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Abstract— Much research has been done on the subject
of collision avoidance (COLAV). However, few results are
presented that consider vehicles with second-order nonholo-
nomic constraints, such as autonomous underwater vehicles
(AUVs). This paper considers the dynamic window (DW)
algorithm for reactive horizontal COLAV for AUVs, and uses
the HUGIN 1000 AUV in a case study. The DW algorithm
is originally developed for vehicles with first-order nonholo-
nomic constraints and is hence not directly applicable for
AUVs without resulting in degraded performance. This paper
suggests further developments of the DW algorithm to make it
better suited for use with AUVs. In particular, a new method
for predicting AUV trajectories using a linear approximation
which accounts for second-order nonholonomic constraints is
developed. The new prediction method, together with a modified
search space, reduces the mean square prediction error to about
one percent of the original algorithm. The performance and
robustness of the modified DW algorithm is evaluated through
simulations using a nonlinear model of the HUGIN 1000 AUV.

I. INTRODUCTION

Collision avoidance (COLAV) systems are necessary for
autonomous operation of vehicles, including autonomous un-
derwater vehicles (AUVs). AUVs are often engaged in long
term operations in deep waters with limited communication
possibilities, which increase the reliability requirements of
the COLAV system. It is clear that if a collision occurs and
the AUV is immobilized, a salvage operation will be both
costly and time consuming. In addition, a delayed operation
may potentially have large economical consequences.

The topic of COLAV may be split in two main areas [1]:
• Obstacle detection, which focuses on detecting obsta-

cles, usually based on sonar data regarding AUVs.
• Obstacle avoidance, which consists of generating ap-

propriate steering commands in order to avoid collisions
with detected obstacles.

A COLAV system must include both obstacle detection and
avoidance in order to avoid collisions. This paper will only
focus on obstacle avoidance. For details on how obstacle
detection can be handled, see [2] and the references therein.

There exists a number of both reactive (local) and delib-
erate (global) COLAV algorithms. Reactive algorithms base
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their actions only on real-time sensor data, which makes
the algorithms computationally inexpensive and suitable for
reacting to sudden changes in the environment. Using no a
priori information can, however, make the vehicle sensitive to
local minima or traps, which can make it unable to reach the
goal. In comparison, deliberate algorithms include a priori
information to plan future actions. The provided actions are
more likely to make the vehicle converge towards the goal, at
the cost of increased computational time and reduced ability
to react rapidly. Reactive and deliberate algorithms are often
combined in hybrid architectures, where they are executed
in parallel at different sampling frequencies [3], [4].

One of the existing reactive1 algorithms is the dynamic
window (DW) algorithm [5], which was originally intended
for vehicles with first-order nonholonomic constraints and
constant acceleration limits. AUVs, however, have second-
order nonholonomic constraints, and also nonlinear responses
which result in time-varying acceleration limits. Applying the
original DW algorithm to AUVs will thus result in degraded
performance. This paper therefore suggests a number of
modifications to the original DW algorithm to increase the
performance when applied to vehicles with second-order
nonholonomic constraints and time-varying acceleration lim-
its. In particular, a new trajectory prediction method taking
second-order nonholonomic constraints into account is devel-
oped. This, together with a modified search space, reduces
the mean square prediction error to about one percent of the
original algorithm. The generality of the algorithm is also
improved to facilitate a more layered architecture.

A comparison between the modified and original DW al-
gorithm is obtained through simulations for various static ob-
stacle environments using a nonlinear model of the HUGIN
1000 AUV [6], shown in Figure 1. The simulations show
a significant performance improvement when applying the
modified DW algorithm.

In Section II, a 3 degrees-of-freedom (DOF) control model
is presented. Section III contains the DW algorithm and the
proposed modifications. Simulation results are presented in
Section IV, while Section V concludes the paper.

II. CONTROL-ORIENTED AUV MODEL

In this section, a generic 3 DOF AUV control model is
defined. The model is based on the following assumptions:

Assumption 1: The AUV model describes the motion of
the pivot point of the vehicle.

1One may argue that the DW algorithm is not strictly reactive since it
plans trajectories in time. It does, however, only rely on real-time sensor
data, thus it is considered to be a reactive algorithm.



Fig. 1. The HUGIN 1000 AUV, courtesy of the Norwegian Defence
Research Establishment.

Remark 1: When the body-fixed coordinate system is
positioned in the pivot point, the rudders do not affect the
sway dynamics directly. For vehicles which are controllable
in yaw it is always possible to transform a model represented
in an arbitrary point on the AUV to the pivot point [7].

Assumption 2: The vehicle is neutrally buoyant and the
center of gravity (CG) is located below the center of buoy-
ancy (CB) on a vertical line.

Assumption 3: Heave speed and the roll and pitch angles
are assumed equal to zero.

Remark 2: Assuming zero roll angle is a common as-
sumption for slender body vehicles such as AUVs [8]. The
CG is located below the CB on a vertical line, which pas-
sively stabilizes the roll motion. Further, by equally utilizing
the top and bottom rudders, and the port and starboard
rudders, no roll moment is generated by the rudders. For an
AUV equipped with a depth controller, close to zero heave
speed and pitch angle is achieved when the AUV is traveling
in a horizontal plane.

Assumption 3 allows a control model to be formulated in
3 DOF (surge, sway and yaw), while Assumption 2 implies
that no restoring forces are applied. Using the SNAME [9]
notation, the 3 DOF control model is therefore given as:

η̇nb/n = R(ηnb/n)νbb/n (1a)

Mν̇bb/n +C(νbb/n)νbb/n +D(νbb/n)νbb/n = Bf bb, (1b)

where ηnb/n =
[
x y ψ

]T ∈ R2 × SO(2) is the position
and orientation of the body-fixed frame {b} represented
in the north-east-down-fixed inertial frame {n}. Further,
νbb/n =

[
u v r

]T ∈ R3 is the velocity of {b} with respect

to {n} represented in {b}, and f bb =
[
X N

]T ∈ R2 is the
actuator input in {b}. It should be noted that the model (1)
does not account for external forces such as ocean currents,
wind and waves. For notational simplicity, ηnb/n,ν

b
b/n,f

b
b are

further denoted as η,ν,f . The transformation matrix from
{b} to {n} is given as:

R(η) = R(ψ) =

c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

 , (2a)

where c(·) = cos(·) and s(·) = sin(·). The vessel dynamics
matrices are given as:

M=

m11 0 0
0 m22 m23

0 m23 m33

 , B=

b11 0
0 b22
0 b32


C(ν)=

 0 0 −m22v −m23r
0 0 m11u

m22v +m23r −m11u 0


D(ν)= −

Xu +X|u|u|u| 0 0
0 Yv Yr
0 Nv Nr

 |u′|
u0

.

(2b)

Here, the term |u′|
u0

, where u0 > 0 is the nominal surge
speed, is used for speed-scaling of the damping coefficients.
The term |u′| , max(|u|, µ), where µ > 0 is an arbitrary
constant, guarantees some damping for low surge speeds.
The constants in B are given as b11 = b32 = 1, while b22
captures the coupling from the yaw torque to the sway force
in the actuator model, given from Y = − 1

lx
N , b22N . The

force vector f is modeled as:

f =

[
X
N

]
=

[
T|n|n|np|np + Tununp

−Yδu2 lxδψ

]
, (3)

where np and δψ are the propeller speed and rudder de-
flection angle, respectively, while T|n|n, Tun and Yδu2 are
propeller and rudder coefficients, and lx is the rudder lever
arm along the x-axis. The actuators are limited by both
saturation and rate limitations:

np ∈ [npmin
, npmax

], ‖δψ‖∞ ≤ δmax,
∥∥∥δ̇ψ∥∥∥

∞
≤ δ̇max. (4)

The actuator limitations are not considered in the mathe-
matical model (1) since f is selected as the control input,
but are, however, to be included in the DW algorithm. For
positive surge speeds, and requiring that the DW algorithm
only specifies feasible commands, it is always possible to
calculate np and δψ given a force vector f . Hence, a unique
inverse function f−1 exists.

It should be noted that when Assumption 1 is satisfied,
the following property holds [7]:

M−1Bf =


b11
m11

X

0
m22b32−m23b22
m22m33−m2

23
N

 . (5)

III. THE DYNAMIC WINDOW ALGORITHM

A. Introduction

The DW algorithm is a velocity space method, intended to
prohibit infeasible control commands by specifying a desired
velocity pair consisting of a desired forward speed and a
desired rotational rate as reference signals for the vehicle
speed controllers. The algorithm was originally designed
for a car-like mobile robot with first-order nonholonomic
constraints, moving in 3 DOF [5]. The original paper predicts
vehicle trajectories as circular arcs with radii of M i

R = ui

ri
(and straight lines for ri = 0) for a discrete set of desired
velocity pairs (ui, ri). The original trajectory prediction is



Fig. 2. Architecture overview. The modified algorithm facilitates a more modular architecture than the original algorithm.

quite accurate for vehicles with only first-order nonholo-
nomic constraints, since they have no sideways motion.

As seen in Figure 2, the original DW algorithm inputs
a desired heading ψd to guide the vehicle towards a goal.
In contrast, the modified algorithm inputs a desired surge
speed and yaw rate (u′d, r

′
d), which facilitates a more modular

architecture in addition to allowing the surge speed to be
externally guided. Notice that (u′d, r

′
d) is a desired velocity

pair used as an input to the modified algorithm, while
(ud, rd) is the output of the algorithm used as the reference
for the vehicle dynamics controller.

Here, the DW algorithm is combined with a line-of-sight
(LOS) guidance law, given as [8]:

ψLOS = αp − arctan
( e

∆

)
, (6)

where αp is the path heading and e is the cross track error.
The tuning parameter ∆ > 0 is the lookahead-distance, given
in meters. To generate a desired yaw rate for the modified
DW algorithm, the following yaw controller is proposed:

r′d = −kψ (ψ − ψd) + ψ̇d, (7)

where kψ > 0 is a constant gain and ψd = ψLOS .
For an implementation of the DW algorithm with an

integral line-of-sight (ILOS) guidance law for compensation
of ocean currents, also including a proof of convergence to a
straight line path for the combined system, see [2]. It should
be noted that the case presented in this paper is a special
case of the case considered in [2], hence the convergence
proof also applies to the system presented here.

B. The original dynamic window algorithm

Three 2D search spaces in forward (surge) speed and
rotational (yaw) rate accounts for the kinematic and kinetic
constraints of the vehicle. The dynamic window allows a
time interval T (usually smaller than the sample time) for
acceleration of the vehicle:

Vd =
{

(u, r) ∈ R× R
∣∣∣u ∈ [u∗ + u̇minT, u

∗ + u̇maxT ]

∧ r ∈ [r∗ − ṙmaxT, r
∗ + ṙmaxT ]

}
, (8)

where u∗, r∗ are the current forward speed and rotational
rate and u̇min < 0, u̇max > 0, ṙmax > 0 are the vehicle

accelerations limits. Note that the original algorithm assumes
that the yaw acceleration limits are symmetric, hence ṙmin =
−ṙmax. The set of possible velocities is:

Vs =
{

(u, r) ∈ R× R
∣∣∣u ∈ [0, umax]

∧ r ∈ [−rmax, rmax]
}
, (9)

where umax and rmax are the maximum forward speed and
rotational rate. The dynamic window and the set of possible
velocities account for the actuator limitations. Finally, the
set of admissible velocities ensures that the vehicle is able
to stop before it collides with an obstacle:

Va =
{

(u, r) ∈ R× R
∣∣∣u ≤√2 · dist(u, r) · |u̇min|

∧ |r| ≤
√

2 · dist(u, r) · ṙmax

}
, (10)

where dist(u, r) expresses the distance which the vehicle
can travel along the trajectory given the velocity pair (u, r)
without colliding with an obstacle.

The optimal velocity pair is selected through maximizing
an objective function over the resulting search space Vr =
Vd ∩ Vs ∩ Va:

max
(u,r)

G(u, r) = σ (α·heading(u, r) + β ·dist(u, r)
+γ ·velocity(u, r))

s.t. (u, r) ∈ Vr,
(11)

where α, β, γ > 0 are tuning parameters and heading(u, r)
measures the alignment between the trajectory corresponding
to the velocity pair (u, r) and a desired heading. The term
velocity(u, r) favors holding a high surge speed, while σ is
a low-pass filter to reduce fluctuations in the control output.
The optimization problem (11) is solved by numerically
computing the objective value for all (u, r) ∈ Vr (discretized)
and selecting the one with the highest objective value.

The original algorithm has two significant limitations
when applied to AUVs:
• The lack of modeling the sideways motion of vehicles

with second-order nonholonomic constraints results in
inaccurate trajectory predictions.

• Using a rectangular search space which does not include
any actuator modeling can cause infeasible control
references to be specified.



Furthermore, the heading term in (11) compares a desired
heading input with a resulting heading for the trajectories,
requiring the algorithm to include a mapping function to
compute the resulting heading for the different velocity pairs.

Several modifications to the original DW algorithm have
been proposed. Some of these include global information in
order to handle local minima in the environment, see [10],
[11], [12], [13]. In particular, [13] combines the focussed D*
(FD*) [14] global planner with the DW algorithm in a hybrid
architecture. The heading and velocity terms are replaced by
a measure of alignment to the FD* path, hence also removing
the required mapping from angle to angular rate. To reduce
the prediction error of the vehicle trajectories, [15] uses
clothoid curves instead of circular arcs and straight lines to
model the vehicle trajectories. A simplified set of equations is
used in [4] to simulate trajectories for an autonomous surface
vehicle (ASV), accounting for an estimated lateral speed.

C. A new search space and objective function

In this section we present a modified search space to better
suit the nonlinear responses of AUVs. The objective function
is also changed to facilitate a more layered architecture.

To ensure feasible steering commands for the AUV, the
search space is modified to account for the actuator model (3)
and limitations (4). Allowing a small time interval Ta < T to
be used for changing the control inputs, the feasible actuator
commands are:

δψ ∈ sat
([
δ∗ψ − Taδ̇max, δ

∗
ψ + Taδ̇max

]
, δmax

)
np ∈ [npmin

, npmax
] ,

(12)

where δ∗ψ denotes the current rudder deflection angle, and
sat(·) is a saturation function. It should be noted in general
that rate limitation can also be imposed on the propeller
speed. By denoting Bf = τ (ν, δψ, np), and since the
actuators are linearly independent, the acceleration limits can
be found by solving:

ν̇i = M−1 (τ i −C(ν∗)ν∗ −D(ν∗)ν∗) , (13)

where i ∈ {min,max}, τmin , τ (ν∗,max(δψ),min(np)),
τmax , τ (ν∗,min(δψ),max(np)) and ν∗ denotes the cur-
rent vehicle velocity. It is worth noticing that a positive rud-
der deflection results in negative yaw moment. The dynamic
window (8) is then modified as:

Vd =
{

(u, r) ∈ R× R
∣∣∣u ∈ [u∗ + u̇minT, u

∗ + u̇maxT ]

∧r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} . (14)

Notice that in contrast to the original algorithm the yaw rate
acceleration limit is no longer assumed to be symmetric.

By defining a function g(u, r) which is positive semidef-
inite for feasible velocities with respect to actuator satura-
tions, the set of possible velocities (9) can be generalized
as:

Vs =
{

(u, r) ∈ R× R
∣∣∣g(u, r) ≥ 0

}
. (15)

The function g(u, r) is approximated by numerically calcu-
lating the boundaries of the possible steady state solutions of

Fig. 3. The dynamically feasible velocity set Vf (in grey), together with
the boundaries of the dynamic velocity window (in blue) and the possible
velocity set (in red). The dynamically feasible velocity set is discretized
uniformly, and note that the desired velocity pair (u′d, r

′
d) is included in

the discrete search space.

the kinetics (1b), see [2] for details. The sets Vd, Vs and the
dynamically feasible velocity set Vf = Vd∩Vs are illustrated
in Figure 3.

To simplify the implementation, the configuration space of
the AUV is reduced from R2×SO(2) to R2 by approximat-
ing the AUV footprint as a circle. This is done by expanding
the detected obstacles with the maximum AUV radius, and
representing the AUV as a particle. Inspired by [16], two
regions are defined on the detected obstacles to control the
obstacle clearance; the “avoidance region”

Ω ,
{
p ∈ C

∣∣∣ ‖p− pobs‖2 ≤ r̄} , (16)

and the “antitarget region”

T ,
{
p ∈ C

∣∣∣ ‖p− pobs‖2 ≤ r∗} (17)

where pobs ∈ R2 is the position of obstacles, C = R2 is a
collapsed, heading independent configuration space and r̄ >
r∗ > 0 are scalars defining the size of Ω and T . In particular,
r∗ is the maximum radius of the AUV corresponding to
approximating the AUV footprint as a circle. The antitarget
region is interpreted as the region where a collision may
occur, while the avoidance region is interpreted as a safety
region that is not desirable to enter. The regions are illustrated
in Figure 4.

The set of admissible velocities (10) is modified as:

Va =
{

(u, r) ∈ R× R
∣∣u ≤√2ρ′(u, r)|u̇min|

∧|r| ≤
{ √

2ρ′(u, r)|ṙmax| , r < 0√
2ρ′(u, r)|ṙmin| , r ≥ 0

}
. (18)

The function ρ′(u, r) expresses the remaining distance the
AUV can travel along the resulting trajectory at the next
iteration without entering the antitarget region T :

ρ′(u, r) = max(ρ(u, r)−∆s, 0), (19)

where ρ(u, r) expresses the distance the AUV can travel
along the resulting trajectory before it enters T and ∆s ex-
presses the distance the AUV travels until the next iteration.



Fig. 4. Obstacle regions. Notice that the antitarget region is extended along
the forward sonar boundary to account for possible obstacles just outside
of the sonar range. Black lines illustrate sonar range measurements.

To improve the generality of the algorithm and remove the
need for computing resulting headings for the velocity pairs,
the heading term of the objective function is replaced with a
term taking a desired yaw rate as input. This is inspired by
[17] and [18]. In addition, inspired by [13], the dist(u, r)
term is scaled by the trajectory velocity, resulting in a term
which approximates the time until collision. To motivate the
algorithm to keep out of the avoidance region, dist(u, r)
expresses the time until the AUV enters Ω. The algorithm
input is assumed to be smooth, so the low-pass filter is
omitted. The objective function in (11) is thus modified as:

G(u, r) = α·yawrate(u, r, r′d) + β ·dist(u, r)
+ γ ·velocity(u, r, u′d), (20)

where u′d and r′d are inputs to the algorithm, and

yawrate(u, r, r′d) = 1− |r′d − r|
max
r∈Vr

(|r′d − r|)
, (21)

velocity(u, r, u′d) = 1− |u′d − u|
max
u∈Vr

(|u′d − u|)
, (22)

dist(u, r) =
ρ̄(u, r)

1
T

∫ T
0
‖χ(u, r, t)‖2 dt

, (23)

where ρ̄(u, r) is the distance the AUV can travel along the
trajectory specified by the velocity pair (u, r) until it enters
Ω, and χ(u, r, t) is the predicted AUV surge and sway speed
along the trajectory specified by the velocity pair (u, r).

D. A new trajectory prediction method

To account for second-order nonholonomic constraints in
the trajectory prediction, we propose to use partial feed-
back linearization to linearize the surge and yaw dynamics,
while leaving the sway motion uncontrolled. The closed
loop dynamics are then derived and used for predicting the
AUV trajectories, hence including both sway and controller
dynamics in the AUV trajectory prediction. This approach is
similar to the one presented in [19], but does not require a
linear model and is hence more flexible. In contrast to the

approach suggested by [4], the actual equations of motion
are used and the kinetics are solved analytically. This makes
the prediction more accurate and requires less computations.

By solving (1b) for ν̇, the system can be described as:

ν̇ = M−1Bf − n(ν), (24)

where n(ν) = M−1 (C(ν)ν +D(ν)ν).
To formulate the control law, the system is divided into

two parts. This is done by using the matrices Γ1 and Γ2:

Γ1 ,

[
1 0 0
0 0 1

]
, Γ2 ,

[
0 1 0

]
, (25)

that satisfies ΓT1 Γ1 + ΓT2 Γ2 = I. The system (24) can be
written as:

ν̇ =
(
ΓT1 Γ1 + ΓT2 Γ2

) (
M−1Bf − n(ν)

)
= ΓT1

(
Γ1M

−1Bf − Γ1n(ν)
)
− ΓT2 Γ2n(ν).

(26)

Notice that Γ2M
−1Bf = 0. Hence, the system is divided

in two parts where ΓT1 Γ1 maps dynamics to surge and
yaw, while ΓT2 Γ2 maps dynamics to sway. To remove the
nonlinearities in surge and yaw, we select the feedback
linearizing control law:

f =
(
Γ1M

−1B
)−1

(Γ1n(ν) + a1d) , (27)

where a1d =
[
u̇d ṙd

]T
is the desired acceleration.

Remark 3: By construction, it is shown in [2] that
Γ1M

−1B is of full rank and hence invertible.
Inserting (27) into (26) gives:

ν̇ = ΓT1 a1d − ΓT2 Γ2n(ν). (28)

The desired acceleration is selected using a proportional
controller with a reference feedforward:

a1d = ν̇1d −Kp (ν1 − ν1d)

= ν̇1d −Kp (Γ1ν − ν1d) ,
(29)

where Kp =

[
ku 0
0 kr

]
> 0 is a gain matrix, ν1 =

[
u r

]T
and ν1d =

[
ud rd

]T
.

Inserting (29) into (28), and defining

ν̃ =

ũv
r̃

 , ν − ΓT1 ν1d, (30)

results in the dynamics:
˙̃ν = −ΓT1KpΓ1ν̃ − ΓT2 Γ2n(ν). (31)

Note that n(ν) takes ν as its argument. Also, it is important
to notice that (31) is linear in both surge and yaw:

˙̃u = −kuũ, ˙̃r = −kr r̃, v̇ = −n2(ν), (32)

where n2(ν) is the contribution from the Coriolis-centripetal
and damping matrices in sway, given as:

n2(ν) =
1

m22m33 −m2
23

(
(m33d22 −m23d32) v

−m23 (m22 −m11)uv +
(
m33m11 −m2

23

)
ur

+ (m33d23 −m23d33) r
)
, (33)



where mij = Mi,j and dij = Di,j .
By approximating the last term of (31) using a first-order

Taylor series, the dynamics of the AUV is also linear in sway.
The Taylor approximation is given as:

n(ν) ≈ n(ν∗) +
dn(ν)

dν

∣∣∣∣∣
ν=ν∗︸ ︷︷ ︸

N

(ν − ν∗)

= n(ν∗) +Nν −Nν∗

= Nν + b(ν∗),

(34)

where the current velocity ν∗ is selected as the linearization
point and b(ν∗) = n(ν∗) −Nν∗ is a constant term. The
matrix N is stated in [2].

Inserting (34) into (31) yields:

˙̃ν = Aν̃ + βν1d +G, (35)

where:
A = −

(
ΓT1KpΓ1 + ΓT2 Γ2N

)
β = −ΓT2 Γ2NΓT1

G = −ΓT2 Γ2b(ν
∗).

(36)

This is a linear time-invariant system perturbed by a
nonvanishing perturbation G (hence ν̃ = 0 and ν1d ≡ 0
does not imply ˙̃ν = 0). The time evolution of (35) is:

ν̃(t) = eA(t−t0)ν̃(t0)

+

∫ t

t0

eA(t−σ) (βν1d(σ) +G) dσ. (37)

The desired surge speed and yaw rate are considered
constant for each trajectory, hence ν1d is constant for each
trajectory. By letting t0 = 0 s, (37) can be expressed as [20]:

ν̃(t) = eAtν̃(0)−A−1
(
I − eAt

)
(βν1d +G) . (38)

The kinematics (1a) are simulated in discrete time using
the modified Euler method [21]:

η(tn+1) = η(tn) + hk2

k1 = R(η(tn))ν(tn)

k2 = R(η(tn) +
h

2
k1)ν(tn +

h

2
),

(39)

where h is the integration time step, and ν(t) is computed
from (38) and (30). It should be noted that the absolute
position is not required in the DW implementation, as the
sonar measurements are given in {b}. Hence, the AUV
prediction can be done in {b} by selecting η =

[
0 0 ψ

]T
.

IV. SIMULATION RESULTS

A number of simulations have been conducted to compare
the modified DW algorithm with the original DW algorithm,
in order to evaluate the performance of the two algorithms.
A 6 DOF nonlinear model of the HUGIN 1000 AUV with
a horizontally oriented forward looking sonar, developed
by the Norwegian Defence Research Establishment and
implemented in SIMULINK, has been used for testing the

TABLE I
SIMULATION PARAMETERS:

Parameter Value Description

ku 1 s−1 Surge controller gain
kr 1 s−1 Yaw rate controller gain
kψ 0.2 s−1 Yaw controller gain
∆ 8 m LOS lookahead distance
α 1 DW yaw rate scaling constant
β 9 s−1 DW distance scaling constant
γ 3 DW surge speed scaling constant
u′d 2 m s−1 Desired surge speed
∆TDW 1 s Dynamic window algorithm sampling time
r̄ 6 m Size of the avoidance region Ω
r∗ 3.5 m Size of the antitarget region T

algorithms. The HUGIN 1000 AUV model satisfies Assump-
tions 1-3 given in Section II.

The control system was implemented in MATLAB, with
parameters as in Table I. The model parameters are not
stated due to confidentiality reasons. Further details about
the simulator are given in [2].

To illustrate the improvement of predicting the AUV tra-
jectories using the proposed linear approximation compared
to the original approach, a set of AUV trajectories are
predicted using a search space consisting of three desired
surge velocities and three desired yaw rates. Assuming that
Vs does not impose any limitations on the search space, this
results in nine velocity pairs. The initial velocity is chosen
as ν(0) =

[
2 0 0

]T
and the trajectories are predicted for

30 s. Figure 5 shows the actual AUV trajectories together
with predicted trajectories using both the original prediction
and the new linear approximation, for three of the velocity
pairs (the other six trajectories look similar, see [2]). Table II
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Fig. 5. Actual and approximated AUV trajectories, given initial velocity
ν(0) = [2 0 0]T and u′d = 2 m s−1.

shows the average prediction error using both the original
prediction and the new linear approximation. From Table II
and Figure 5 it is clear that the linear approximation is much



TABLE II
MEAN SQUARE ERROR OF PREDICTED AUV TRAJECTORIES:

Time span Original
prediction

Linear
approximation

Linear approximation
vs. original prediction

t = [0, 5] s 0.100 m2 0.000576 m2 0.576 %

t = [0, 30] s 4.67 m2 0.045 m2 0.964 %

more accurate than the original prediction method, especially
for the initial part of the trajectories.

Simulations in various environments all indicates that the
modified algorithm achieves a more consistent and secure
clearance to obstacles. One of the comparisons is shown
in Figure 6. Following the straight line path between the
three waypoints would result in a collision, and an alternative
path is therefore found by the DW algorithm. In this case,
the modified algorithm chooses a shorter route than the
original algorithm. The modified algorithm achieves a larger
obstacle clearance, and makes the AUV stay well clear of
the antitarget region at all times. In contrast, the original
algorithm makes the AUV enter the antitarget region during
the simulation. See Figure 7 and Table III for details.

The robustness of the COLAV system is assessed through
a Monte Carlo simulation with 1500 samples. The AUV
COLAV system is simulated in environments generated by
filtering and thresholding matrices of normal distributed
random elements, to represent the environments as obstacle
grids. Further, based on simulated sonar ranges, estimates of
T and Ω are generated as shown in Figure 4. As shown in
Table IV, 17.2 % of the simulations of the modified algo-
rithm came closer than 3 m to an obstacle, and hence may
have caused a collision (recall that the AUV is represented
as a particle, and the radius of the AUV is approximately

Fig. 6. AUV trajectories using the modified and original DW algorithms.
The AUV starts at (0, 100) m.

Fig. 7. Distance to closest obstacle.

3 m). Some trajectories even resulted in a minimum distance
of 0.1 m, surely causing a collision. A closer inspection
of the trajectories reveals that when the AUV reduces the
surge speed to avoid collisions in local minima, the speed
scaling of the damping causes the AUV to slide sideways
for a long time after the surge speed reaches zero. This is
considered to be a simulation artifact, since the model (1)
does not capture the correct vehicle dynamics at low surge
speeds. For further elaboration of the simulation artifact, see
[2]. Notice, however, that 71.3 % of the simulations of the
original algorithm came closer than 3 m, demonstrating a
large improvement with regards to the original algorithm.
From Table IV and Figure 8 it is clear that the modified DW
algorithm consistently achieves a larger obstacle clearance.
An interesting result is that the modified DW algorithm made
the AUV reach the final waypoint only in 31.9 % of the
simulations, hence the AUV got trapped in local minima
in 68.1 % of the simulations. This demonstrates the need
for adapting the global path underway for example by using
a deliberate planner together with the DW algorithm in a
hybrid architecture, to avoid local minima. However, the
modified DW algorithm performed better than the original
DW algorithm which only reached the final WP in 28 % of
the simulations.

V. CONCLUSION

We have in this paper proposed a number of modifications
to the dynamic window (DW) algorithm to make it suitable
for vehicles with second-order nonholonomic constraints and
time-varying acceleration limitations.

Based on simulations, a new AUV trajectory prediction
method accounting for second-order nonholonomic con-

TABLE III
TRAJECTORY DATA, ORIGINAL AND MODIFIED DW ALGORITHM:

Parameter Original
algorithm

Modified
algorithm

Trajectory length to end WP 602 m 539 m

Trajectory time to end WP 307 s 273 s

Average surge speed 1.94 m s−1 1.95 m s−1

Minimum obstacle clearance 2.4 m 5.9 m



TABLE IV
SUMMARY OF MONTE CARLO SIMULATION:

Min. obs.
clearance

Original algorithm Modified algorithm
Perc. of

simulations
Perc. of which
reached goal

Perc. of
simulations

Perc. of which
reached goal

[0, 1] m 33.9 % 0.8 % 1.8 % 0 %

(1, 2] m 4.1 % 17.7 % 5.1 % 0 %

(2, 3] m 33.3 % 20.0 % 10.3 % 0 %

(3, 4] m 26.5 % 68.8 % 38.3 % 8.7 %

(4, 5] m 0.5 % 87.5 % 5.3 % 52.5 %

(5, 6] m 0.6 % 100.0 % 31.0 % 62.2 %

(6,∞) m 1.0 % 100.0 % 8.2 % 79.7 %

All 100.0 % 28.0 % 100.0 % 31.9 %

Minimum distance to obstacle
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Fig. 8. Minimum obstacle clearance in the Monte Carlo simulation.

straints reduces the mean square prediction error to about
one percent of the original method. Together with a modified
search space, this improves the performance of the DW
algorithm in terms of obstacle clearance and accuracy when
applied to AUVs. Based on a Monte Carlo simulation of 1500
samples, the modified DW algorithm is believed to be robust
with respect to obstacle configurations. This should however
be investigated further. Due to the new prediction method, the
computational cost of the modified algorithm is moderately
larger than that of the original algorithm. On the other hand,
the increased prediction accuracy makes it possible to run
the DW algorithm at a lower sampling frequency.

In order to develop a practical COLAV system, further
research will be put into combining the reactive DW algo-
rithm with deliberate planning algorithms to ensure global
convergence. The suitability of the DW algorithm for use
with ASVs will also be evaluated.
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