoretically
indistinguishable from the actual protocol as far as Eve is concerned. This means that
any information revealed to Eve, notably including all messages on the broadcast channel,
must be identical in the actual and virtual protocol. As long as this condition is met, there
is however no restriction on what the virtual protocol can involve. In particular, whereas
the actual protocol is bound by the operation of Alice’s and Bob’s physical apparatus, the
virtual protocol can involve any operation that is allowed by physics.

The second principle relates to the defining features of the 3 parties of the protocol: Alice,
Bob and Eve. Specifically, if Alice and Bob share most of their information and measurement
results with Eve, what exactly distinguishes them from an attacker? It is tempting to
define this difference in terms of knowledge about the final key, but this cannot be an
assumption as it is in fact the result we are trying to prove. Looking back at the protocol
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steps, it is seen that the defining distinction is knowledge about the result of Alice’s and
Bob’s measurement in the actual protocol. Eve is granted access to all other information,
particularly any additional measurements introduced through the virtual protocol as well
as broadcast messages.

Lastly, it may seem paradoxical that Eve receives all this information; after all, as the proof
does not function without it, can Eve not simply chose to ignore this information? The
answer resides in the fact that doing so would not disprove the security. Rather, it would
mean that the situation is inaccurately modeled and would give no result. The last guiding
principle can then be summarized in that there is no loss of generality in making Eve try
her best to estimate all the various measurements Alice and Bob do.

4.2.3 Formal protocol

Let Alice and Bob deploy some QKD protocol. Assume they have discarded some mismatch-
ing states (where Alice’s and Bob’s basis didn’t happen to match) as well as states used for er-
ror estimation. They are left with some shared, collective quantum state ρ0 ∈ P(HA ⊗HB),
where HA and HB are Alice’s and Bob’s state space respectively.

Protocol 4.1 (Actual protocol).

1. Alice and Bob conduct measurements on ρ0 on their respective state spacesHA and
HB. The measurement outcomes are recorded as their respective sifted keys κA,sif
and κB,sif, with |κA,sif| = |κB,sif| = N . Define Alice’s key as the the reconciled
one5, i.e. κrec = κA,sif.

2. Then Alice sends encrypted, classical error correcting information over the public
channel. This consumes r bits of their pre-shared key. Bob then agrees on the
same key κB,sif 7→ κrec except for a small failure probability ζ.

3. Choose a number of bits m ≤ N to forfeit for privacy amplification. Alice chooses
a set {vk}N−mk=1 of N −m N -bit linearly independent sequences randomly from the
space of N -bit binary strings {0, 1}N 3 vk.

4. She announces this set through the broadcast channel.

5. The kth bit of the final key κfin is then defined as

(κfin)k = κrec · vk, (4.8)

where · is the binary dot product (mod 2).

Except for the small failure probability ζ, Alice and Bob both agree on the same final key
κfin. As we will see, the number of bits m used in the amplification step will determine the

5Note that we define κrec opposite that of [Koa09], which defines the key in terms of Bob’s measurement.
We will define it in terms of Alice’s instead.
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security ε of the protocol.

The shared state ρ0 that Alice and Bob measure on is now completely free and can in
particular be heavily correlated to some other system that Eve controls. Because of the
error estimation step, there are however some promises that are placed on the error between
outcomes of some measurements that Alice and Bob can do. These promises are made
concrete through the security assumptions defined later. For now, we will make an informal
definition of the error rates:

• Let δbit be the bit error rate between the measurements Alice and Bob make in Pro-
tocol 4.1; that is, it is the error rate of the measurement establishing the key.

• Let δph be the phase error rate between the measurement by Alice and Bob that
is complementary to that in Protocol 4.1; this is made concrete through the squash
operator and the security assumptions.

As we will see later in Section 4.2.4, the protocol will be constructed so that the error rates
δbit and δph correspond to δz and δx respectively.

Squash operator

Now, define a squash operator Λ that relates Alice’s state space to a qubit space6:

Λ : P(HA ⊗HB)→ P
(
K⊗N ⊗HR

)
ρ 7→ Λ(ρ)

(4.9)

where K is simply a qubit space and HR is a virtual ancilla system. The function of Λ is to
relate Alice’s general Hilbert space HA to a space on which we can define complementary
Z and X-basis measurements. As will be made explicit through the security assumptions,
Λ must be chosen so that the measurement Z⊗N on K⊗N corresponds to Alice’s actual
measurement on HA.

Let Z and X-basis measurements on K⊗N be denoted by the vector notation: Z = Z⊗N

and X = X⊗N . Consider the measurements:

• Let z be the outcome of measuring Z on K⊗N of the state Λ(ρ0).

• Let x be the outcome of measuring X on K⊗N of the state Λ(ρ0).

• Let µ be the outcome of some measurement MR on HR of the state Λ(ρ0).

Security assumptions

As planned the introduction (Section 4.2.1), we will construct 2 assumptions relating to
Alice’s and Bob’s measurements. A theorem is then posed, claiming that any protocol with

6See footnote 5
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the above-mentioned setup, that also satisfies these assumptions, is indeed unconditionally
secure. Security of Protocol 4.1 then follows from showing it satisfies both assumptions and
then proving the theorem.

Assumption 1. Assume that the application of the mapping Λ followed by the mea-
surement Z on K⊗N is equivalent to Alice’s measurement in Protocol 4.1, that is

κrec = κA,sif = z. (4.10)

Assumption 2. Apply Λ and make the measurementsX on K⊗N andMR on HR with
results x and µ respectively. Then for each µ define a set {T µ} of N -bit sequences
T µ ∈ {0, 1}N , that has cardinality |{T µ}| = 2Nξ.

Assume this can be constructed so that for any possible measurement pair (x,µ) that
can occur, x ∈ {T µ} except for an exponentially small probability η.

Intuitively, it is possible to get an idea of the function of the error rates: The bit error rate
δbit is connected to the key sacrifice r and the failure probability ζ. The phase error rate
δph on the other hand is connected to Assumption 2 and the failure probability η.

Main theorem

The main theorem is then stated as follows:

Theorem 4.2. Alice and Bob apply a QKD protocol according to Protocol 4.1 so that
it satisfies Assumption 1 and Assumption 2. The protocol is the ε-secure, for

ε =
√
η + 2−Nε2 , (4.11)

where ε2 = m/N − h(δph) and m must be chosen so that ε2 > 0.

Since η decreases exponentially in N , it is clearly seen that the security parameter ε also
decreases exponentially in N .

4.2.4 Equivalent entanglement protocol

Protocol 4.1 assumes a starting point of a shared quantum state ρ0, and that there are
estimates δbit and δph about the error rates of Alice’s and Bob’s subsequent measurements
on this state. It does not however describe what method Alice and Bob could use to achieve
this state for good values of δbit, δph. That is the role of the BB84 protocol in Section 4.1.5.

Looking back at the BB84 protocol steps, it is seen that the starting situation of Protocol 4.1
is achieved at the beginning of the final step (step 9). The equivalence is attained by
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first converting to an entanglement protocol: In the original protocol, Alice first randomly
generates (4 + γ)N basis and bit values a and b and then transmits corresponding Z and
X-basis states through the channel.

Consider now instead a scheme in which Alice start out by preparing (4 + γ)N Bell states

|φ+〉 = 1√
2

(|00〉+ |11〉) = 1
2(|++〉+ |−−〉). (4.12)

Alice initiates the protocol simply by transmitting half of each state through the channel,
while keeping the other half of each state herself. After all the states are transmitted,
Alice can then randomly generate basis values a and determine the bit sequence b from
corresponding measurements on her half. By the principle of deferred measurement (Theo-
rem 2.8), this must be equivalent to the setup in the original BB84 protocol in Section 4.1.5.

The transmitted half is of course a representation of some actual physical state7, and to keep
the treatment general we will not assume any structure about its Hilbert space. Similarly,
we do not place any restrictions on the Hilbert space of Bob’s received states either, other
than that he can implement some form of measurements that he labels Z and X. Alice’s
kept half is however only a virtual representation of her recorded bit values b, and so it is
equivalent to a perfect qubit space K⊗(4+γ)N .

The deferred measurement can furthermore be considered in two steps: First the states
that are sacrificed for error estimation are measured, then the rest. Although everything is
measured before Alice and Bob publish their basis choices, in theory the error estimation
data does exist just prior to Alice’s and Bob’s final measurement. In addition, since we
are here considering a case where Bob’s detector is completely basis-independent, we are
free to disregard all the states on which Alice and Bob later do not pick matching bases to
measure. We also discard all states where they ended up choosing the X-basis, so that we
are only looking to prove security for their Z-basis key measurements. Label this state by
ρ′.

In summary, we have described a new, entanglement protocol. At the end of this protocol
Alice and Bob are left with a shared, unmeasured state ρ′. As argued, this is completely
equivalent to the original BB84 protocol in Section 4.1.5, so that its error estimation data
nz and nx is available. In addition, the end point ρ′ of the entanglement protocol clearly
satisfies the definition of ρ0 in Protocol 4.1. We have thus shown how the BB84 protocol
therefore effectively leaves Alice and Bob with the formal situation described in Protocol 4.1.
Protocol 4.1 then gives a specific algorithm by which Alice and Bob carry out step 9: error
reconciliation and privacy amplification.

7The quantum states are typically realized by polarized photonic modes in an optical fiber [NC10]
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Satisfying the assumptions

It is now easy to show that applying the entanglement protocol followed by Protocol 4.1
satisfies Assumption 1 and Assumption 2. Specifically, the shared state ρ′ from the entan-
glement protocol is defined on a shared space between Alice and Bob, but where Alice’s
space is a perfect qubit space: HA = K⊗NA . As a consequence, Assumption 1 holds trivially
by letting Λ be the identity map and setting K⊗N = K⊗NA .

Then consider the error estimation step of the protocol. As the bits sacrifices for error
estimation are picked by random sampling of the whole set of bits, it follows that it forms
a good estimate for the error that will be observed in the remaining bits. Specifically, from
the measured error counts nz and nx define error rates:

δz = nz/N (4.13a)

δx = nx/N. (4.13b)

[NC10] shows how the probability that the true error rates of the yet unmeasured bits are
higher than these estimates decreases exponentially in N . Furthermore, since by Assump-
tion 1 the key is defined from the Z-basis measurement, we have in this case:

δbit = δz (4.14a)

δph = δx, (4.14b)

except for a probability that is exponentially in N .

Now simply choose Bob’s complementary measurement MR = X. From the random sam-
pling, it is clearly seen that the error estimation guarantees the existence of the set {T µ},
since Alice’s and Bob’s measurements x and µ must agree up to δphN errors. The knowl-
edge of one of these quantities therefore leaves the other one within 2h(δph)N possible values,
where

h(δ) = −δ log δ − (1− δ) log(1− δ) (4.15)

is the binary entropy function. Consequently, Assumption 2 is therefore satisfied for ξ =
h(δph) + ε2 for some ε2 > 0. In addition, η is simply the failure probability of the error
estimation mentioned above. Following the previous arguments, η will clearly decrease
exponentially in N .

Similarly, the error estimation also then guarantees that Alice’s and Bob’s Z-basis mea-
surements agree up to δbitN errors. Except for a small failure probability, this error is
correctable by N(h(δbit) + ε1) bits of extra information for some ε1 > 0. By Assumption 1,
this clearly means that in Protocol 4.1, r = N(h(δbit) + ε1) and ζ is equal to the failure
probability of the error correction. Furthermore, this failure probability is exponentially
decreasing in N .
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4.2.5 Proof of the main theorem

Proving security for the BB84 protocol has now been reduced to proving Theorem 4.2.
Before doing so, it is however helpful to get an overview of the various quantities that
govern the protocol:

1. Alice and Bob will choose 4 control parameters: N , r, m and γ.

2. Alice and Bob will then conduct measurements to find: nz and nx.

3. The protocol then guarantees the key gain G (Equation 4.7) with security ε (Equa-
tion 4.11), except for failure probabilities: φ, ζ and η.

Proving the success and security of the protocol in a meaningful way therefore depends on
showing that Alice and Bob can choose their parameters so that:

• The protocol is ε-secure for the ε in Theorem 4.2 (so that ε is exponentially decreasing
in the control parameters).

• The failure probability is as low as desired (preferably exponentially decreasing in
some control parameter).

• The key gain G is in fact positive.

Out of these requirements, the failure probabilities φ, ζ and η have all already been shown
to be exponentially decreasing in γ or N .

To prepare for the main proof, we also show a useful extension of Equation 3.22 for purifi-
cations of pure states:

Lemma 4.3. Let |ψ〉1 be an arbitrary pure state in some space V1. Then any purification
|φ〉12 of |ψ〉1 into an enlarged space V1 ⊗ V2 will necessarily be of the form

|φ〉12 = |ψ〉1 ⊗ |φ〉2 (4.16)

where |φ〉2 is some state in V2.

It is of course clear that the construction in Equation 4.16 means that |φ〉12 is in fact some
purification of |φ〉1. This lemma however asserts the slightly stronger property that any
purification of |ψ〉1 can indeed be written in this form.

Proof. Using Theorem 2.5, decompose |φ〉12 in its Schmidt bases {|eλ〉1}, {|eλ〉2}:

|φ〉12 =
∑
λ

λ |eλ〉1 |eλ〉2 . (4.17)
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The requirement that |φ〉12 purifies |ψ〉1 then implies

∑
λ

λ2 |eλ〉1 〈eλ|1 = |ψ〉1 〈ψ|1 . (4.18)

Interpreting this as two state ensembles that should generate the same density matrix, we
can invoke Theorem 2.4. Since one of the ensembles only has 1 element and because the
Schmidt bases are orthonormal, this implies that

|eλ〉1 = eφλ |ψ〉1 ; ∀λ, (4.19)

for some phases φλ. It then immediately follows that

|φ〉12 =
∑
λ

λeφλ |ψ〉1 |eλ〉2 = |ψ〉1 ⊗
∑
λ

λeφλ |eλ〉2 , (4.20)

which is the form in Equation 4.16.

Concepts

The idea of the proof of Theorem 4.2 is as follows: Protocol 4.1 instructs Alice and Bob do
conduct Z-basis measurements to establish the key. We will now however consider virtual
protocols where Alice and Bob will aim to estimate the outcome, had Alice chosen to measure
her qubits in the X-basis instead. In line with the discussion in Section 4.2.2, this must be
done in a way that looks theoretically completely equivalent to Protocol 4.1 as far as Eve
is concerned. This ensures that Eve has no method to detect or respond to which protocol
Alice and Bob choose.

The trick to estimating Alice’s hypothetical X-basis measurement outcome x comes from
the fact that it does not matter to Eve what Bob does; it cannot influence Eve’s situation.
Bob can therefore make a X-basis measurement himself, giving the outcome µ. If there
was no eavesdropping and no imperfections, the error rate δx would be 0, and so Bob would
have a perfect estimate for x, except for the error estimation failure probability η. This
means that Alice’s qubits state σ has to be nearly a pure X-basis eigenstate |X;x〉. For
any attacker, Alice’s subsequent measurement of σ in the Z-basis will then scramble her
qubit state into a perfectly mixed state I/2N .

Imperfections and Eve’s influence will generally mean that δx > 0, in which case Bob’s result
µ only limits Alice’s measurement to x ∈ {T µ} from Assumption 2. Due to the distillation
step, Alice is however able to make a limited X-basis measurement on her qubits. By using
Bob’s measurement µ and Alice’s result together, they can make a reliable estimate of
Alice’s hypotheticalX-basis measurement. In order for this to still be indistinguishable from
Protocol 4.1 for Eve, Alice’s limited measurement must commute with her key measurement.
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Formal proof

In order to prove Theorem 4.2, we will consider a set of virtual protocols. To conclude the
proof, we will show that these protocols are all equivalent to Protocol 4.1.

Protocol 4.2 (Virtual protocol 1).

1. Apply the Λ mapping and discard HR.

2. Alice determine her key κrec from measuring Z on K⊗N .

3. Conduct steps 2 - 5 of Protocol 4.1.

Define the observable on K⊗N according to:

∑
ν
(w) = σw1

ν ⊗ σw2
ν ⊗ · · · ⊗ σwNν ; ν = {z, x}, (4.21)

wherew = [w1, w2, . . . , wN ] is aN -bit sequence and σν is the νth Pauli matrix σ = [X,Y, Z].
As an example,

∑
z([011]) = I ⊗ Z ⊗ Z and

∑
x([11 . . . 1]) = X.∑

ν(w) yields measurement outcomes that are either +1 or −1, thus essentially functioning
as a parity operator.

Protocol 4.3 (Virtual protocol 2).

1. Apply the Λ mapping and obtain µ by conducting measurement MR on HR.

2. Choose a number of bits m ≤ N to forfeit for privacy amplification. Alice chooses
a set {wj}mj=1 of m N -bit sequences randomly from the space of N -bit binary
strings {0, 1}N 3 wj .

3. Alice then chooses a set {vk}N−mk=1 of N −m N -bit linearly independent sequences
randomly from the space of N -bit binary strings {0, 1}⊗N 3 vk so that

vk ·wj = 0; ∀j, k = 1, . . . , N (4.22)

where · again is the binary dot product (mod 2).

4. Alice announces {vk}N−mk=1 through the broadcast channel.

5. Alice measures the m observables
∑
x(wj), obtaining m N -bit sequences x∗k.

6. Alice then measures the N −m observables
∑
z(vk), recording their outcomes as

the final key κfin.

By Assumption 2, prior to step 5, Bob’s result µ promises that Alice’s measurementX would
give a result in the set x ∈ {T µ} if measured, except for a probability η. Knowing µ, there
are therefore 2Nξ = 2Nh(δph) candidate sequences in {T µ}. Each of the m measurements in
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step 5 gives a random parity bit X ·wj . Choose m in step 2 as

m = N(ξ + ε2) = N(h(δph) + ε2), (4.23)

for some ε2 > 0. It then follows from universal hashing techniques that the probability that
2 different sequences y1,y2 ∈ {T µ} both produce the same parity measurements in step 5
is less than 2Nξ2−m = 2−Nε2 .

Label Alice’s qubit state at the end of step 5 by σA ∈ P
(
K⊗A

)
. In effect, Alice and Bob

together can now make a prediction x about Alice’s hypothetical measurement X with a
failure probability of η′ = η + 2−Nε2 , i.e.

p(X = x)σA = tr(|X;x〉A 〈X;x|A σA) = 〈X;x|A σA |X;x〉A ≥ 1− η′, (4.24)

which means that σA must be nearly the pure X-basis eigenstate |X;x〉A.

Any attacker who has knowledge about the error rates, Bob’s measurement µ and Alice’s
measurements in step 5 will make the above estimate about Alice’s qubits before she mea-
sures them according to step 6. Eve’s state σAE ∈ P

(
K⊗N ⊗HE

)
at the end of step 5, for

some arbitrary state space HE , will therefore necessarily satisfy

trE(σAE) = σA. (4.25)

Introduce a virtual ancilla system HC and let |ψ〉AEC be the purification of σAE into K⊗N⊗
HE⊗HC . Conservatively, let Eve control this purification [Ska08]. From Equation 4.25 it is
clear that |ψ〉AEC is also a purification of σA. Then by Uhlmann’s theorem (Equation 3.22)
and Lemma 4.3, there exists an extension |φ〉EC of |X;x〉A, so that

| 〈ψ|AEC |X;x〉A |φ〉EC | = F (σA, |X;x〉A) ≥
√

1− η′. (4.26)

In particular, this must hold even when |ψ〉AEC is fixed. Using the relation Equation 3.25
and the contractivity of the trace distance under partial trace, it is then seen that

1
2‖σAE − |X;x〉A 〈X;x|A ⊗ ρE‖ ≤

√
1− (1− η′) =

√
η′, (4.27)

where ρE = trC(|φ′〉EC 〈φ′|EC ).

Finally, we invoke the principal difference between Alice / Bob and an attacker from Sec-
tion 4.2.2: the attacker does not see the result of Alice’s Z-basis measurement. As far as
Eve is concerned, this measurement will thus function as a quantum operation that maps
|X;x〉A to the fully mixed state

ρmix =
∑

z∈{0,1}N−m

1
2N−m |z〉 〈z| . (4.28)

By Assumption 1, there is however a one-to-one correspondence between |z〉 ∈ K⊗(N−m)
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and the final key space of κfin. Thus ρmix is nothing but the cryptographically ideal state
from Section 4.1.4. By the contractivity of the trace distance under quantum operations,
the final state σAE clearly satisfies Equation 4.4 for ε =

√
η′.

The next step is to reduce Protocol 4.3 to Protocol 4.1. The final measurement
∑
z(vk)

in step 6 clearly commutes with measurement
∑
x(wj) in step 5 because of Equation 4.22.

Hence, step 5 has no influence on the final key and can be omitted. The final key is also
independent of the measurement MR on HR. Since step 5 is no longer needed, Alice is free
to choose {vk}N−mk=1 freely, as long as it is linearly independent and orthogonal to a random
subspace with maximal dimensionality 2m. This is however automatically guaranteed by
the original choice of {vk}N−mk=1 in step 3 since it cannot span more than a 2N−m-dimensional
subspace. Finally, the outcome of the

∑
z(vk) observable can now be directly obtained by

simply measuring Z and using Equation 4.8.

Thus we have reduced Protocol 4.3 to Protocol 4.2. Furthermore, any measurement Bob
makes onHR cannot impact Alice’s measurement, and he is therefore free to omit it. Finally,
by Assumption 1 Alice’s measurement Z on K⊗N is equivalent to her actual key measure-
ment on HA. Hence we have shown the Protocol 4.2 is itself equivalent to Protocol 4.1.
This concludes the proof of Theorem 4.2.

4.2.6 Asymptotic limit

The key gain of the protocol is

G = N − r −m = N(1− h(δbit)− h(δph)− ε1 − ε2). (4.29)

In line with the discussion in Section 4.2.4, the failure probabilities decrease exponentially
in N for fixed ε1 and ε2. We now invoke the asymptotic limit N → ∞: It is then possible
to choose ε1, ε2 → 0 while still guaranteeing that all failure probabilities similarly go to 0.
Finally, the security parameter ε→ 0 as well.

In conclusion: We have shown the security of the BB84 protocol in the limit of large N →∞.
This protocol then gives a the asymptotic key gain

G = N(1− h(δbit)− h(δph)), (4.30)

which is positive if and only if h(δbit) + h(δph) < 1.

We have thus finally arrived at a formal error threshold from step 9 in Section 4.1.5: In the
protocol, Alice and Bob measure check bits according to random sampling and determines
error rates δbit and δph. Then these values are compared with Equation 4.30; if the key gain
is negative, abort the protocol and try again. Otherwise, continue with error reconciliation
and privacy amplification according to Protocol 4.1, governed by r and m respectively,
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where:

r = Nh(δbit) (4.31)

m = Nh(δph). (4.32)

The resulting key gain G is then unconditionally secure.
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Chapter 5

Source imperfections

In the last chapter we proved the security of the BB84 protocol [BB84]. We furthermore
showed that the security in fact holds for any BB84-style protocol that matches the descrip-
tion in Protocol 4.1 and satisfies Assumption 1 and Assumption 2. The mechanism that
enabled the BB84 protocol to meet these assumptions came from the random sampling in
the error estimation step.

In this chapter we propose a new protocol. It consists of the same algorithmic steps as
the original BB84 protocol, but describes a situation where Alice’s source is no longer
perfect. This allows us to investigate the security in the case of certain imperfections in
the apparatus, the importance of which was discussed in Section 1.3. The core question is
reduced to determining whether it is still possible to perform error estimation in a way that
satisfies the security assumptions in Section 4.2.3.

5.1 Protocol

Alice and Bob are to deploy the BB84 protocol (see Section 4.1.5) over a quantum channel.
Instead of using “perfect” states |Z; i〉, |X; i〉, we are now interested in a situation where
the source can have basis-dependent imperfections1. In this section we will characterize the
protocol corresponding to such imperfect sources. First, we will present the framework for
characterizing general sources. The notion of “small” basis dependencies is then formulated
as a precise condition on this general source in line with Koashi [Koa09]. This description
is however in practice difficult to analyze, as will be pointed out. We therefore propose a
slightly modified, stricter source description that complies with the formalism in [Koa09]
and that can still describe adequately general sources.

1The meaning of “basis-dependence” in the sense of imperfections is introduced in Section 5.1.1.
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5.1.1 General source

Let the real source be characterized as follows: Given a random basis choice a ∈ {0, 1}
and bit choice b ∈ {0, 1}, the source produces the quantum state ρab ∈ P(HQ) on some
state space HQ. The basis a is chosen randomly, with no condition on the selection being
uniformly random; the actual number of times the various states are selected during the pro-
tocol simply determines the failure probability of the error estimation step. The probability
of selecting bit value b given basis choice a is denoted p(b|a) = pab, so that

pa0 + pa1 = 1. (5.1)

After selecting N basis and bit values, N corresponding states ρaibi ; i = 1, . . . , N are then
sent through the channel, which may have imperfections as well as be tampered with by
Eve.

Types of imperfections

Note also that most types of imperfections are already automatically covered by the original
proof (Section 4.2). This includes for instance defects on the quantum channel or even Alice’s
or Bob’s apparatus, as long as they are basis-independent; that is, although the defects can
depend on the quantum state Alice sends through the channel, it cannot depend on Alice’s
and Bob’s basis choices a and a′ directly. The reason why this does not break the security
proof is that these imperfections are all absorbed in the error rates δbit, δph. If the channel
or apparatus do not perform sufficiently to enable security, this will simply be reflected by
a negative key gaing G according to Equation 4.30.

The case of basis-dependent imperfections is however very different and is not accounted for
in the proof in Section 4.2. This means that if some of the devices change their operation
based on Alice’s and Bob’s basis choices a and a′, the protocol might not be secure even
though Equation 4.30 suggest a positive key rate. The above description of a general source
allows us to analyze precisely these types of imperfections on Alice’s source.

5.1.2 Koashi’s source condition

To analyze the security of this protocol, we construct the basis states

ρa =
∑
b

pabρab. (5.2)

Of course the security of the protocol will depend on the choices of ρab and pab, e.g. when ρ0

and ρ1 are orthogonal it is entirely insecure [Koa09]. A strong claim is nevertheless made,
stating that the security can be guaranteed from a single parameter F (ρ0, ρ1), the fidelity2

2Note that unlike in [Koa09], we are using the non-squared version F (ρ, σ) = tr
(√

ρ1/2σρ1/2
)
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between ρ0 and ρ1. As long as the fidelity is sufficiently high

F (ρ0, ρ1) ≥ F, (5.3)

for some F to be determined, the protocol is claimed to remain secure.

The argument for why this holds begins with a purification step. According to [Koa09], for
any choice of ρab ∈ P(HQ) and pab we can find purifications |χa〉 ∈ HS⊗HQ of ρa ∈ P(HQ)
with the following properties:

1. Their inner product satisfies
〈χ0|χ1〉 ≥ F. (5.4)

In particular this implies 〈χ0|χ1〉 ∈ R.

2. There exists measurements {Ma0,Ma1} for each basis choice a, that produce the source
states with the given probabilities, i.e.

trS [(Mab ⊗ IQ) |χa〉 〈χa|] = pabρab. (5.5)

Note that the condition 〈χ0|χ1〉 ∈ R is in fact redundant. As long as the inner product
|〈χ0|χ1〉| ≥ F , Equation 5.4 is obtained by simply absorbing the phase difference into one of
the basis states |χ0〉 , |χ1〉. This will function as a global phase on the state and can hence
not influence any measurements.

Although the first property can be achieved by by purifying according to Uhlmann’s theorem
(Equation 3.22), it is not clear whether this can be done while simultaneously satisfying the
second property as well. [Koa09] merely states that such purifications can always be found,
without proper justification. Whether this construction is actually always possible is indeed
an interesting question, although it is something we will ignore for now.

5.1.3 Revised source condition

Instead we will circumvent this difficulty by simply taking the purified states as the starting
point [MLS10b]. In this fashion, we define purifications |βab〉 ∈ HS⊗HQ of the source states
ρab ∈ P(HQ). Using the condition pa1 = 1− pa0 and letting pa = pa0, we no longer let |χa〉
denote some purifications of ρa, but instead define |χa〉 ∈ KA ⊗HS ⊗HQ according to:

|χ0〉 = √p0 |0〉 |β00〉+
√

1− p0 |1〉 |β01〉 (5.6a)

|χ1〉 = √p1 |+〉 |β10〉+
√

1− p1 |−〉 |β11〉 , (5.6b)

where |0〉 , |1〉 are some orthonormal qubit states and |±〉 = (|0〉 ± |1〉)/
√

2. Furthermore,
HS is some arbitrary ancilla system and KA is a qubit state space corresponding to Alice’s
bit values.
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We now substitute the fidelity condition and instead require that

F (|χ0〉 , |χ1〉) = |〈χ0|χ1〉| ≥ F, (5.7)

for some F to be determined.

The construction of |χa〉 is chosen so as to automatically satisfy Equation 5.5. Together with
Equation 5.7 it is clear that this definition satisfies the two properties (Equation 5.4 and
Equation 5.5) required by [Koa09]. This explicit construction is however more restrictive, in
the sense that there exists combinations of ρab and pab such that Equation 5.3 holds while
Equation 5.7 does not.

As a concrete example3 consider ρab all pure so that ρab = |βab〉 〈βab|. Then let |βa0〉 =
|0〉 , |βa1〉 = |1〉 and pa0 = pa1 = 1/2; ∀a ∈ {0, 1}. Then using the constructions Equa-
tion 5.2 and Equation 5.6 clearly gives F (ρ0, ρ1) = 1 yet |〈χ0|χ1〉| = 0. Note that this
does not disprove that it might be possible to find some |χa〉 that satisfy the two properties
(Equation 5.4 and Equation 5.5). It only shows that there are some combinations of ρab
and pab for which this particular construction of |χa〉 is indeed definitely more restrictive
than condition Equation 5.3.

The converse implication does however apply as Equation 5.7 being true necessarily means
that Equation 5.3 holds as well. Thus, Equation 5.6 gives an explicit construction of states
that satisfy all the necessary properties laid out by [Koa09]. Note also that the construction
of ρa (from Equation 5.2) is not needed at all in this formalism.

5.1.4 Entanglement protocol

We can now describe an entanglement protocol for Alice and Bob: Alice picks N random
basis values a and prepares N corresponding states |χai〉 ∈ KA⊗HS⊗HQ; i = 1, . . . , N . She
then transmits the HQ-part of each state, all through the channel. The HS-parts are simply
discarded. Bob receives each state on the space HB. After all N states are transmitted,
Alice and Bob make measurements on their respective state spaces and proceed according
to the steps of the BB84 protocol in Section 4.1.5.

It is clear that this matches the description in Protocol 4.1 and the setup in Section 4.2.3.
The detailed argument for this is equivalent to that in Section 4.2.4, except the error es-
timation. In particular, Assumption 1 is clearly satisfied since Alice’s state space is again
already a perfect qubit space (choose the squash operator Λ to be the identity map). Prov-
ing security for the general source in Section 5.1.1 has thus been reduced to showing that
Assumption 2 is satisfied.

3This source is of course completely insecure, as the error rates would be through the roof at ∼ 0.5. It
is nevertheless an allowed construction which should be addressed by the source model.

72



5.2. ERROR ESTIMATION

5.2 Error estimation

In the previous section we described a protocol that accurately represents the use of BB84
[BB84] in the case of basis-dependent imperfections at the Alice’s source. It was also noted
that the security of this new protocol rests on proving that Assumption 2 holds. Looking
back at the proof of the original BB84 protocol in Section 4.2, this assumption was met due
to a result coming from the error estimation step. The key property is that it was possible
to find an upper bound on the difference between Alice’s and Bob’s X-basis measurements,
even when they measured the key in the Z-basis.

This section investigates how this estimation procedure functions for the imperfect source.
We first formulate the requirement from Assumption 2 into a precise question about the
error rates. We then present two theorems places by [Koa09] and then subsequently inves-
tigate their claim through a set of simplifying cases, which uncovers an apparent paradox.
The resolution is then introduced through the requirement of fair random sampling in the
protocol. Lastly, we conjecture the possibility that this assumption is in fact not needed, at
least for any realistic situations.

5.2.1 Problem formulation

The error estimation follows the same argument as in Section 4.2.4. After discarding the
states where Alice’s and Bob’s qubit measurements did not happen to agree, a subset of
the remaining measurements are selected uniformly randomly for error estimation. This
then places a promise on each basis’ error rate that is expected in the measurements of
the remaining states. This means that for any collection of L copies of one of the basis
states |χa〉⊗L used in the protocol, we can select one of them at random; the probability of
Alice’s and Bob’s measurement in the same basis disagreeing, is then provided by the error
estimate. It is however important to keep in mind the entirety of the protocol, i.e. all states
are transmitted jointly through the channel, as illustrated in Figure 5.1.

For a collection of L Z-basis states |χ0〉⊗L transmitted and subsequently measured in the
Z-basis, the error rate is denoted δz. Similarly, for a X-basis collection |χ1〉⊗L and X-basis
measurements, the error rate is denoted δx. In line with the above discussion, both these
quantities are known from the error estimation step. Furthermore, we will ignore the failure
probability of the error estimation simply by taking the limit N → ∞ (L is finite). The
error rates are therefore known with complete accuracy.

There is however one important distinction between this protocol and that in Section 4.2.4:
the error rates are now not only dependent on Alice’s and Bob’s measurement basis, but also
on the basis choice of the states |χa〉. Specifically, Assumption 2 rests on the ability to fix
the key measurement to the Z-basis and then estimate the X-basis error rate δph. Whereas
δbit still equals δz, the error rate δph therefore now corresponds to a X-basis measurements
on a collection of Z-basis states |χ0〉⊗L.
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Figure 5.1: Interpretation of the error rate in the X-basis case for L = 4. The state |χ1〉⊗4 is
prepared and the individual HQ-parts jointly transmitted through the channel E . One of the 4
states is then randomly selected, as represented by the solid arrow, and this pair of Alice’s and
Bob’s X-basis measurements is compared. The error rate δx then gives the probability of their
results being different.

Key question

If |χ0〉 = |χ1〉 the proof would of course immediately follow, since δph = δx. In the general
case however, |χ0〉 6= |χ1〉, as long as Equation 5.7 is satisfied; the key question to investigate
is then:

Question 5.1. Given two arbitrary states |χ0〉 , |χ1〉 that satisfy Equation 5.7, how
much can δph and δx defined in Section 5.2.1 possibly differ for a given L?
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5.2.2 Koashi’s theorems

[Koa09] presents an analysis of the situation proposed in Question 5.1 and suggests two
methods for finding an upper bound on the phases error rate δph. The first method follows
an argument based on the entropic uncertainty relation [MU88] and is stated as:

Theorem 5.2. In a protocol with fair random sampling and with states |χ0〉, |χ1〉 sat-
isfying Equation 5.7 for some parameter F , the error rates δx and δph satisfy

1− h
(1− F

2

)
≤ δx + δph

2 h

(
δx

δx + δph

)
+ 2− δx − δph

2 h

(
1− δph

2− δx − δph

)
(5.8)

independent of the parameter L.

[Koa09] argues however that this inequality is not tight and presents another, longer analysis
to find a better bound. The main argument is supplied by quoting a result from an earlier
paper on random sampling [TKI03], which finally gives the result:

Theorem 5.3. In a protocol with fair random sampling and with states |χ0〉, |χ1〉 sat-
isfying Equation 5.7 for some parameter F , the error rates δx and δph satisfy:

F ≤
√

(1− δx)(1− δph) +
√
δxδph (5.9)

independent of the parameter L.

Theorem 5.3 is a stronger claim and will form the topic of this section. Theorem 5.2 is not
pursued further here, but will be revisited in Section 6.3.

Given a specific, measured δx, the above inequalities can be solved to obtain the maximum
δph allowed, in order to provide an upper bound on the error rate needed. This in turn allows
the general source protocol from Section 5.1.4 to satisfy the assumptions for the security
proof.

The theorems do however not provide a unconditional answer to Question 5.1; rather, the
result is given under the additional requirement of fair random sampling. This will be one
of the key topics of this work and will be properly introduced in Section 5.2.6. It is however
important to first get an understanding of how the situation proposed in Question 5.1
functions without any additional restrictions. In the following, we therefore investigate the
validity of Theorem 5.3 purely in the context of Section 5.2.1 and Figure 5.1, by considering
simplifying cases.

75



5.2. ERROR ESTIMATION

5.2.3 Single state

For L = 1, as illustrated in Figure 5.2, the situation is as follows: A state |χa〉 (that can be
either |χ0〉 or |χ1〉) is prepared and the HQ-part sent through a quantum channel E . Then
X-basis measurements are done on KA and HB. δph and δx are found as the probability of
the two measurements disagreeing in the a = 0 and a = 1 case respectively. Question 5.1
then corresponds to asking how different these two probabilities can be.

Figure 5.2: Error rate analysis model for L = 1. The |χa〉-state’s qubit lines represents KA and
HQ from the top. HS is not needed and is suppressed. E represents the channel.

Theorem 5.3 is easily seen to follow from the monotonicity (Equation 3.2.3) and POVM
minimization equivalence (Equation 3.23) of the fidelity measure: Confirming whether the
measurements disagree can be implemented by an XOR gate on the outputs and a single
measurement to determine the parity. In line with Theorem 2.8 the classical XOR can be
replaced by its quantum equivalent CNOT to express the probability of disagreement as a
single quantum measurement. This measurement has outcome probabilities δph, 1− δph in
the case of |χa〉 = |χ0〉, and δx, 1− δx when |χa〉 = |χ1〉. By expressing the channel E as a
quantum operation on the whole state F = I ⊗ E it is seen that:

F (pm, qm) ≥ F [F(|χ0〉 〈χ0|),F(|χ1〉 〈χ1|)] ≥ F (|χ0〉 , |χ1〉)

⇒
√

(1− δx)(1− δph) +
√
δxδph ≥ F, (5.10)

which proves Equation 5.9 for L = 1.

5.2.4 Double disconnected state

The second case to consider is L = 2. Additionally we will begin the analysis by making the
restricting of the channel being disconnected, i.e. it acts as individual quantum operations
on its input states. The situation, as illustrated in Figure 5.3, is as follows: Two copies
of either |χ0〉 or |χ1〉 are created, denoted as |χa〉⊗2. The HQ-parts are then individually
transmitted through a quantum channel E each. After conducing X-basis measurements on
two pairs of KA and KB, one of the two pairs is selected at random. δph and δx are then
found as the probability of disagreement in the measurements of the randomly selected pair,
in the a = 0 and a = 1 case respectively. The question is as always how different these
probabilities can be.

This situation can be analyzed in the same manner as in Section 5.2.3. There is however the

76



5.2. ERROR ESTIMATION

Figure 5.3: Error rate analysis model for L = 2 with a disconnected channel. The |χa〉-states’
qubit lines represent KA andHQ, whereasHS is suppressed. E are the individual channels. Initially,
qubit lines 1 + 3 represent Alice’s states, whereas lines 2 + 4 Bob’s states. Because its convenient
to separate Alice’s from Bob’s side, the SWAP operation is included to diagrammatically collect
each party’s states.

additional need for a method to calculate the probability of a random selection. Luckily, in
this case of a uniformly random selection, the method is relatively trivial: For each basis
choice a, let the probability of disagreeing measurements in pair k be denoted

perrorak ; k = 1, . . . , L; a ∈ {0, 1}. (5.11)

E.g. in this case k ∈ {1, 2}.

The probability of a uniformly randomly selected pair among the L pairs to disagree is then
simply given by the arithmetic mean, so that δph and δx are given by:

δph = 1
L

L∑
k=1

perror0k (5.12a)

δx = 1
L

L∑
k=1

perror1k , (5.12b)

Trivial generalization

The first approach to analyze this situation is to represent the various measurements and av-
erages as a single, total quantum measurement. Subsequently, the channel can similarly still
be represented as a quantum operation. This immediately lead to the trivial generalization
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of Equation 5.10 for arbitrary L:

F
(
|χ0〉⊗L , |χ1〉⊗L

)
≥ FL

⇒
√

(1− δx)(1− δph) +
√
δxδph ≥ FL (5.13)

This approach is however not very useful, since it leads to a lower bound in Equation 5.9
that decreases in L. The protocol relies on sending a large number of states, so that we are
essentially interested in the large L limit. In that case, this would result in a property on
the input states that will always be satisfied and thus providing no information about the
error rate.

Remedy for the disconnected channel

In the case of a disconnected quantum channel there is however a much simpler method.
As there is no interaction between the two state-and-measurement pairs, each pair can be
analyzed individually. The pairs therefore both separately follow the exact same analysis as
in Section 5.2.3. Since the probability of error in each state satisfies Equation 5.9, it must
follow that their average satisfies the same condition. Thus the result holds for the double
disconnected case.

5.2.5 Double joint state

The final case to consider is again L = 2, but now with a joint quantum channel. The
situation is illustrated in Figure 5.4, and is identical to that of Section 5.2.4 except that the
channel acts jointly on the two transmitted HQ-parts.

Despite being almost identical to that of Section 5.2.4, the method by which to address the
problem in this case is not obvious. The first approach suggested in the previous section still
suffers from the same degradation of usefulness as L→ 0. The second approach is however
also not possible this time, since it relied on the assumption that the states do not interact.

Quite contrary, there seems to be a possibility of constructing a concrete counterexample
for this situation under certain conditions. For instance, in the case that

|χa〉 = |+〉 ⊗ |ψa〉 ; ∀a = 0, 1 (5.14)

for some |ψa〉, the states |χ0〉 and |χ1〉 are clearly only distinguished by the part that is sent
through the channel E and therefore admit a POVM measurement on the joint state that
can distinguish them with classical fidelity F 2 < F . Since Alice’s measurement outcomes
are fixed, Bob’s POVM outcomes will therefore translate directly into error rates δx and
δph.

This is however an extreme situation in the sense that it can definitely never be used in an
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Figure 5.4: Error rate analysis model for L = 2 with a joint channel. The |χa〉-states’ qubit lines
represent KA and HQ, whereas HS is suppressed. The SWAP operations is added to make the
diagram easier by collecting Alice’s and Bob’s measurements separately. Note the key difference
from Figure 5.3 in that the channel E now acts jointly on the input states.

actually functioning protocol. For realistic states |χ0〉 and |χ1〉. the situation is much more
complicated: First, there are different reduced states that are sent through the channel E
depending on Alice’s 4 measurement results. Violating Equation 5.9 then requires a channel
that is able to distinguish all the 4 pairs of reduced states with classical fidelity better than
F on average for the 4 state pairs. This must however simultaneously be done so that it is
not simply Bob’s measurement results that are distinguished at this rate, but the probability
of errors between Alice and Bob’s measurements. Finally, it must be constructed so that
this in fact holds for error probabilities averaged also over the 2 measurement pairs.

It is therefore not clear under exactly what circumstances Equation 5.9 might hold in this
case. Specifically, under any situation that could possibly exist for an functioning protocol,
there is no clear answer. In fact it seems that there is no method based on general quantum
operations that can capture the full interaction between the fidelity requirement on the
states in Equation 5.7 and the fact that the channel only acts on Bob’s half. And at the
same time, considering specific cases is equally unproductive since the channel and states
are otherwise uncharacterized. It is indeed not obvious how to proceed with the analysis of
the validity of Equation 5.9 in this situation for realistic parameters.

5.2.6 Random sampling

In light of the discussion in Section 5.2.5, one important question is apparent: how can The-
orem 5.3 hold when we have motivated a specific counterexample in the case of L = 2. The
resolution to this paradox comes from the additional assumption stated in its description,
namely that it holds for protocols with fair random sampling. Specifically it relates to the
order that the various operations are applied and when information becomes available.
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To get an idea, let us consider a concrete example of how the situation of an actual protocol
looks, as depicted in Figure 5.5a. Here, Alice and Bob have chosen basis values a and
prepared a sequence of the corresponding states |χ0〉 / |χ1〉 that have been sent through
the channel. Focusing only on finding the error rates, we now let Alice and Bob conduct
X-basis measurements on these states. It is then clear that this matches the description
of Section 5.2.1, with jointly sent collections of states |χ0〉⊗L0 and |χ1〉⊗L1 giving average
probabilities of a measurement error as δph and δx respectively.

(a) A run of the protocol. (b) The conditions for successful attack E∗ by Eve.

Figure 5.5: Example of a deployment of the protocol: A sequence of states |χ0〉 and |χ1〉 are
prepared randomly and the HQ-part of all of them jointly sent through the channel E . The other
parts of |χa〉 are suppressed, as well are the measurements.

Eve aims to attack these collections |χa〉⊗La by maximizing the error rate of the |χ0〉 states
compared to the |χ1〉 states. At first it appears that there is indeed a possibility of performing
such an attack in violation of Theorem 5.3: In line with section Section 5.2.5 it is possible
to use a joint channel working an all the |χ0〉 states combined, so that the average error
rate is increased more than it could if Eve had attacked only one of the |χ0〉 states. Since
we are assuming that the operation of the source is known to Eve before the attack, she can
use the exact values of |χ0〉 and |χ1〉 to construct an ideal attack operation E∗. Eve can the
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presumably deploy this on the channel, acting on the |χ0〉 states according to Figure 5.5b.

There is however a flaw in this analysis, again relating to the order of operations. Whereas
the characterization of the source states |χa〉 is made before the attack, revealing the infor-
mation about Alice’s and Bob’s choice of when to send which basis is done after the attack.
Notice on the other hand, in Figure 5.5b, that Eve’s attack operation was assumed to act
jointly on a collection of either |χ0〉⊗L0 or |χ1〉⊗L1 states. Although Eve does not need to
know the order these collections of states are sent, she does in fact need to act jointly on a
collection of one state. Concretely, in Figure 5.5b there is an implicit assumption that Eve
knows exactly on which states to apply the attack operation E∗.

We are now in a position to formally define the assumptions of Theorem 5.3 and Theorem 5.2.
A protocol is said to exhibit fair random sampling when the states used for error estimation
are representative for the whole protocol and consecutive basis choices a are completely
independent, i.e. uncorrelated. In such a situation, it follows that Eve’s attack is not
possible, since it relies on identifying collections of one particular state. Specifically, for
any one transmitted state |χa〉 that Eve is looking to attack, all the preceding and following
states have an uncorrelated probability of being |χ0〉 or |χ1〉. Thus the average result of such
an attack is simply that where all preceding and following states are treated as mixed states
of the two basis choices |χ0〉, |χ1〉, so that they are in particular constant. Consequently, Eve
cannot gain anything by entangling multiple states in a joint attack. The situation therefore
reduces to the disconnected case in Section 5.2.4, which informally proves Theorem 5.3 for
arbitrary L.

This argument is however dependent on fair (perfect) random sampling of the basis states,
which is indeed a very strict requirement. Moreover, it was indicated in Section 5.2.5 that
the existence of the attack operation E∗ was not even obvious, at least for all interesting
situations. If such an operation does in fact not exist, the security proof of Theorem 5.3
would be relieved of the stringent random sampling requirement, providing a much stronger
security statement. As will be discussed in Chapter 7, this would allow providing proof for a
much wider range of situations and sources, specifically when there are correlations between
the states.

We would therefore like to investigate the validity of Koashi’s theorem, but with the addi-
tional random sampling requirement removed. We begin by formulating the conjectures:

Conjecture 5.4. Theorem 5.2 holds true without the requirement of fair random sam-
pling. To reiterate:

For arbitrary states satisfying Equation 5.7 for some parameter F , the error rates δx
and δph obey:

1− h
(1− F

2

)
≤ δx + δph

2 h

(
δx

δx + δph

)
+ 2− δx − δph

2 h

(
1− δph

2− δx − δph

)
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independent of the parameter L.

Conjecture 5.5. Theorem 5.3 holds true without the requirement of fair random sam-
pling. To reiterate:

For arbitrary states satisfying Equation 5.7 for some parameter F , the error rates δx
and δph obey:

F ≤
√

(1− δx)(1− δph) +
√
δxδph

independent of the parameter L.

Note that the validity of these conjectures are in itself not the point. In fact, in Section 5.2.5
we already motivated the possibility of a counterexample to Theorem 5.3; rather, as was
pointed out, the case to investigate is under exactly what circumstances these conjectures
hold. The difficulty is however that the traditional analytical methods do not seem to offer
an efficient way to investigate the model. We therefore propose another approach: in the
next chapter, we develop models and specific tools to treat the problem numerically.

5.2.7 Larger values of L

To conclude this chapter, we include for reference a couple of circuit models for the case of
L > 2. These are not part of the analysis of Conjecture 5.5 presented in this section, but
will be revisited in Section 6.1.7 and Section 6.3. From Figure 5.6 and Figure 5.7 it should
be clear how the circuit generalizes for arbitrary L.

Figure 5.6: Error rate analysis model for L = 3 with a joint channel. The |χa〉-states’ qubit lines
represent KA and HQ, whereas HS is suppressed.

82



5.2. ERROR ESTIMATION

Figure 5.7: Error rate analysis model for L = 4 with a joint channel. The |χa〉-states’ qubit lines
represent KA and HQ, whereas HS is suppressed.
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Chapter 6

Numerical investigation

The previous chapter investigated the impact of basis-dependent imperfections in Alice’s
source when deploying the BB84 protocol [BB84]. It was further shown that the security
in this case relies on Alice and Bob being able to accurately estimate the phase error rate
δph, even when it is not equal to the observable error rates δz and δx. We then presented
Theorem 5.3 by Koashi [Koa09], but noted that it relied on a stringent requirement of perfect
random sampling of the basis states. Finally we argued that it is not mediately clear that
this assumption is in fact necessary, at least for all practical situations. This formed the
basis for Conjecture 5.4 and Conjecture 5.5, which suggests that the theorem could be valid
without this assumption.

This section proposes to investigate Conjecture 5.5 by doing a numerical simulation of the
protocol. We furthermore specialize to the situation in Section 5.2.5, where the source
states are perfectly correlated. By looking at specific examples of source states and chan-
nels, we can hopefully gain some insight into this claim and why it does or does not hold.
Specifically, challenging the claim would, as always, only require a single counterexample.
Although we have already motivated the existence of such a counterexample to Conjec-
ture 5.5 in Section 5.2.5, it is instructive to begin the development of the numerical tools
by investigating its validity and hopefully find concrete support for this idea. We can then
tackle the question of whether counterexamples exist in the realistic regime.

6.1 Investigation 1

A procedure to do numerical tests of Conjecture 5.5 was devised, implementing the simplest
case that does not hold trivially: L = 2. The idea is to generate random, particular numer-
ical examples of all variables involved, namely the input states |χ0〉 , |χ1〉 and the quantum
channel E . The states must of course be selected to still satisfy condition Equation 5.7. The
various measurement probabilities can then simply be explicitly calculated by performing
the action of the circuit in Figure 5.4. Finally δph and δx are obtained and we can check:

85



6.1. INVESTIGATION 1

Question 6.1. Do there exist combinations of states |χ0〉 , |χ1〉 and a channel E that
violate Conjecture 5.5?

6.1.1 Simplifying restrictions

To facilitate the process of making a random sampling of the various variables, a few re-
strictions are made. Of course, if a counterexample is not found, these restrictions can then
be revised and relaxed.

First, the source states ρab are all assumed pure single-qubit states, meaning that HS is
not needed. This means that the states |βab〉 are also all singe-qubit states, and |χa〉 are
then 2-qubit states. Furthermore, HQ and HB are also assumed to be qubit spaces so that
everything can be treated as qubits. Second, the quantum channel E is assumed to simply
be a unitary operation U , operating on the 2 qubits.

Lastly, the required property Equation 5.7 for the states |χa〉 is also restricted from above,
so that

F1 ≤ |〈χ0|χ1〉| ≤ F2, (6.1)

where F1 = F for some F we choose, and which is used in Equation 5.9. By this construction
it is clear that all states generated satisfy the required property Equation 5.7. At the same
time it is clear that states satisfying this property for a much greater parameter F ′ � F1 will
have a much smaller probability of violating Equation 5.9. We therefore choose to also bound
the fidelity form above by F2, to maximize the probability of finding a counterexample.

Another important consideration is to ensure that the randomly generated quantities are
chosen somewhat uniformly. This is of course no requirement, since we are only interested
in finding a single, specific counterexample. Yet, if there is a strong bias for a particular set
of states or channels, it may become significantly less likely to pick the ones that happen
to produce the desired result. The solution chosen here is therefore to pick all variables
completely uniformly at random, and then check if they happen to satisfy the required
properties. This is of course a highly inefficient method because a very large number of
trials are on average needed to find variables that are valid. Nevertheless, this approach was
chosen because it has the advantage of guaranteeing a uniform sampling of the parameter
space, thus making it less likely to systematically miss some choices.

6.1.2 Algorithm

Initially set a lower fidelity F1 and upper fidelity F2. These values are fixed during one run,
where the following steps are executed a large number of times M :

1. Pick 4 random single-qubit pure states |βab〉 uniformly. Pick two random probabilities
p0 and p1 uniformly.
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2. Construct |χ0〉 and |χ1〉 using Equation 5.6 and calculate their fidelity F = |〈χ0|χ1〉|.
If the fidelity happens to be within the desired range F1 ≤ F ≤ F2, proceed; if not,
go back to step 1.

3. Pick a random 2-qubit unitary matrix U uniformly.

4. Construct the input states |χ0〉⊗2 , |χ1〉⊗2. Calculate the output states
∣∣χout0

〉
,
∣∣χout1

〉
that result from passing the input states through the channel, by:∣∣∣χouta

〉
= (I ⊗ I ⊗ U)(I ⊗ SWAP ⊗ I) |χa〉⊗2 . (6.2)

5. For each basis a, calculate the probability perrorak of the X-basis measurements in
measurement-pair k disagreeing, as:

perrorak =
〈
χouta

∣∣∣Pk ∣∣∣χouta

〉
, (6.3)

for projective measurement operators

P0 = |+〉 〈+| ⊗ I ⊗ |−〉 〈−| ⊗ I

+ |−〉 〈−| ⊗ I ⊗ |+〉 〈+| ⊗ I
(6.4a)

P1 = I ⊗ |+〉 〈+| ⊗ I ⊗ |−〉 〈−|

+ I ⊗ |−〉 〈−| ⊗ I ⊗ |+〉 〈+| .
(6.4b)

6. Calculate the error probability of a random selection for each basis choice:

δph = 1
2(perror00 + perror01 ) (6.5a)

δx = 1
2(perror10 + perror11 ). (6.5b)

7. Compute
√

(1− δx)(1− δph) +
√
δxδph and determine if it is in fact larger than F1 as

promised by Equation 5.9.

6.1.3 Uniformly generating variables

In line with the goal of uniformly sampling the parameter space, the algorithm makes several
call for randomly generating various quantities uniformly. While it is clear how a random
scalar number in a finite range can be uniformly sampled, it is not immediately obvious how
this generalizes to the required quantities. This section provides a short description of the
method by which the various quantities are randomly generated.

The single-qubit pure states |βab〉 are constructed from 3 real, random parameters γ, θ and
φ, according to:

|βab〉 = eiγ
(

cos θ2 |0〉+ eiφ sin θ2 |1〉
)
, (6.6)
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where γ gives the qubit a random phase while θ and φ characterize a random qubit by
spherical coordinates of the Bloch sphere. By this reasoning, θ and φ are chosen to be
sampled by a distribution that is uniform over the area of the Bloch sphere. A common
method to achieve this probability distribution is to construct:

γ = 2πu (6.7a)

θ = 2πv (6.7b)

φ = cos−1(2w − 1), (6.7c)

from real parameters u, v, w all picked randomly according to a uniform distribution on
[0, 1].

The 2-qubit unitary matrix U is constructed from two random, 4-by-4, real matrices A1 and
A2. Each matrix element is independently randomly selected from a Normal distribution
N (0, 1). Then the two matrices are combined into a 4-by-4 random complex matrix A3 =
A1 + iA2. This matrix is then made into a Hermitian matrix A4 =

(
A3 +A†3

)
/2 which is

in turn used to construct the unitary matrix by U = eiA4 .

6.1.4 Implementation

The algorithm was designed and checked using MathWorks MATLAB R2016b (win64). It
was then optimized for speed by porting to 2 different computationally fast languages: one
using a standard linear algebra approach and the other using a specialized framework for
performing quantum simulations. Finally, the results were independently double-checked
using Wolfram Mathematica 11.0.1.0 (win64).

The first method was written in Fortran2003, with the LAPACK1 and BLAS2 linear algebra
software packages [And+99]. It was compiled with the GNU Fortran compiler (gfortran)
on Ubuntu 16.04 LTS. The BLAS / LAPACK routines were first provided by LAPACK953

version 3.0 and the Netlib open implementation version 3.6.0, and then using the optimized
Intel MKL 2017 Update 2 for Linux4.

The other method was written in C++2017 using the Quantum++ quantum computing
library5 [Ghe14], which is a made specifically for simulating quantum processes. It was
compiled with the GNU C++ compiler on Ubuntu 16.04 LTS.

Note that the Fortran program implemented the uniform sampling from Section 6.1.3,
whereas the C++ program used pre-made sampling methods from the Quantum++ library.

1http://www.netlib.org/lapack/
2http://www.netlib.org/blas/
3http://www.netlib.org/lapack95/
4https://software.intel.com/en-us/mkl
5http://vsoftco.github.io/qpp/
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6.1.5 Results

The results of the Fortran and C++ simulations for L = 2, F1 = 0.99 and F2 = 0.991 are
shown in Figure 6.1 and Figure 6.2 respectively.

Figure 6.1: Fortran simulation: Scatter plot of δph vs. δx for L = 2,M = 80 000, F1 = 0.99 and
F2 = 0.991. Each point is found from a single trial by the algorithm in Section 6.1.2. The dashed
line is a visual aid showing where δph = δx. The solid line labeled “claimed bounding region” is the
extremal line for Equation 5.9 in that it encloses all combinations of δph, δx for which it is satisfied.
The bubble provides an closer view at a region of high interest. See also Table 6.1.
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Figure 6.2: C++ simulation: Scatter plot of δph vs. δx for L = 2,M = 100 000, F1 = 0.99 and
F2 = 0.991. Each point is found from a single trial by the algorithm in Section 6.1.2. The dashed
line shows δph = δx and the solid line labeled “claimed bounding region” encloses the region of all
combinations of δph, δx that satisfy Equation 5.9. See also Table 6.1.

The Fortran simulation identified 7 points among its M = 80 000 total trials that were
outside the valid region of (δx, δph) points according to Equation 5.9. Similarly, the C++
simulation also found 1 point among its M = 100 000 total trials that did not satisfy
Equation 5.9. These points are concrete examples6 of states |χ0〉 , |χ1〉 and a channel E ,
for which Conjecture 5.5 does not hold. We have therefore provided definite proof for the
answer “yes” to Question 6.1.

It is also interesting to observe that the final distribution of points in the δph-δx plane was
notably different in the two simulations. The uniform sampling suggested in Section 6.1.3
clearly produced a more uniform final distribution of (δx, δph) points than the built-in sam-
pling method in the Quantum++ library. This difference is however of little importance
here. The main takeaway is that two different simulation methods were both able to find
examples for which Equation 5.9 was not satisfied.

6.1.6 Fixed parameter simulations

One immediate follow-up idea was to fix some of the parameters of the simulation to that of
one of the counterexamples found in Section 6.1.5. Specifically, the algorithm in Section 6.1.2

6Concrete numerical values for one counterexample is provided in listing 1 in Appendix A.
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calls for generating 2 sets of quantities: the states |χa〉 and the channel matrix U . Two new
simulations were conducted: First, a particular choice of states |χ0〉∗, |χ1〉∗ and matrix U∗

were set to that of one of the counterexamples found in Figure 6.1. Then one simulation
picked random matrices U as before, but the states were fixed |χ0〉 = |χ0〉∗ , |χ1〉 = |χ1〉∗.
The other simulation picked states |χa〉 randomly as before, but the channel was fixed
U = U∗.

Both simulations used L = 2, F1 = 0.99 and F2 = 0.991 and were run by the Fortran
program. The results are shown in Figure 6.3 and Figure 6.4 respectively.

Figure 6.3: Fixed states: Scatter plot of δph vs. δx for L = 2,M = 1 000 000, F1 = 0.99 and
F2 = 0.991 with fixed states |χa〉 = |χa〉∗. Each point is found from a single trial by the algorithm in
Section 6.1.2. The dashed line shows δph = δx and the solid line labeled “claimed bounding region”
encloses the region of all combinations of δph, δx that satisfy Equation 5.9. See also Table 6.1.
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Figure 6.4: Fixed channel: Scatter plot of δph vs. δx for L = 2,M = 100 000, F1 = 0.99 and
F2 = 0.991 with a fixed channel matrix U = U∗. Each point is found from a single trial by the
algorithm in Section 6.1.2. The dashed line shows δph = δx and the solid line labeled “claimed
bounding region” encloses the region of all combinations of δph, δx that satisfy Equation 5.9. See
also Table 6.1.

Both of the new simulations identified several new counterexamples to Conjecture 5.5. Fig-
ure 6.4 shows that the simulation with a fixed channel matrix produced a slightly different
distribution of (δx, δph) points than the original simulation, but is overall fairly similar.
Figure 6.3 on the other hand shows that fixing the state produced a notably different dis-
tribution and identified counterexamples at a much higher frequency than the original sim-
ulation. This seems to support the fact that certain states |χa〉 are more prone to violating
Equation 5.9 that others.

6.1.7 Other values of L

It is also interesting to see how the simulation behaves for other values of L. Specifically,
simulations were conducted for the case of L = 3 and L = 1, with results shown in Figure 6.5
and Figure 6.6 respectively. Both simulations used F1 = 0.99 and F2 = 0.991 and were run
by the Fortran program. Circuit diagrams for these situations are shown in Figure 5.2 and
Figure 5.6 respectively.

92



6.1. INVESTIGATION 1

Figure 6.5: Scatter plot of δph vs. δx for L = 3,M = 1 000 000, F1 = 0.99 and F2 = 0.991. Each
point is found from a single trial by the algorithm in Section 6.1.2. The dashed line shows δph = δx

and the solid line labeled “claimed bounding region” encloses the region of all combinations of
δph, δx that satisfy Equation 5.9. See also Table 6.1.

Figure 6.6: Scatter plot of δph vs. δx for L = 1,M = 100 000, F1 = 0.99 and F2 = 0.991. Each
point is found from a single trial by the algorithm in Section 6.1.2. The dashed line shows δph = δx

and the solid line labeled “claimed bounding region” encloses the region of all combinations of
δph, δx that satisfy Equation 5.9. See also Table 6.1.
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The results show a very good match with the theory developed in Chapter 5. Figure 6.5
illustrates that the probability of finding a counterexample by random sampling seems to
decrease for increasing L. This is not surprising as the total parameter space increases
for larger L, and so finding a point with a particular property becomes less likely. The
simulation was still able to find 3 (δx, δph) points out of M = 1 000 000 that do not satisfy
Equation 5.9.

Additionally, Equation 5.10 showed that for L = 1, Equation 5.9 should in fact remain true.
And this is precisely the result shown in Figure 6.6: out of the M = 100 000 trials, all the
observed (δx, δph) points indeed satisfy Equation 5.9.

A summary of the exact number of counterexamples identified in each simulation is given
in Table 6.1.

Table 6.1: Summary of quantitative results in Figure 6.1 - 6.6

Simulation type L
Total number

of trials M
Number of points

violating (5.9)
Plotted in
figure

Fortran, random 2 80 000 7 Figure 6.1
C++, random 2 100 000 1 Figure 6.2
Fortran, fixed state 2 1 000 000 39 343 Figure 6.3
Fortran, fixed channel 2 100 000 20 Figure 6.4
Fortran, random 3 1 000 000 3 Figure 6.5
Fortran, random 1 100 000 0 Figure 6.6

6.2 Investigation 2

The previous section presented the identification of explicit counterexamples to Conjec-
ture 5.5. We are now in a position to evaluate the properties of the counterexamples: Are
the concrete situations the examples correspond to realistic? Are there any systematic
properties common to all the examples found? This section will begin by considering these
questions and show that all the counterexamples found in the previous section are in fact
not realistic. A new scheme is then proposed in order to search for examples that satisfy an
additional set of properties to make them more realistic.

6.2.1 Finding realistic counterexamples

The initial reaction to the previous section is obviously to look at the actual numbers of the
counterexamples. Checking the channel matrices U does not seem to reveal any trends, as
may not be surprising since the number of parameters in a 4x4 complex, unitary matrix is
quite large. Furthermore, U represents the action of the attacker Eve and should therefore
not be restricted. Checking the states |βab〉 is similarly unproductive as it is hard to notice
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any trends in the numbers. Furthermore, the |βab〉 states have already been assumed to be
pure, so it is not clear if restricting them further would be interesting at this point.

There is however one trend that is immediately obvious, relating to the bit value probabilities
p0 and p1. Whereas p0 seem to take on values in the range [0, 1] fairly uniformly, p1 is always
very close to 0 or 1. In fact all the counterexamples produced in Section 6.1 have values
of p1 that are outside of the range [0.1, 0.9]. In step 1 of the algorithm in Section 6.1.2 the
values of p1 was chosen uniformly in [0, 1], meaning that values of p1 ∼ 0.5 are evidently
extremely unlikely to violate Equation 5.9 when performing a uniform parameter search.
Note that this trend does however not contradict the validity of the counterexamples from
Section 6.1. Conjecture 5.5 only relies on the assumption of Equation 5.7, which is indeed
satisfied, and in particular it places no restrictions of p0 and p1.

The problem with the extreme values of p1 is that it represents a situation that is easy to
avoid: pa describes the probability of selecting bit value 0 given basis choice a. p1 ≈ 0 or
p1 ≈ 1 therefore represents a situation where there is a high probability that only one of
the qubit states is used for the X-basis. While this does not necessarily break security, it
means that the outcome from Alice’s random number generator for the bit choice is heavily
skewed. All the counterexamples discovered therefore corresponds to Alice having a very
poor random number generator. In addition to being something Alice can easily fix, the
original proof Section 4.2 already relies inseparably on (nearly) perfect random number
generators.

It is therefore interesting to know whether it is possible to construct a counterexample where
p1 ≈ 0.5 and exactly how close to 0.5 it is possible to get. In particular, we may ask:

Question 6.2. Do there exist combinations of states |χ0〉 , |χ1〉 and a channel E that
violate Conjecture 5.5 and that have realistic properties: p0 = 0.5, p1 = 0.5?

The other problematic trend in the counterexamples from Section 6.1 is that they always
lead to very high error rates. As with extreme values of p1, note however that the validity
of the counterexamples is in this case also not challenged because Conjecture 5.5 makes
no assumptions about the error rates δx, δz and δph. At the same time, high values of δbit
and δph will obviously lead to a negative key gain from Equation 4.30, meaning that Alice
and Bob cannot actually run the protocol. We are therefore interested in investigating if a
counterexample can exist also in the operational regime:

Question 6.3. Do there exist combinations of states |χ0〉 , |χ1〉 and a channel E that
violate Conjecture 5.5 and that predict a positive key gain G (Equation 4.30)?

Note that there are two possible interpretations for predicting the key gain G:

1. From the measured error rates δz and δx, calculate the maximum predicted phase error
δ∗ph using the conjectured Equation 5.9. The calculate the predicted minimum key gain
G∗ from Equation 4.30 using δbit = δz and δph = δ∗ph.
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2. Or from the true measured error rates δph and δbit = δz, calculate the true key gain
G from Equation 4.30.

In addition, as is seen from the plots in Section 6.1, the counterexamples to Conjecture 5.5
that were produced do not distinguish between a true value of δph that is too high or too
low; they only assert that there exist examples where δph is more different from δx that
Equation 5.9 predicts is possible. Of course examples where δph is in fact lower than δx

is not particularly interesting, since it simply means that the protocol is more secure than
Conjecture 5.5 suggests.

For counterexamples to Conjecture 5.5 that also satisfy δph > δx, the interpretations for
Question 6.3 is however easily simplified: Since such an example would obviously have a
true δph that is higher than the maximum predicted value δ∗ph, we can focus on finding
counterexample according to the second interpretation (positive, true key gain G). Note
also that if such an example can be found, constructing a new counterexample that satisfies
only the first interpretation is relatively trivial7. We therefore rephrase Question 6.3 into a
more restrictive version:

Question 6.4. Do there exist combinations of states |χ0〉 , |χ1〉 and a channel E that
violate Conjecture 5.5 and satisfy δph > δx and that imply a positive, true key gain G
(Equation 4.30)?

6.2.2 Algorithm

The full detail of the algorithms used to investigate Question 6.2 and Question 6.3 is too
involved to be included here, and we will only give a rough sketch of its operation. The core
functionality is the same as that of Section 6.1.2: Pick a lower bound F for Equation 5.7,
a set of states |βab〉, probabilities pa and a channel E , and determine δx, δph by explicitly
simulating the protocol. Also as before, we are considering L = 2 and pure |βab〉.

The new components of the algorithm regard the method by which to choose the various
quantities. First of all, the probabilities are now fixed pa = 0.5; ∀a = 0, 1. Second, selecting
the states |βab〉 randomly and then checking whether Equation 6.1 holds is a very slow
process. Instead, we now consider a more analytic approach:

1. Pick 1 of the 4 |βab〉 states at random and generate the other 3 in line with Sec-
tion 6.1.3. It can then be shown that finding the last state |βk〉 so that Equation 5.7
holds is always reducible to it instead satisfying

|c+ 〈γ̃|βk〉| = F, (6.8)

for suitable choices of an unnormalized state |γ̃〉 and complex number c, that depend

7Given a channel E , it is always trivial to make small adjustments to it so that the error rates increase
slightly.
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on the 3 other |βab〉 states and the probabilities pa.

2. Determine the range of possible complex numbers z that satisfy |z + c| = F ; if there
are none, go back to step 1. Otherwise, proceed by making a random choice of z
uniformly among the allowed values.

3. From the orthogonal subspace of |γ̃〉, pick a state |δ〉 ∈ |γ̃〉⊥ uniformly at random.
The last state can then be constructed as

|βk〉 = K |δ〉+ z
|γ̂〉
‖|γ̃〉‖2

, (6.9)

where K is chosen so that |βk〉 is normalized.

Third, we consider a new method for picking channels E . The previous method where the
selection is limited to unitary matrices U is clearly very restrictive. Numerous algorithms
performing a uniform search among more general quantum operations E were implemented
and tested extensively. All of these methods were however found to be too inefficient, as a
random search in such a large parameter space has a very low probability of finding anything
interesting. Therefore, a new method was devised to increase the chance of finding “good”
channels:

1. Begin by focusing on Alice’s X-basis measurements: Given the two states |χa〉 and
probabilities pa, calculate which one of Alice’s 4 possible measurement outcomes (00,
01, 10, 11) is the most likely averaged over the two basis choices |χ0〉 and |χ1〉. Cal-
culate the reduced state σa that Alice sends to Bob in the event of this measurement
outcome, for each of the two basis choices a = 0, 1.

2. Pick a random 2-qubit unitary matrix U in line with Section 6.1.3 to serve as the
channel E . Then calculate the result of sending the state σa through the channel
U and find the 2 corresponding reduced states σ(i)

a on the two single-qubit systems
i = 1, 2 after the channel. This is illustrated in Figure 6.7.

Figure 6.7: Circuit model for the definition of σ(i)
a . σa is the reduced state Alice is most likely to

send to Bob after conducting her measurement and U is the channel.

3. Calculate the fidelity between the basis choices for each subsystem: F
(
σ

(1)
0 , σ

(1)
1

)
and

F
(
σ

(2)
0 , σ

(2)
1

)
. If they are both less than the parameter F , continue; otherwise, return

to step 1.

4. According to Equation 3.23 there now exists a POVM measurement
{
E

(i)
k

}
that can

97



6.2. INVESTIGATION 2

distinguish σ
(i)
0 from σ

(i)
1 better than F , on each of the two subsystems i = 1, 2.

Formally: ∃
{
E

(1)
k

}
,
{
E

(2)
k

}
with measurement probabilities

p
(i)
k = tr

(
E

(i)
k σ

(i)
0

)
q

(i)
k = tr

(
E

(i)
k σ

(i)
1

)
∀i = 1, 2 (6.10)

so that
F
(
p

(i)
k , q

(i)
k

)
< F ; ∀i = 1, 2. (6.11)

5. Convert the combination of the unitary matrix U and two sets of POVMmeasurements{
E

(1)
k

}
,
{
E

(2)
k

}
into a single, equivalent quantum channel E .

The new methods for selecting the states |χa〉 and the channel E have some important
differences to the original algorithm of Section 6.1.2. First, due to the improved sampling
of the states |βab〉, this new algorithm runs much faster and can thus search through more
examples. Second, because of the construction of the channel E from the two sets of POVM
measurements, the channel is no longer limited to a unitary matrix but has instead 4 operator
elements E : {Ek}4k=1. The new algorithm can therefore try a much greater range of channels,
while simultaneously limiting the search to the ones that are the most promising.

6.2.3 Implementation and results

The algorithm was designed and implemented in MathWorks MATLAB 2016b (win64).
Because of the complexity of the algorithm and the improved run time, it was not ported
to other languages.

After running for ∼ 48 hours, the algorithm reported a successful discovery: It had found
an example8 of states |χ0〉, |χ1〉 and a channel E that did not satisfy Equation 5.9 and has
p0 = p1 = 0.5. This provides a concrete counterexample to Conjecture 5.5 for the realistic
situation of having a perfect random number generator for the bit selection! Thus we have
provided definite proof for the answer “yes” to Question 6.2.

The success of the new algorithm did however not extend to Question 6.3. In fact, all the
counterexamples it found had error rates δbit and δph that were consistently ∼ 0.5, which is
of course too high to give a positive key gain G.

6.2.4 Genetic optimization

To address Question 6.4, the focus was turned from a uniform search to an iterative one.
The idea is to utilize some optimization scheme to systematically make small adjustments
to the states |χa〉 and channel E . Given sufficient run time, the algorithm will hopefully be
able to converge to an example that is consistent with all the requirements of Question 6.4.

8Concrete numerical values for this counterexample is provided in listing 2 in Appendix A.
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The method to solve the optimization problem was chosen to be a genetic algorithm. The
channel E was fixed to consist of 4 operation elements {Ek}4k=1, which was then parametrized
by a vector x of 512 real numbers. The algorithm could then search for and make small
variations to individuals of x, which would then in turn be converted to the corresponding
set {Ek}4k=1. The series of requirements in Question 6.4 were then formulated into one score
function. This function was furthermore continuous in the requirements, so that the closer
the properties of Question 6.4 were to being satisfied, the lower the score.

While this approach is well-suited for finding a good channel E , it is not easily applied to the
states |βab〉. The reason for this is that the highly sensitive requirement from Equation 5.7
is broken by the mutation step of the genetic approach and also not easily convertible to
a linear constraint either. Instead we opted for a simpler solution: alternate between a
genetic search for good channels E and a uniform search for good states |βab〉. The latter of
these searches is done by making random mutation to the states |βab〉 and then using the
techniques from Section 6.2.2 to recalculate 1 of the states to ensure that Equation 5.7 is
satisfied. The mutation is then evaluated using the score function developed above.

Implementation and further results

This hybrid algorithm was developed and run by MathWorks MATLAB 2016b (win64).
The genetic optimization algorithm was further provided by the ga solver from the Global
Optimization Toolbox for MATLAB. The counterexamples identified in Section 6.2.3 were
then used as a starting point for the genetic solver.

The result from this method was a huge success! After running for another ∼ 48 hours, the
hybrid genetic algorithm identified an example9 of states |χ0〉, |χ1〉 and a channel E with
all the properties we are looking for: It does not satisfy Equation 5.9, gives error rates so
that δph > δx and provides a positive, true key gain G from Equation 4.30. Furthermore,
all this was achieved while simultaneously keeping the bit selection probabilities fixed to
p0 = p1 = 0.5. This remarkable results thus provides a counterexample to Conjecture 5.5
that corresponds to both having a perfect random number generator and is in the operational
regime of a positive key gain G.

We have thus provided definite proof that the answer to both Question 6.2 and Question 6.4
is in fact “yes”. Additionally, we have shown that there exists a situation that simultaneously
satisfies the requirements for answering both these questions.

6.3 Investigation 3

The previous sections concluded with having found concrete evidence to disprove Con-
jecture 5.5. Furthermore, the specific counterexample was constructed to also satisfy all

9Concrete numerical values for this counterexample is provided in listing 2 in Appendix A.
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additional properties that seem relevant. Looking back at Chapter 5, this was however not
the only bound on the error rates that was suggested. We are also interested in investigating
the necessity of the random sampling requirement in the other theorem from [Koa09], as
stated in Conjecture 5.4. This section describes how the methods from the previous sections
can be applied to investigate this claim as well.

6.3.1 Adjusting the algorithm

The first thing to check is of course whether Conjecture 5.4 still holds for the values of δx
and δph provided by the counterexamples to Conjecture 5.5. In turns out that it does in fact
hold, which supports the earlier claim that Equation 5.8 is less strict than Equation 5.9. As
before, we are therefore interested in investigating:

Question 6.5. Do there exist combinations of states |χ0〉 , |χ1〉 and a channel E that
violate Conjecture 5.4?

It is possible to get an idea of why this might be the case by looking back at Equation 5.2.4.
This restriction on δx and δph was shown to hold for any L, but at the expense of a de-
creasing lower bound for increasing L. This seems to suggest that it may be possible to find
larger differences between δx and δph for systems with increasing L. Although the choice of
simulating L = 2 was sufficient for investigating Conjecture 5.5, this means that this choice
might in fact not allow finding counterexamples for Conjecture 5.4. Specifically, further
comparison of these bounds suggests that a a violation of Conjecture 5.4 cannot occur for
L < 4.

We therefore consider the case of L = 4, as shown in Figure 5.7. The core idea is again
to run a simulation of the protocol on this system for particular choices of F , |βab〉, pa
and E to, and determine δx, δph. The algorithm used was the same as in Section 6.2:
First, a uniform search is done with the scheme for finding good states |βab〉 and channels
E from Section 6.2.2. Then, the hybrid search and genetic optimization approach from
Section 6.2.4 is used to iteratively improve these parameters. Both these algorithms were of
course updated to work for the case of L = 4. Specifically, the genetic optimization routine
worked with a representation of the channel E parameterized by a vector x of 2048 real
numbers.

As in the first investigation of Conjecture 5.5 in Section 6.1, we are initially interested in
investigating the validity of Equation 5.8, without considering any additional requirements.
In particular we are not limiting the search to states that satisfy p0 = 0.5 and p1 = 0.5 or
that give a positive key gain G.
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6.3.2 Implementation and results

The updated algorithm for L = 4 was implemented and run by MathWorks MATLAB 2016b
(win64). The genetic optimization algorithm was again provided by the ga solver from the
Global Optimization Toolbox for MATLAB.

This new method was also able to identify a counterexample10. Again a set of states
|χ0〉 , |χ1〉 and a channel E was found that violated Equation 5.8. Note that this state does
however not satisfy the additional properties of giving a positive key gain G or corresponding
to a perfect random number generator for the bit values pa. It nevertheless provides a
concrete counterexample to Conjecture 5.4, thus providing proof for the answer “yes” to
Question 6.5.

10Concrete numerical values for this counterexample is provided in listing 3 in Appendix A.
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Chapter 7

Discussion

In Chapter 5 we presented a theory for treating basis-dependent imperfections in the source
and concluded with two theorems from [Koa09]. In Section 5.2.6 it was explained how the
theorems relied critically on the assumption of perfect random sampling of the basis states,
if a certain attack operation could be constructed. The simplest non-trivial example of such
an operation was described in Section 5.2.5, where it was further noted that it was not clear
whether it in fact does exist for realistic situations. Due to the various constrains in the
model, it also seems this decision problem is difficult to analyze analytically.

The previous section therefore presented a different approach in the form of a numerical
investigation. The statement that the two theorems hold even without the assumption of
perfect sampling was formulated in Conjecture 5.4 and Conjecture 5.5. The numerical ap-
proach was able to provide conclusive evidence against both these conjectures. In addition,
the focus was turned towards Conjecture 5.5, which was in fact proven to not hold under a
set of additional assumptions of a realistic system.

This chapter discusses the validity and impact of these results. Specifically, we will do this in
two parts: First we will assess the validity of the results, given the model in Chapter 6. Sec-
ond, we will look at the validity of the assumption in this model. Finally, a few suggestions
for further work is provided.

7.1 Validity of results

The main result from Chapter 6 was to provide concrete counterexamples to Conjecture 5.4
and Conjecture 5.5. It is of course important to address the validity of these results. We
will first discuss the feasibility of utilizing the results for implementing a concrete attack.
Then we will ask whether applying a numerical scheme to address these issues is in fact
valid, specifically looking at the impact of numerical errors. Finally, we will consider the
legitimacy of the actual physical reality that are described in the results and evaluate how
realistic it is.
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7.1.1 Feasibility of an explicit attack

First, the counterexamples identified are supposed to represent a situation where the pro-
tocol can be attacked in a manner that breaks the security proof in Section 4.2. It this
then essential to verify that an actual attack can indeed be performed, based on a single
counterexample: Consider a run by the BB84 protocol with an imperfect source as described
in Chapter 5 and without perfect random sampling of the basis states. In particular, we
consider the situation in Chapter 6, where the source states are perfectly correlated. This
implies that although Eve does not know the order the states |χ0〉 and |χ1〉 are transmitted,
she can always identify a collection L of one particular state |χa〉⊗L. L is here a parameter
we can vary and that we simply set to the value of the counterexample in question.

Consider specifically a counterexamples to Conjecture 5.5 for L = 2, describing explicit
states |χ0〉, |χ1〉 and a channel E . An actual attack of the protocol by Eve is then carried
out simply by applying E on every consecutive two states that Alice transmit. By the above
discussion, we assume Alice chooses basis a randomly, but that every two consecutive states
are of the same basis. We then take the limit N → ∞ as declared in Section 5.2.1 so that
there are an infinite sequence of random state pairs |χa〉⊗2 transmitted through an infinite
number of attack operations E .

Ignoring imperfections on the channel itself, every state pair |χa〉⊗2 produces a measurable
error rate as found in the counterexample calculation. Denote this calculated value by δ∗ph
and δ∗x for the case of a = 0 and a = 1 respectively. Alice and Bob proceed according
to the protocol by measuring the states |χ1〉⊗2 in the X basis to get a series of X-basis
measurement results. The final, total error rate δx is found as the cumulative frequency of
mismatched results, which for N →∞ will converge to the calculated value δx = δ∗x.

Using this value, Alice and Bob solve Equation 5.9 to obtain the maximum possible average
phase error rate δph. The true phase error rate is however given as the cumulative frequency
of mismatched outcomes of all the hypothetical X-basis measurements of |χ0〉⊗2, that Alice
and Bob of course cannot measure. These hypothetical measurements would however follow
exactly the same argument as the real ones, so that the true phase error rate is convergent
to the calculated value δ∗ph. Finally, since the counterexample violates Equation 5.9, this
means that δph < δ∗ph. Consequently, Alice and Bob will underestimate the true phase error
rate, which breaks Assumption 2 in the security proof in Section 4.2.

It is important to note that this is not a breakdown of only the proof, i.e. the proof is
regarded invalid while the protocol is actually completely secure. On the contrary, such a
situation would imply that there is a possibility of Eve having more knowledge about the key
than ε from its security definition. Intuitively, the mechanism for this is that Eve frequently
makes a measurement that is essentially in the Z-basis, but in such a way that is measures
more significantly when the state is |χ0〉. Such a Z-basis measurement by Eve provides
information about the key that Alice and Bob establish with their own Z measurement, but
at the expense of increasing the phase error rate δph. This is however precisely the quantity
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that Eve manages to make Alice and Bob underestimate, so that she is able to hide some
of her key-revealing measurements.

In summary, we have shown that the existence of the counterexamples to a protocol with
no random sampling of basis states can be practically used by Eve. This was done by
constructing an explicit attack approach and showing that the security is indeed broken
from such an attack. In particular, we showed that it is not possible to avoid this security
breach by sending more states, i.e. taking the limit N →∞.

7.1.2 Impact of numerical errors

The second consideration to make about the validity of the results is regarding numerical
errors. All the counterexamples to Conjecture 5.4 and Conjecture 5.5 are constructed nu-
merically. This means that rather than having symbolic expressions for the various states
and operator elements, all these quantities are instead available only as a huge list of real
numbers. Consequently, all the constraints in the model, including implicit ones such that
state are normalized to 1, are never exactly satisfied; rather all the constraints are valid up
to some numerical accuracy. If all assumptions are in fact not exactly true, is it possible to
be confident in the final result?

The argument for ruling out numerical errors consists of two parts. First, the final result
is clearly robust to small changes in the input parameters. This comes from the fact that
the calculation does not involve any chaotic dependencies and no discretization. The final
physical results are always in the form of probabilities and so infinitesimal perturbations
in the final results is insignificant and does not change the physics. In addition, quantum
mechanics is convenient in that all these probabilities are always given exactly by an ap-
propriate linear expression in the input parameters. This means that the final result is
well-behaved in the input parameters, and specifically have a numerical accuracy that is of
comparable order of magnitude as the accuracy of the input.

The second part needed to rule out numerical errors is then to look at the specific accuracy
that the input parameters exhibit. The listings in Appendix A provide a breakdown of the
accuracy of all the input parameters to the model. This typically includes the normalization
of the states ‖|χa〉‖2 = 1, sum of the channel operation elements

∑
k E
†
kEk = I and fidelity

requirement 〈χ0|χ1〉 ≥ F . As is demonstrated in Appendix A these requirements are always
accurate up to less than ∼ 10−13. The final result is typically the violation of Equation 5.9
or Equation 5.8, which is always at least valid up to an accuracy of ∼ 10−4. Together with
the discussion in the previous paragraph, it is clear that the claimed results are not caused
by numerical errors.

Another consideration to make regards the possibility of errors in the implementation. Al-
though bugs in the code are hard to void completely, we have taken several steps to signifi-
cantly remove their likelihood and severity. First, the algorithm was implemented and run
in parallel by multiple languages and programming frameworks, with matching results (see
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in particular Section 6.1.4). Second, the final counterexamples produces were exported and
then independently verified using a computer algebra system, again giving the same result.
Finally, a number of simulations were conducted primarily for the purpose of verifying the
model, most notably in Section 6.1. For instance the correspondence between the theory
of Chapter 5 and the results from the simulation for L = 1 (Figure 6.6) provides strong
evidence supporting the correctness of the implementation.

7.1.3 Realism of result properties

The third and last consideration about the validity of the results is about their physical im-
plications. To be clear, the question of whether the assumptions of our model are physically
valid, is treated in the next section. Here, we instead deal with the physical interpretation
of any additional properties that are present as features in the final results.

This topic was already introduced in the analysis in Section 6.2.1, where it was pointed
out that it is the properties of the source that are crucial. The channel E on the other
hand represents Eve’s action, and to cover all possible attacks it is not interesting to restrict
it. The source is modeled as producing a set of arbitrary states ρab as long as it satisfies
Equation 5.7 for some F that Alice and Bob control. Other than this parameters, we assume
that Alice and Bob have no control over, or even knowledge about, the actual state ρab.

Of course, in a real, operational system, Alice and Bob would typically have at least some
knowledge about the states ρab. It is however crucial to be able to allow for some degree
of uncertainty in the source states, and a very powerful way to do this is through the
established constraint in Equation 5.7. We are therefore choosing to model the source in
this simple manner: Alice and Bob have no knowledge at all about the states ρab other than
that they satisfy Equation 5.7.

This consideration is important, because the counterexamples identified do not apply for
any one particular set of source states that were fixed; rather contrary, we have iteratively
searched for any set of states that satisfy the final result we sought. This is however
understood as unproblematic in light of the discussion of the previous paragraph, since Alice
and Bob are in fact oblivious to the actual states. One interpretation of this is allowing a
two-step attack by Eve: First she prepares a source that produces certain states ρab, but
has no control over it afterwards. Alice and Bob are then given the value of F for which
Equation 5.7 is satisfied. Second, Eve attacks the protocol that Alice and Bob deploy as
usual. This matches the “Eve and Fred” model in [Got+04].

Lastly, we recall the discussion in Section 6.2.1 about the possible additional requirement
we can place on the source, namely having perfect bit value random number generators
and giving a positive key gain G. As can be seen in listing 2 in Appendix A, the final
counterexample to Conjecture 5.5 found in Section 6.2 does indeed satisfy all these additional
properties. The final counterexample to Conjecture 5.4 (listing 3 in Appendix A) does not
however satisfy the two properties, although there does not seem to be any reason preventing
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such an example, given more time to find it.

7.1.4 Summary

From all the above discussions, it is clear that given the assumptions of the model, the
results are attainable in a implementable, concrete setting. First, Section 7.1.3 asserts that
finding a source with the desired characteristics is indeed feasible, simply because we assume
we are free to control it. Furthermore, this source is realistic and can produce a positive
key gain G. Second, Section 7.1.1 describes how Eve can use the information from the
counterexamples to implement a explicit attack scheme. Finally, Section 7.1.2 asserts that
this situation would in fact produce the numerical results from the simulations.

7.2 Assumptions and impact

In the previous section we argued why the results from Chapter 6 are valid and imple-
mentable, given the assumptions in the model. Following this path, investigating the justifi-
cation for and importance of these assumption will be the focus of this section. Specifically,
the idea behind Conjecture 5.4 and Conjecture 5.5 was to consider a protocol that does not
necessarily have perfect random sampling of the basis states. A concrete choice of such a
protocol was made by considering a source that is in fact perfectly correlated; that is, one
particular basis state is always transmitted in a collection with a size Eve can decide. This
is of course hardly realistic, but it forms a basis for understanding the effects of other levels
of correlation.

The goal of evaluating the validity of the assumptions in the model is to assess the impact
of the results. We will first see how the results provide new insight into the existing se-
curity proof of imperfect sources. In particular we will argue that the security is critically
dependent on perfect, uncorrelated random sampling of the basis states. Second, we will
use the results to make predictions about the security of actual, physical devices, which will
typically always exhibit small correlations.

7.2.1 Understanding security for imperfect sources

As a start, the numerical results provide a nice verification of the theory developed in
Chapter 5. The prediction that a counterexample to Conjecture 5.5 should exist was indeed
confirmed by explicitly constructing it. Additionally, we also showed in Chapter 5 that a
protocol with perfect sampling was in fact equivalent to our model for L = 1. In Section 6.1,
a simulation for L = 1 was carried out, with results agreeing perfectly with the prediction
by Theorem 5.3. Furthermore, the distribution of results as plotted in Figure 6.6 provides
strong evidence that the inequality in Equation 5.9 is in fact tight.
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We can also get a sense of the importance of the requirement of perfect random sampling
in Theorem 5.2 and Theorem 5.3. In Section 5.2.6 we asked whether there really was a
need for such a strict assumption, since it seems hard to find concrete counterexamples
for any realistic conditions. This is however precisely the result of Section 6.2, where a
counterexample of Conjecture 5.5 was constructed in accordance with additional realistic
requirements. This supports the need for requiring perfect random sampling of the basis
states in the security proof, as counterexamples have been found for correlated states.

7.2.2 Correlation attacks

A natural question to ask now is how realistic the assumption of perfect random sampling
of the basis states actually is. On the other hand, the situation of the counterexamples,
namely that of a perfectly correlated source, does not look realistic either. As we will see,
these situations are in fact two extremes, and most realistic, functioning protocols will fall
somewhere in-between.

There are many mechanisms which may cause the random sampling of the basis states to
be imperfect. A straight-forward example is if the random subset of states sacrificed for
error estimation is not done uniformly randomly, i.e. so that it is not representative of the
whole set. This situation, together with many similar ones, however fall in a category of
imperfections on the digital part of the protocol. Intuitively, selecting a random subset is
a purely theoretical process that can be done digitally or even by hand (given a random
source). The need for perfect digital systems is however a necessity throughout the proof
and is not an unreasonable assumption for real-world systems. This was also precisely the
argument for considering sources with p0 = p1 = 0.5, in accordance with the discussion in
Section 6.2.1.

There are however other mechanisms that can cause a failure of the random basis sampling.
A notable example is if there are correlations between the states that are used for the error
estimation. In Chapter 6 we specialized to the case that Alice’s source is perfectly correlated,
which indeed would satisfy this situation. There are also other possibilities, such as Bob’s
detector having a correlated device efficiency, possibly due to some influence by Eve.

It is however important to realize how these situations are in fact different from the ones re-
quiring imperfect digital operations. Specifically, what the mechanisms causing correlations
have in common is that they are achievable also with systems where the digital process-
ing part is perfect. First, this means that it does not contradict any assumptions in other
parts of the security proof, which means we can evaluate this situation accurately using the
frameworks developed in this work. Second, these mechanisms are not obviously unrealistic,
since it can be caused by imperfection that are purely on the physical apparatus.

To illustrate this, consider a specific example: Alice and Bob deploy the BB84 protocol
using devices where the digital processing is always perfect. First, Alice’s source has basis-
dependent imperfections in line with the model in Chapter 5 and satisfies Equation 5.7 for
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some parameter F . If this was the only imperfection, Alice and Bob could use Theorem 5.3
to establish an unconditionally secure key. Now assume in addition that Alice’s source states
are not completely independent, but that there is a small chance of two consecutive states
being equal. Formally, for every ith basis and bit choice ai and bi Alice makes, the source
prepares the state

ρ′aibi = pcorrρai−1bi−1 + (1− pcorr)ρaibi , (7.1)

where ρaibi is the state the source should produce and pcorr is some probability of correlations
occurring. This source model is clearly more general than the framework developed in
Chapter 5, which assumed every source state is completely independent.

Assume Alice and Bob are unaware of this correlation effect on the source. Suppose fur-
thermore that the correlation probability is small pcorr ∼ 0.01. Since the digital choices ai
and bi are perfect, this source would cause an increase in the observed error rates δz and
δx. Keeping the correlation probability pcorr small will however mean that it is still possible
that it can be used in a protocol which gives a positive key gain G. Now, since there is a
small chance of correlations occurring between the source states, the assumption of perfect
random sampling in Theorem 5.2 and Theorem 5.3 does no longer hold. In line with the
reasoning in Section 5.2.6, this is because Eve now has an increased probability of finding
collections of particular basis states |χa〉. It is then possible that an attack such as the one
described in Section 7.1.1 would be successful, making Alice and Bob underestimate δph.

Of course, we have in no way demonstrated any sufficient evidence for that an attack on
such a system would in fact be successful. We have however showed a necessary property,
namely that if the correlations between basis-dependent source state become very large, it
can indeed be attacked. Further work can then be done on investigating concrete correlated
sources and how effective such a correlation attack would be.

Lastly, we note that the assumptions needed to perform this type of attack is not too
unrealistic. Unlike the purely theoretic choices for basis and bit values a and b, the states
ρab are physical. As such there is some mechanical device responsible for producing these
states, and its operation will typically never be perfectly independent. Furthermore, we
have shown implementable attacks for values of L as low as L = 2. This is important
because the probability of finding L equal states decreases very rapidly for a source with
fixed correlation probability. Since the counterexamples from Chapter 6 work for low values
of L, this increases the possibility of a correlation attack successfully extracting some non-
negligible key material.

7.3 Further work

Given the results from Chapter 6, we propose some possible paths for further work. In line
with Section 1.3, the overarching motivation for this work has been to bridge the gap between
provable security and real-world devices, focusing on the effects of source imperfections. As
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such, the suggestions for further explorations are directed towards this broader goal of
understanding the security of quantum key distribution, building off of the results from this
work.

Through this work, we have given an in-depth analysis of protocols using sources with
individual, basis-dependent imperfections. In Section 7.2.1 we noted how the results from
this work further strengthens the understanding of these sources, specifically through what
assumptions are critical for their security. The details of this work should therefore provide
a strong basis for understanding more complicated protocols that also use imperfect sources.
In particular, it is possible to extend the analysis to cover individual imperfections in both
the source and detector [MLS10b], which must then address the necessary conditions for
security indicated in this work.

In addition, it is highly desirable to be able to treat imperfections in the apparatus that is
not only individual. Specifically, to fully describe real-world devices, a security proof would
need to account for the possibility of small, but finite correlations. We believe this work to
be an important step towards understanding the effects of such situations and how they are
vulnerable to joint attacks.

As a concrete example, we have investigated the validity of Equation 5.9 in the case of
strong correlations on the basis states |χa〉. Although we were able to find counterexamples
even in realistic situations, we noted that it was highly dependent on the choice of states
|χa〉. This seems to suggest that there are certain choices of |χa〉 for which it is extremely
hard to find a concrete attack, at least for realistic conditions. As it stands, the source is
only characterized by the general bound in Equation 5.7. It may however be possible to
characterize the sources further, and find situations that make the security less critically
dependent on the independence of the states. Such sources would evidently be more resistant
to attacks, even if the states are in fact slightly correlated.
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Chapter 8

Conclusion

We have presented a detailed account of modern security proofs of quantum key distribution
based on complementarity. A numerical approach was implemented to investigate sources
with correlated, basis-dependent imperfections. This allows us to understand the mechanism
for why the security proof requires perfect random sampling of the basis states. In addition,
we can make predictions about the effects of small, general correlations in the devices.

In Chapter 1 we gave an overview of cryptography and motivated the importance of uncon-
ditional security offered by quantum key distribution. We then developed the mathematical
framework necessary, starting from the postulates of quantum mechanics in Chapter 2 and
reaching topics from quantum information theory in Chapter 3. Chapter 4 presented the
BB84 protocol and a detailed review of its security proof from [Koa09] was given. Chapter 5
then introduced a model for characterizing sources with basis-dependent imperfections and
we noted that security is still guaranteed under the assumption of perfect random sampling
of the basis states. Finally, we investigated the importance of this assumption in Chapter 6,
where concrete examples of security failing were shown in the case of strong correlations in
the source.

The modern complementarity-based security proof of [Koa09] forms a powerful basis for
analyzing quantum cryptographic systems. Its arguments can however at times appear
somewhat convoluted, making the reasoning hard to follow. It has been our goal to address
some of these difficulties in our review by focusing on explaining the principles of the idea as
well as providing detailed clarifications of some steps. We thereby hope to have constructed a
single, coherent document with the full details of the proof and the major topics of necessary
background material, in order to make complementarity-based proofs more accessible.

From the numerical results we have gained a solid understanding of the proof in [Koa09].
First, we have validated Theorem 5.3 numerically and found strong evidence that this bound
is in fact tight. Second, we have seen how the proof is critically dependent on perfect random
sampling of the basis states. This is important for applying the formalism from this proof
to more complicated systems.
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We also predicted the possibility of performing attacks against sources with imperfections
that are slightly correlated. We specifically showed a necessary, although not sufficient,
condition that would allow such a style of attack to be carried out. Furthermore, using
purely analytic approaches for analyzing protocols and corresponding attacks does not seem
productive. Instead, the theory and methods developed in the investigation form effective
tools for constructing attack schemes numerically.

Finally, we have developed an arsenal of numerical algorithms for deploying concrete attacks
against a system. Specifically, if the states |χa〉 on a slightly correlated source are known,
the genetic algorithm in Section 6.2.4 can be used to successively “breed” efficient attack
operations. On the other hand, if we are free to also control the states |χa〉 of Alice’s
source, the search algorithms from Section 6.2 can look for suitable states that are prone to
correlation attacks. The hybrid search and genetic algorithm can then be deployed to refine
this choice and find optimal attack operations.

The numerical methods are also believed to be highly useful for investigating the behavior
of general quantum systems. The exceptional speed of the Fortran routines allowed us
to perform a perfectly uniform search in the space of quantum states and operations, as
detailed in Section 6.1.2 and Section 6.1.3. The results from this scheme proved to map out
a surprisingly uniform distribution also in the final output parameters. This method can be
highly useful for evaluating, verifying or disproving claims from analytic approaches.
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Appendix A

Numerical values of counterexamples

The following pages list exported pages from Wolfram Mathematica notebooks, containing
numerical values for the main counterexamples found during this work. Step-by-step calcu-
lation from the initial set of states |βab〉, probabilities pa and a channel E to the final error
rates is also provided.

This listing contains 3 documents titled:

1. “Counterexample to F ≤
√

(1− δph)(1− δx) +
√
δphδx for L = 2, F = 0.99”

2. “Counterexample to F ≤
√

(1− δph)(1− δx)+
√
δphδx for L = 2, F = 0.99, p0 = p1 =

0.5 and positive true key gain G”

3. “Counterexample to 1−h
(

1−F
2

)
≤ δx+δph

2 h
(

δx
δx+δph

)
+ 2−δx−δph

2 h
( 1−δph

2−δx−δph

)
for L = 4,

F = 0.99”

1



Counterexample to F ≤ 1-δph (1-δx) + δph δx  for L = 2, F = 0.99

In[1]:= L = 2;

F = 0.99;

Definitions

In[3]:= Kr = KroneckerProduct;

Ct = ConjugateTranspose;

z0 = {{1}, {0}};

z1 = {{0}, {1}};

x0 = 1/Sqrt[2] (z0 + z1);

x1 = 1/Sqrt[2] (z0 - z1);

Id[n_] = IdentityMatrix[n];

Id2 = Id[2];

H = 1/Sqrt[2] {{1, 1}, {1, -1}};

X = {{0, 1}, {1, 0}};

Y = {{0, -I}, {I, 0}};

Z = {{1, 0}, {0, -1}};

Swap = {{1, 0, 0, 0}, {0, 0, 1, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}};

PX0 = x0.Ct[x0];

PX1 = x1.Ct[x1];

PZ0 = z0.Ct[z0];

PZ1 = z1.Ct[z1];

Measurement operators in Z and X-basis

In[20]:= mx1 = Kr[Kr[Kr[PX0, Id2], PX1], Id2] + Kr[Kr[Kr[PX1, Id2], PX0], Id2];

mx2 = Kr[Kr[Kr[Id2, PX0], Id2], PX1] + Kr[Kr[Kr[Id2, PX1], Id2], PX0];

mz1 = Kr[Kr[Kr[PZ0, Id2], PZ1], Id2] + Kr[Kr[Kr[PZ1, Id2], PZ0], Id2];

mz2 = Kr[Kr[Kr[Id2, PZ0], Id2], PZ1] + Kr[Kr[Kr[Id2, PZ1], Id2], PZ0];

Input parameters: states βab, probabilities pa and channel U

In[24]:= beta1 = {{0.8618356164550959 - 0.483762580928078 I}, {-0.09880039297707263 - 0.11598110988797108 I}};

beta2 = {{-0.6665350096819082 + 0.7291992606988255 I}, {0.10256568096383674 + 0.1161025415443161 I}};

beta3 = {{0.5164651076645687 + 0.8475134050541189 I}, {0.029064465339296124 - 0.11891205856909239 I}};

beta4 = {{0.7734313845423763 - 0.5910715952440599 I}, {-0.2211185889650996 - 0.05953849439302495 I}};

p1 = 0.5191264537224269;

p2 = 0.018566314843056483;

U = {{0.21983772460001566 - 9.0854226683340200*10^(-2) I,

-0.43543986468904161 - 5.0518039104228987*10^(-2) I,

-0.26808686277683269 + 0.50278263009215185 I, -0.60517535335788764 + 0.24568025739436672 I},

{-0.42937143562478330 + 0.38521993832169049 I, 0.58384776801563232 - 0.18016195889907693 I,

-0.23414828312528019 + 0.26423079584145270 I, -0.13831149331924153 + 0.38747363857691564 I},

{-0.51980033088750011 + 0.24302284988172962 I, -0.26173223727921840 - 0.12760343761743692 I,

0.60175136339598012 + 1.4161200268333174*10^(-2) I, -0.38983281924392071 - 0.26774286025963556 I},

{-0.18479908247584215 + 0.49725191129456692 I, -0.32173088643741032 + 0.49619183760183927 I,

-0.29921604469083324 + 0.31442049007687434 I, 0.33710510203418487 - 0.25853896619544364 I}};

Check numerical accuracy of input: 

◼ states should be normalized  βab
2
= 1

◼ channel matrix should be unitary UU† = I

In[31]:= Norm[beta1] - 1

Norm[beta2] - 1

2Printed by Wolfram Mathematica Student Edition



Norm[beta3] - 1

Norm[beta4] - 1

Total[Abs[Flatten[U.Ct[U] - Id[4]]]]

Out[31]= 0.

Out[32]= 2.22045×10-16

Out[33]= -1.11022×10-16

Out[34]= 0.

Out[35]= 7.26192×10-15

Construct states χa

In[36]:= chi1 = Sqrt[p1] Kr[z0, beta1] + Sqrt[1 - p1] Kr[z1, beta2];

chi2 = Sqrt[p2] Kr[x0, beta3] + Sqrt[1 - p2] Kr[x1, beta4];

Check accuracy of the fidelity requirement: 

◼ χ0 χ1 ≥ F

In[38]:= inner = Ct[chi1].chi2

AbsArg[inner]

fid = Abs[inner[[1, 1]]]

fid - F

Out[38]= 0.990197 - 1.12757×10-16 ⅈ

Out[39]= 0.990197, -1.13873×10-16

Out[40]= 0.990197

Out[41]= 0.00019722

Apply the circuit and find the final states

In[42]:= chit1 = Kr[Kr[Id2, Swap], Id2]. Kr[chi1, chi1];

chit2 = Kr[Kr[Id2, Swap], Id2].Kr[chi2, chi2];

chif1 = Kr[Kr[Id2, Id2], U].chit1

chif2 = Kr[Kr[Id2, Id2], U].chit2

Out[44]= 0.0808029 - 0.140941 ⅈ, 0.0256431 + 0.269577 ⅈ, -0.0561534 + 0.284176 ⅈ, 0.236356 + 0.173195 ⅈ,

-0.0309719 + 0.144443 ⅈ, -0.102749 - 0.223455 ⅈ, -0.0321599 - 0.282936 ⅈ, -0.277291 - 0.0966652 ⅈ,

-0.0439533 + 0.146599 ⅈ, -0.110384 - 0.243224 ⅈ, -0.0378912 - 0.263858 ⅈ, -0.273254 - 0.0956241 ⅈ,

-0.00133345 - 0.138623 ⅈ, 0.168259 + 0.175747 ⅈ, 0.113921 + 0.236597 ⅈ, 0.289396 + 0.0108238 ⅈ

Out[45]= 0.0677397 - 0.175133 ⅈ, 0.000352876 + 0.264362 ⅈ, -0.0669172 + 0.269578 ⅈ,

0.213681 + 0.0928234 ⅈ, -0.0186472 + 0.188144 ⅈ, -0.0701786 - 0.252168 ⅈ,

-0.00997922 - 0.289427 ⅈ, -0.245617 - 0.036875 ⅈ, -0.0264284 + 0.191797 ⅈ,

-0.0784767 - 0.263248 ⅈ, -0.0102078 - 0.276417 ⅈ, -0.242894 - 0.0369347 ⅈ,

-0.025442 - 0.193198 ⅈ, 0.144766 + 0.230366 ⅈ, 0.0893506 + 0.274574 ⅈ, 0.259969 - 0.0289838 ⅈ
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Double-check the normalization of the final states

In[46]:= Norm[chif1] - 1

Norm[chif2] - 1

Out[46]= -1.11022×10-16

Out[47]= -4.44089×10-16

Calculate the error rate for each basis a for each measurement pair

In[48]:= p11 = Norm[Ct[chif1].mx1.chif1];

p12 = Norm[Ct[chif1].mx2.chif1];

p21 = Norm[Ct[chif2].mx1.chif2];

p22 = Norm[Ct[chif2].mx2.chif2];

p31 = Norm[Ct[chif1].mz1.chif1];

p32 = Norm[Ct[chif1].mz2.chif1];

Calculate the total error rates δph, δx and δz

In[54]:= dp = 1/2 (p11 + p12)

dx = 1/2 (p21 + p22)

dz = 1/2 (p31 + p32)

Out[54]= 0.535572

Out[55]= 0.382661

Out[56]= 0.507851

Check whether the claim F ≤ (1-δph) (1-δx) + δph δx  in fact holds?

In[57]:= F

F^L

cfid = Sqrt[(1 - dp) (1 - dx)] + Sqrt[dp dx]

cfid - F

Out[57]= 0.99

Out[58]= 0.9801

Out[59]= 0.988158

Out[60]= -0.00184162
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Counterexample to F ≤ 1-δph (1-δx) + δph δx  for L = 2, F = 0.99, p0 = p1 = 0.5 

and positive true key gain G

In[1]:= L = 2;

F = 0.99;

Definitions

In[3]:= Kr = KroneckerProduct;

Ct = ConjugateTranspose;

z0 = {{1}, {0}};

z1 = {{0}, {1}};

x0 = 1/Sqrt[2] (z0 + z1);

x1 = 1/Sqrt[2] (z0 - z1);

Id[n_] = IdentityMatrix[n];

Id2 = Id[2];

H = 1/Sqrt[2] {{1, 1}, {1, -1}};

X = {{0, 1}, {1, 0}};

Y = {{0, -I}, {I, 0}};

Z = {{1, 0}, {0, -1}};

Swap = {{1, 0, 0, 0}, {0, 0, 1, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}};

PX0 = x0.Ct[x0];

PX1 = x1.Ct[x1];

PZ0 = z0.Ct[z0];

PZ1 = z1.Ct[z1];

Measurement operators in Z and X-basis

In[20]:= mx1 = Kr[Kr[Kr[PX0, Id2], PX1], Id2] + Kr[Kr[Kr[PX1, Id2], PX0], Id2];

mx2 = Kr[Kr[Kr[Id2, PX0], Id2], PX1] + Kr[Kr[Kr[Id2, PX1], Id2], PX0];

mz1 = Kr[Kr[Kr[PZ0, Id2], PZ1], Id2] + Kr[Kr[Kr[PZ1, Id2], PZ0], Id2];

mz2 = Kr[Kr[Kr[Id2, PZ0], Id2], PZ1] + Kr[Kr[Kr[Id2, PZ1], Id2], PZ0];

Input parameters: states βab, probabilities pa and channel E : {Ek}

In[24]:= beta1 = Exp[0.30673531340579263` I]

{{-0.0241612508205372 + 0.0133612168155024 I}, {0.710348714644220 + 0.703308193786551 I}};

beta2 = Exp[0.30673531340579263` I] {{-0.806304859246544 - 0.441572041715479 I},

{0.221103936814983 - 0.325575882177335 I}};

beta3 = {{-0.462870297764371 - 0.486778414449058 I}, {0.583289643889546 + 0.456695800292920 I}};

beta4 = {{0.341029326470811 + 0.584906188898497 I}, {0.207408593957079 + 0.706091653985407 I}};

p1 = 0.5;

p2 = 0.5;

E1 = {{0.00811932038439783 - 0.0151921392659071 I, 0.0842786089530878 + 0.0414746581607201 I,

0.0739348004099622 + 0.0447387156933429 I, -0.278534286507675 + 0.395238339340388 I},

{-0.0746073997796507 - 0.0374315044241198 I, -0.00799127660788268 + 0.00946414631517856 I,

0.176069547170176 - 0.450842476205211 I, -0.0898810776290537 - 0.0287858574735873 I},

{-0.0645323389821607 - 0.0421980808932271 I, 0.181407211742590 - 0.442172964852311 I,

-0.0142584183641981 + 0.00597041682494305 I, -0.0940696074221421 - 0.0300515562643858 I},

{-0.0911413282551480 + 0.471684544570432 I, 0.0789761733193762 - 0.00759544883522111 I,

0.0833963135389054 - 0.0146476261083193 I, -0.0126384796020175 - 0.00750905498462820 I}};

E2 = {{0.00905095469045945 + 0.00151630320370057 I, -0.0483670095968135 + 0.0480395720399541 I,

-0.0435714637474110 + 0.0484255678570627 I, -0.322305764226428 - 0.288821421276326 I},

{0.0390962036952514 - 0.0378803607930427 I, -0.0116735589815758 - 0.00851637045460712 I,

0.375880045399247 + 0.204706535296235 I, 0.0208923521374876 - 0.0649279745746424 I},

{0.0414291156532660 - 0.0417224038150195 I, 0.379950793413494 + 0.203250375073269 I,

-0.00656923304239875 - 0.0111904475289894 I, 0.0288533820444241 - 0.0673739470780729 I},
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{-0.411417232353784 - 0.134202489008279 I, 0.00711306628296094 + 0.0560639264673237 I,

0.00160938309872234 + 0.0578773784251183 I, 0.0114807319664248 - 0.0115612756925726 I}};

E3 = {{-0.0123477659400021 - 0.0153427634686885 I, 0.0836828844500001 - 0.0691954494635905 I,

0.0831232035786679 - 0.0680612611744219 I, 0.349455491105575 + 0.426353453732412 I},

{-0.0803405566524457 + 0.0543826625200902 I, 0.0105364558149468 + 0.0195792480256657 I,

-0.443005229167043 - 0.346431144131854 I, -0.0708721029008873 + 0.0781139113448472 I},

{-0.0792250228186423 + 0.0570062779412960 I, -0.445783689698328 - 0.339972408711247 I,

0.00885356310087114 + 0.0137933837517638 I, -0.0678296330095582 + 0.0847009179986621 I},

{0.500679806976024 + 0.254446632426640 I, 0.0210703263821668 - 0.0960604704959166 I,

0.0243712431410546 - 0.0927573268988079 I, -0.0173231353826995 - 0.00580217520873882 I}};

E4 = {{-0.0193954111385712 + 0.0115538108723434 I, -0.0311920207895825 - 0.0829100508398706 I,

-0.0327975455313441 - 0.0807642199470851 I, 0.395356033384337 - 0.231872709386858 I},

{0.0202970745676468 + 0.0676971109867272 I, 0.0160342046586544 - 0.00766158120635709 I,

-0.338196767161162 + 0.309442312011943 I, 0.0511229269339178 + 0.0588239413287494 I},

{0.0246342190649380 + 0.0635917252987215 I, -0.342016446138799 + 0.310737282337100 I,

0.00887258920919010 - 0.0104024047377134 I, 0.0471840398851952 + 0.0638362156144589 I},

{0.281217086716562 - 0.371793680602653 I, -0.0608762803218771 - 0.0302870131185094 I,

-0.0625046743815065 - 0.0284425715420375 I, 0.00170957016824478 + 0.0127357304426778 I}};

Check numerical accuracy of input:

◼ states should be normalized  βab
2
= 1

◼ channel should sum to the identity matrix ∑k Ek
†
Ek = I

In[34]:= Norm[beta1] - 1

Norm[beta2] - 1

Norm[beta3] - 1

Norm[beta4] - 1

Total[Abs[Flatten[Ct[E1].E1 + Ct[E2].E2 + Ct[E3].E3 + Ct[E4].E4 - Id[4]]]]

Out[34]= 0.

Out[35]= -1.11022×10-16

Out[36]= 2.22045×10-16

Out[37]= -3.33067×10-16

Out[38]= 5.41666×10-15

Construct states χa

In[39]:= chi1 = Sqrt[p1] Kr[z0, beta1] + Sqrt[1 - p1] Kr[z1, beta2];

chi2 = Sqrt[p2] Kr[x0, beta3] + Sqrt[1 - p2] Kr[x1, beta4];

Check accuracy of the fidelity requirement: 

◼ χ0 χ1 ≥ F
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In[41]:= inner = Ct[chi1].chi2

AbsArg[inner]

fid = Abs[inner[[1, 1]]]

fid - F

Out[41]= 0.99 + 1.14492×10-16 ⅈ

Out[42]= 0.99, 1.15648×10-16

Out[43]= 0.99

Out[44]= -4.44089×10-16

Apply the circuit and find the final states

In[45]:= chit1 = Kr[Kr[Id2, Swap], Id2]. Kr[chi1, chi1];

chit2 = Kr[Kr[Id2, Swap], Id2].Kr[chi2, chi2];

rhot1 = chit1.Ct[chit1];

rhot2 = chit2.Ct[chit2];

rhof1 = Kr[Kr[Id2, Id2], E1].rhot1.Ct[Kr[Kr[Id2, Id2], E1]] +

Kr[Kr[Id2, Id2], E2].rhot1.Ct[Kr[Kr[Id2, Id2], E2]] + Kr[Kr[Id2, Id2], E3].rhot1.

Ct[Kr[Kr[Id2, Id2], E3]] + Kr[Kr[Id2, Id2], E4].rhot1.Ct[Kr[Kr[Id2, Id2], E4]];

rhof2 = Kr[Kr[Id2, Id2], E1].rhot2.Ct[Kr[Kr[Id2, Id2], E1]] +

Kr[Kr[Id2, Id2], E2].rhot2.Ct[Kr[Kr[Id2, Id2], E2]] + Kr[Kr[Id2, Id2], E3].rhot2.

Ct[Kr[Kr[Id2, Id2], E3]] + Kr[Kr[Id2, Id2], E4].rhot2.Ct[Kr[Kr[Id2, Id2], E4]];

Double-check the normalization of the final states

In[51]:= Tr[rhof1] - 1

Tr[rhof2] - 1

Out[51]= -4.44089×10-16 - 2.78759×10-18 ⅈ

Out[52]= -6.66134×10-16 - 2.13473×10-18 ⅈ

Calculate the error rate for each basis a for each measurement pair

In[53]:= p11 = Abs[Tr[mx1.rhof1]];

p12 = Abs[Tr[mx2.rhof1]];

p21 = Abs[Tr[mx1.rhof2]];

p22 = Abs[Tr[mx2.rhof2]];

p31 = Abs[Tr[mz1.rhof1]];

p32 = Abs[Tr[mz2.rhof1]];

Calculate the total error rates δph, δx and δz

In[59]:= dp = 1/2 (p11 + p12)

dx = 1/2 (p21 + p22)

dz = 1/2 (p31 + p32)

Out[59]= 0.0967867

Out[60]= 0.0298381

Out[61]= 0.0388362

Check whether the claim F ≤ (1-δph) (1-δx) + δph δx  in fact holds

In[62]:= F
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F^L

cfid = Sqrt[(1 - dp) (1 - dx)] + Sqrt[dp dx]

cfid - F

Out[62]= 0.99

Out[63]= 0.9801

Out[64]= 0.989829

Out[65]= -0.00017123

Show that the true key gain G is positive

In[66]:= h[x_] = -x Log2[x] - 1 - x Log2[1 - x];

1 - h[dz] - h[dp]

Out[67]= 0.304343
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Counterexample to 1 - h 1-F
2
 ≤ δx+δph

2
h δx

δx+δph
+ 2-δx-δph

2
h 1-δph

2-δx-δph
 for L = 4, F = 0.99

In[1]:= L = 4;

F = 0.99;

Definitions

In[3]:= Kr = KroneckerProduct;

Ct = ConjugateTranspose;

z0 = {{1}, {0}};

z1 = {{0}, {1}};

x0 = 1/Sqrt[2] (z0 + z1);

x1 = 1/Sqrt[2] (z0 - z1);

Id[n_] = IdentityMatrix[n];

Id2 = Id[2];

H = 1/Sqrt[2] {{1, 1}, {1, -1}};

X = {{0, 1}, {1, 0}};

Y = {{0, -I}, {I, 0}};

Z = {{1, 0}, {0, -1}};

Swap = {{1, 0, 0, 0}, {0, 0, 1, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}};

PX0 = x0.Ct[x0];

PX1 = x1.Ct[x1];

PZ0 = z0.Ct[z0];

PZ1 = z1.Ct[z1];

Measurement operators in Z and X-basis

In[20]:= mx1 = Kr[Kr[Kr[Kr[Kr[Kr[Kr[PX0, Id2], Id2], Id2], PX1], Id2], Id2], Id2] +

Kr[Kr[Kr[Kr[Kr[Kr[Kr[PX1, Id2], Id2], Id2], PX0], Id2], Id2], Id2];

mx2 = Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, PX0], Id2], Id2], Id2], PX1], Id2], Id2] +

Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, PX1], Id2], Id2], Id2], PX0], Id2], Id2];

mx3 = Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], PX0], Id2], Id2], Id2], PX1], Id2] +

Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], PX1], Id2], Id2], Id2], PX0], Id2];

mx4 = Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], Id2], PX0], Id2], Id2], Id2], PX1] +

Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], Id2], PX1], Id2], Id2], Id2], PX0];

mz1 = Kr[Kr[Kr[Kr[Kr[Kr[Kr[PZ0, Id2], Id2], Id2], PZ1], Id2], Id2], Id2] +

Kr[Kr[Kr[Kr[Kr[Kr[Kr[PZ1, Id2], Id2], Id2], PZ0], Id2], Id2], Id2];

mz2 = Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, PZ0], Id2], Id2], Id2], PZ1], Id2], Id2] +

Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, PZ1], Id2], Id2], Id2], PZ0], Id2], Id2];

mz3 = Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], PZ0], Id2], Id2], Id2], PZ1], Id2] +

Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], PZ1], Id2], Id2], Id2], PZ0], Id2];

mz4 = Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], Id2], PZ0], Id2], Id2], Id2], PZ1] +

Kr[Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], Id2], PZ1], Id2], Id2], Id2], PZ0];

Input parameters: states βab, probabilities pa and channel E : {Ek}

In[28]:= beta1 = Exp[0 I] {{-0.713743960743703 + 0.229164822801698 I}, {0.410741274930708 + 0.518984245965574 I}};

beta2 = Exp[0 I] {{-0.648898851416328 + 0.388641342980431 I}, {0.430113569420790 + 0.492839227899976 I}};

beta3 = {{-0.624131126328058 + 0.549623846555202 I}, {0.493671347539571 + 0.254288350234134 I}};

beta4 = {{-0.542990813613280 - 0.817756120409776 I}, {-0.135167191779458 + 0.134780318037893 I}};

p1 = 0.485041682782097;

p2 = 0.992239876137303;

E1 = {{-0.0356022997661755 - 0.0481605814161666 I, -0.134924633863143 + 0.0858230860132571 I,

0.104395296289273 + 0.126440952810266 I, -0.00525765288938560 - 0.0869306224895398 I,

-0.0378834012501664 + 0.125694105382689 I, -0.00985715843415386 - 0.0413635089085552 I,

0.117756939136923 - 0.171577184123959 I, -0.0126089441970748 + 0.122350890863886 I,

0.189230411833114 - 0.103905466165478 I, 0.00580626714058966 - 0.0700401523412931 I,
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0.00144591029566180 + 0.0295816442460953 I, 0.141384925954945 + 0.107041481491727 I,

0.0336662200372885 - 0.0315755889639548 I, 0.0563103195348770 + 0.0572010298470908 I,

0.0762577889077209 - 0.199784359172350 I, -0.0131410221835931 - 0.0173563688029599 I},

{0.0422349053948077 - 0.100989572990767 I, -0.0822669225972996 - 0.0459657610378551 I,

-0.0399777121838828 + 0.0309552251088860 I, -0.0547175930718370 + 0.143501448296577 I,

0.0418806229519992 + 0.0342613447177754 I, -0.00710228339049925 + 0.00440480472023064 I,

0.0415737063650895 - 0.0642440266192675 I, -0.0233743984880721 - 0.0843400678382183 I,

0.000730614186792031 + 0.108925965026000 I, -0.0477825107432922 - 0.0932931679509728 I,

-0.0620532615676592 + 0.103083676429391 I, 0.0261546459468523 + 0.0293770674683722 I,

-0.0708102395101081 + 0.0740086549427447 I, 0.0584619127508201 + 0.00861571832326477 I,

-0.189278346613680 - 0.0280872920943520 I, 0.0453419640339046 - 0.0666805040060135 I},

{0.133432793566794 - 0.0465971472071595 I, 0.106671730670846 - 0.0879247156662050 I,

0.0770038437390069 + 0.0551487288680862 I, -0.00917107975319439 - 0.105841266543374 I,

-0.0554914996869581 + 0.0280255817348976 I, -0.127223622706072 + 0.0986019828223026 I,

-0.0897490894403357 - 0.0124909592934167 I, -0.111552908284731 + 0.100015723023371 I,

-0.0268592612861987 - 0.0829298110249709 I, -0.000819365977251851 + 0.0395230025533959 I,

-0.180708194266785 + 0.123850893474990 I, -0.0224086117669768 + 0.0702966965803151 I,

-0.0643230582499883 - 0.166056824336622 I, -0.133055367170015 - 0.0701709152758717 I,

-0.0583124982841232 - 0.0500719309021837 I, 0.106855256726398 - 0.0838532099918339 I},

{-0.0524407655461734 - 0.0479928399596027 I, 0.0142617777585576 - 0.00556784087703798 I,

-0.0336225970791011 + 0.139589261541199 I, -0.0664960403931574 - 0.0290425507611319 I,

-0.0781800830932150 + 0.147311537325748 I, 0.0826708400828151 - 0.0594939144176092 I,

0.0492589865522599 - 0.00259017031557809 I, 0.0402128101055225 - 0.0571481491518549 I,

0.0766529541533149 + 0.0835795524068445 I, 0.198509516610352 - 0.0237992426235623 I,

0.135855602559550 + 0.0731627904872573 I, -0.0302157428424118 - 0.0884710257151234 I,

-0.105165755285078 + 0.0429237391667936 I, 0.0508285386604596 - 0.0634055954213215 I,

0.112885282729283 + 0.0748543910981132 I, -0.189781429496724 + 0.0624884734578997 I},

{0.162375227005844 - 0.0877197767931987 I, 0.112121714209937 + 0.0287669675538981 I,

-0.0422290472490708 + 0.0396995343643532 I, -0.0976571037972037 + 0.127911541159828 I,

-0.0261442671179668 - 0.0548974058962032 I, 0.0655353810766052 - 0.104168565940955 I,

0.0113933278059291 + 0.0398974412743730 I, 0.00145273093754822 - 0.0619001332561941 I,

-0.00295898741671115 + 0.0706359779902267 I, -0.0152158784873551 - 0.0858709836966696 I,

0.0371993143762007 + 0.0442128678380876 I, -0.123459301912686 + 0.00534695572654159 I,

-0.0115051897880332 + 0.155683290365974 I, -0.0686182202425213 - 0.133492961862909 I,

-0.193825982064228 - 0.202733510461619 I, -0.0250516172054813 + 0.0146333466684195 I},

{-0.0118326354823244 - 0.103210437227780 I, -0.0929851237932889 + 0.0796732678640214 I,

-0.0325346629822709 + 0.0263927369384032 I, 0.0279422312762364 - 0.138822790937584 I,

0.146834257833049 - 0.0851515384441984 I, -0.295483834978632 + 0.0309443975921210 I,

-0.0338645090500668 + 0.273534049801456 I, 0.190579402583076 + 0.144868028690340 I,

-0.142746317222374 + 0.0778751550485498 I, 0.0215680941117167 - 0.0657543955963039 I,

0.113447503196014 - 0.0488397386358002 I, 0.0692065071531964 - 0.0194330171593179 I,

0.0150578294327876 - 0.0456356157706755 I, -0.0461705384800383 - 0.0356755771709821 I,

0.0324128103540976 + 0.0150644288513018 I, -0.0351656697054564 + 0.0797647788135806 I},

{-0.0309360372450842 - 0.0917731365353606 I, 0.0599882767320194 + 0.109333551627723 I,

0.00391755428349184 - 0.0984930991821972 I, -0.0300725658861006 - 0.139273133659748 I,

-0.0309804293422657 + 0.0898626954516352 I, 0.0595216217159224 - 0.131127488118497 I,

-0.165321561412382 + 0.0129206717433064 I, -0.00329835704795488 - 0.0383762056010018 I,

0.0578264117902360 - 0.0287488163728043 I, -0.0294938173435989 - 0.0197097732579218 I,

0.0308302057648827 - 0.110598172490386 I, 0.106735522660711 + 0.141431564252687 I,

0.0203318881593314 - 0.0673468603403993 I, 0.0201444955742644 - 0.00762482444568400 I,

-0.0127852284606991 + 0.0132450949658167 I, -0.0827194714535339 + 0.0474403396450996 I},

{-0.0232184510465993 + 0.0436807489654178 I, 0.146437237680789 + 0.0652236765433520 I,

0.0413027933467273 + 0.0272870244055719 I, -0.0194609697779758 + 0.249657888798325 I,

-0.0510092023109336 + 0.131302915201535 I, 0.141605695796902 + 0.0297560407294172 I,

-0.0429714985728125 + 0.109649275116257 I, -0.0655515219336579 - 0.0882346669242513 I,

-0.0149879717410151 + 0.200010714466962 I, -0.0521817645916522 - 0.0374238869738906 I,

0.104479560726573 - 0.0439127466046309 I, 0.0255867240308093 - 0.00974224103324367 I,

-0.162547746278772 - 0.0141691202696717 I, -0.0726416502921618 + 0.0667336442559679 I,

-0.137970613487762 - 0.115901204710668 I, -0.0505913066465055 + 0.00241176673316720 I},

{0.0822983221790220 - 0.0474518213347779 I, -0.0158901632857026 - 0.180461338437815 I,

0.131501560973463 + 0.0613260263905355 I, -0.121365099133982 - 0.00974395105736305 I,

0.0240057519931852 + 0.0666463168777986 I, 0.0292393031270303 - 0.181575866685715 I,
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-0.0909154286990823 - 0.0152178344977944 I, -0.0463022553961827 + 0.0507051818628257 I,

-0.0944546028013596 + 0.0926682378776882 I, 0.0701609457009481 + 0.101317763524354 I,

-0.0205846608252977 + 0.139365482459972 I, -0.0917783795263319 + 0.0300222633187670 I,

-0.185034415983465 + 0.0407508138649586 I, 0.0103103592066350 - 0.104792606530552 I,

-0.0181467078725164 - 0.0566247644975475 I, 0.0989001992098107 - 0.0679973971476150 I},

{-0.0863854931317873 - 0.115096994377656 I, 0.0352863123000902 - 0.0150068642262310 I,

0.00341402127114774 + 0.141025799912062 I, -0.199836059456227 + 0.0143564655391287 I,

-0.128474367002812 - 0.00498906151483311 I, 0.0119502242944062 + 0.0163809658309385 I,

0.106596306218010 - 0.124272624615803 I, 0.00747320054542445 + 0.171645237807801 I,

0.00512723643481402 + 0.0293361286983472 I, -0.245814734213528 - 0.00585001368077466 I,

0.0326634259802672 + 0.0778499568501653 I, 0.0756649717107095 + 0.0203065231181358 I,

0.0290077835801666 - 0.0896869568697387 I, 0.0620976938612835 + 0.0615092277562654 I,

-0.0224373966456859 + 0.141771358081184 I, 0.0695247881263345 - 0.0571624542888200 I},

{0.0848691425737881 - 0.0952733556587323 I, -0.00649448210346616 - 0.0190552671259053 I,

0.0409126332535626 - 0.0483545463953764 I, -0.0524886675472393 + 0.0687756675330330 I,

0.0190933561273036 - 0.0471189956326473 I, -0.130177576573764 + 0.0133158025059951 I,

-0.0887377564160506 + 0.0616033446370246 I, 0.169457478388538 + 0.207859874444965 I,

-0.0451460821731093 - 0.0354521201482620 I, 0.0462042289950452 - 0.114284712252094 I,

-0.0932888415625769 - 0.0702704062210345 I, 0.102103391621519 + 0.128386951425360 I,

0.00423112579904485 - 0.146070749295539 I, 0.0159620877571188 - 0.0975624188029686 I,

-0.0517426796886379 - 0.000907212137085250 I, 0.0158340273931913 - 0.0182206421755171 I},

{0.0679647215422411 - 0.148879082903746 I, -0.0190279207421438 + 0.0176660624307736 I,

-0.0295822624112130 - 0.0622966963973286 I, 0.0267775515608015 - 0.0925270008612462 I,

0.0329817370317017 + 0.0796317136519403 I, 0.0323450146899394 + 0.0448393541632969 I,

-0.0444451940208512 + 0.0354578282280341 I, -0.0748857255635172 - 0.0365994521058194 I,

-0.00346814407011564 + 0.0535314666287576 I, -0.0709833014932522 + 0.0908051525408860 I,

-0.0578057672809273 + 0.00721397123364916 I, -0.186828754305812 - 0.0165046874494438 I,

-0.0436157046729809 - 0.0910294450056731 I, -0.0428543233525811 + 0.0108756174663330 I,

-0.102574242966070 - 0.0588815582764013 I, 0.0979729710863607 + 0.0467173596793684 I},

{0.0506085109150077 - 0.106456699167290 I, -0.0684809639477499 - 0.0607844517190391 I,

0.0455514116213238 + 0.0318525029436447 I, -0.0215502750138470 - 0.232739881101938 I,

0.0404175210841512 - 0.0680631223481761 I, -0.0236267937207555 - 0.0527805689838223 I,

0.0512114007554632 - 0.123808983597969 I, -0.0461719732438773 - 0.116055422701146 I,

0.0259100466894248 + 0.0596103313784723 I, -0.0629320099189093 + 0.0967842404591232 I,

0.0534623814587499 - 0.0197739988459543 I, 0.0200090949358617 + 0.166411265371757 I,

-0.102509556693028 - 0.0699569474963283 I, -0.102293222630200 - 0.0362285596057876 I,

0.220025325569240 + 0.104319814924145 I, -0.0419046522045051 + 0.0688684251680750 I},

{-0.0821417344628279 + 0.00540051722990871 I, 0.0639687317498659 + 0.101012195499515 I,

-0.0757588013075271 + 0.0548040722532367 I, 0.0199489724556975 - 0.130333147987155 I,

0.127361342998320 + 0.0799570325425670 I, -0.0244690542197446 + 0.0396553743556133 I,

-0.0341376621947945 - 0.0668824818180549 I, -0.0604241879739837 - 0.0174579343720107 I,

0.00254545880388477 + 0.109886369173674 I, -0.124297593032155 + 0.00412017800015455 I,

0.0795948214581361 - 0.00777444459787596 I, -0.0762886933566725 - 0.119741786610626 I,

-0.0212779074117873 + 0.104922369994601 I, 0.0289018593361354 - 0.0481455224188759 I,

-0.0485366008203410 + 0.0726830682241494 I, 0.00801413647471125 - 0.100556761982238 I},

{0.0773063899147400 + 0.104500251012214 I, 0.0223841583652599 + 0.0335793303262228 I,

0.241787733161477 + 0.157938501165633 I, -0.0437807140182614 - 0.0666396731794333 I,

-0.0617746542635587 - 0.0144811860970574 I, 0.0261015980215754 + 0.0385168672403975 I,

-0.0860853088975147 + 0.142407555796825 I, 0.155153324488739 - 0.0901406969520066 I,

0.0832048397703086 + 0.0506959532717787 I, -0.0141894648774996 + 0.112301683945562 I,

0.0823346961368635 - 0.140999787117142 I, -0.0908642132768906 - 0.0400764929880320 I,

-0.0494550066944156 - 0.00844616512903889 I, 0.0676532983041198 - 0.0488053808738025 I,

-0.0898594099522237 + 0.0212468998550593 I, -0.0160340347026941 - 0.188634214801470 I},

{-0.101230544554414 - 0.0617340988446553 I, 0.0501030935985476 - 0.00597062146732171 I,

-0.0203179124263883 + 0.0979406342041178 I, 0.0302427593387874 + 0.0285015100508219 I,

0.0308887775166264 + 0.0718135156809797 I, -0.114418923300015 + 0.0497430669104828 I,

0.155958008221731 - 0.110175668661981 I, -0.0189599324678679 + 0.137475900002474 I,

-0.111793269628165 + 0.0785675007177127 I, 0.0158515724801182 - 0.0948903868702153 I,

-0.0759500728352900 + 0.0621223910667638 I, 0.0846770722733160 - 0.0157032439814213 I,

-0.109522160354693 - 0.00731165899918668 I, 0.0447348806550991 + 0.0636162528363136 I,

-0.00970256946187396 + 0.0227967976029429 I, -0.159312588350274 + 0.0281906631447752 I}};

E2 = {{0.0427070928013415 + 0.00199746620328997 I, -0.0136553278181962 - 0.113876396678592 I,
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0.189436666883529 - 0.0378067927627540 I, -0.0965217753847287 - 0.0547241298896174 I,

0.0944119841250714 + 0.0189616487858097 I, 0.160843581172613 + 0.147701124266284 I,

-0.0285787740965284 + 0.0174480336431249 I, -0.0221447858599124 - 0.0254604725952083 I,

-0.120394982434197 - 0.150067613286174 I, 0.0861757378591553 + 0.0254400791495580 I,

0.102313105175715 - 0.0236087732265817 I, -0.0586198569430925 + 0.0325313328463710 I,

-0.101165315635613 - 0.0246289517021289 I, -0.0521721724489491 + 0.0261042811191245 I,

0.0277104857605902 - 0.0123407609845495 I, 0.0571207315231798 + 0.111218387701244 I},

{-0.0275575880537401 - 0.0406819393127364 I, 0.0431404304369874 - 0.133632231148488 I,

-0.0878411072846488 + 0.0200676373143301 I, -0.196860405815917 + 0.0351611472667314 I,

-0.0172113375995790 - 0.0930797158216488 I, -0.000378892780403069 + 0.218715263446225 I,

0.0410798059431400 - 0.0758192813932984 I, -0.153430760216877 + 0.0637927260086311 I,

-0.0275202651561203 - 0.0375658450299332 I, 0.0898276571711668 + 0.00602058891329832 I,

0.0114602205332890 - 0.0529654392780474 I, 0.0418270222899041 - 0.0282099255519564 I,

0.0254707224877161 + 0.105772487347213 I, 0.123443083936487 - 0.0932198974522128 I,

-0.0205441113144470 + 0.0310009514608390 I, -0.0352367183053605 - 0.0596932875256350 I},

{-0.0663617709214414 - 0.0342662919040174 I, 0.0727276007969980 - 0.0690831440755507 I,

-0.0868090027615303 - 0.0497291823523401 I, -0.0650317716794432 + 0.0357166545206417 I,

0.00141014567566464 - 0.0933369008656765 I, -0.108636124687108 + 0.0923417440991899 I,

-0.0571082531346395 - 0.0351985970302235 I, 0.00243120206640560 + 0.0112249625423124 I,

-0.0704142107501897 - 0.0140788290501322 I, -0.0855946763840041 + 0.0986045785268446 I,

0.0225185157109198 - 0.0372132542830593 I, -0.0342955253932196 + 0.0550593576962688 I,

-0.000549743188338151 + 0.119112631183629 I, -0.0472169758631359 + 0.119503387903446 I,

-0.0231635147833472 + 0.0660550133168735 I, -0.0370758021111729 + 0.172069897885262 I},

{-0.0728290756213172 - 0.0884458594043660 I, -0.0485979321729008 + 0.0195023771546775 I,

-0.0298110528940877 - 0.0441628089004085 I, 0.129489021735484 - 0.00790280237711128 I,

-0.0685791378083980 + 0.0774830447145142 I, 0.114037073402368 + 0.0401902328416146 I,

0.0144132063116051 - 0.00474828509041392 I, 0.0860976164217233 - 0.106074134143853 I,

0.0628145355536667 - 0.189640464709910 I, -0.00268508137930437 - 0.0428759589299339 I,

-0.0639365121814929 - 0.0299800710524033 I, 0.0367387868506566 - 0.0691610562190437 I,

0.106836301738979 - 0.0175805922435553 I, -0.152981983015143 - 0.0900129196714806 I,

0.0333253850451061 + 0.0358687324010277 I, 0.0597136209573466 - 0.0788813235188227 I},

{-0.0225597951364759 + 0.125400857156221 I, -0.0629831290539875 + 0.0848992186047231 I,

-0.0321363290410211 + 0.0753503689270317 I, -0.0622971948673259 - 0.0161539545355114 I,

0.117073127994770 - 0.198102972536623 I, -0.0669470743891973 - 0.00522300271446098 I,

0.100762285491121 + 0.0596182391967234 I, 0.0467558529912113 - 0.0670304932203644 I,

0.0896193735831176 - 0.140540121398204 I, -0.0855328110240963 - 0.0122917356209359 I,

-0.124082968390902 + 0.293543939413664 I, -0.124323666322002 + 0.131874388283897 I,

-0.0193006568933500 + 0.0558431808451670 I, 0.193357168281156 - 0.00608337974760186 I,

-0.0734679534432348 - 0.0395218182964157 I, -0.153540808623327 + 0.0602103956206801 I},

{-0.0633319619442652 - 0.00560560450986694 I, 0.0838030134508402 - 0.0589527099936786 I,

-0.0318812784979467 - 0.223905428747557 I, 0.0298229219667137 - 0.00797755935443062 I,

-0.0501732598377602 - 0.0517561126846986 I, -0.0912513261035088 + 0.00460930691108069 I,

-0.0331698800366139 - 0.0551203974075508 I, 0.0338010088478671 + 0.0271325515432192 I,

-0.0202306895574161 + 0.0937151037049981 I, -0.109732223550710 + 0.0468680285991969 I,

-0.00345514077959421 - 0.0448786655115297 I, 0.0557540205528192 - 0.00159675584284907 I,

-0.00756294836182239 + 0.0470448929095807 I, 0.0412875859959290 - 0.0156009257985674 I,

-0.0132398823185754 - 0.00963324254055805 I, -0.0582305821263382 - 0.0602138275491020 I},

{-0.0347556452595942 - 0.0388056508948010 I, 0.0541075705981141 - 0.0400140274118182 I,

-0.134690851660243 - 0.0326519935100917 I, 0.0961421246692608 + 0.0613974968584806 I,

-0.0112339450967430 - 0.110415477626212 I, -0.0571190664164929 - 0.0440754572489726 I,

0.0212711001286028 - 0.0932201729605593 I, 0.0105979957913018 - 0.160192353399763 I,

0.0745001800244681 - 0.0114928766135747 I, 0.0650162520409578 - 0.0151736621264183 I,

0.0124075757788971 + 0.167955150955960 I, -0.0344168136676094 + 0.0343133295024952 I,

-0.0379637481386471 - 0.124002161481975 I, -0.0426967667995384 + 0.0354357882195599 I,

-0.00587189328068259 - 0.0578600242529719 I, 0.0160576329532105 + 0.0489949554514632 I},

{-0.190809313792196 - 0.171072712300264 I, -0.177622867413939 - 0.0406157403266163 I,

-0.0966078286554574 + 0.00281555376842845 I, 0.0641870933824552 - 0.0440630232440615 I,

-0.130597099162118 - 0.0178318243470179 I, -0.0381604247276034 + 0.00743528451645108 I,

-0.0421496474340534 + 0.0778786893430603 I, -0.174510212536294 - 0.0332186719902745 I,

-0.0892025811292502 + 0.0266403229233226 I, -0.0334891680340061 + 0.147210498660982 I,

0.0200856650238255 + 0.0806711148304596 I, -0.0980373850341237 - 0.132517882067773 I,

-0.0188984430371617 - 0.125754187536077 I, 0.0236753635902320 + 0.0114307449545868 I,
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-0.125943662486302 - 0.00711956774032972 I, -0.0933646202814541 - 0.0129239101086959 I},

{-0.0318956233744262 - 0.0178814369996651 I, 0.0367237040426138 - 0.0107169660412260 I,

0.0371326314136259 + 0.0697855342932707 I, 0.0941501787589036 + 0.211199789277144 I,

-0.0240795905373791 - 0.114390505439495 I, -0.0765998120385129 - 0.0977811412015492 I,

-0.0577721421198696 + 0.0112696368298573 I, 0.0468474248560329 - 0.103754884001501 I,

-0.0112607016325327 - 0.0965432631584784 I, -0.0349866410619110 + 0.0715883047266628 I,

0.0850343908701594 + 0.0938175402889482 I, 0.0602227293602918 - 0.149581100440099 I,

0.126389692892907 - 0.0362807679197662 I, 0.110676074060897 + 0.0143232631702621 I,

0.0633558038278377 + 0.0351093578877932 I, -0.0301426417518862 - 0.136473560922521 I},

{-0.123855801604729 + 0.0528156604202327 I, 0.0223461418783796 + 0.0198870375105474 I,

0.0694809815286783 + 0.163000024193226 I, 0.0477477031224998 + 0.0197549047578833 I,

0.0116429369821421 - 0.163545773514451 I, 0.0478284015767198 - 0.0210703680968135 I,

-0.102359837650613 - 0.0295982143074365 I, -0.0864611031930062 + 0.0394360074454642 I,

0.0470853282061236 + 0.0753129802101780 I, 0.125472727140047 + 0.0409079402337063 I,

0.0578736907010033 + 0.0132148836630376 I, 0.0169473806673967 + 0.0798396525471705 I,

0.0383596793521081 - 0.0120258059864372 I, -0.135463447602639 - 0.00501709310473148 I,

0.0677740447051647 + 0.0985314445586576 I, 0.192190721455775 + 0.207956438921668 I},

{-0.0355045297571870 + 0.00587555509055945 I, -0.0310102966674833 - 0.107923437283870 I,

-0.0653204493488775 - 0.176538766249361 I, 0.0602423306350051 + 0.241580547492057 I,

0.0413556840501175 + 0.0199206946493877 I, -0.0552622097575649 + 0.154948389170064 I,

0.0286094491884775 + 0.0499377549441635 I, -0.0308599218805003 - 0.0492139577314185 I,

0.0886101859871370 + 0.0436890846058536 I, 0.0300614438416452 - 0.0425505437187352 I,

-0.0604904768802374 + 0.00612499088396591 I, 0.00312044023774419 + 0.0338003542854416 I,

-0.113189750402949 - 0.00982839511952701 I, -0.000632977038380913 + 0.0711189834219693 I,

0.152400349782771 + 0.0378852587712256 I, -0.0534173693688757 + 0.0204776032492029 I},

{-0.0290496856751493 - 0.108517994798180 I, -0.159902644538959 - 0.0498158095263727 I,

0.0466297237885898 - 0.0335631089747458 I, 0.0931384801271451 + 0.0565690839508534 I,

-0.0842591670191840 - 0.0392360010304926 I, -0.129582646985868 + 0.0283863272287046 I,

0.0857800083623394 - 0.0578594272673614 I, 0.0139042010531401 + 0.0241468942067818 I,

0.0134646655030480 - 0.0184899648146094 I, 0.294796449130051 + 0.155587152834550 I,

0.0752065739550447 - 0.0128423825425423 I, 0.0269857330763662 - 0.189734388547562 I,

-0.0580087563136088 - 0.0314863734922707 I, 0.0492197928862805 - 0.0741392657077702 I,

-0.250408162811038 - 0.0898722417854675 I, -0.0128451429354375 + 0.200462874335770 I},

{-0.122874149763327 - 0.118587562680544 I, -0.0693426976260546 - 0.0396066614630267 I,

0.0173451633398852 + 0.0724077807686525 I, 0.0533636400606740 - 0.114960291103813 I,

-0.173814846305836 - 0.247957596918615 I, -0.0974025073085666 + 0.120568272969258 I,

-0.0588686106487620 + 0.0558616236862849 I, -0.0396970062579524 + 0.00591186566645459 I,

0.0946593402837961 + 0.0424412040329193 I, 0.0814577938627198 - 0.121726453120226 I,

-0.0469204532190175 - 0.0596418668343561 I, -0.000262659039448696 - 0.0382092394586420 I,

0.0667718441268801 + 0.0187449175593355 I, -0.0895368839283049 - 0.0248124632612007 I,

-0.0176969512261311 - 0.101954529933148 I, -0.120837867678893 + 0.0475979230287344 I},

{-0.0672723098344599 + 0.00400592107503198 I, -0.00550832218305991 - 0.0296736567433868 I,

-0.0691548202555815 - 0.0511944112216329 I, 0.115348279972056 - 0.0384804350061622 I,

0.0302546836052186 + 0.201242359641500 I, -0.0446863049282728 + 0.216205512379607 I,

-0.0492792493636078 + 0.0609086372206984 I, 0.0386439559427433 - 0.114597877373519 I,

-0.0689513179009221 - 0.104468497744728 I, 0.00153081612326186 + 0.101715564073217 I,

0.0975607554358904 + 0.0602834820058265 I, 0.119975895762014 + 0.300356653215935 I,

-0.0351291590440576 + 0.102909444064566 I, 0.0513475353236981 - 0.0711386679770900 I,

-0.0728925033332769 - 0.0501106293560428 I, 0.0679307508096297 - 0.0195266071126098 I},

{-0.0580757540851644 + 0.0207288315441561 I, 0.0221581320155956 - 0.0201359128256242 I,

0.143947894761158 + 0.0901338636652783 I, 0.0381982217091188 + 0.113216991486740 I,

-0.0148131930785498 - 0.101079208577893 I, 0.0225681791319824 + 0.0712798776948631 I,

-0.0216771697595883 - 0.0187041317242253 I, -0.204219207756125 + 0.102421450653747 I,

-0.112971177332129 - 0.187145709861406 I, -0.0198760152829848 - 0.0671552429603085 I,

-0.104893384183274 - 0.0836750226028885 I, 0.0315595727783868 - 0.0784905978156193 I,

-0.0911141958871793 + 0.143297017748435 I, 0.0159570608448721 - 0.0108349235067535 I,

0.0255520827921504 - 0.0299492709979035 I, -0.158661695847103 + 0.0367677713259320 I},

{-0.0578615623842580 + 0.00883895626264980 I, 0.109880754574031 - 0.0848430473148271 I,

-0.0656207450049758 + 0.00730268765745429 I, 0.00299132470992130 + 0.0544985348152020 I,

0.0784796000842968 + 0.0970827948201768 I, 0.0798670986789291 + 0.0296473924850109 I,

0.0569852416383010 + 0.0961894931568307 I, 0.0616572569500971 - 0.0465963247304250 I,

-0.189512218598787 - 0.215187091999388 I, -0.0210410627077898 + 0.100503650287448 I,
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-0.201672804733969 - 0.0235858180286405 I, -0.0329104663124969 - 0.0657468965639322 I,

-0.0149763141308114 - 0.0603914618827541 I, 0.115080414216316 + 0.136083340542638 I,

-0.0119404360174536 + 0.211517751417210 I, 0.0531219233327009 + 0.133464954288912 I}};

E3 = {{0.00780215921336187 + 0.125597025062786 I, 0.179726708798944 - 0.0106741438986617 I,

0.0346362568293429 + 0.000606017001352628 I, 0.0409636109697248 + 0.106657766935496 I,

-0.0342245460600017 - 0.0643461945891670 I, -0.0501379356717370 + 0.0267745874843861 I,

0.00275152138739191 + 0.0158599332494662 I, -0.0297718520718570 + 0.0254188579910956 I,

0.117675737566048 - 0.114443433528940 I, 0.116968938179482 + 0.0714358200546068 I,

-0.0783338918066457 - 0.0163176077394568 I, -0.181009856066079 - 0.0154927264469934 I,

-0.0979342201622306 + 0.00982941721175014 I, 0.0697709568660990 - 0.0376032119453227 I,

-0.0829022966012253 + 0.0367419214707060 I, -0.168259291750650 + 0.0559363484201691 I},

{-0.107098643787074 - 0.0234404828584113 I, 0.0535983824907086 - 0.0378572796152177 I,

0.0602140839433709 - 0.112152204442665 I, -0.00244807269479286 - 0.0582351610322442 I,

-0.00379897931986207 + 0.120798735396764 I, 0.0289914673282802 - 0.0252014085460075 I,

0.0214310246602251 + 0.0565650408262115 I, -0.0104000327478351 - 0.0395169259354990 I,

-0.112697259693718 + 0.0120471430374815 I, -0.0385854682983284 - 0.126698946958434 I,

0.152692475160329 + 0.127768064348018 I, 0.0707742886104047 - 0.0910517882296720 I,

0.0487718377360340 + 0.107424684555137 I, 0.125987492330994 + 0.00914390884365969 I,

0.127423128347431 - 0.0979773159603678 I, -0.0345753872397068 + 0.0224959456952508 I},

{-0.186597707905459 + 0.0383042527375014 I, 0.0803760597424655 - 0.0458957933892664 I,

0.103203492065930 + 0.0134490159640194 I, 0.0590993854825877 - 0.0921229976893584 I,

-0.0556744794819522 + 0.00255604353070844 I, 0.0676564931113238 - 0.0818359899583129 I,

-0.164448270943736 + 0.0686479229436703 I, -0.0860508976441319 - 0.0913538905333515 I,

-0.101120149080223 + 0.0585342493223762 I, -0.130721496402022 - 0.153391957261401 I,

-0.0434678492638293 + 0.0550812349447144 I, 0.0164334080266814 + 0.0861015683736227 I,

0.0897743934453811 + 0.125170304218047 I, 0.0115002533427500 + 0.121076276098078 I,

0.0227496151259044 - 0.0473685212769587 I, -0.0913235270506802 + 0.173148460915557 I},

{-0.144400385365622 + 0.0455292746062962 I, 0.0835143978491071 + 0.0803083016016150 I,

0.0159138684292971 + 0.0605284796519339 I, 0.220042126497879 + 0.140163227714092 I,

0.0467592585556566 - 0.0225570528681141 I, -0.140553313945148 + 0.0935376442736031 I,

-0.0583506251729244 + 0.201779766053316 I, -0.0931803769148143 + 0.125723045495750 I,

-0.0593459570709512 + 0.0342092755346413 I, -0.0747007158284082 + 0.0585585649704080 I,

0.0538615135387833 + 0.0121041790379349 I, -0.0487759110411561 + 0.109993293918261 I,

-0.0506467698218913 + 0.0145017431418299 I, -0.0445355380050912 + 0.0720083262604985 I,

0.0464842647132952 - 0.0270167284918033 I, 0.0500553241717375 - 0.00151401924284268 I},

{-0.101879095380653 - 0.0773160214971690 I, 0.00969643801572740 - 0.0649092486160399 I,

-0.0780346782676989 + 0.0323029948841745 I, -0.0531888872798947 - 0.164001111148982 I,

0.0173052428586807 - 0.0659594049648748 I, -0.00290062635463587 - 0.120596520629287 I,

-0.0909050353924018 + 0.0389681950104271 I, -0.00904891079925963 + 0.0232846715314484 I,

0.0133026253737984 - 0.116931796332582 I, 0.0808286915645311 + 0.0597095395322534 I,

0.0136674595940158 - 0.111049444021230 I, -0.155390766703204 - 0.0652533766705261 I,

-0.0246225330974509 + 0.00927358984649798 I, 0.00678880799956996 + 0.0475562356074275 I,

0.125158971563388 - 0.183429289423700 I, 0.00881654777007608 + 0.104411110116639 I},

{0.00395382973084593 - 0.0365038837619680 I, -0.0388630322136994 + 0.0659026318415193 I,

-0.0542093560281585 - 0.106990567000099 I, -0.0660663336484616 - 0.0431309959781652 I,

-0.00514962527475346 - 0.102345651621938 I, 0.179466178072364 + 0.0513145720013938 I,

-0.0428124455458828 - 0.0672890657683891 I, 0.0830449480384768 + 0.0674560363662167 I,

0.100141197517193 - 0.0755242637586832 I, -0.0709359240784994 + 0.143909432579792 I,

-0.0397438352733541 + 0.198706518549517 I, -0.0869053671464288 + 0.0889623517038035 I,

0.0629997908442413 + 0.132068702588866 I, -0.156338481987024 - 0.0685298083568892 I,

-0.0144655855915948 - 0.121309001037305 I, -0.103429968752547 - 0.0217425260577845 I},

{-0.00847896939159094 - 0.0486376906994518 I, 0.0950608261231132 - 0.0764922210919767 I,

0.0654470355225330 - 0.0182435291248992 I, -0.0518111573249211 + 0.0544696194165740 I,

-0.0532862693048979 + 0.0191441604215321 I, -0.0771542807002573 + 0.184749307942011 I,

-0.00227460653682622 + 0.0703468642605776 I, -0.122073156693136 + 0.0952790824144126 I,

-0.106147694702930 - 0.101526530499876 I, -0.0695741350451875 + 0.0358881811704967 I,

0.0790120783162531 + 0.0715042699382574 I, -0.169951840626276 - 0.0122150233324189 I,

0.0969869890535405 - 0.0330702933386007 I, 0.0625404448885521 - 0.0200260897807327 I,

0.0745436625605539 - 0.0967478506060529 I, -0.0848132511777276 - 0.0326521862096359 I},

{-0.0906004100365441 - 0.0834335967337709 I, 0.0392022508336645 + 0.0300561487381795 I,

-0.00431451911998437 - 0.0408696136548836 I, -0.170175599325764 + 0.00802453992496498 I,

0.00345350753742877 - 0.0979754491899369 I, -0.00198393696483374 - 0.182427609963553 I,
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0.150345955455650 + 0.0166120276278597 I, -0.00620415470096225 - 0.0219599822166352 I,

-0.120218037933278 - 0.0926444059619402 I, -0.0489137354143700 + 0.0533771689065093 I,

0.00867707024759127 - 0.0672642856846407 I, -0.00315059540469630 - 0.0292400673277478 I,

-0.106131862717526 + 0.0913804374443689 I, 0.0299922160492283 + 0.0748411242142432 I,

0.0272757809469644 - 0.0492566858658166 I, 0.0376665640518405 + 0.102119008395533 I},

{-0.150079233854565 - 0.0711698089953110 I, -0.0999857447920155 - 0.0169858419160361 I,

0.0870574309674713 + 0.0755321854386952 I, 0.0483808865252591 + 0.0633894254644047 I,

-0.00932243375006589 - 0.0670217853145282 I, -0.00295548344105067 - 0.0189969905529774 I,

-0.0535937419380551 + 0.0161723525602716 I, 0.0313335152153018 - 0.0292265175870523 I,

-0.0580705210955491 + 0.0160252188431431 I, -0.0985714424190649 + 0.0509179702756265 I,

0.0952593228900721 - 0.0484095880996789 I, 0.0579931816385817 + 0.0746843598309805 I,

-0.124824337194613 - 0.140213030020094 I, 0.0581394413956520 + 0.0349133335045702 I,

-0.0366911614914640 + 0.00294433882908822 I, 0.0646842270368554 + 0.0389534435715712 I},

{-0.0439583704723322 + 0.0822680847595609 I, 0.0184183732906530 + 0.0698820000369489 I,

0.178944625489125 - 0.0535588833609138 I, -0.00812697690842078 + 0.0967040866246202 I,

0.0969995334544103 - 0.114109069447835 I, -0.00707143267370099 + 0.0812696979704690 I,

0.00619611528936980 - 0.0236183597770987 I, -0.0860355385146407 - 0.168178442623663 I,

0.0449604527337029 + 0.142749392149769 I, -0.0277687837730870 + 0.0208537748326903 I,

-0.0553672260811285 - 0.0313977172474834 I, -0.123304585008231 + 0.101349280440644 I,

0.210129943911537 - 0.233738238515733 I, -0.0945426565012427 + 0.0835056066532204 I,

0.0168123618975840 + 0.0367543318537092 I, 0.0758113623132068 - 0.00532069148319889 I},

{-0.0291138950821840 - 0.0631710397480631 I, -0.0246984610446063 + 0.0544804342921891 I,

0.0628441979036336 - 0.0683374997564357 I, 0.0918063884812643 - 0.0526767986686226 I,

0.00818587478568174 - 0.00630677949004629 I, -0.0500049260246231 - 0.00765416539255333 I,

0.0849943657866611 - 0.0718181552648787 I, -0.0717839168643614 + 0.0105157740957712 I,

0.0143549942593599 - 0.0764134535412826 I, -0.181950752939441 + 0.0821300070531892 I,

0.137688771577244 - 0.0343095327618221 I, -0.152723089174720 + 0.0850519795362733 I,

0.00208356952934295 + 0.176734273332204 I, 0.00938241684221843 + 0.00956429654147696 I,

-0.0332893083703374 - 0.137271974254702 I, 0.0351094967730239 - 0.111760368347874 I},

{-0.148824126238421 - 0.0512835503448271 I, -0.109376669744482 - 0.136219714756081 I,

0.0616674909116822 + 0.0686740489269813 I, 0.0346387334161795 + 0.0296187884456301 I,

-0.0223354552215262 - 0.000355677381362090 I, 0.0744656576745973 - 0.0852200492567104 I,

-0.000974778381880343 + 0.0342273879662756 I, -0.0423769502525583 - 0.0758971089847378 I,

-0.0182431764416285 - 0.0265077307107618 I, -0.169187198759583 + 0.119626434686010 I,

-0.198941913732355 - 0.216762813156685 I, 0.152858993947006 + 0.236107588150737 I,

-0.0545199249169373 + 0.108744934090079 I, 0.0470012435847744 - 0.0677102456560565 I,

0.0382972923063862 - 0.0386277381006496 I, -0.0941541104691909 - 0.0343821264949737 I},

{-0.0287216275043243 + 0.0234447235894163 I, 0.0198755381733240 - 0.210472858943623 I,

0.192242511466046 - 0.0171864299251409 I, 0.0144660729959391 - 0.0153770435492014 I,

0.0752495571204231 + 0.104825749962352 I, -0.0527101220513733 + 0.0751531715670673 I,

0.0516079788793231 - 0.0413956746127303 I, -0.0416723734240148 - 0.0804251128602850 I,

-0.0237388342758246 + 0.170072995017040 I, 0.00211829405697135 - 0.0793868202929106 I,

0.0281883688922229 + 0.178109995726126 I, 0.0405040765739116 + 0.0481716461867545 I,

0.261713901590125 - 0.00660494866848526 I, -0.136040106676418 + 0.150078628738630 I,

0.0304897038169275 - 0.170968558598155 I, 0.0114394978313386 - 0.0602824692491118 I},

{-0.115355435777772 + 0.00352234357292250 I, 0.268275694587541 - 0.0668944637733256 I,

-0.135922160210879 - 0.132769481041005 I, 0.0576913166680911 - 0.203017082819597 I,

0.0624932598028262 + 0.0639347213664750 I, -0.149930150860914 - 0.0928614830040168 I,

-0.0855933015742530 + 0.0325305393890041 I, 0.0825972549704063 + 0.0215543692354673 I,

-0.0524177311644776 + 0.0238529505526697 I, 0.0209763248504215 - 0.0936433126958803 I,

0.0226461463258003 - 0.0923806461856918 I, 0.0212814814584123 + 0.0229672112942946 I,

-0.0485279546878276 + 0.0901228902586867 I, -0.0121979876220478 - 0.0318809860185512 I,

-0.0290815290743069 - 0.0519940174296223 I, 0.0682364883960001 - 0.0587702166015027 I},

{-0.164065912734665 - 0.161560785192966 I, -0.142554577287511 - 0.0321256597903332 I,

-0.0471240437704009 - 0.0296837414688255 I, 0.0466523645154574 + 0.0763543524613429 I,

-0.118295686047737 + 0.120651818550152 I, -0.0166855437828618 - 0.0742496011147917 I,

0.117278973087108 + 0.135387896186439 I, -0.0960660113595851 + 0.00170931818349255 I,

0.0853884051180384 + 0.00718522828666866 I, -0.0682424272217088 - 0.0713911545775076 I,

-0.0824909126431147 - 0.0931018996095544 I, -0.0248344249931639 + 0.117905499217360 I,

0.0387222594356634 - 0.0704135304491672 I, 0.0802562499618300 - 0.150198075426635 I,

0.142178978049137 - 0.00962190387642390 I, 0.0654173889137152 + 0.0299968727001012 I},

{-0.188254297473329 + 0.0363879591490253 I, -0.0161554977452655 + 0.175235547582104 I,
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0.0940291050844188 + 0.0117813414876744 I, -0.0720889139377294 + 0.0576582049340434 I,

0.123949956523578 - 0.0371526658047407 I, -0.0226162315255483 - 0.0286054632231970 I,

-0.0490197113696324 - 0.00512078159864770 I, -0.0588600441859515 - 0.0662736477389456 I,

-0.0465960970112404 + 0.00472127653336636 I, 0.110926958627681 + 0.0427102140365729 I,

-0.0897732632371266 - 0.0392333347812649 I, -0.0884202171794193 + 0.142380405283794 I,

-0.0266554926271756 + 0.00435383898757029 I, -0.0518971313373209 + 0.000798380234311006 I,

-0.0557757687506877 + 0.139827164690360 I, 0.0244761114241344 - 0.167171845474488 I}};

E4 = {{0.0795000728322018 + 0.0447484184526321 I, -0.0192692133810577 + 0.0148811905240262 I,

0.0746564151458731 - 0.0968241738378083 I, -0.00269358100633933 - 0.0628751654459325 I,

-0.163969422048475 - 0.0746273332936552 I, -0.0816003541108775 - 0.0617648178546368 I,

-0.0653544843734204 - 0.128909545971246 I, -0.219587855095435 + 0.0396093455589103 I,

-0.136943710075808 + 0.195840482127622 I, 0.00421490171157636 + 0.0535472599864438 I,

-0.0966908433613507 - 0.0459806207868330 I, 0.00446268238748977 - 0.0724199128654455 I,

-0.0478012370492700 + 0.0206537855064991 I, -0.208559174168969 + 0.0443803399581392 I,

-0.0581531067004658 + 0.105486087407921 I, -0.0228855268408959 - 0.0779565209694444 I},

{0.0540044628937945 + 0.111804957722509 I, -0.0121359455854117 - 0.0694088150993056 I,

-0.0786887446861494 + 0.104857223588550 I, 0.153746125259613 + 0.0907766719240877 I,

0.0305656127337997 + 0.0258693820873992 I, 0.0349144880000810 - 0.0177208658568375 I,

-0.0252860840396036 - 0.108220902711778 I, 0.0583076374928550 + 0.127633717372041 I,

-0.131745723999118 + 0.0471652212104816 I, -0.102822532650317 - 0.00116431984051417 I,

-0.112802684651003 - 0.228209904466754 I, -0.0536573989691704 - 0.0521807451838925 I,

-0.0617666521348647 - 0.120486987958988 I, -0.0719567745952136 + 0.0660358264237425 I,

-0.0464474444908668 - 0.107187169511383 I, -0.0830595385269058 + 0.0810775467219312 I},

{0.0123054578756725 + 0.192648174972105 I, -0.108719990538793 + 0.0753754288877105 I,

-0.00651917382868594 - 0.0903984993356139 I, -0.188384080012626 + 0.0443373392676576 I,

-0.0592972313214944 + 0.203988741026211 I, -0.159108168277374 - 0.108694752234477 I,

-0.00244298940800732 - 0.0414733467992261 I, -0.0180632899279705 - 0.109620012903425 I,

0.00572701462022801 + 0.0210215701001143 I, -0.0859526847687090 - 0.00155160859916560 I,

0.0980508502137613 + 0.0781632196812455 I, 0.00628374639475529 + 0.0906611667170592 I,

0.0117142726270456 - 0.0292674492495863 I, 0.0869737159669673 - 0.000958228737978475 I,

0.0583981119337738 + 0.232087700709352 I, -0.0939575135364703 + 0.170227786750491 I},

{0.149478325646879 + 0.00108675337948410 I, -0.0807357570338267 + 0.121394397540870 I,

-0.0600600456825219 - 0.0769983082578559 I, 0.0129613785381449 - 0.0781265509591715 I,

0.0278129362040410 + 0.0662555579166707 I, -0.0264495259985903 + 0.0374052611093846 I,

0.234385397613476 - 0.0128486214255740 I, -0.271655916866670 - 0.0381617456637844 I,

-0.146436785165085 - 0.0469192799412174 I, -0.0503362950562049 - 0.0754275009732876 I,

-0.0209257680711970 + 0.0101203847416127 I, -0.00442382765827591 - 0.0662019993116244 I,

0.0632381705320581 - 0.0190425334562865 I, 0.00425497596634966 - 0.0597957976740829 I,

-0.0741410482618164 + 0.144074740627901 I, -0.0355012132471361 - 0.0384182829765770 I},

{0.00640623026852716 + 0.0407104588904177 I, -0.0791175486407025 - 0.0383285132899451 I,

-0.188274264441400 + 0.0203853165121955 I, 0.0552551042181374 - 0.0269640537762563 I,

-0.0223261674953533 - 0.0311687067842014 I, 0.0695981924121943 - 0.0516560802180440 I,

-0.292431699286730 - 0.0495918985425656 I, 0.0615202886930442 - 0.133581907101472 I,

-0.112876708841408 + 0.131440830439647 I, 0.00553526048833962 - 0.0490698942618516 I,

-0.0562298447250705 - 0.0526674288788655 I, 0.0104946964703073 + 0.0202679784392222 I,

0.101100958361950 - 0.00417230637880710 I, 0.158966551947836 + 0.0319726704344560 I,

0.0658535395021903 + 0.0211569825745591 I, -0.143395322510738 - 0.000295315579507616 I},

{0.0705825281558090 + 0.145278784916051 I, -0.0123723297535809 - 0.0474360593865147 I,

-0.0449176181403412 - 0.000135592808226195 I, -0.0103128307543095 - 0.0243726519766532 I,

0.0250312273136634 + 0.0561770312755243 I, 0.0944107902357818 - 0.00612599491866229 I,

0.0136653916671298 + 0.146729646632541 I, -0.0550217826169089 + 0.0581005799048213 I,

-0.0724813460060278 + 0.136323997008479 I, -0.0599886881332731 - 0.0482923450146503 I,

0.124594609445437 - 0.00729186731914102 I, -0.0184130468731811 + 0.148373736780993 I,

-0.134077542879421 - 0.0272328312526994 I, -0.0457364840516161 - 0.231068729715844 I,

-0.0685816817653501 - 0.0271704260250268 I, -0.234337354287606 - 0.0864305736596562 I},

{0.0345367373786603 + 0.110270827147942 I, -0.0365179624647755 - 0.000652379912514619 I,

-0.118849117235924 + 0.142066003990709 I, -0.0604625449693699 + 0.0610976903998674 I,

-0.0688593141081945 + 0.104214233668893 I, 0.163023665043850 + 0.0358418409806853 I,

-0.0618029064980183 + 0.0569977304384313 I, -0.104814811752549 + 0.0643982531965018 I,

-0.00700640323471009 - 0.00646959519234662 I, -0.00786447625096444 + 0.0560550766995849 I,

-0.0394510798857030 - 0.0574925064912790 I, -0.0165053325124334 - 0.0126361701329233 I,

0.0230526199405426 + 0.0688748363130641 I, -0.0649649489804004 + 0.223790388553482 I,
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-0.0193439156124796 - 0.0731245413663504 I, -0.0134208401296506 - 0.0404559610359284 I},

{0.0543009677002960 + 0.0488091997054300 I, -0.0177737363963542 - 0.0991216902592645 I,

-0.158931727751434 + 0.0868597023890751 I, -0.0159534555918632 + 0.0224828389876247 I,

-0.0704578743612408 - 0.00652026384285027 I, -0.0956976880470441 - 0.0800214849511969 I,

0.0164054182811175 - 0.155818079786008 I, -0.00201243996649536 + 0.0699996416863253 I,

0.0497629646085325 - 0.00847669036385303 I, -0.0125837538399882 - 0.125381897965109 I,

-0.00205515681628149 - 0.115350528368678 I, 0.0244190030104447 + 0.0742633184021561 I,

-0.120431324392587 - 0.0356503318307665 I, 0.185483859910851 - 0.0431311023880122 I,

-0.103064603735721 + 0.0204226392687099 I, 0.123256108703812 - 0.00367996991152220 I},

{0.00612276638515948 + 0.0801047774444942 I, -0.0945020078951758 + 0.160026135455441 I,

-0.0263007798102686 - 0.0122010663524703 I, 0.0772228911639723 + 0.0186482375261314 I,

0.00188600973514703 - 0.112604420508761 I, -0.0366929339941097 + 0.000938119341825139 I,

-0.00777717657349400 - 0.235386519069397 I, 0.123711295486774 - 0.158367790126706 I,

-0.123642416025431 + 0.0711498838909132 I, 0.0118507400231143 - 0.0423690568135792 I,

-0.0925962227328007 - 0.0481973027311593 I, 0.0300165057636424 + 0.209483183405143 I,

-0.0740223379237415 - 0.131106986306767 I, 0.0212337370597239 + 0.0396084459478583 I,

0.00524645078403514 - 0.0978434475717043 I, -0.0692648583020979 - 0.00171799842675464 I},

{0.0587370884423028 + 0.0641027941331677 I, 0.116348077483684 - 0.112108175149134 I,

-0.163612862705868 + 0.239350905406250 I, 0.0285620512675876 + 0.0163659650331983 I,

-0.173444880818990 + 0.157244400030262 I, -0.0855666431962139 - 0.0977046001484752 I,

0.0854904744914325 - 0.0555588836512902 I, 0.00747215970308031 - 0.106203677509263 I,

0.0354909403603143 - 0.0408417148971117 I, 0.117849851133672 + 0.0467464537371153 I,

0.0819430398794248 - 0.0217716610515046 I, 0.0463129485831973 + 0.0880356965636211 I,

0.104059838951551 + 0.0395704200272784 I, -0.122549737598526 + 0.0102216511698902 I,

-0.0131132569206112 - 0.0582518128313549 I, 0.00162777026875022 - 0.210882898137395 I},

{0.118404661713376 + 0.101029146205949 I, -0.185741451360822 + 0.0603192122208622 I,

-0.0481642621780343 + 0.0317768462106182 I, 0.0686043883370303 + 0.0102842605156800 I,

0.0240934584344901 + 0.0754723553046963 I, -0.182513747542422 + 0.00804282193987863 I,

0.0610958442056995 - 0.0512070176131857 I, 0.0306646097955689 - 0.0596179034147353 I,

-0.0366622864521520 - 0.0131565823431198 I, 0.0541686706800058 + 0.0918624130713205 I,

0.0862580195502679 - 0.0142491062811612 I, -0.159293723025811 + 0.00114144823633013 I,

-0.103035764039456 + 0.198216249692893 I, -0.0879365640423083 + 0.367991795782539 I,

0.0348913908490944 - 0.0662904401512384 I, -0.0362392424171493 - 0.0671625594118156 I},

{0.110644326287516 + 0.183185828906416 I, -0.0134847068225477 - 0.00147806679589516 I,

0.000133448006735232 + 0.0711858019617217 I, -0.00646083565347130 + 0.00930392707794328 I,

-0.138325701394728 - 0.0985399464051971 I, -0.117223936862705 - 0.0327862254082947 I,

0.0567396165835630 - 0.0238935049408593 I, 0.120373016860890 - 0.00683218309660960 I,

-0.0422652410047441 - 0.0368092084551697 I, -0.217892639789029 - 0.184408273642542 I,

0.0870504371017148 - 0.0245625356923017 I, 0.0111627520452673 + 0.0174890613324921 I,

-0.147210486446677 - 0.0464501246305870 I, -0.0889594036750902 + 0.0251867213012987 I,

0.0115615925267698 - 0.00788086824548893 I, -0.150972609900257 + 0.120968799756599 I},

{0.212842748465117 + 0.0170893236743892 I, -0.233485388285405 + 0.121654835194901 I,

-0.0971321324716485 + 0.104255896607505 I, -0.0104980321270276 + 0.0746541477943407 I,

0.0843790348515274 - 0.171344494792870 I, 0.0441660478493092 + 0.0628601573125766 I,

-0.104101437457860 + 0.221054585832313 I, -0.0616220166655297 + 0.00621246715307825 I,

-0.138407875156015 - 0.138222920901718 I, -0.00993840675619925 - 0.0224765121362198 I,

0.0836662139664533 + 0.00675187704603134 I, 0.0597625948949549 + 0.0329013681543257 I,

-0.0482112083479921 + 0.0238226600242938 I, -0.0869171422779413 + 0.166329860875983 I,

0.0263647014269383 + 0.0715001349209339 I, 0.0774698902206913 - 0.0230197729173610 I},

{0.0927330839602131 - 0.0128019176520678 I, -0.193668888367957 - 0.0572492936274010 I,

-0.00101482991492798 - 0.0796534640499825 I, -0.0804734140857746 - 0.0683618868442422 I,

-0.166304287147224 + 0.0463945690667429 I, -0.0976395732609795 + 0.0180896710277784 I,

-0.0620804984037984 - 0.0230520023884767 I, 0.0493170276024386 - 0.0304091300719072 I,

-0.0660407768759971 - 0.0430381352178645 I, -0.0878638206105099 - 0.00850672669529827 I,

0.0107488883155386 - 0.0978542327929211 I, -0.0723989915625955 - 0.0334007904907206 I,

0.0347543996085645 + 0.0379572612829092 I, 0.110476463433028 - 0.0198232568870933 I,

0.184175655718814 + 0.128130684025783 I, -0.0169878873128861 - 0.0895894197138873 I},

{0.0748178630710239 + 0.0810530095502250 I, -0.0979378731510529 + 0.0601430807494969 I,

0.00370538613928538 - 0.0864695338166981 I, -0.109502887274467 - 0.00399488889378139 I,

-0.179565572352388 + 0.0459238652387241 I, -0.0752932254541316 + 0.0154742337152224 I,

0.0207238500447961 - 0.0803514031341186 I, 0.0225733055036028 - 0.0432214442713633 I,

-0.0675629438106809 + 0.0483261529880924 I, 0.176152260141479 + 0.0407962768128008 I,
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-0.0586043480807911 - 0.111120458658763 I, 0.00606290911829775 - 0.000625904780262018 I,

0.0356176297635097 + 0.0112713916310856 I, 0.0331881381731597 - 0.0128065763842009 I,

0.0556333501251537 - 0.0742170335259964 I, -0.0677664994058328 + 0.0543807214511369 I},

{0.124558065292282 + 0.0609448290442719 I, -0.0490982665329477 + 0.197254069600885 I,

-0.0894101097809709 - 0.0216648761193079 I, 0.0431287137403479 + 0.0405738162077395 I,

-0.124656748594225 + 0.00586145943608328 I, -0.00699605510688242 - 0.0712165652126409 I,

-0.0356113843585667 + 0.110619022921450 I, 0.0537405662021477 + 0.160595163396734 I,

-0.0493297502039978 - 0.0986821181546958 I, -0.124960739019453 + 0.0891269724937698 I,

-0.0175717067399395 + 0.00692615509605435 I, -0.0767858828449464 + 0.0294288977674801 I,

0.172515251052156 + 0.0583827532785341 I, -0.0824707471164269 - 0.0669786511549297 I,

0.00992531210947728 + 0.0242274755433028 I, -0.0339314883521501 - 0.0890710257450848 I}};

Check numerical accuracy of input:

◼ states should be normalized  βab
2
= 1

◼ channel should sum to the identity matrix ∑k Ek
†
Ek = I

In[38]:= Norm[beta1] - 1

Norm[beta2] - 1

Norm[beta3] - 1

Norm[beta4] - 1

Total[Abs[Flatten[Ct[E1].E1 + Ct[E2].E2 + Ct[E3].E3 + Ct[E4].E4 - Id[16]]]]

Out[38]= 6.66134×10-16

Out[39]= -1.11022×10-16

Out[40]= 0.

Out[41]= 0.

Out[42]= 7.55388×10-14

Construct states χa

In[43]:= chi1 = Sqrt[p1] Kr[z0, beta1] + Sqrt[1 - p1] Kr[z1, beta2];

chi2 = Sqrt[p2] Kr[x0, beta3] + Sqrt[1 - p2] Kr[x1, beta4];

Check accuracy of the fidelity requirement: 

◼ χ0 χ1 ≥ F

In[45]:= inner = Ct[chi1].chi2

AbsArg[inner]

fid = Abs[inner[[1, 1]]]

fid - F

Out[45]= 0.935259 - 0.324639 ⅈ

Out[46]= 0.99, -0.334099

Out[47]= 0.99

Out[48]= 1.11022×10-16

Apply the circuit and find the final states

In[49]:= chit1 = Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], Id2], Swap], Id2], Id2], Id2].

Kr[Kr[Kr[Kr[Kr[Id2, Id2], Swap], Swap], Id2], Id2].

Kr[Kr[Kr[Kr[Id2, Swap], Swap], Swap], Id2].Kr[Kr[Kr[chi1, chi1], chi1], chi1];
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chit2 = Kr[Kr[Kr[Kr[Kr[Kr[Id2, Id2], Id2], Swap], Id2], Id2], Id2].

Kr[Kr[Kr[Kr[Kr[Id2, Id2], Swap], Swap], Id2], Id2].

Kr[Kr[Kr[Kr[Id2, Swap], Swap], Swap], Id2].Kr[Kr[Kr[chi2, chi2], chi2], chi2];

rhot1 = chit1.Ct[chit1];

rhot2 = chit2.Ct[chit2];

rhof1 = Kr[Id[16], E1].rhot1.Ct[Kr[Id[16], E1]] + Kr[Id[16], E2].rhot1.Ct[Kr[Id[16], E2]] +

Kr[Id[16], E3].rhot1.Ct[Kr[Id[16], E3]] + Kr[Id[16], E4].rhot1.Ct[Kr[Id[16], E4]];

rhof2 = Kr[Id[16], E1].rhot2.Ct[Kr[Id[16], E1]] + Kr[Id[16], E2].rhot2.Ct[Kr[Id[16], E2]] +

Kr[Id[16], E3].rhot2.Ct[Kr[Id[16], E3]] + Kr[Id[16], E4].rhot2.Ct[Kr[Id[16], E4]];

Double-check the normalization of the final states

In[55]:= Tr[rhof1] - 1

Tr[rhof2] - 1

Out[55]= 2.66454×10-15 - 1.35209×10-17 ⅈ

Out[56]= 2.22045×10-16 + 9.83712×10-18 ⅈ

Calculate the error rate for each basis a for each measurement pair

In[57]:= p11 = Abs[Tr[mx1.rhof1]];

p12 = Abs[Tr[mx2.rhof1]];

p13 = Abs[Tr[mx3.rhof1]];

p14 = Abs[Tr[mx4.rhof1]];

p21 = Abs[Tr[mx1.rhof2]];

p22 = Abs[Tr[mx2.rhof2]];

p23 = Abs[Tr[mx3.rhof2]];

p24 = Abs[Tr[mx4.rhof2]];

p31 = Abs[Tr[mz1.rhof1]];

p32 = Abs[Tr[mz2.rhof1]];

p33 = Abs[Tr[mz3.rhof1]];

p34 = Abs[Tr[mz4.rhof1]];

Calculate the total error rates δph, δx and δz

In[69]:= dp = 1/4 (p11 + p12 + p13 + p14)

dx = 1/4 (p21 + p22 + p23 + p24)

dz = 1/4 (p31 + p32 + p33 + p34)

Out[69]= 0.440788

Out[70]= 0.196967

Out[71]= 0.49876
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Check whether the claim 1- h 1-F
2  ≤

δx+δph

2 h δx
δx+δph

+
2-δx-δph

2 h
1-δph

2-δx-δph
 in fact holds

In[72]:= h[x_] = -x Log2[x] - (1 - x) Log2[1 - x];

lhs = 1 - h
1 - F

2
;

rhs[ddx_, ddp_] =
ddx + ddp

2
h

ddx

ddx + ddp
 +

2 - ddx - ddp

2
h

1 - ddp

2 - ddx - ddp
;

lhs

rhs[dx, dp]

rhs[dx, dp] - lhs

Out[75]= 0.954585

Out[76]= 0.949684

Out[77]= -0.00490171
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