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Abstract

The optical properties of an island film of truncated and coated prolate
spheroidal particles are studied numerically by implementing support for
this island geometry in the GranFilm software. The underlying theory
of the calculations is based on the work on optical properties of surfaces
by Bedeaux and Vlieger. The implementation is tested numerically and
compared in the appropriate limits to earlier implementations of other
geometries. The tests show that the implementation was carried out suc-
cessfully. Finally, the GranFilm software is used to study and character-
ize the plasmonic resonance modes of various supported metallic islands.
This includes the observation of plasmonic hybridization in a truncated
metallic nanoshell.
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Sammendrag

I dette arbeidet blir de optiske egenskapene til en film av trunkerte,
prolate sfæroidiske nanopartikler med coating regnet ut numerisk ved å
implementere støtte for denne geometrien i software-pakken GranFilm .
Teorien bak disse beregningene er basert p̊a arbeidet rundt optiske egen-
skaper til overflater av Bedeaux og Vlieger. Implementasjonen testes s̊a
numerisk og sammenlignes med andre geometrier i de relevante grensene.
Disse testene viser at implementasjonen kan sies å være vellykket. Avslut-
ningsvis anvendes programmet til å studere og karakterisere de plasmonis-
ke resonansmodene til ulike typer metall-øyer p̊a et substrat. Dette inklu-
derer blant annet observasjonen av plasmonisk hybridisering i et trunkert
metallisk nanoskall.
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1. Introduction

Optical properties of thin films and rough surfaces has long been a field of
great scientific interest. In particular, supported metallic nanostructures
have recently received a lot of attention due to their characteristic optical
properties in the visible range.

A common application which exploits these properties is the optical
monitoring and characterization of thin-film growth [2, 3]. Such films are
often produced by depositing material on a substrate in vacuum condi-
tions. If the substrate is poorly wetted by the material, three-dimensional
clusters, or islands, are formed in a so-called Volmer-Weber growth mode
[2]. Optical methods can be advantageous when monitoring such growth,
because of their non-disturbing nature and the possibility of in situ1 and
real-time measurements. Other surface probing techniques often involve
charged particles, which may disturb the particle growth, or other more
practical issues which make it difficult to perform the measurements in
situ or in real-time [2].

The optical measurement often used in these techniques is called Sur-
face Differential Reflectance Spectroscopy (SDRS) [3], which is performed
by measuring the difference in reflectance between the bare and coated
substrate for different wavelengths in and around the visible range. The
SDR spectrum is also denoted by ∆R/R.

For the case of island films, the wavelengths of the visible light (380–
740 nm) can be more than two orders of magnitude longer than the size
of a typical island (around 2–20 nm). One does therefore not immediately
expect the light to be able to resolve the structure of the islands, due to the
diffraction limit of visible light. Although this is true for imaging, it turns
out that it is still possible to extract information about the the size and
shape of the islands from their optical properties. This is due to so-called
plasmon resonances, which arise from oscillations in the charge density of
the islands when they are subjected to an external field. The energies at

1In place, during the process.
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1. Introduction

which these resonances occur depend on the dielectric properties of the
islands, but are also highly sensitive to their size and shape. This can be
utilized in the characterization of the islands.

In recent years, this ability to study metallic nanostructures using light
in and around the visible frequency range has gained a lot of attention,
and is now often referred to as the field of plasmonics or nanoplasmonics.
This is in part due to the interesting physics of plasmonic interactions,
but can also be attributed to the wide range of applications which exploit
these properties. Some examples of such applications are new methods of
spectroscopy [4] and biomedical applications ranging from home pregnancy
tests [5] and other advanced biosensors [6] to possible cancer treatments
[4].

In the 1970’s Bedeaux and Vlieger [7], developed a model for the optical
properties of boundary layers on a surface, where the thickness of a layer
is small compared to the wavelength of the incident light. This model is
particularly useful for island films, and improved upon the earlier models,
like the one introduced by Maxwell Garnett at the turn of the nineteenth
century [7]. The Bedeaux-Vlieger model introduces effective boundary con-
ditions dependent on so-called surface susceptibilities. These determines
the far-field behaviour of the electromagnetic field, and lets one calculate
the optical properties of the surface without knowing the exact behaviour
of the fields close to the surface.

GranFilm [8] is a software package developed by I. Simonsen and
R. Lazzari, which calculates the optical properties of island films (or gran-
ular films) by modelling the particle clusters as spherical or spheroidal
islands and applying the Bedeaux-Vlieger model. An example of the use
of this software can be seen in Fig. 1.1, where a film of silver islands is
supported on a MgO substrate. The surface differential reflectance spec-
trum (SDRS) is calculated and compared to the measured spectrum of
the sample. The resulting curve can be seen in Fig. 1.1b. The peak and
the valley in the spectrum are due to the plasmon excitations, and their
positions on the energy axis are highly dependent on the shapes and sizes
of the islands.

The software currently includes the possibility of modelling the clusters
as spherical or oblate spheroidal particles, truncated by the substrate.
Additionally, the particles may also have an arbitrary number of coating
layers. One example where such a coating layer is relevant is the case of
a film of metallic islands that have been exposed to oxygen, and where
an oxide layer has been built up on the surface of the islands. Another

2



1. Introduction

(a) (b)

Figure 1.1: (a) A granular film of silver islands on a substrate of magnesium
oxide. (b) The differential reflectance of the surface as calculated
using GranFilm and measured in an experiment. Pictures taken
from [8].

case where this could be useful is for metallic nano-shells, which have been
found to have many interesting properties [9].

One particle shape which is currently not supported in GranFilm is trun-
cated prolate spheroidal islands with coating layers. After deriving the set
of equations for the potential multipole expansion in this geometry in my
specialization project [1], it is now the subject of this thesis to implement,
test and apply this functionality in GranFilm. In particular, the goals
of this thesis can be stated as follows:

• Implement numerically the equations derived in [1] for the optical
properties of truncated and coated prolate spheroidal island films
into the existing GranFilm 2.0 framework.

• Test the implementation in the appropriate limits, in order to ensure
that it is correct.

• Use the GranFilm software to study the resonance modes of various
spheroidal and spherical island films in detail.

In his MSc. thesis the spring of 2012, E. Aursand developed the corres-
ponding equations for the case of coated and truncated oblate spheroids,
and implemented these results in GranFilm. For consistency, many of
the same numerical tests as used in his thesis, were also used in this work
in order to verify the correctness of the implementation.

3



1. Introduction

Roughly speaking, this report consists of two parts. The first part, chapters
2–5, covers some theoretical background and the analytical derivation of
the optical properties of truncated and coated prolate spheroidal island
films. These chapters are slightly edited versions of the same chapters in
[1], and are included here for the sake of completeness. An exception is the
new section 2.3, which covers some theory on plasmonics. The second part
consists of chapters 6–8. Specifically, chapter 6 covers the implementation
and the subsequent testing of the new functionality in the GranFilm
software, while chapter 7 covers the modelling and characterization of the
plasmonic resonance modes of various island films. Chapter 8 contains a
summary of the results and some concluding remarks.

In addition to this, some technical details of the implementation are
included in the Appendices. These can hopefully serve as helpful supple-
ments to anyone interested in doing further work on the new parts of the
GranFilm source code.

4



2. Background

In this chapter, the theory for calculating optical properties of granular
films, as developed by Bedeaux and Vlieger [7], will be presented. In this
model the non-flat surface is treated as a perturbation to the simple case
of a flat interface between two media. The perturbation is introduced
in a formalism called excess quantities which leads to a set of effective
boundary conditions for the surface region.

For completeness a short recapitulation of the optical properties of flat
surfaces is included in section 2.1. In section 2.2, the theory of non-sharp
interfaces is presented. In section 2.3, the field of plasmonics is intro-
duced and discussed briefly. This is later used to describe the resonance
phenomena observed in granular thin films.

2.1. Optical properties of a sharp interface

In the simplest form, a surface can be seen as a flat discontinuity between
two media with different electric and magnetic properties. An example
of such a sharp interface can be seen in Figure 2.1, where light incident
on the interface between two different media (denoted by + and −) is
partly reflected and partly transmitted. The relations between the incid-
ent, reflected and transmitted parts of the wave is what we call the optical
properties of this particular surface.

The starting point when finding these relations is Maxwell’s equations
[10]

∇ ·D = ρf , ∇×E = −∂B

∂t
,

∇ ·B = 0, ∇×H = Jf +
∂D

∂t
,

(2.1)

where E is the electric field, B is the magnetic induction, D is the electric
displacement field, H is the magnetic field, ρf is the free charge and Jf
is the free current. From these equations a set of boundary conditions for

5



2.1. Optical properties of a sharp interface 2. Background

Figure 2.1: A light beam is partly transmitted and partly reflected on an interface
between two media with refractive indices n+ and n−. Note the two
possible orientations of the electric field vector E, corresponding to
s- and p-polarized light.

the interface between two media can be found [10]

D⊥+ = D⊥−, E
‖
+ = E

‖
−,

B⊥+ = B⊥− , H
‖
+ = H

‖
−,

(2.2)

where the subscript + or − denotes the field just above or just below the
interface, respectively. The superscript ⊥ denotes the component normal
to the surface, while ‖ denotes the tangential component.

From the boundary conditions the relation between the amplitudes of the
incident and transmitted wave (t), and between the amplitudes of the
incident and reflected wave (r), can be found. These relations are called

6



2. Background 2.2. Optical properties of non-sharp interfaces

the Fresnel coefficients, and are given by [10]

rs =
n+ cos θi − n− cos θt
n+ cos θi + n− cos θt

ts =
2n+ cos θi

n+ cos θi + n− cos θt

rp =
n− cos θi − n+ cos θt
n+ cos θt + n− cos θi

tp =
2n+ cos θi

n+ cos θt + n− cos θi
.

(2.3)

Here n+ and n− are the refractive indices of medium + and medium −,
respectively, θi is the angle of incidence, θr is the angle of reflection and
θt is the angle of transmission. See Figure 2.1 for an illustration. From
the same derivation, the laws of reflection and refraction (also known as
Snell’s law) are found:

θi = θr

n+ sin θi = n− sin θr.
(2.4)

The subscripts s and p of the reflection and transmission coefficients in
Eq. (2.3) denote the two possible orientations of the electric field E in
the incident light. In the case that E lies in the plane defined by the
incident and reflected wave vectors, we have so-called p-polarized light
(from parallel). If E is directed normal to this plane, i.e. parallel to the
surface, we have s-polarization (from the German word for orthogonal,
senkrecht). See Figure 2.1 for an illustration of s- and p-polarization.

2.2. Optical properties of non-sharp interfaces

Calculation of the electromagnetic field close to the surface of a non-sharp
interface quickly becomes very complex. It is therefore in general not pos-
sible to calculate the Fresnel coefficients of such a surface directly as done
in the previous section. Using the formalism of Bedeaux and Vlieger, how-
ever, one can find expressions for these coefficients, and thus the macro-
scopic optical properties of the interface, without having exact knowledge
about the electromagnetic fields close to the surface.

2.2.1. Excess fields and effective boundary conditions

An excess of a field is defined as the difference between the real fields and
the bulk fields extrapolated to the surface. For the electric field E, the

7



2.2. Optical properties of non-sharp interfaces 2. Background

excess field can be written as

Eex(r, t) = E(r, t)−E−(r, t)θ(−z)−E+(r, t)θ(z) (2.5)

where E is the actual field and E± are the fields in the bulk regions above
(+) and below (−) the surface, extrapolated to the surface at z = 0. The
fields are cut off using the Heaviside unit step function, denoted by θ(z).
It is clear from the definition that the excess fields are only significantly
different from zero in the region close to the surface, since E(r) = E±(r)
as z → ±∞. Excesses of other quantities are defined in the same way.

Inserting Eq. (2.5) and its equivalents into the Maxwell equations (2.1),
we get the following equations for the excess fields

∇×Eex(r, t) + ẑ×
[
E+
‖ (r‖, t)−E−‖ (r‖, t)

]
z=0

δ(z)

= − ∂

∂t
Bex(r, t) (2.6a)

∇ ·Dex(r, t) +
[
D+
z (r‖, t)−

[
D−z (r‖, t)

]
z=0

δ(z) = ρex(r, t) (2.6b)

∇×Hex(r, t) + ẑ×
[
H+
‖ (r‖, t)−H−‖ (r‖, t)

]
z=0

δ(z)

=
∂

∂t
Dex(r, t) + Jex(r, t) (2.6c)

∇ ·Bex(r, t) +
[
B+
z (r‖, t)−

[
B−z (r‖, t)

]
z=0

δ(z) = 0. (2.6d)

The subscript ‖ indicates the projection of a vector into the xy-plane, while
the subscript z means the z-component of the vector. The vector ẑ is the
unit vector normal to the dividing reference surface, which is defined as
z = 0. It has also been used that ∇θ(z) = δ(z). By integrating Eq. (2.6)
along the z-axis, we get the following boundary conditions for the fields

8



2. Background 2.2. Optical properties of non-sharp interfaces

in the bulk media, extrapolated to the reference surface[
E+
x (r‖, t)− E−x (r‖, t)

]
z=0

=
∂

∂x
Esz(r‖, t)−

∂

∂t
Bs
y(r‖, t) (2.7a)[

E+
y (r‖, t)− E−y (r‖, t)

]
z=0

=
∂

∂y
Esz(r‖, t) +

∂

∂t
Bs
x(r‖, t) (2.7b)[

D+
z (r‖, t)−D−z (r‖, t)

]
z=0

=−∇‖ ·Ds
‖(r‖, t) + ρs(r‖, t) (2.7c)[

H+
x (r‖, t)−H−x (r‖, t)

]
z=0

=
∂

∂x
Hs
z (r‖, t)

+
∂

∂t
Ds
y(r‖, t) + Jsy (r‖, t) (2.7d)[

H+
y (r‖, t)−H−y (r‖, t)

]
z=0

=
∂

∂y
Hs
z (r‖, t)

− ∂

∂t
Ds
x(r‖, t)− Jsx(r‖, t) (2.7e)[

B+
z (r‖, t)−B−z (r‖, t)

]
z=0

=−∇‖ ·Bs
‖(r‖, t). (2.7f)

The superscript s indicates a total excess quantity, i.e. that an excess
quantity has been integrated along the entire z-axis. The operator

∇‖ =
[ ∂
∂x
,
∂

∂y

]
(2.8)

is the gradient operator in the xy-plane, while r‖ = [x, y] is the position
vector in the xy-plane. The boundary conditions in Eq. (2.7) can be viewed
as the effective boundary conditions for the fields in the bulk media far
away from the surface.

In order to relate these boundary conditions to the physical properties of
the surface, polarization and magnetization densities can be introduced.
The total excess polarization and magnetization densities are given by [7]

Ps(r‖, t) ≡
[
Ds
‖(r‖, t),−ε0E

s
z(r‖, t)

]
(2.9)

and

Ms(r‖, t) ≡
[ 1

µ0
Bs
‖(r‖, t),−H

s
z (r‖, t)

]
, (2.10)

respectively. The superscript s again indicates a total excess. Here ε0 and
µ0 are the electric permittivity and magnetic permeability of vacuum, re-
spectively. It should be noted that these total excesses are the proper

9



2.2. Optical properties of non-sharp interfaces 2. Background

expressions for the surface polarization and magnetization in every partic-
ular surface system, and can not be obtained by integrating some excess
polarization or magnetization along the z-axis [7].

The effective boundary conditions in Eq. (2.7) can now be rewritten in
terms of the total excess surface polarization and magnetization densities
in Eqs. (2.9) and (2.10):[

E+
‖ (r‖, t)−E−‖ (r‖, t)

]
z=0

= µ0ẑ×
∂

∂t
Ms
‖(r‖, t)

− 1

ε0
∇‖P sz (r‖, t) (2.11a)[

D+
z (r‖, t)−D−z (r‖, t)

]
z=0

= ρs(r‖, t)−∇‖ ·Ps
‖(r‖, t) (2.11b)[

H+
‖ (r‖, t)−H−‖ (r‖, t)

]
z=0

= − ẑ× Js‖(r‖, t)−∇‖M s
z (r‖, t)

− ẑ× ∂

∂t
Ps
‖(r‖, t) (2.11c)[

B+
z (r‖, t)−B−z (r‖, t)

]
z=0

= − µ0∇‖ ·Ms
‖(r‖, t). (2.11d)

Notice that if all current and charge densities on the interface are zero, as
well as the surface polarization and magnetization densities, these bound-
ary conditions reduce to those for a sharp interface defined in Eq. (2.2),
as they should.

In time-dependent problems it can often be convenient to introduce a gen-
eralized electric displacement field, defined in terms of the Fourier trans-
formed displacement field and current density as

D′(r, ω) ≡ D(r, ω) +
i

ω
J(r, ω), (2.12)

where ω is the frequency. The surface polarization density can now also
be written in generalized form as

P′
s
(r‖, ω) ≡

[
D′

s
‖(r‖, ω),−ε0E

s
z(r‖, ω)

]
. (2.13)

By Fourier transforming Eq. (2.11) and using conservation of charge, which
can be written in the frequency domain as

iωρ(r, ω) = ∇J(r, ω), (2.14)

10



2. Background 2.2. Optical properties of non-sharp interfaces

the boundary conditions can now be rewritten using Eq. (2.13):[
E+
‖ (r‖, ω)−E−‖ (r‖, ω)

]
z=0

= − iωµ0ẑ×Ms
‖(r‖, ω)

− 1

ε0
∇‖P ′

s
z(r‖, ω) (2.15a)[

D+
z (r‖, ω)−D−z (r‖, ω)

]
z=0

= −∇‖ ·P′
s
‖(r‖, ω) (2.15b)[

H+
‖ (r‖, ω)−H−‖ (r‖, ω)

]
z=0

= iωẑ×P′
s
‖(r‖, ω)−∇‖M s

z (r‖, ω) (2.15c)[
B+
z (r‖, ω)−B−z (r‖, ω)

]
z=0

= − µ0∇‖ ·Ms
‖(r‖, ω). (2.15d)

In the following the notation will be simplified by dropping the primes,
and D and P will now denote the generalized displacement field and the
generalized surface polarization density, respectively.

2.2.2. Constitutive relations

In order for these boundary conditions to have any practical use, we need
relations characteristic of the surface that link the interfacial polarization
and magnetization densities, Ps(r‖, ω) and Ms(r‖, ω), and the bulk fields
extrapolated to the surface. These constitutive relations are in the case of
no spatial dispersion given by [7]

Ps(r‖, ω) = ξse(ω) ·
[
Ē‖(r‖, ω), D̄z(r‖, ω)

]
(2.16a)

Ms(r‖, ω) = ξsm(ω) ·
[
H̄‖(r‖, ω), B̄z(r‖, ω)

]
. (2.16b)

Here ξse,m(ω) are constitutive tensors and the bar indicates that the aver-
age of the two corresponding extrapolated fields over the dividing surface
(z = 0) should be used. For an arbitrary field a, this average is simply

ā(r‖, ω) ≡ 1

2

[
a−(r‖, ω)|z=0 + a+(r‖, ω)|z=0

]
(2.17)

In the case of an isotropic, homogeneous and symmetric interface, the
constitutive tensor for the polarization is given by [7, 3]

ξse(ω) =

γe(ω) 0 0
0 γe(ω) 0
0 0 βe(ω)

 , (2.18)

11



2.2. Optical properties of non-sharp interfaces 2. Background

where γe(ω) and βe(ω) are the first order surface susceptibilities. Physic-
ally, these surface susceptibilities describe the ability of the surface to be
polarized in directions parallel (γ) or perpendicular (β) to the surface. By
substituting Eq. (2.18) into Eq. (2.16a), we now get the following relations
for the surface polarization density

Ps(r‖, ω) = γe(ω)Ē‖(r‖, ω) (2.19a)

P sz (r‖, ω) = βe(ω)D̄z(r‖, ω). (2.19b)

In the following, the discussion will be limited to non-magnetic materials,
and Ms will thus be equal to zero. It will therefore not be necessary to
specify a constitutive tensor for the magnetization. In order to simplify
notation, the subscript and explicit frequency dependence will from now
on be dropped from the surface susceptibilities, so that γ = γe(ω) and
β = βe(ω).

Eqs. (2.16a) and (2.18) do not take into account the possible spatial dis-
persion at the interface. These effects can be described by introducing
the second order surface susceptibilities δ and τ . These coefficients are
smaller than the first order coefficients γ and β by a factor d/λ, where
d is the thickness of the surface region and λ is the optical wavelength.
They can therefore be neglected in the limit where the surface layer is thin
compared to the wavelength of the light [7, 3].

In the derivation of the effective boundary conditions, the dividing sur-
face between the two bulk media was chosen at some plane z = 0 in the
boundary region. The exact position of the dividing surface is obviously
just a mathematical convenience, and should not have any physical relev-
ance. The measurable physical quantities of the surface can therefore not
depend on this choice of dividing surface. It turns out that the surface
susceptibilities depend on this choice, however, it is possible to construct
so-called invariants or combinations of the surface susceptibilities that are
independent of the dividing surface. All measurable quantities can then
be given in terms of these combinations. An extensive discussion on such
invariants can be found in [7].

2.2.3. Reflection and transmission coefficients

The Fresnel coefficients of the surface may now be calculated using the
same procedure as the one outlined in section 2.1, but this time using the
effective boundary conditions in Eq. (2.15) and the constitutive relation in
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Eq. (2.19). From this derivation one finds that the laws of reflection and
refraction, Eq. (2.4), remain unmodified. Assuming non-magnetic media
(Ms = 0) and no spatial dispersion (δ = 0, τ = 0), the following reflection
and transmission coefficients can be found for s-polarized light [7, 3]

rs(ω) =
n− cos θi − n+ cos θt + i(ω/c)γ

n− cos θi + n+ cos θt − i(ω/c)γ
, (2.20)

ts(ω) =
2n− cos θi

n− cos θi + n+ cos θt − i(ω/c)γ
. (2.21)

For p-polarized light the coefficients take the form

rp(ω) =
κ−(ω)− i(ω/c)γ cos θi cos θt + i(ω/c)n−n+ε−β sin2 θi

κ+(ω)− i(ω/c)γ cos θi cos θt − i(ω/c)n−n+ε−β sin2 θi
(2.22)

and

tp(ω) =

[
1 + (ω/2c)2ε−γβ sin2 θi

]
κ+(ω)− i(ω/c)γ cos θi cos θt − i(ω/c)n−n+ε−β sin2 θi

, (2.23)

where

κ±(ω) = (n+ cos θi ± n− cos θt)
(

1− ω2

4c2
ε−γβ sin2 θi

)
. (2.24)

Here n± is the refractive index for the bulk regions above (+) and below
(−) the surface. For non-magnetic materials n =

√
ε, where ε is the relat-

ive permittivity of the medium. The angles of incidence and transmission
are given by θi and θt, respectively. The constant c = 1/

√
ε0µ0 is the

speed of light in vacuum.

We notice from Eqs. (2.20) – (2.23) that the coefficients for the s-
polarized wave only involves the surface susceptibility γ, while the coef-
ficients for the p-polarized wave involve both γ and β (remember that γ
corresponds to an excitation of a mode parallel to the surface, while β cor-
responds to an excitation of a mode normal to the surface). This makes
sense, since the s-polarized light only has an E-component parallel to the
surface, while the p-polarized light has E-components both parallel and
perpendicular to the surface.

It is also worth noting that in the limit of a disappearing boundary
region where γ = β = 0, i.e. a perfectly sharp interface, Eqs. (2.20) –
(2.23) reduce to the ordinary Fresnel coefficients, Eq. (2.3), as expected.
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2.3. Plasmonics

The interaction between light and a non-sharp interface consisting of
metallic nanoparticles on a surface can also be described in terms of plas-
monics. Plasmonics or nanoplasmonics is the study of the interaction
between electromagnetic radiation and metallic nanostructures of sizes
much smaller than the wavelength [11]. The name is derived from plas-
mon which is the quasiparticle resulting from the quantization of oscilla-
tions in a plasma. An example of such plasma oscillations is the collective
oscillations of the charge density in a metal.

This section is not meant to be a comprehensive review of the field of
plasmonics, but rather an introduction to some of the terms used in later
chapters. A thorough treatment of this subject can be found in several
textbooks, such as [11].

The combination of visible light and metallic particles of nanometer-size
leads to characteristic behaviours which cannot be reproduced at other
scales and spectral ranges. Nanoplasmonics can therefore be said to unfold
on a characteristic length scale between 2 and 20 nm [5]. This is due to
the strong frequency dependence in the properties of the materials, and
most of the physics in the interaction between the light and the metallic
islands is therefore contained in the complex dielectric functions of the
materials [12].

In later chapters, metallic island particles of different shapes and sizes
on a substrate will be studied. The plasmons excited in such nanoparticles
are so-called localized surface plasmons, since they do not propagate1.
These plasmons are quanta of the excitations of the conduction electrons in
the metallic island, due to the coupling with the electromagnetic field [11].
The free electrons are periodically displaced from the ion lattice, driven
by the incident light. The displacement results in a build-up of opposite
charges on opposite sides of the particle, which leads to a restoring force
on the electrons. The result is a damped electron oscillator.

The frequency of the surface plasmon depends not only on the proper-
ties of the island material, but also on its size and shape and the proper-
ties of the surrounding material(s). An important property of the surface
plasmon is the so-called quality factor Q, which is a measure of how many
oscillations the surface plasmon undergoes before it decays, and therefore
is related to the lifetime of the plasmon. The quality factor Q can be
expressed through the real and imaginary parts of the complex dielectric

1Unlike the surface plasmon polaritons (SPP’s), which do propagate.
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function of the metal in the following way [5]

Q = −Re[εm]

Im[εm]
. (2.25)

2.3.1. Plasmonic hybridization

When combining simple plasmonic systems into more complex ones, the
plasmon resonances of the new structure can be found by combining the
fundamental resonances of the individual parts, as demonstrated by [9].

The simplest example of this is the combination of a metallic sphere
and a spherical cavity in a metal into a spherical shell. Such a cavity
or void can also support a plasmon mode, very similar to that of a solid
spherical particle. It turns out that the plasmon modes of the combined
system can be found from a hybridization of the dipolar modes of the two
simpler systems. It can be shown [11] that the dipolar plasmon in the
metallic sphere will have a resonance frequency of

ωsp =
ωB√

3
, (2.26)

while the spherical cavity plasmon has a resonance frequency of

ωc =

√
2

3
ωB, (2.27)

where ωB is the bulk plasma frequency of the metal. When combining the
two geometries, these two fundamental resonances will interact with each
other and split into two new plasmons, a low energy symmetric one (−)
and a high energy antisymmetric one (+), such that

E− < Esphere < Ecavity < E+, (2.28)

where Esphere and Ecavity are the energies of the plasmon in the original
metallic sphere system and spherical cavity system, respectively. This is
illustrated in Figure 2.2.
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2.3. Plasmonics 2. Background

Figure 2.2: Schematic of the energy levels showing the hybridization of the di-
polar plasmons in the metallic shell system resulting from the in-
teraction between the sphere and cavity plasmons. The two shell
plasmons are split into a high energy antisymmetric mode and a low
energy symmetric mode. Figure from [9].
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3. Island geometry

In the previous chapter it was outlined how one can calculate the mac-
roscopic optical properties of a general boundary layer between two bulk
media, once the surface susceptibilities of that boundary are known. These
coefficients in general depend on the properties of the specific boundary,
and must be calculated for each individual case. In this and the following
chapter, a boundary consisting of a thin film of truncated and coated pro-
late spheroidal particles is treated, and the surface susceptibilities for this
system are calculated from the particle polarizabilities using a quasi-static
approximation.

The system considered in the following is depicted in Figure 3.1. It
consists of a film of identical prolate spheroidal particles on a substrate,
with the symmetry axis of the particles perpendicular to the substrate.
The particles may have a number of concentric coating layers, and may
also be truncated by the substrate.

When calculating the surface susceptibilities of this boundary layer,
the assumption is made that the film of particles (or islands) is of low
coverage. This simplifies the problem considerably, since it means that
the polarizability of a single island can be calculated first, and then later
corrected for interactions with neighboring islands. The calculation of the
single island polarizability is performed in chapter 4.

In this chapter the geometry of this single island system is studied in
detail, and concepts are introduced which will be needed when perform-
ing the calculations in the next chapter. In sections 3.1 and 3.2 prolate
spheroids in general and the prolate spheroidal coordinate system are dis-
cussed. In sections 3.3 – 3.5 some definitions and relations to be used in
later chapters are defined.

3.1. Spheroids

A spheroid is generated by rotating an ellipse around one of its axes.
Rotation around the minor axis yields an oblate spheroid, while rotation
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3.1. Spheroids 3. Island geometry

Figure 3.1: Cross-section of the surface system. A flat substrate is covered by
prolate spheroidal islands with their axis of symmetry orthogonal to
the substrate. The density of islands is assumed to be low. The island
size is small compared to the wavelength of the incident light.

around the major axis yields a prolate spheroid. The equation describing
a prolate spheroid is

x2 + y2

R‖
+

z2

R⊥
= 1 (3.1)

where R‖ is the semiminor and R⊥ is the semimajor axis of the ellipse
(cf. Fig. 3.2). The subscripts of these radii denote the fact that the prolate
spheroid in our system will have its symmetry axis (i.e. the major axis)
orthogonal to the substrate.

In order to define a spheroid, one needs two parameters. These can be
the two radii R‖ and R⊥, but in many cases it can be advantageous to use
another pair of parameters. An important property of a spheroid is the
distance from the center to the two focal points, which lie on the major
axis of the rotated ellipse, i.e. on the axis of revolution of the prolate
spheroid. This distance, called the focal radius, is denoted by a in the
following, and is given by the two radii [13]

a =
√
R2
⊥ −R2

‖. (3.2)

Another important property of the prolate spheroid is the so-called elong-
ation parameter ξ0, defined as

ξ0 =
R⊥
a

=
R⊥√

R2
⊥ −R2

‖

, (3.3)

with 1 ≤ ξ0 < ∞. A spheroid can now be defined by the two numbers
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a, ξ0, which leads to the radii

R⊥ = aξ0

R‖ = a
√
ξ2

0 − 1.
(3.4)

At the limits of the two parameters a, ξ0, the spheroid takes the form

ξ0 →∞, a→ 0, aξ0 = R : Sphere with radius R

ξ0 → 1 : Needle with length 2a.
(3.5)

The parameters a, ξ0 are important when defining the prolate spheroidal
coordinate system (ξ, η, φ), which is used later. In these coordinates, ξ
is the ‘radial’ component, and a surface of constant ξ = ξ0 is a prolate
spheroid with a ξ0 of this value.

Figure 3.2: Cross-section of a single prolate spheroidal island, truncated by the
substrate, including all important spheroid parameters. Here the
Cartesian coordinate system with origin in the spheroid center is also
specified.
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3.2. Prolate spheroidal coordinates

A coordinate system fit for the spheroidal symmetry of our system is the
prolate spheroidal coordinate system (ξ, η, φ). This is an orthogonal co-
ordinate system, similar in many ways to the spherical coordinates (r, θ, φ).
The mapping from Cartesian coordinates to prolate spheroidal ones is
defined as follows

ξ ≡ ρ1 + ρ2

2a
,

η ≡ ρ1 − ρ2

2a
,

φ ≡ arctan
(y
x

)
,

(3.6)

where
ρ1 ≡

√
(z + a)2 + x2 + y2,

ρ2 ≡
√

(z − a)2 + x2 + y2.
(3.7)

Here ρ1 and ρ2 are the distances from a point (x, y, z) to the two foci lying
on the z-axis and φ is the angle between the x-axis and the projection of
the vector from the origin to the point (x, y, z) on the (x, y)-plane.

The values of ξ, η, φ have the following ranges

1 ≤ ξ <∞,
−1 ≤ η ≤ 1,

0 ≤ φ < 2π.

(3.8)

The prolate spheroidal coordinates can be seen as a generalization of the
spherical coordinates (r, θ, φ). Whereas in spherical coordinates surfaces
of constant r are concentric spheres, in prolate spheroidal coordinates the
surfaces of constant ξ are concentric prolate spheroids.

The transformation back to Cartesian coordinates can be performed
as follows

x = a
√

(ξ2 − 1)(1− η2) cosφ,

y = a
√

(ξ2 − 1)(1− η2) sinφ,

z = aξη.

(3.9)

It will in later sections be necessary to express the normal derivative at
the substrate surface in terms of prolate spheroidal coordinates. Since the
substrate is lying in the xy-plane, this corresponds to finding the derivative
with respect to z. This can be written in prolate spheroidal coordinates
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3. Island geometry 3.2. Prolate spheroidal coordinates

Figure 3.3: Illustration of the prolate spheroidal coordinate system in the xz-
plane, i.e. for φ = 0. Here the angle φ corresponds to a rotation
around z = 0. The red lines are surfaces of constant ξ (denoted
by µ in this figure), while the blue lines are surfaces of constant
ν = arccos η. Note that the red and blue lines are always orthogonal,
making the prolate spheroidal coordinates an orthogonal coordinate
system. Picture taken from [14].

as
∂

∂z
=
∂ξ

∂z

∂

∂ξ
+
∂η

∂z

∂

∂η
+
∂φ

∂z

∂

∂φ

=
∂

∂z

(
ρ1 + ρ2

2a

)
∂

∂ξ
+

∂

∂z

(
ρ1 − ρ2

2a

)
∂

∂η

=
η

a

(ξ2 − 1)

(ξ2 − η2)

∂

∂ξ
+
ξ

a

(1− η2)

(ξ2 − η2)

∂

∂η
.

(3.10)

In any coordinate systems it is useful to know how an infinitesimal step ds
in an arbitrary direction depends on the coordinates. This is described by
the metric tensor, which in prolate spheroidal coordinates takes the form

ds2 = gξξdξ
2 + gηηdη

2 + gφφdφ2 (3.11)

where ds is a curve element and gξξ, gηη, gφφ are the diagonal elements of
the metric tensor. All off-diagonal elements of the tensor are zero because
the prolate spheroidal coordinate system is an orthogonal system. These
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elements are given by [13]

gξξ =

(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

+

(
∂z

∂ξ

)2

= a2 ξ
2 − η2

ξ2 − 1

gηη =

(
∂x

∂η

)2

+

(
∂y

∂η

)2

+

(
∂z

∂η

)2

= a2 ξ
2 − η2

1− η2

gφφ =

(
∂x

∂φ

)2

+

(
∂y

∂φ

)2

+

(
∂z

∂φ

)2

= a2(ξ2 − 1)(1− η2).

(3.12)

3.3. Truncation

In order to completely specify the island in our system, we must also
introduce a third parameter. This is the so-called truncation ratio tr,
which determines where on the major axis the spheroid is truncated by
the substrate placed at z = d. The truncation ratio is defined as

tr =
d

R⊥
=

d

aξ0
(3.13)

and is defined in the range (−1 < tr < 1). When (0 < tr < 1), the center of
the spheroid lies above the substrate, while a spheroid with its center below
the substrate (sometimes called a spheroidal cap), has (−1 < tr < 0). A
hemispheroid has a truncation ratio of 0.

3.4. Concentric prolate spheroids

The spheroidal nanoparticles of our system may have an arbitrary number
of coating layers with different properties. In order to simplify calculations
of the boundary conditions, these layers of coating will be treated as con-
centric spheroids. Concentric spheroids differs from concentric spheres by
the fact that it is not sufficient for the spheroids to have the same cen-
ter for them to be concentric. As is seen from Eq. (3.6), the parameter
a is a constant in the prolate spheroidal coordinate system. This means
that in order for us to treat boundaries between different coating layers
as spheroidal surfaces of constant ξ in the same system of coordinates, we
must ensure that all these spheroids have the same focal distance a. An
example of concentric spheroids can be seen in Fig. 3.4.

3.4.1. Numbering convention

In the next sections, the medium above the substrate (the ambient) will
be denoted medium 1 and the substrate medium 2. The numbering of
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Figure 3.4: Cross-section of S = 4 concentric spheroids, i.e. spheroids with a
common center and parameter a. The black dots indicate the position
of the focus points, which are common for all the spheroids 1–4.

other media will be based on the number of layers in the island. The
spheroidal interfaces between layers of the island will be assigned a number
s = 1, 2, 3, ..., S, where S is the total number of spheroidal interfaces.
Now s = 1 corresponds to the outer surface of the particle, while s = S
corresponds to the innermost interface. If S = 1, we have an uncoated
particle. The different media adjacent to s are now named according to
Fig. 3.5, so that all odd-numbered media lie above the substrate, while all
even-numbered media lie below.

Each spheroidal interface s now has its own set of parameters R⊥,s,

R‖,s, ξ0,s and t
(s)
r . The focus distance a is the same for all the concentric

spheroids, as mentioned above. By introducing a radius ratio

χs =
R⊥,s
R⊥,1

≤ 1, (3.14)

where R⊥,1 is the semimajor axis of the outermost spheroid, one can ex-
press all these parameters in terms of this ratio and the parameters of the
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Figure 3.5: Illustration of the numbering convention used in this text for different
media adjacent to the spheroidal interface s.

outermost layer. One then gets the following relations

R⊥,s = χsR⊥,1

R‖,s =
√
R2
⊥,s − a2 =

√
(χsR⊥,1)2 − a2

ξ0,s =
R⊥,s
a

=
χsR⊥,1
a

t(s)r =
t
(1)
r

χs

(3.15)

The geometry of our system can now be completely specified by the para-

meters a, ξ0,1, t
(1)
r and χs.

The number of different regions N of our system depends on the trun-
cation ratio, since the substrate may or may not divide the spheroidal
interface s into two regions. From Eqs. (3.15) and (3.13), we see that if

t
(s)
r ≥ 1, or equivalently χs ≤ t

(1)
r , the spheroid s is not truncated by the

substrate. If none of the spheroidal layers are truncated, we have S + 2
media: One for each layer, in addition to the ambient and the substrate.
If all spheroids are truncated we get two different media for each layer,
i.e. 2S + 2 media in total. Hence, the total number of regions N lies
somewhere in the range S + 2 ≤ N ≤ 2S + 2.
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3.5. Transformations between z -shifted
coordinates

In the calculations of the potential in the different regions, a few differ-
ent coordinate systems will be used to account for multipoles in different
positions. All coordinate systems, however, will be prolate spheroidal co-
ordinates with the same parameter a. The only difference is the position
of the origin, which for all coordinate systems will lie on the z-axis.

In order to be able to express the solutions in terms of one set of
coordinates, we therefore need a mapping between two prolate spheroidal
coordinate systems (ξ, η, φ) and (ξ′, η′, φ′) where the latter has been shifted
a distance ∆z along the z-axis. The two first coordinate transformations
can be written as the functionals ξ′[∆z, a](ξ, η) and η′[∆z, a](ξ, η), while
for the last coordinate we have φ = φ′. From [7] we have

ξ′[∆z, a](ξ, η) =
1

2

√
2ξ

{
1 +

(∆z)2

a2ξ2
− 2∆z

aξ
η +

η2

ξ2

+

[(
1 +

(∆z)2

a2ξ2
− 2∆z

aξ
η +

η2

ξ2

)2

− 4

ξ2

(
∆z

aξ
− η
)2 ] 1

2

} 1
2

(3.16)

η′[∆z, a](ξ, η) =
√

2

(
η − ∆z

aξ

){
1 +

(∆z)2

a2ξ2
− 2∆z

aξ
η +

η2

ξ2

+

[(
1 +

(∆z)2

a2ξ2
− 2∆z

aξ
η +

η2

ξ2

)2

− 4

ξ2

(
∆z

aξ
− η
)2 ] 1

2

}− 1
2

(3.17)
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4. Polarizability calculations

In order to find the surface susceptibilities of the film of prolate spheroidal
islands, we first need to find the polarizability of a single island. It turns
out that in the limit of small islands, compared to the wavelength of the
incident radiation, this is equivalent to finding the electrostatic potential
in all regions inside and around the island.

The system treated in this chapter is depicted in Fig. 4.1. Note that
the parts of the spheroid below the substrate are treated as separate re-
gions with individual dielectric functions ε(ω). In many real systems these
regions are either part of the substrate or the island, but as will be clear
in later sections, it is convenient mathematically to treat them as separate
regions. In an actual system, they can later be made a part of e.g. the sub-
strate simply by setting ε(ω) in all regions below the substrate boundary
equal.

In sections 4.1 – 4.9 the potential problem is solved using a multipole
expansion in the quasi-static limit. The multipole expansion coefficients
are then used for finding the island polarizability and subsequently the
surface susceptibilities in sections 4.10 and 4.11.

4.1. Laplace’s equation and boundary
conditions

Since the size of the islands is assumed small compared to the wavelength
of the incoming light, one can treat the incoming radiation as a homogen-
eous field and neglect retardation effects, i.e. consider the propagation of
the field to be instantaneous over the region in question. This is called
the quasi-static limit, and lets one describe the system using electrostat-
ics. By removing all time derivatives, and also assuming no free charge or
current present, the two first Maxwell equations (2.1) can be written

∇ ·D = 0, ∇×E = 0. (4.1)
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Figure 4.1: Cross-section of a single island with one coating layer, i.e. S = 2.
All regions are assumed to have their own dielectric function ε(ω).
The multipole expansion points µ and µ̄ are placed on the z-axis,
equidistant from the substrate at z = d.

The electric field E can in electrostatics be expressed from the gradient of
a scalar potential ψ

E(r) = −∇ψ(r). (4.2)

By noting that E = D/ε and inserting Eq. (4.2) into Eq. (4.1), we get the
Laplace equation for the electric potential

∇2ψ(r) = 0. (4.3)

Eq. (4.3) has infinitely many solutions, but combined with a set of bound-
ary conditions, there is one unique solution for our system, as dictated by
the uniqueness theorem [10].

The boundary conditions for the potential ψ(r) on the interface be-
tween two media (denoted by + and −), which follow from Eqs. (4.2) and
(2.2), can be expressed like this

ψ+(r+) = ψ−(r−), (4.4a)
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ε+(ω)
∂

∂n
ψ+(r+) = ε−(ω)

∂

∂n
ψ−(r−), (4.4b)

∀ r ∈ ∂Ω+−.

Here ε±(ω) are the dielectric functions for medium + and −, ∂Ω+− is the
interface between medium + and medium −, r± is a point on the interface
just inside medium + or − and ∂

∂n = n̂ ·∇ is the normal derivative at the
interface.

Another condition is the requirement of a finite-valued potential ψ(r)
everywhere, i.e. that

|ψ(r)| <∞, ∀ r. (4.5)

This means that we in particular must ensure that the potential is finite
when r = 0 and as r→∞.

4.2. General solution of Laplace’s equation

It turns out that Laplace’s equation is separable in prolate spheroidal
coordinates (defined in section 3.2), with the following complete set of
functions as solutions [7]

ψ
(1)
`m(r) = Pm` (ξ)Y m

` (arccos η, φ) (4.6a)

ψ
(2)
`m(r) = Qm` (ξ)Y m

` (arccos η, φ) (4.6b)

` = 0,1, 2, ...; m = 0,±1,±2, ...± `.

Here Pm` (ξ) and Qm` (ξ) are the associated Legendre functions of first and
second order, respectively. The first order functions Pm` (ξ) are given by

Pm` (ξ) ≡(−i)m (ξ2 − 1)m/2

2``!

(
d

dξ

)`+m
(ξ2 − 1)`, (4.7)

and has the symmetry property

Pm` (−ξ) = (−1)`+mPm` (ξ). (4.8)

The second order functions Qm` (ξ) are given by

Qm` (ξ) ≡(−1)m
(ξ2 − 1)m/2

2``!

(
d

dξ

)m{( d

dξ

)` [
ln

(
ξ + 1

ξ − 1

)
(ξ2 − 1)`

]

− 1

2
ln

(
ξ + 1

ξ − 1

)(
d

dξ

)`
(ξ2 − 1)`

}
,

(4.9)
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for 1 ≤ ξ <∞ and m ≥ 0. For m < 0, one has the relations

Pm` (ξ) ≡(−1)m
(`+m)!

(`−m)!
P−m` (ξ),

Qm` (ξ) ≡(`+m)!

(`−m)!
Q−m` (ξ).

(4.10)

The spherical harmonics, Y m
` (arccos η, φ), are defined as

Y m
` (arccos η, φ) ≡

√
(2`+ 1)(`−m)!

4π(`+m)!
(−1)mPm` (η)eimφ, (4.11)

where, again, Pm` (η) are the associated Legendre functions of first order,
as defined by Eq. (4.7). For the spherical harmonics we have the orthonor-
mality relation∫ 2π

0
dφ

∫ 1

−1
dξ [Y m

` (arccos η, φ)]∗ Y m′
`′ (arccos η, φ) = δ``′δmm′ , (4.12)

where the asterisk denotes a complex conjugation and δ is the Kronecker
delta. Another useful relation involving spherical harmonics is the follow-
ing:∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ Y m′
`′ (arccos η′, φ) = δmm′ζm``′P

m
` (η)Pm

′
`′ (η′).

(4.13)
This follows from the orthogonality relation∫ 2π

0
dφ ei(m−m

′)φ = 2πδmm′ . (4.14)

Here the quantity ζm``′ is introduced, which is defined as

ζm``′ ≡
1

2

√
(2`+ 1)(2`′ + 1)(`−m)!(`′ −m)!

(`+m)!(`′ +m)!
. (4.15)

From Eq. (4.8) we see that the spherical harmonics Y m
` have the following

symmetry in the coordinate η

Y m
` (arccos(−η), φ) = (−1)`+mY m

` (arccos η, φ). (4.16)

30



4. Polarizability calculations 4.3. Multipole expansions

4.3. Multipole expansion of the potential

Since we are interested in the potentials far from the substrate relative to
the size of the islands, it is convenient to express the potential as a multi-
pole expansion [10] in terms of the complete set of solutions in Eq. (4.6). In
a region ξ1 ≤ ξ ≤ ξ2 without any sources, the general solution of Laplace’s
equation in prolate spheroidal coordinates can now be written

ψ(r) =
∑
`m

A`mZ̃
m
` (ξ, a)Y m

` (arccos η, φ)

+
∑
`m

B`mX̃
m
` (ξ, a)Y m

` (arccos η, φ),

(4.17)

where A`m and B`m are the so-called expansion coefficients and 0 ≤ ` <
∞, −` ≤ m ≤ `. For convenience the following functions have been
introduced here

X̃m
` (ξ, a) ≡ im (`−m)!

(2`− 1)!!
a`Pm` (ξ), (4.18a)

Z̃m` (ξ, a) ≡ (2`+ 1)!!

(`+m)!
a−`−1Qm` (ξ), (4.18b)

where the double factorial is defined as follows

n!! ≡


1 · 3 · 5 · ... · (n− 2) · n for n odd

2 · 4 · 6 · ... · (n− 2) · n for n even

1 for n = 0,−1.

(4.19)

It can be shown [7] that in the long distance (and spherical) limit (ξ →∞),
the functions X̃m

` (ξ, a) and Z̃m` (ξ, a) become

X̃m
` (ξ, a) ' (ξa)` ' r` for ξ →∞

Z̃m` (ξ, a) ' (ξa)−`−1 ' r−`−1 for ξ →∞.
(4.20)

These functions thus describe the ‘radial’ part of the solution, in analogy
to the radial part of the general solution in spherical coordinates. The
response of the island can now be described by a multipole placed on the
z-axis somewhere inside the island. This multipole is denoted by µ in the
following, and its position in the main coordinate system with origin at
the center of the island by Pµ = (0, 0, µz), where µz can be both positive
and negative.

31



4.3. Multipole expansions 4. Polarizability calculations

In order to model the interaction between the islands and the substrate,
the method of images [10] is used. The potential due to the induced
charge distribution in the substrate is then described by placing a second
image multipole below the substrate, at the position of the first expansion
point, mirrored over the substrate. This multipole is denoted by µ̄, and
is positioned at Pµ̄ = (0, 0, µ̄z) = (0, 0, 2d − µz) in the main coordinate
system, where the substrate is placed at z = d.

Figure 4.2: The four different coordinate systems used in the calculations. The
main prolate spheroidal (ξ, η, φ) and cartesian (x, y, z) coordinate sys-
tems have their origin in the center of the island. The two other
spheroidal systems (ξµ, ηµ, φµ) and (ξµ̄, ηµ̄, φµ̄) have their origin at
the positions of the island (µ) and image (µ̄) multipoles, respect-
ively. Note that since all three spheroidal coordinate systems share
the same z-axis, φ = φµ = φµ̄.

In addition to the main coordinate system (ξ, η, φ), we now have two
additional prolate spheroidal coordinate systems (ξµ, ηµ, φµ) and
(ξµ̄, ηµ̄, φµ̄) centered at the expansion points Pµ and Pµ̄, respectively.
These three coordinate systems, which all have the same parameter a, are
shown in Figure 4.2. Using the functionals in Eq. (3.16) and Eq. (3.17)
introduced in section 3.5, these coordinate systems can be related in the
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4. Polarizability calculations 4.4. Potential in different regions

following way
ξµ = ξ′[∆z = µz, a](ξ, η)

ξµ̄ = ξ′[∆z = 2d− µz, a](ξ, η)

ηµ = η′[∆z = µz, a](ξ, η)

ηµ̄ = η′[∆z = 2d− µz, a](ξ, η)

φµ = φµ̄ = φ

(4.21)

4.4. Potential in different regions

Since the Laplace equation (4.3) is homogeneous and linear, we can con-
struct linear combinations of solutions that are also guaranteed to be solu-
tions. In order to find the potentials in the different regions, we therefore
need to sum up the contributions from the island multipoles, the image
multipoles and the incoming radiation in each region. This will satisfy
Laplace’s equation, but in order to also satisfy the boundary conditions
in Eq. (4.4), we need to determine the coefficients in front of the different
contributions in all regions.

By noting that solutions on the form of Eq. (4.9) are singular in the
origin (i.e. for ξ = 1), we can conclude that the potential in regions con-
taining the origin cannot be represented by these solutions. Solutions on
the form of Eq. (4.7) satisfy the Laplace equation in the origin and every-
where else, but do not approach a finite value as ξ →∞. These solutions
can therefore not be used in regions where ξ is unlimited, that is, in the
ambient (region 1) and the substrate (region 2).

For the regions below the substrate, there are no contributions from the
image multipoles, as dictated by the principles of the method of images;
Image charges do not contribute in the region where they are located [10].

We can now write up the expression for the potential in the ambient,
by adding the contributions from the incoming field, the induced charge
distribution in the island and the image multipoles in the substrate. In this
region ξ is unlimited, so only solutions that approach zero as ξ → ∞ are
acceptable. We can therefore conclude that the second sum of Eq. (4.17)
is zero, and the potential takes the form

ψ1(r) = ψinc(r) +

′∑
`m

A
(1)
`mZ̃

m
` (ξµ, a)Y m

` (arccos ηµ, φµ)

+

′∑
`m

Ā(1)
`mZ̃

m
` (ξµ̄, a)Y m

` (arccos ηµ̄, φµ̄)

(4.22)
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4.4. Potential in different regions 4. Polarizability calculations

Here the term ψinc(r) denotes the potential corresponding to the incident

radiation. A
(1)
`m and Ā(1)

`m are the expansion coefficients corresponding to
the island multipoles and image multipoles, respectively. The prime above
the summation symbol indicates that the ` = 0 term is excluded from the
summation. This is due to the fact that there are no free charges in the
system [7].

Similarly, in the substrate the potential can be written in the following
way, with contributions from the island multipoles and the incoming radi-
ation. In this region too, ξ is limitless, so only the first sum in Eq. (4.17)
is a valid solution. Note that the image multipoles are not part of the
solution here,

ψ2(r) = ψtr(r) +

′∑
`m

A
(2)
`mZ̃

m
` (ξµ, a)Y m

` (arccos ηµ, φµ). (4.23)

Here the term ψtr(r) corresponds to the incident radiation, transmitted
into the substrate.

The potential inside a coating layer above the substrate will have con-
tributions from both the island multipoles and the image multipoles, and
since 1 < ξ1 ≤ ξ ≤ ξ2 <∞, all the terms in (4.17) must be used for both
multipoles,

ψ3(r) =ψ
(3)
0 +

′∑
`m

A
(3)
`mZ̃

m
` (ξµ, a)Y m

` (arccos ηµ, φµ)

+

′∑
`m

B
(3)
`mX̃

m
` (ξµ, a)Y m

` (arccos ηµ, φµ)

+

′∑
`m

Ā(3)
`mZ̃

m
` (ξµ̄, a)Y m

` (arccos ηµ̄, φµ̄)

+

′∑
`m

B̄(3)
`mX̃

m
` (ξµ̄, a)Y m

` (arccos ηµ̄, φµ̄).

(4.24)

Here ψ
(3)
0 is a constant.

In the innermost region of the spheroidal island, above the substrate,
only solutions on the form of the second sum of (4.17) can be used, since
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Z̃m` (ξ, a) diverges in the origin,

ψ5(r) =ψ
(5)
0 +

′∑
`m

B
(5)
`mX̃

m
` (ξµ, a)Y m

` (arccos ηµ, φµ)

+

′∑
`m

B̄(5)
`mX̃

m
` (ξµ̄, a)Y m

` (arccos ηµ̄, φµ̄).

(4.25)

Expressions for the potential in all other regions could also be written
up, in the same was as is done for these four regions. It is, however, more
convenient to use a general expression for the potential in any given region.
This is found in the next section.

4.5. General expressions for the potential

Using the numbering convention introduced in section 3.4 (cf. Fig. 3.5), the
potentials in the different regions can now be written in a more general
form. Using this convention, all regions above the substrate are odd-
numbered, while all regions below the substrate are even-numbered. We
therefore get the following expression for the potential in region i above
the substrate:

ψi(r) =δi,1ψinc(r) + ψ
(i)
0

+

′∑
`m

[
A

(i)
`mZ̃

m
` (ξµ, a) +B

(i)
`mX̃

m
` (ξµ, a)

]
Y m
` (arccos ηµ, φµ)

+

′∑
`m

[
Ā(i)
`mZ̃

m
` (ξµ̄, a) + B̄(i)

`mX̃
m
` (ξµ̄, a)

]
Y m
` (arccos ηµ̄, φµ̄).

(4.26)
For a region below the substrate we get

ψi+1(r) = δi,1ψtr(r) + ψ
(i+1)
0 +

′∑
`m

[
A

(i+1)
`m Z̃m` (ξµ, a)

+B
(i+1)
`m X̃m

` (ξµ, a)
]
Y m
` (arccos ηµ, φµ),

(4.27)

with i odd. Here the terms ψ0 are constant terms, and the prime above
the summation still indicates that the ` = 0 terms are excluded.

In order to completely specify the system, we now need to determine all
the unknowns in these two expressions, i.e. the incident and transmitted
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4.6. Substrate boundary conditions 4. Polarizability calculations

potentials ψinc(r) and ψtr(r), the multipole expansion coefficients A`m,
B`m, Ā`m and B̄`m in all regions and the constant term ψ0 in all regions.
This will be done in the following sections, by enforcing the boundary
conditions on our system.

4.6. Boundary conditions at the substrate
surface

At the substrate surface, we have interfaces between all media i above the
substrate and i + 1 below the substrate (with i odd). Here the bound-
ary conditions given by Eq. (4.4) must be fulfilled, i.e. the potential and
its normal derivative times the permittivity must be continuous at the
interface.

By inserting the potentials in Eqs. (4.26) and (4.27) into the first
boundary condition, Eq. (4.4a), the following relations between the coef-
ficients are found [1]

ψ
(i+1)
0 = ψ

(i)
0

A
(i+1)
`m = A

(i)
`m + (−1)`+mĀ(i)

`m

B
(i+1)
`m = B

(i)
`m + (−1)`+mB̄(i)

`m.

(4.28)

By inserting the potentials in Eqs. (4.26) and (4.27) into the second bound-
ary condition, Eq. (4.4b), while using Eqs. (3.10) and (4.16), it can be
shown [1] that the following set of relations for the coefficients also holds

εiA
(i)
`m − εi(−1)`+mĀ(i)

`m = εi+1A
(i+1)
`m

εiB
(i)
`m − εi(−1)`+mB̄(i)

`m = εi+1B
(i+1)
`m .

(4.29)

When combining the results in Eqs. (4.28) and (4.29), we can now express

all the unknown multipole coefficients in our system in terms of A
(i)
`m and

B
(i)
`m (with i odd):

A
(i+1)
`m =

2εi
εi + εi+1

A
(i)
`m = TiA(i)

`m

B
(i+1)
`m =

2εi
εi + εi+1

B
(i)
`m = TiB(i)

`m

Ā(i)
`m = (−1)`+m

εi − εi+1

εi + εi+1
A

(i)
`m = (−1)`+mRiA(i)

`m

B̄(i)
`m = (−1)`+m

εi − εi+1

εi + εi+1
B

(i)
`m = (−1)`+mRiB(i)

`m.

(4.30)
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Here the following coefficients have been introduced

Ri =
εi − εi+1

εi + εi+1

Ti =
2εi

εi + εi+1
,

(4.31)

which are recognized as the usual Fresnel coefficients.

The expressions for the potentials above and below the substrate can now

be rewritten in terms of the two remaining unknown coefficients A
(i)
`m and

B
(i)
`m (with odd i). In region i above the substrate we now have

ψi(r) = δi,1ψinc(r) + ψ
(i)
0 +

′∑
`m

A
(i)
`m

[
Z̃m` (ξµ, a)Y m

` (arccos ηµ, φµ)

+ (−1)`+mRiZ̃m` (ξµ̄, a)Y m
` (arccos ηµ̄, φµ̄)

]
+

′∑
`m

B
(i)
`m

[
X̃m
` (ξµ, a)Y m

` (arccos ηµ, φµ)

+ (−1)`+mRiX̃m
` (ξµ̄, a)Y m

` (arccos ηµ̄, φµ̄)
]
.

(4.32)

In region i+ 1 below the substrate we have

ψi+1(r) = δi,1ψtr(r) + ψ
(i+1)
0

+ Ti
′∑
`m

[
A

(i)
`mZ̃

m
` (ξµ, a) +B

(i)
`mX̃

m
` (ξµ, a)

]
Y m
` (arccos ηµ, φµ).

(4.33)

4.7. Boundary conditions at the spheroidal
interfaces

As mentioned in section 3.2, in spheroidal coordinates, a interface between
two spheroids is a surface of constant ξ. In our systems there are spheroidal
interfaces between the ambient and the outermost layer of the island,
between the substrate and the outermost layer of the part of the island
buried the substrate, and between possible internal layers of the island.

We now denote the spheroidal interface s, i.e. the spheroid of constant
ξ0,s, by ©s. If this spheroid is truncated by the substrate, it will have
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two parts, one above the substrate boundary and one below. These parts
are denoted by ∩s and ∪s, respectively. We can now write the angular
integration over the surface in terms of the operators

∫
©s

dΩ =

∫
∩s

dΩ +

∫
∪s

dΩ. (4.34)

In prolate spheroidal coordinates, these terms can be written

∫
©s

dΩ =

∫ 1

−1
dη

∫ 2π

0
dφ

∫
∩s

dΩ =

∫ t
(s)
r

−1
dη

∫ 2π

0
dφ∫

∪s
dΩ =

∫ 1

t
(s)
r

dη

∫ 2π

0
dφ

(4.35)

4.7.1. Weak formulation of the boundary condition

The boundary conditions in Eq. (4.4) should in principle be satisfied at
any interface between two media. For the spheroidal interfaces, however,
it is more convenient to apply the so-called weak formulation of the bound-
ary conditions [7]. These exploit the fact that at a spheroidal surface, the
spheroidal harmonics Y m

` (arccos η, φ) form a complete orthonormal set of
functions of η and φ. The new boundary conditions are found by mul-
tiplying the boundary conditions in Eq. (4.4) by the complex conjugate of
the spherical harmonics used in the general solution, [Y m

` (arccos η, φ)]∗,
and performing an angular integral over the spheroidal surface. For the
interface s, we then get from boundary condition (4.4a)

∫
∩s

dΩ [Y m
` (arccos η, φ)]∗

{
ψ2s−1(r)− ψ2s+1(r)

}∣∣
ξ=ξ0,s

+

∫
∪s

dΩ [Y m
` (arccos η, φ)]∗

{
ψ2s(r)− ψ2s+2(r)

}∣∣
ξ=ξ0,s

= 0

∀ s = 1, 2, 3, ..., S; ` = 0, 1, 2, 3, ...; m = 0,±1,±2, ...,±`.

(4.36)
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Similarly, we get from boundary condition (4.4b)∫
∩s

dΩ [Y m
` (arccos η, φ)]∗

{
∂

∂ξ
[ε2s−1ψ2s−1(r)]

− ∂

∂ξ
[ε2s+1ψ2s+1(r)]

}∣∣∣∣
ξ=ξ0,s

+

∫
∪s

dΩ [Y m
` (arccos η, φ)]∗

{
∂

∂ξ
[ε2sψ2s(r)]

− ∂

∂ξ
[ε2s+2ψ2s+2(r)]

}∣∣∣∣
ξ=ξ0,s

= 0

∀ s = 1, 2, 3, ..., S; ` = 0, 1, 2, 3, ...; m = 0,±1,±2, ...,±`.

(4.37)

The requirement that the integral of the potential difference times a test
function over a surface is zero, is of course a weaker requirement than
having the potential difference equal to zero at all points on the surface.
Hence the name of the weak formulation of the boundary conditions.

4.7.2. First boundary condition

In the following calculation, more convenient dimensionless versions of the
functions X̃m

` (ξ, a) and Z̃m` (ξ, a) are introduced, which are distinguished
from the previously defined versions by the lack of the parameter a in their
parameter list:

X̃m
` (ξ) ≡ X̃m

` (ξ, a)a−` (4.38a)

Z̃m` (ξ) ≡ Z̃m` (ξ, a)a`+1. (4.38b)

Using Eq. (4.38), the following integrals can now be defined

Ṽ m
``′ [κz, ξ](η1, η2) ≡

∫ η2

η1

dηPm` (η)Pm`′ (ηκ(ξ, η))Z̃m`′ (ξκ(ξ, η)), (4.39)

and

W̃m
``′ [κz, ξ](η1, η2) ≡

∫ η2

η1

dηPm` (η)Pm`′ (ηκ(ξ, η))X̃m
`′ (ξκ(ξ, η)). (4.40)

Here κ is used as a placeholder for one of the multipole expansion points
µ or µ̄.
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It may be shown, using Eqs. (4.39) and (4.13) that

∫ η2

η1

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ Z̃m
′

`′ (ξκ, a)Y m′
`′ (arccos ηκ, φκ)

∣∣
ξ=ξ0,s

= δmm′ζm``′a
−`′−1Ṽ m

``′ [κz, ξ0,s](η1, η2),
(4.41)

and similarly, using Eqs. (4.40) and (4.13)

∫ η2

η1

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ X̃m′
`′ (ξκ, a)Y m′

`′ (arccos ηκ, φκ)
∣∣
ξ=ξ0,s

= δmm′ζm``′a
`′W̃m

``′ [κz, ξ0,s](η1, η2).
(4.42)

For the constant terms, one may, by noting that 1 = 2
√
πY 0

0 and using
the orthonormality of the spherical harmonics, write

∫ 1

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψ0 = 2
√
πψ0δ`0δm0. (4.43)

The general form of the potentials in Eqs. (4.32) and (4.33) are now inser-
ted into the first boundary condition in Eq. (4.36) while using the relations

in Eqs. (4.41), (4.42) and (4.43). The A
(2s−1)
`′m′ , A

(2s+1)
`′m′ , B

(2s−1)
`′m′ and B

(2s+1)
`′m′

terms are then collected, and by introducing the abbreviations I and K

Im(i)
``′ (tr, ξ0) ≡ ξ`′+1

0

[
Ṽ m
``′ [µ, ξ0](−1, tr) + (−1)`

′+mRiṼ m
``′ [µ̄, ξ0](−1, tr)

+ TiṼ m
``′ [µ, ξ0](tr, 1)

]
,

(4.44)

Km(i)
``′ (tr, ξ0) ≡ ξ−`′0

[
W̃m
``′ [µ, ξ0](−1, tr) + (−1)`

′+mRiW̃m
``′ [µ̄, ξ0](−1, tr)

+ TiW̃m
``′ [µ, ξ0](tr, 1)

]
,

(4.45)
it can be shown [1] that the first boundary condition, Eq. (4.36), can be
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written as

2
√
π
{
ψ

(2s−1)
0 − ψ(2s+1)

0

}
δ`0δm0

+ δs1

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψinc(ξ, η, φ)
∣∣
ξ=ξ0,1

+ δs1

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψtr(ξ, η, φ)
∣∣
ξ=ξ0,1

+

′∑
`′=|m|

ζm``′R
−`′−1
⊥

[
A

(2s−1)
`′m Im(2s−1)

``′ (t(s)r , ξ0,s)

−A(2s+1)
`′m Im(2s+1)

``′ (t(s)r , ξ0,s)
]

+

′∑
`′=|m|

ζm``′R
`′
⊥

[
B

(2s−1)
`′m Km(2s−1)

``′ (t(s)r , ξ0,s)

−B(2s+1)
`′m Km(2s+1)

``′ (t(s)r , ξ0,s)
]

= 0.

(4.46)

Here it was also used that R⊥ = aξ0.

The weak formulation of the first boundary condition for the spheroidal
interfaces has thus been reduced to a set of linear equations in terms of

the two unknown multipole coefficients A
(i)
`m and B

(i)
`m (with i odd).
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4.7.3. Second boundary condition

The weak form of the second boundary condition in Eq. (4.4b) on the
spheroidal interfaces can be written

∫
∩s

dΩ [Y m
` (arccos η, φ)]∗

{
∂

∂ξ
[ε2s−1ψ2s−1(r)]

− ∂

∂ξ
[ε2s+1ψ2s+1(r)]

}∣∣∣∣
ξ=ξ0,s

+

∫
∪s

dΩ [Y m
` (arccos η, φ)]∗

{
∂

∂ξ
[ε2sψ2s(r)]

− ∂

∂ξ
[ε2s+2ψ2s+2(r)]

}∣∣∣∣
ξ=ξ0,s

= 0

∀ s = 1, 2, 3, ..., S; ` = 0, 1, 2, 3, ...; m = 0,±1,±2, ...,±`.

(4.47)

Using the previously defined integrals in Eqs. (4.39) and (4.40) and the
relation in Eq. (4.13) we find that

∫ η2

η1

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
Z̃m

′
`′ (ξκ, a)Y m′

`′ (arccos ηκ, φκ)
}∣∣∣
ξ=ξ0

= δmm′ζm``′a
−`′−1 ∂

∂ξ

{
Ṽ m
``′ [κz, ξ](η1, η2)

}∣∣∣
ξ=ξ0

,

(4.48)
and

∫ η2

η1

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
X̃m′
`′ (ξκ, a)Y m′

`′ (arccos ηκ, φκ)
}∣∣∣
ξ=ξ0

= δmm′ζm``′a
`′ ∂

∂ξ

{
W̃m
``′ [κz, ξ](η1, η2)

}∣∣∣
ξ=ξ0

.

(4.49)
Here κ again is a placeholder for one of the multipole expansion points µ
or µ̄.

The expressions for the potentials in the different regions found in
Eqs. (4.32) and (4.33) can now be inserted into Eq. (4.47) while using

Eqs. (4.48) and (4.49). By collecting the A
(2s−1)
`′m′ , A

(2s+1)
`′m′ , B

(2s−1)
`′m′ and
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B
(2s+1)
`′m′ terms and introducing the abbreviations

Jm(i)
``′ (tr, ξ0) ≡ ξ`′+1

0

[
εi
∂

∂ξ

{
Ṽ m
``′ [µ, ξ](−1, tr)

}∣∣∣
ξ=ξ0

+ (−1)`
′+mεiRi

∂

∂ξ

{
Ṽ m
``′ [µ̄, ξ](−1, tr)

}∣∣∣
ξ=ξ0

+ εi+1Ti
∂

∂ξ

{
Ṽ m
``′ [µ, ξ](tr, 1)

}∣∣∣
ξ=ξ0

]
,

(4.50)

and

Lm(i)
``′ (tr, ξ0) ≡ ξ−`′0

[
εi
∂

∂ξ

{
W̃m
``′ [µ, ξ](−1, tr)

}∣∣∣
ξ=ξ0

+ (−1)`
′+mεiRi

∂

∂ξ

{
W̃m
``′ [µ̄, ξ](−1, tr)

}∣∣∣
ξ=ξ0

+ εi+1Ti
∂

∂ξ

{
W̃m
``′ [µ, ξ](tr, 1)

}∣∣∣
ξ=ξ0

]
,

(4.51)

it can be shown [1] that the second boundary condition, Eq. (4.37), can
be written as

δs1ε1

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψinc(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

+ δs1ε2

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψtr(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

+

′∑
`′=|m|

ζm``′R
−`′−1
⊥

[
A

(2s−1)
`′m Jm(2s−1)

``′ (t(s)r , ξ0,s)

−A(2s+1)
`′m Jm(2s+1)

``′ (t(s)r , ξ0,s)
]

+

′∑
`′=|m|

ζm``′R
`′
⊥

[
B

(2s−1)
`′m Lm(2s−1)

``′ (t(s)r , ξ0,s)

−B(2s+1)
`′m Lm(2s+1)

``′ (t(s)r , ξ0,s)
]

= 0,
(4.52)

where it again was used that R⊥ = aξ.

The weak formulation of the second boundary condition on the spheroidal
interfaces has now also been reduced to a set of linear equations in terms
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of the unknown multipole coefficients A
(i)
`m and B

(i)
`m (with i odd). In order

to have a fully determined system, we now only need expressions for the
potentials corresponding to the incident and transmitted field, ψinc(ξ, η, φ)
and ψtr(ξ, η, φ). This is treated in the next section.

4.8. Incident potential

The incident electric field, which is assumed to be homogeneous (cf. sec-
tion 4.1), can be written in Cartesian coordinates as [7]

E0 = [E0,x, E0,y, E0,z] = E0 [sin θ0 cosφ0, sin θ0 sinφ0, cos θ0] . (4.53)

where θ0 is the angle between E0 and the z-axis, and φ0 is the angle
between the projection of E0 on to the substrate and the x-axis. Note
that the angle θ0 is not the same as the angle of incidence θi seen in
Figure 4.1.

For an incident wave with angles of incidence θi and φi, polarized or-
thogonal (s) or parallel (p) to the plane of incidence, one finds the following
relations for the angles θ0 and φ0:

s-polarization: θ0 = π/2 for all θi

φ0 =

{
φi + π/2 if φi < 3π/2

φi − 3π/2 if φi ≥ 3π/2

p-polarization: θ0 = π/2− θi for all θi

φ0 =

{
π − φi if φi < π

φi − π if φi ≥ π.

(4.54)

Here it has been used that θi ∈ [0, π/2] and φi ∈ [0, 2π), which ensures
that the incident light source is located above the substrate. This also
ensures that θ0 ∈ [0, π/2] and φ0 ∈ [0, 2π).

In prolate spheroidal coordinates, the potential corresponding to this in-
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cident field can be written [7]

ψinc(r) = −E0 · r

=

√
2π

3

[
−
√

2E0,zX̃
0
1 (ξ, a)Y 0

1 (arccos η, φ)

+ (E0,x − iE0,y)X̃
1
1 (ξ, a)Y 1

1 (arccos η, φ)

− (E0,x + iE0,y)X̃
−1
1 (ξ, a)Y −1

1 (arccos η, φ)
]

=

√
2π

3
E0

[
−
√

2 cos θ0X̃
0
1 (ξ, a)Y 0

1 (arccos η, φ)

+ sin θ0e
−iφ0X̃1

1 (ξ, a)Y 1
1 (arccos η, φ)

− sin θ0e
iφ0X̃−1

1 (ξ, a)Y −1
1 (arccos η, φ)

]
.

(4.55)

The incident radiation is partly transmitted into the substrate. The cor-
responding potential can be written in prolate spheroidal coordinates

ψtr(r) = ψ′ + c1X̃
0
1 (ξ, a)Y 0

1 (arccos η, φ) + c2X̃
1
1 (ξ, a)Y 1

1 (arccos η, φ)

+ c3X̃
−1
1 (ξ, a)Y −1

1 (arccos η, φ),
(4.56)

where ψ′, c1, c2 and c2 are constants. Using the boundary conditions in
Eq. (4.4) at the interface between the ambient and the substrate at z = d,
it can be shown that [7]

c1 = −ε1

ε2

(
4π

3

) 1
2

E0,z = −E0
ε1

ε2

(
4π

3

) 1
2

cos θ0

c2 =

(
2π

3

) 1
2

(E0,x − iE0,y) = E0

(
2π

3

) 1
2

sin θ0e
−iφ0

c3 = −
(

2π

3

) 1
2

(E0,x + iE0,y) = −E0

(
2π

3

) 1
2

sin θ0e
iφ0

ψ′ = −d
(

1− ε1

ε2

)
E0,z = E0

(
ε1

ε2
− 1

)
d cos θ0,

(4.57)

45



4.8. Incident potential 4. Polarizability calculations

and the potential corresponding to the transmitted field becomes

ψtr(r) = E0

(
ε1

ε2
− 1

)
d cos θ0

+

√
2π

3
E0

[
− ε1

ε2

√
2 cos θ0X̃

0
1 (ξ, a)Y 0

1 (arccos η, φ)

+ sin θ0e
−iφ0X̃1

1 (ξ, a)Y 1
1 (arccos η, φ)

− sin θ0e
iφ0X̃−1

1 (ξ, a)Y −1
1 (arccos η, φ)

]
(4.58)

In the next calculations, the following integral abbreviation will be intro-
duced

Qm``′(η1, η2) ≡
∫ η2

η1

Pm` (η)Pm`′ (η)dη, (4.59)

which can be shown, using Eqs. (4.12) and (4.13) to have the following
orthogonality property

Qm``′(−1, 1) =

∫ 1

−1
Pm` (η)Pm`′ (η)dη =

δ``′

ζm``
=

2(`+m)!

(2`+ 1)(`−m)!
δ``′ , (4.60)

which gives

Qm``′(−1, t(s)r ) +Qm``′(t
(s)
r , 1) = Qm``′(−1, 1) =

δ``′

ζm``
. (4.61)

The integral Qm``′(η1, η2) is not to be confused with Qm` (ξ) defined in sec-
tion 4.2, which is the associated Legendre function of the second kind.

The integral terms containing the incident and transmitted potentials
in Eqs. (4.46) may now be calculated using the expressions in Eqs. (4.55),
(4.58) and (4.59):

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψinc(ξ, η, φ)
∣∣
ξ=ξ0,1

=

√
2π

3
E0a

[
−
√

2 cos θ0δm0ζ
0
`1X̃

0
1 (ξ0,1)Q0

`1(−1, t(1)
r )

+ sin θ0e
−iφ0δm1ζ

1
`1X̃

1
1 (ξ0,1)Q1

`1(−1, t(1)
r )

− sin θ0e
iφ0δm,−1ζ

−1
`1 X̃

−1
1 (ξ0,1)Q−1

`1 (−1, t(1)
r )
]
,

(4.62)
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∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψtr(ξ, η, φ)
∣∣
ξ=ξ0,1

=

√
4π

3
E0 cos θ0

[√
3

(
ε1

ε2
− 1

)
dζ0
`0Q

0
`0(t(1)

r , 1)

− aε1

ε2
X̃0

1 (ξ0,1)ζ0
`1Q

0
`1(t(1)

r , 1)

]
δm0

+

√
2π

3
E0a

[
sin θ0e

−iφ0δm1ζ
1
`1X̃

1
1 (ξ0,1)Q1

`1(t(1)
r , 1)

− sin θ0e
iφ0δm,−1ζ

−1
`1 X̃

−1
1 (ξ0,1)Q−1

`1 (t(1)
r , 1)

]
,

(4.63)

Combining these results, while using Eq. (4.61) and the fact that a =

R⊥,sξ
−1
0,s and d = t

(s)
r R⊥,s for all s, gives the following equation

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψinc(ξ, η, φ)
∣∣
ξ=ξ0,1

+

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗ ψtr(ξ, η, φ)
∣∣
ξ=ξ0,1

= −R⊥,1

√
4π

3
E0 cos θ0

{
ξ−1

0,1

ε1

ε2
X̃0

1 (ξ0,1)δ`1

+

(
ε1

ε2
− 1

)[√
3t(1)
r ζ0

`0Q
0
`0(−1, t(1)

r )

− ξ−1
0,1ζ

0
`1X̃

0
1 (ξ0,1)Q0

`1(−1, t(1)
r )−

√
3t(1)
r δ`0

]}
δm0

+R⊥,1

√
2π

3
E0ξ

−1
0,1

[
sin θ0e

−iφ0X̃1
1 (ξ0,1)δm1δ`1

− sin θ0e
iφ0X̃−1

1 (ξ0,1)δm,−1δ`1

]
.

(4.64)

Similarly, we have for the integral terms containing the normal derivatives
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of the incident and transmitted potential in Eq. (4.52),∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψinc(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

=

√
2π

3
E0a

{
−
√

2 cos θ0δm0ζ
0
`1

∂X̃0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

Q0
`1(−1, t(1)

r )

+ sin θ0e
−iφ0δm1ζ

1
`1

∂X̃1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

Q1
`1(−1, t(1)

r )

− sin θ0e
iφ0δm,−1ζ

−1
`1

∂X̃−1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

Q−1
`1 (−1, t(1)

r )

}
,

(4.65)

and∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψtr(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

=

√
2π

3
E0a

{
−
√

2
ε1

ε2
cos θ0δm0ζ

0
`1

∂X̃0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

Q0
`1(t(1)

r , 1)

+ sin θ0e
−iφ0δm1ζ

1
`1

∂X̃1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

Q1
`1(t(1)

r , 1)

− sin θ0e
iφ0δm,−1ζ

−1
`1

∂X̃−1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

Q−1
`1 (t(1)

r , 1)

}
.

(4.66)

Combining these, we get

ε1

∫ t
(1)
r

−1
dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψinc(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

+ ε2

∫ 1

t
(1)
r

dη

∫ 2π

0
dφ [Y m

` (arccos η, φ)]∗
∂

∂ξ

{
ψtr(ξ, η, φ)

}∣∣∣
ξ=ξ0,1

= −R⊥,1ε1

√
4π

3
E0ξ

−1
0,1 cos θ0

∂X̃0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

δm0δ`1

+R⊥,1

√
2π

3
E0ξ

−1
0,1 sin θ0e

−iφ0 ∂X̃
1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

×
(

(ε1 − ε2)ζ1
`1Q

1
`1(−1, t(1)

r ) + ε2δ`1

)
δm1

−R⊥,1

√
2π

3
E0ξ

−1
0,1 sin θ0e

iφ0 ∂X̃
−1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

×
(

(ε1 − ε2)ζ−1
`1 Q

−1
`1 (−1, t(1)

r ) + ε2δ`1

)
δm,−1.

(4.67)
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4.9. Linear set of equations for the potential
expansion coefficients

The integrals containing the incident and transmitted potentials in the
ambient and substrate have now been expressed in terms of known quant-
ities, and their expressions in Eqs. (4.64) and (4.67) may be combined with
the results found in section 4.7. We then get the following linear set of

equations for the unknown multipole expansion coefficients A
(i)
`m and B

(i)
`m:

′∑
`′=|m|

ζm``′R
−`′−2
⊥,s

[
A

(2s−1)
`′m Im(2s−1)

``′ (t(s)r , ξ0,s)−A(2s+1)
`′m Im(2s+1)

``′ (t(s)r , ξ0,s)
]

+

′∑
`′=|m|

ζm``′R
`′−1
⊥,s

[
B

(2s−1)
`′m Km(2s−1)

``′ (t(s)r , ξ0,s)−B(2s+1)
`′m Km(2s+1)

``′ (t(s)r , ξ0,s)
]

= δs1

√
4π

3
E0 cos θ0

{
ξ−1

0,1

ε1

ε2
X̃0

1 (ξ0,1)δ`1

+

(
ε1

ε2
− 1

)[√
3t(1)
r ζ0

`0Q
0
`0(−1, t(1)

r )

− ξ−1
0,1ζ

0
`1X̃

0
1 (ξ0,1)Q0

`1(−1, t(1)
r )−

√
3t(1)
r δ`0

]}
δm0

− δs1

√
2π

3
E0ξ

−1
0,1

[
sin θ0e

−iφ0X̃1
1 (ξ0,1)δm1δ`1

− sin θ0e
iφ0X̃−1

1 (ξ0,1)δm,−1δ`1

]
− 2
√
π

R⊥,s

{
ψ

(2s−1)
0 − ψ(2s+1)

0

}
δ`0δm0

∀ s = 1, 2, ..., S; ` = 0, 1, 2, ...; m = 0,±1,±2, ...,±`,
(4.68)
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and

′∑
`′=|m|

ζm``′R
−`′−2
⊥,s

[
A

(2s−1)
`′m Jm(2s−1)

``′ (t(s)r , ξ0,s)−A(2s+1)
`′m Jm(2s+1)

``′ (t(s)r , ξ0,s)
]

+

′∑
`′=|m|

ζm``′R
`′−1
⊥,s

[
B

(2s−1)
`′m Lm(2s−1)

``′ (t(s)r , ξ0,s)−B(2s+1)
`′m Lm(2s+1)

``′ (t(s)r , ξ0,s)
]

= δs1E0ξ
−1
0,1

{
ε1

√
4π

3
cos θ0

∂X̃0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

δm0δ`1

−
√

2π

3
sin θ0e

−iφ0 ∂X̃
1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

(
(ε1 − ε2)ζ1

`1Q
1
`1(−1, t(1)

r ) + ε2δ`1

)
δm1

+

√
2π

3
sin θ0e

iφ0 ∂X̃
−1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

(
(ε1 − ε2)ζ−1

`1 Q
−1
`1 (−1, t(1)

r )

+ ε2δ`1

)
δm,−1

}
∀ s = 1, 2, ..., S; ` = 0, 1, 2, ...; m = 0,±1,±2, ...,±`.

(4.69)
From the above equations one can now make a couple of important obser-
vations. First, there is no coupling between m-values, therefore a system
of equations can be set up for each m separately. This is due to the rota-
tional symmetry of our system around the z-axis. Second, the right hand
sides are only non-zero for m = 0,±1, because the potential corresponding
to the incident electric field only has non-zero terms for these values of m.

Hence, all A
(i)
`m and B

(i)
`m with |m| > 1 are independent of E0. If E0 = 0,

the potential must be homogeneous, since we have no net charge in our
system, and all expansion coefficients are therefore zero in this case. Since
the expansion coefficients with |m| > 1 are independent of E0, these must
thus be equal to zero in order to fulfil this requirement. We can therefore
conclude that

A
(i)
`m = B

(i)
`m = 0

for |m| > 1
(4.70)

It turns out that only the system of equations for m = 0 and m = 1
are actually needed. This is due to the fact that the matrix elements
are symmetric to a change of sign in m, and the coefficients for positive
and negative m are therefore equal, except for a phase factor [7]. We can
choose to use m = 1, and the system corresponding to m = −1 is then
redundant.
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In order to ensure that the potential is finite everywhere, some of the
expansion coefficients must be set to zero immediately. In particular, this
is the case for A`m in regions where ξ → 1 and B`m in regions where
ξ →∞. We therefore have

A
(2S+1)
`m = 0

B
(1)
`m = 0

(4.71)

where the numbering convention introduced in section 3.4 is still used,
such that medium 2S + 1 is the innermost medium above the substrate,
i.e. the medium containing the expansion point. Note that there is not a
single point where ξ → 1, but rather a line of length 2a along the z-axis.

In theory, the multipole expansion introduced contains an infinite num-
ber of terms. In practice, however, we must truncate this infinite sum at
some point in order to solve the system numerically. We must therefore
introduce a multipole order M and in the following neglect all multipole

coefficients A
(i)
`′m and B

(i)
`′m with `′ > M . We will then have 4M unknown

coefficients for each s. In order to have a matching number of equations
for these unknowns, ` must also have the same restriction, i.e. ` ≤M .

Because there is no net charge in the island, the multipole coefficients
are all zero for `′ = 0. We can therefore solve the system of equations for
the unknown coefficients by considering the cases 1 ≤ ` ≤ M , and treat
the set of equations with ` = 0 as a separate case. For ` > 1 the set of

equations for the expansion coefficients A
(i)
`′m and B

(i)
`′m now takes the form

M∑
`′=1

ζm``′R
−`′−2
⊥,s

[
A

(2s−1)
`′m Im(2s−1)

``′ (t(s)r , ξ0,s)−A(2s+1)
`′m Im(2s+1)

``′ (t(s)r , ξ0,s)
]

+
M∑
`′=1

ζm``′R
`′−1
⊥,s

[
B

(2s−1)
`′m Km(2s−1)

``′ (t(s)r , ξ0,s)−B(2s+1)
`′m Km(2s+1)

``′ (t(s)r , ξ0,s)
]

= δs1

√
4π

3
E0 cos θ0

{
ξ−1

0,1

ε1

ε2
X̃0

1 (ξ0,1)δ`1

+

(
ε1

ε2
− 1

)[√
3t(1)
r ζ0

`0Q
0
`0(−1, t(1)

r )

− ξ−1
0,1ζ

0
`1X̃

0
1 (ξ0,1)Q0

`1(−1, t(1)
r )
]}
δm0

− δs1

√
2π

3
E0ξ

−1
0,1 sin θ0e

−iφ0X̃1
1 (ξ0,1)δ`1δm1

∀ s = 1, 2, ..., S; ` = 0, 1, 2, ...,M ; m = 0, 1,
(4.72)
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4.9. Linear set of equations 4. Polarizability calculations

and

M∑
`′=1

ζm``′R
−`′−2
⊥,s

[
A

(2s−1)
`′m Jm(2s−1)

``′ (t(s)r , ξ0,s)−A(2s+1)
`′m Jm(2s+1)

``′ (t(s)r , ξ0,s)
]

+
M∑
`′=1

ζm``′R
`′−1
⊥,s

[
B

(2s−1)
`′m Lm(2s−1)

``′ (t(s)r , ξ0,s)−B(2s+1)
`′m Lm(2s+1)

``′ (t(s)r , ξ0,s)
]

= δs1E0ξ
−1
0,1

{
ε1

√
4π

3
cos θ0

∂X̃0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

δm0δ`1

−
√

2π

3
sin θ0e

−iφ0 ∂X̃
1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

(
(ε1 − ε2)ζ1

`1Q
1
`1(−1, t(1)

r ) + ε2δ`1

)
δm1

}
∀ s = 1, 2, ..., S; ` = 0, 1, 2, ...,M ; m = 0, 1.

(4.73)

Once the expansion coefficients A
(i)
`′0 and B

(i)
`′0 have been found by solving

the set of equations in Eqs. (4.72) and (4.73), the case ` = 0 can be used
to determine the constants ψ2s−1

0 and ψ2s+1
0 in Eq. (4.68).[

ψ
(2s+1)
0 − ψ(2s−1)

0

]
=

1

2
√
π

M∑
`′=1

ζ0
0`′R

−`′−1
⊥,s

[
A

(2s−1)
`′0 I0(2s−1)

0`′ (t(s)r , ξ0,s)

−A(2s+1)
`′0 I0(2s+1)

0`′ (t(s)r , ξ0,s)
]

+
1

2
√
π

M∑
`′=1

ζ0
0`′R

`′
⊥,s

[
B

(2s−1)
`′0 K0(2s−1)

0`′ (t(s)r , ξ0,s)

−B(2s+1)
`′0 K0(2s+1)

0`′ (t(s)r , ξ0,s)
]

+ δs1R⊥,sE0 cos θ0

(
ε1

ε2
− 1

){
1√
3
ζ0

01Q
0
01(−1, t(1)

r )

+ t(1)
r

[
1− ζ0

00Q
0
00(−1, t(1)

r )
]}

∀ s = 1, 2, 3, ..., S,

(4.74)

where it was used that ξ−1X̃0
1 (ξ) = 1. We are only interested in potential

differences, and may therefore set a reference point for the potential by

letting the constant term in the ambient, ψ
(1)
0 , be zero. The constant

terms in all other regions may then be calculated from Eq. (4.74).
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4. Polarizability calculations 4.10. Island polarizability

When the multipole expansion coefficients have been found by solving the
linear set of equations in Eqs. (4.72) and (4.73), the island polarizability
and surface susceptibilities can be found. This is treated in the next
sections. By inserting the multipole expansion coefficients into the general
solutions in Eqs. (4.26) and (4.27), and calculating the constant term from
Eq. (4.74), the potential in any region of the system can now also be
found.

4.10. Island polarizability

The linear response of an island to an electric field is given by [7]

P(r, ω) =

∫
α(r′, ω|r) ·E(r′, ω)dr′, (4.75)

where P is the polarization, E is the electric field and α(r′, ω|r) is the
polarizability matrix. Since we are interested in the field due to the po-
larization as seen far from the island, it is convenient to expand the po-
larizability α as a multipole expansion too. For calculating the first and
second order surface susceptibilites, we only need the dipole and quadru-
pole terms in this expansion. In our case, these dipole and quadrupole
polarizabilities of the spheroids can be given in terms of the potential

expansion coefficients A
(1)
10 , A

(1)
11 , A

(1)
20 and A

(1)
21 [7]

αz =
2πε1√

π/3E0 cos θ0

A
(1)
10

α‖ = − πε1√
2π/3E0 sin θ0 exp(−iφ0)

A
(1)
11

α10
z =

πε1√
π/5E0 cos θ0

A
(1)
20

α10
‖ = − πε1√

6π/5E0 sin θ0 exp(−iφ0)
A

(1)
21 .

(4.76)

Note that the polarizabilities are actually independent of E0, θ0 and
φ0, since A`0 are proportional to E0 cos θ0 and A`1 is proportional to
E0 sin θ0 exp(−iφ0). Hence, the polarizabilities are independent of the
incident field E0.

One could be led to believe that since we only need the first four
multipole expansion coefficients for the calculation of the polarizabilities,
it is sufficient to truncate the linear set of equations in Eqs. (4.72) – (4.73)
to M = 2. This is, however, not the case, since the multipole order
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4.11. Surface susceptibilities 4. Polarizability calculations

determines the accuracy to which the coefficients are calculated. The sum
should only be truncated at the M which gives the expansion coefficients
with the desired accuracy.

The calculations in this chapter have been based on the assumption that
the island film is of low coverage, and that the distance between individual
islands therefore is relatively high compared to the size of the islands.
Interactions between islands could therefore be neglected. In the case of
higher coverage this assumption is no longer valid, and one must take
into account interactions between islands and their images. As a first
approximation, one can introduce interactions to dipolar order, since these
have the longest range. It can be shown that this first order approximation
will lead to a correction factor to the polarizabilities found above [7].

4.11. Surface susceptibilities

In section 2.2, the optical reflection and transmission coefficients of a thin
film such as the one treated here were found in terms of a set of surface
susceptibilities. These susceptibilities are related to the polarizabilities
found in section 4.10. The first order surface susceptibilities γ and β
are proportional to the dipole polarizability, while the second order sus-
ceptibilities δ and τ are linear combinations of the dipole and quadrupole
polarizabilities. The second order susceptibilities take into account spa-
tial dispersion, i.e. the fact that the expansion point of the polarizability
is located a distance |d − µz| above the reference surface, located at the
substrate surface. In our case the surface susceptibilities are given by [7]

β = ραz/ε
2
1

γ = ρα‖

δ = −ρ
[
α10
z + α10

‖ − (|d− µz|)αz − (|d− µz|)α‖
]
/ε1

τ = −ρ
[
α10
‖ − (|d− µz|)α‖

]
,

(4.77)

where ρ is the island density, i.e. the number of islands per unit area.
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5. Special cases

In order to verify that the expressions for the potential expansion derived
in chapter 4 are actually correct, it is useful to reduce the results to other
cases previously calculated by others. If the expressions agree in these
limits, this is a good indicator that they may also be correct in the general
case.

For the problem of a truncated and coated prolate spheroid on a sub-
strate, there are two special cases that are natural to compare with

i) An uncoated, truncated prolate spheroid on a substrate.

ii) A coated, truncated sphere on a substrate.

In this chapter, these two special cases are treated, and the set of equations
derived in chapter 4 are shown to be equal to the sets of equations in these
cases, in the corresponding limits. Case i) is treated in section 5.1, while
case ii) is treated in section 5.2.

5.1. Multipoles in center and no coating

The case of uncoated, truncated prolate spheroids where the multipole
expansion points have been placed in the center of the spheroid has been
solved in [7].

When there is no coating, S = 1, and the number of spheroidal inter-
faces reduces to one. In this case the superscripts dependent of s may be
dropped. From Eq. (4.71) we see that in the case of S = 1 we have

A
(3)
`′m = 0

B
(1)
`′m = 0.

(5.1)

Placing the multipoles in the center of the spheroid, i.e. the origin, is
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5.1. Multipoles in center and no coating 5. Special cases

equivalent to setting
µz = 0

µ̄z = 2d.
(5.2)

Using this it can be shown that

Ṽ m
``′ [µz = 0, ξ](η1, η2) = Z̃m`′ (ξ)Qm``′(η1, η2) (5.3)

and
W̃m
``′ [µz = 0, ξ](η1, η2) = X̃m

`′ (ξ)Qm``′(η1, η2), (5.4)

with Qm``′ as defined in Eq. (4.59). Using Eqs. (5.3) and (5.4) together with
Eqs. (4.31) and (4.61), the abbreviations in Eqs. (4.44), (4.45), (4.50),
(4.51) can now be reduced to

Im(1)
``′ (tr, ξ0) =

ξ`
′+1

0

ζm``′

{
2ε1

ε1 + ε2
Z̃m`′ (ξ0)δ``′

+
ε1 − ε2

ε1 + ε2
ζm``′
[
(−1)`

′+m′
Ṽ m
``′ [µ̄, ξ0](−1, tr)− Z̃m`′ (ξ0)Qm``′(−1, tr)

]}
,

(5.5)

Km(3)
``′ (tr, ξ0) =

ξ−`
′

0

ζm``′

{
2ε3

ε3 + ε4
X̃m
`′ (ξ0)δ``′

+
ε3 − ε4

ε3 + ε4
ζm``′
[
(−1)`

′+m′
W̃m
``′ [µ̄, ξ0](−1, tr)− X̃m

`′ (ξ0)Qm``′(−1, tr)
]}
,

(5.6)

Jm(1)
``′ (tr, ξ0) =

ξ`
′+1

0

ζm``′
ε1

{
δ``′

2ε2

ε1 + ε2

∂

∂ξ

(
Z̃m`′ (ξ)

)∣∣∣
ξ=ξ0

+
ε1 − ε2

ε1 + ε2
ζm``′

[
Qm``′(−1, tr)

∂

∂ξ

(
Z̃m`′ (ξ)

)∣∣∣
ξ=ξ0

+ (−1)`
′+m′ ∂

∂ξ

(
Ṽ m
``′ [µ̄, ξ](−1, tr)

)∣∣∣
ξ=ξ0

]}
,

(5.7)

Lm(3)
``′ (tr, ξ0) =

ξ−`
′

0

ζm``′
ε3

{
δ``′

2ε4

ε3 + ε4

∂

∂ξ

(
X̃m
`′ (ξ)

)∣∣∣
ξ=ξ0

+
ε3 − ε4

ε3 + ε4
ζm``′

[
Qm``′(−1, tr)

∂

∂ξ

(
X̃m
`′ (ξ)

)∣∣∣
ξ=ξ0

+ (−1)`
′+m′ ∂

∂ξ

(
W̃m
``′ [µ̄, ξ](−1, tr)

)∣∣∣
ξ=ξ0

]}
.

(5.8)
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5. Special cases 5.1. Multipoles in center and no coating

The linear set of equations in Eqs. (4.72) and (4.73) now reduces to

M∑
`′=1

ζm``′R
−`′−2
⊥ A

(1)
`′mI

m(1)
``′ (tr, ξ0)−

M∑
`′=1

ζm``′R
`′−1
⊥ B

(3)
`′mK

m(3)
``′ (tr, ξ0)

=

√
4π

3
E0 cos θ0

{
ξ−1

0

ε1

ε2
X̃0

1 (ξ0)δ`1 +

(
ε1

ε2
− 1

)[√
3trζ

0
`0Q

0
`0(−1, tr)

− ξ−1
0,1ζ

0
`1X̃

0
1 (ξ0,1)Q0

`1(−1, t(1)
r )
]}
δm0

−
√

2π

3
E0ξ

−1
0 sin θ0e

−iφ0X̃1
1 (ξ0)δm1δ`1

∀ ` = 1, 2, 3, ...,M ; m = 0, 1,
(5.9)

and

M∑
`′=1

ζm``′R
−`′−2
⊥ A

(1)
`′mJ

m(1)
``′ (tr, ξ0)−

M∑
`′=1

ζm``′R
`′−1
⊥ B

(3)
`′mL

m(3)
``′ (tr, ξ0)

= E0ξ
−1
0

{
ε1

√
4π

3
cos θ0

∂X̃0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0

δm0δ`1

−
√

2π

3
sin θ0e

−iφ0 ∂X̃
1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0

(
(ε1 − ε2)ζ1

`1Q
1
`1(−1, tr) + ε2δ`1

)
δm1

}
∀ ` = 1, 2, 3, ...,M ; m = 0, 1.

(5.10)

With S = 1, the unknown constant terms ψ
(1)
0 and ψ

(3)
0 in the two regions

above the substrate also need to be determined. Since we are only inter-
ested in potential differences, the first one may simply be set to zero, and
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the second one can now be calculated from Eq. (4.74):

ψ
(3)
0 = R⊥E0 cos θ0

(
ε1

ε2
− 1

){
1√
3
ζ0

01Q
0
01(−1, tr)

+ tr

[
1− ζ0

00Q
0
00(−1, tr)

]}
− 1

2
√
π

M∑
`′=1

A
(1)
`′0R

−`′−1
⊥ ζ0

0`′ξ
`′+1
0

(
ε1 − ε2

ε1 + ε2

)
×
[
Z̃0
`′(ξ0)Q0

0`′(−1, tr)− (−1)`
′
Ṽ 0

0`′ [µ̄, ξ0](−1, tr)
]

+
1

2
√
π

M∑
`′=1

B
(3)
`′0R

`′
⊥ζ

0
0`′ξ
−`′
0

(
ε3 − ε4

ε3 + ε4

)
×
[
X̃0
`′(ξ0)Q0

0`′(−1, tr)− (−1)`
′
W̃ 0

0`′ [µ̄, ξ0](−1, tr)
]
,

(5.11)

where the results from Eqs. (5.5) and (5.6) also have been used.

The results in Eqs. (5.9) – (5.11) agree with the expressions for uncoated,
truncated prolate spheroidal particles found in [7], as they should.

5.2. The spherical limit

The case of truncated, coated spherical particles on a substrate has been
solved in [15].

For a spheroid, the spherical limit is approached as

ξ0 →∞
a→ 0

aξ0 = R

(5.12)

where R is the radius of the sphere. In this case, the prolate spheroidal
coordinates can be written in terms of the ordinary spherical coordinates
(r, θ, φ). We then get

ξ ' r/a
η ' cos θ

φ = φ

(5.13)

where a still is the focal radius of the spheroidal coordinate system.
It can be shown [7], as mentioned in section 4.2, that in the spherical

limit the functions X̃m
` (ξ, a) and Z̃m` (ξ, a) approach the radial part of a
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5. Special cases 5.2. The spherical limit

spherical solution, i.e. that

X̃m
` (ξ, a) ' (ξa)` ' r`

Z̃m` (ξ, a) ' (ξa)−`−1 ' r−`−1.
(5.14)

The dimensionless versions of these functions defined in Eq. (4.38) thus
have the following behaviour in the spherical limit

X̃m
` (ξ) ' a−`r`

Z̃m` (ξ) ' a`+1r−`−1.
(5.15)

Using these relations, it can be shown that the functions defined in
Eqs. (4.59), (4.39) and (4.40) take the following form in the spherical limit

Qm``′(η1, η2) '
∫ x2

x1

Pm` (x)Pm`′ (x)dx

Ṽ m
``′ [κz, ξ0,s] (η1, η2) ' ξ−`′−1

0,s Im``′
[
κz,−`′ − 1, Rs

]
(x1, x2)

W̃m
``′ [κz, ξ0,s] (η1, η2) ' ξ`′0,sI

m
``′
[
κz, `

′, Rs
]

(x1, x2)

∂

∂ξ

{
Ṽ m
``′ [κz, ξ] (η1, η2)

}∣∣∣
r=Rs

' ξ−`′−2
0,s Jm``′

[
κz,−`′ − 1, Rs

]
(x1, x2)

∂

∂ξ

{
W̃m
``′ [κz, ξ] (η1, η2)

}∣∣∣
r=Rs

' ξ`′−1
0,s Jm``′

[
κz, `

′, Rs
]

(x1, x2),

(5.16)
where the integrals Im``′ and Jm``′ are defined as

Im``′ [κz, α,Rs] (x1, x2) =

∫ x2

x1

Pm` (x)

(
rκ
Rs

)α
Pm`′ (xκ)dx, (5.17)

and

Jm``′ [κz, α,Rs] (x1, x2) = Rs

∫ x2

x1

Pm` (x)
∂

∂r

[(
rκ
Rs

)α
Pm`′ (xκ)

]∣∣∣∣
r=Rs

dx.

(5.18)
Here x = cos θ ' η and xκ = cos θκ ' ηκ(ξ, η). As before, the subscript κ
is a placeholder for one of the expansion points µ or µ̄, and indicates that
a coordinate belongs to the coordinate system with origin in this point.
Similarly rκ = rκ(r, θ) is the distance from expansion point κ to a point
(r, θ, φ).

Using the relations in Eq. (5.16), the abbreviations introduced in sec-
tion 4.7 can now be written as

Im(i)
``′ (tr, ξ0) '

[
Im``′
[
µ,−`′ − 1, Rs

]
(−1, tr)

+ (−1)`
′+m′RiIm``′

[
µ̄,−`′ − 1, Rs

]
(−1, tr)

+ TiIm``′
[
µ,−`′ − 1, Rs

]
(tr, 1)

]
,

(5.19)
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Km(i)
``′ (tr, ξ0) '

[
Im``′
[
µ, `′, Rs

]
(−1, tr)

+ (−1)`
′+m′RiIm``′

[
µ̄, `′, Rs

]
(−1, tr)

+ TiIm``′
[
µ, `′, Rs

]
(tr, 1)

]
,

(5.20)

Jm(i)
``′ (tr, ξ0) ' ξ−1

0

[
εiJ

m
``′
[
µ,−`′ − 1, Rs

]
(−1, tr)

+ (−1)`
′+m′

εiRiJm``′
[
µ̄,−`′ − 1, Rs

]
(−1, tr)

+ εi+1TiJm``′
[
µ,−`′ − 1, Rs

]
(tr, 1)

]
,

(5.21)

Lm(i)
``′ (tr, ξ0) ' ξ−1

0

[
εiJ

m
``′
[
µ, `′, Rs

]
(−1, tr)

+ (−1)`
′+m′

εiRiJm``′
[
µ̄, `′, Rs

]
(−1, tr)

+ εi+1TiJm``′
[
µ, `′, Rs

]
(tr, 1)

]
.

(5.22)

By inserting the results in Eqs. (5.19) – (5.22) into the left hand sides of
the linear set of equations given by Eqs. (4.72) and (4.73), these are found
to be equal to the left hand sides of the linear set of equations previously
calculated for the case of truncated, coated spherical particles in [15].

The right hand sides of Eqs. (4.72) and (4.73), which have their ori-
gin in the incident and transmitted fields, are shown in [7] to tend to the
equivalent expressions in spherical coordinates in the spherical limit. Sim-
ilarly, it is shown in [7] that, in the spherical limit, the expression for the
constant potential terms in Eq. (4.74) tend to the equivalent expressions
in the spherical case. It can therefore be concluded that the expressions
derived here for truncated, coated prolate spheroidal particles are equi-
valent, in the spherical limit, to those previously derived for truncated,
coated spherical particles, as they should.

Although the equations found here for the prolate spheroidal case can be
seen as a generalization of the spherical case, since the latter is a limit of
the former, both cases are still needed, since it in practice is impossible to
reach the limit ξ0 →∞, a→ 0, aξ0 → R numerically.
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6. Numerical modelling

In the two previous chapters, the linear set of equations for the multi-
pole expansion coefficients for the prolate spheroidal system was derived
and analytically shown to be equivalent to previously calculated cases in
certain limits. The next step is now to solve the system of equations nu-
merically. The implementation and testing of this calculation is covered in
this chapter. Section 6.1 covers some details around the implementation,
while section 6.2 contains the results of the numerical tests used to verify
its correctness.

6.1. Implementation

The equations derived in chapter 4 were implemented in the existing
GranFilm 2.0 framework. This software, which is written in the For-
tran 90 programming language, already supported films of coated spheres
and oblate spheroids, but not prolate spheroids.

The implementation consisted of adding prolate spheroid support to
several parts of the GranFilm code. In Figure 6.1 an overview of the
structure of the software can be seen, including the parts of the code that
were modified and added. The program starts by calculating all the ne-
cessary integrals, as given in Eqs. (4.41)–(4.42) and (4.48)–(4.49), up to a
multipole order M . The integrands of these integrals are dependent on the
island geometry, so a new module containing these integrands was imple-
mented for the prolate spheroidal case. The integrands, in turn, required
a new set of Legendre polynomials and coordinate transformations to be
implemented. This is discussed in more detail in App. B.

When the integrals have been calculated, the system of equations for
the multipole expansion coefficients in Eqs. (4.72)–(4.73) is set up and
solved for a range of photon energies. Although there is no explicit energy
dependence in the linear set of equations, the system is dependent on the
photon energy through the dielectric functions εi(ω) of the different media.
It should be noted that the system of equations is implemented in a slightly
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6.1. Implementation 6. Numerical modelling

Figure 6.1: Overview of the main routines and modules of GranFilm. The
program is run depth-first starting on the top branch. The boxes
marked red are the new routines added in the implementation of
prolate spheroid support, while the yellow boxes are existing routines
that needed modification in order to support prolate spheroids.
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different form than in Eqs. (4.72)–(4.73) in order for the coefficients to be
dimensionless. This is detailed in Appendix A.

After solving the system of equations, one is left with a set of nor-

malized expansion coefficients Â
(i)
`m and B̂

(i)
`m for each photon energy. The

first few coefficients are then used to calculate the island polarizability,
which in turn is used to find the first order surface susceptibilities γ and
β as discussed in section 4.10. These are finally used in calculating the
amplitudes of transmission and reflection in Eqs. (2.20)–(2.23).

Once the expansion coefficients are known, the potential in any re-
gion in and around an island may also be calculated explicitly for a given
photon energy, using Eqs. (4.32)–(4.33). This calculation is performed in
a separate module, which was also modified to support prolate spheroidal
islands. The details of this implementation can be found in Appendix C.
Using this module, the potential in the near-field may be studied at any
set of points specified by the user. This makes it possible to e.g. inspect
the potential in a cross-section of an island, or controlling the bound-
ary conditions by evaluating the potential at points on both sides of an
interface.

6.2. Numerical tests

In order to check whether the equations implemented are correct, a num-
ber of numerical tests are performed and summarized below. First, the
differential reflectance (SDRS) curves, which is the main output of Gran-
Film, are inspected for island films of different geometries in the spherical
limit. Second, the potential around islands of different geometries, also in
the spherical limit, is evaluated and compared visually. These two tests
provides evidence of the success of the implementation, but are no proof
of correctness. The ultimate test of the correctness of the implementation
is the third one, which is to quantitatively inspect the fulfilment of the
boundary conditions, Eq. (4.4), on the spheroidal interfaces.

The parameters of the main test case studied in this section are spe-
cified in Table 6.1. This describes a film of truncated prolate spheroidal
silver particles, supported by a substrate of Al2O3. The islands are coated
by silver oxide (Ag2O). The number of multipoles used in the calculations
is M = 16. The islands are arranged in a hexagonal lattice with lattice
constant L = 20 nm and the incident field is p-polarized1 with incident
angles θ0 = 45◦ and φ0 = 0◦. If not otherwise specified, the same lattice

1Remember that this polarization gives excitations both in the parallel and normal
directions, as mentioned in section 2.2.3

63



6.2. Numerical tests 6. Numerical modelling

configuration and incident radiation are used for all test cases throughout
this chapter.

Parameter set 1

Substrate medium Al2O3

Core medium Ag
Coating medium Ag2O
Radii R⊥ 8.0 nm

R‖ 7.0 nm

Core radius ratio χ2 0.9
Truncation ratio tr 0.25
Multipole order M 16

Table 6.1: Main test parameters used in the GranFilm runs of this section.

6.2.1. SDR spectra in the spherical limit

In chapter 5, the linear set of equations for the potential expansion coeffi-
cients of a prolate spheroidal island was shown to be equal to the equival-
ent set of equations for a spherical island, in the limit where the prolate
spheroid becomes spherical. One would therefore expect that the observ-
able properties of a film of prolate spheroidal islands are equal to those of
a film of spherical islands in this limit. This must also be true in the nu-
merical simulation, and it is therefore useful to first check that this holds
for the new implementation.

With the addition of prolate spheroid support in GranFilm, the soft-
ware now supports islands of three different geometry types; prolate spher-
oids, spheres and oblate spheroids. Each of these geometries has its own
more or less independent parts of the code, so that when calculating the
potential expansion coefficients, different parts of the code are invoked for
different geometries. A reasonable test of the new code is therefore to
run the program for each of the three geometries in the limit where they
become equal, i.e. in the spherical limit. For spheroids where R⊥ and
R‖ are only slightly different, one would expect that the calculated SDRS
spectrum is similar to that of a sphere with the same radius.

Uncoated islands

In order to check that the output of the new implementation of GranFilm
is consistent in the spherical limit, two sets of test runs are first performed
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for the case of uncoated islands. The parameters used in these runs are
the ones specified in Parameter set 1 in Table 6.1, but with the coating
removed. This essentially means that the radius ratio of the core, χ2, is
set to 1.0. In addition the this, the island radii are varied, in order for all
three geometry branches of the GranFilm program to be invoked. The
radii in the two sets of runs are as follows:

1. The radius parallel to the substrate, R‖, is kept constant at 7.7 nm,
while the normal radius R⊥ is varied in the range 7.1−8.3 nm. This
changes the shape of the islands from oblate spheroidal to prolate
spheroidal, via spherical.

2. The normal radius R⊥ is kept constant at 7.7 nm, while R‖ is varied
in the range 7.1 − 8.3 nm. This changes the shape of the islands
from prolate spheroidal to oblate spheroidal, via spherical.

The resulting SDRS curves of these two sets of runs are presented in
Figures 6.2 and 6.3, respectively.

As can be seen from Figures 6.2 –6.3, the curves for the spheroidal geo-
metries lie symmetrically around the curve corresponding to the spherical
islands. As both the prolate and oblate spheroidal particles become more
spherical, their SDRS curves move closer to the central spherical curve.
The same behaviour is also observed around the resonance peaks. This
indicates that the differential reflectance spectrum of a film of spheroidal
islands converges towards the spectrum of a film of spherical islands in the
spherical limit, as it should.

Note from Figure 6.3 that the height of the main resonance peak,
located around 2.7 eV is very sensitive to variations in R‖. This suggests
that the excitations parallel to the substrate are mainly responsible for this
resonance, since the resonance peak grows as as R‖ increases2. This could
also be explained by noting that when R‖ increases, the metal coverage of
the substrate increases, resulting in a higher reflectance. In Figure 6.2, R‖
is kept constant, which means that the fraction of the substrate covered
by metal is constant, since only the height of the islands is changed. Note
from Figure 6.4b that the film of oblate spheroids still gives the highest
resonance, although the prolate spheroids have a bigger volume. This
could be explained by the fact that when the height of the island increases,
its center of mass moves away from the substrate. This leads to a weaker
interaction between the island and the substrate, with a weaker resonance
as a result.

2This is also discussed in chapter 7.
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(a)

(b) (c)

Figure 6.2: (a) Comparison of the SDRS curves for various uncoated particle
geometries in the spherical limit, with R‖ kept constant. The spher-
oidal curves approach the spherical curve as the particles approach
a spherical geometry. (b) Close-up view of the main resonance peak
located around 2.7 eV. (c) Close-up view of the resonance peak loc-
ated around 3.6 eV
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(a)

(b) (c)

Figure 6.3: (a) Comparison of the SDRS curves for various uncoated particle
geometries in the spherical limit, with R⊥ kept constant. The spher-
oidal curves approach the spherical curve as the particles approach
a spherical geometry. (b) Close-up view of the resonance peak loc-
ated around 2.7 eV. (c) Close-up view of the resonance peak located
around 3.6 eV.
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Coated islands

The same two sets of runs as in the previous paragraph are then performed
on an island film where a thin layer of coating has been applied to the silver
islands, as specified in Parameter set 1 in Table 6.1. The coating consists
of silver oxide in order to simulate oxidation of the islands, and has a
thickness such that the radius ratio of the silver core is χ2 = 0.9. The
resulting SDRS curves of the two sets of runs are presented in Figures 6.4
and 6.5.

Figures 6.4–6.5 show that the SDRS curves in the spheroidal cases
again lie symmetrically around the curve corresponding to the spherical
geometry. The spheroidal SDR spectra move closer to the spherical one, as
the spheroids become more sphere-like. This indicates that the differential
reflectance spectra of the spheroidal island films in the spherical limit
approach the spectrum of the spherical island film, in the coated case as
well.

By comparing the figures in the coated case (6.4–6.5) with the cor-
responding figures in the uncoated case (6.2–6.3), it is observed that the
introduction of a coating on the islands has the effect of shifting the main
resonance peak towards a lower energy. This effect seems to be greater for
prolate spheroids than for oblate spheroids, as e.g. seen when comparing
Figures 6.2b and 6.4b.

6.2.2. Visual inspection of the potential

In the limit where the spheroidal islands become spherical, the potential
in a region around the islands should also approach the same values. By
studying the potential in a cross-section of an island in this limit visually,
possible errors in the implementation could be detected.

For this test, three runs of GranFilm are performed, one for each
geometry type. The parameters defined in Parameter set 1 in Table 6.1
are used in all three runs, but with different island radii. The radii are
R⊥ = 8.0 nm, R‖ = 7.0 nm in the prolate spheroidal run, R⊥ = 7.0 nm,
R‖ = 8.0 nm in the oblate spheroidal run and R = 7.5 nm in the spherical
run. The potential around one island in the xz-plane is evaluated at an
energy close to the main resonance peak (E = 2.4 eV) and a contour plot
of the real part of the potential is made for all three runs. The resulting
potentials can be seen in Figures 6.6a–6.6c.

As can be seen from these figures, the potential seems to behave con-
sistently for all three geometry types. The same parallel dipole excitation
is observed for all three cases, but with a lower amplitude for the prolate
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(a)

(b) (c)

Figure 6.4: (a) Comparison of the SDRS curves for various coated particle geo-
metries in the spherical limit, with R‖ kept constant. The spheroidal
curves approach the spherical curve as the particles approach a spher-
ical geometry. (b) Close-up view of the main resonance peak located
around 2.5 eV. (c) Close-up view of the behaviour around 3.0 eV.
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(a)

(b) (c)

Figure 6.5: (a) Comparison of the SDRS curves for various coated particle geo-
metries in the spherical limit, with R⊥ kept constant. The spheroidal
curves approach the spherical curve as the particles approach a spher-
ical geometry. (b) Close-up view of the behaviour around 3 eV. (c)
Close-up view of the resonance peak located around 3.6 eV
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spheroidal case in Fig. 6.6a. This is consistent with the results seen in the
previous section, where the prolate spheroids had the weakest resonance
peaks in the SDRS curves.

6.2.3. Fulfilment of boundary conditions

The uniqueness theorem guarantees that if a potential satisfies the Laplace
equation and the boundary conditions of the system, the solution is the
one and only correct one. By construction, the equations (4.72)–(4.73)
implemented in GranFilm satisfies the Laplace equation (4.3) and also
the boundary conditions (4.4) at the z = d interfaces. The boundary con-
ditions at the spheroidal interfaces are, on the other hand, only indirectly
enforced through their weak form. The error in the boundary conditions
at the spheroidal interfaces is therefore a measure of the correctness of the
implementation, and needs to be checked numerically.

The boundary conditions, Eqs. (4.4a)–(4.4b), states that the potential,
ψ, and the normal derivative of the potential times the permittivity, ε∂nψ,
must be continuous over all interfaces between two media. In order to
evaluate the errors in these boundary conditions, a set of dimensionless
error measures, similar to those used in [16], are introduced. These are,
for the first (4.4a) and second (4.4b) boundary conditions, respectively

e1(rs) =
ψ+(rs)− ψ−(rs)

maxr1 |ψinc(r1)|
(6.1)

e2(rs) =
ε+∂nψ+(rs)− ε−∂nψ−(rs)

maxr1 |ε1∂nψinc(r1)|
(6.2)

where rs is a point on the spheroidal interface s, i.e. where ξ = ξ0,s, and
the subscripts +,− indicates that a quantity is evaluated just outside or
inside the spheroidal interface, respectively. The first error measure, e1,
is normalized by the maximum value of the incident potential ψinc(r1),
evaluated at the outermost interface. The second error measure, e2, is
normalized by the maximum value of the normal derivative of the incident
potential times the permittivity, ε1∂nψinc(r1), evaluated just outside the
outermost interface. Here r1 is a point on the outermost interface. These
normalizations make both error measures dimensionless and independent
of the incident field strength E0.

The error in the first boundary condition, e1, is found by calculating
the potential at points just inside and just outside of the interface. The
error in the second boundary condition, e2, is calculated in the same way,
but now using two points just inside and two points just outside of the
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(a) Oblate, R⊥ = 7.0 nm, R‖ = 8.0 nm

(b) Spherical, R = 7.5 nm

(c) Prolate, R⊥ = 8.0 nm, R‖ = 7.0 nm

Figure 6.6: Potential maps in the xz-plane for the three geometries at E = 2.4 eV.
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interface, allowing for the calculation of the normal derivative of the po-
tential using a finite-difference approach. The prolate spheroidal metric
tensor, defined in section 3.2, is used to find these points on a line nor-
mal to the interface. It should be noted that the normal derivative of the
potential was also calculated analytically using the expansion coefficients.
This is discussed in more detail in section 6.2.4. For this specific test case,
however, this was not deemed necessary as the finite-difference approach
was well-behaved.

In order to study the errors in the boundary conditions along the spher-
oidal interfaces, the quantities ψ, ε∂nψ, e1 and e2 are calculated in the
xz-plane at points evenly spaced in arccos(η). The simulation paramet-
ers are the ones defined in Parameter set 1 in Table 6.1. The potential
is evaluated at an energy close to the main resonance peak of the SDRS
curve (E = 2.4 eV), since the highest error can be expected here.

The results of these tests can be seen in Figs. 6.7–6.10. The errors in
the boundary conditions found here are well within what could be expected
when taking into account the fact that the boundary conditions are only
indirectly enforced on the system through their weak form, as explained in
section 4.7. Note that the error is biggest close to the substrate interface.
This is also as expected, since the potential here has to fulfil the boundary
conditions at the spheroidal and substrate interfaces simultaneously.

6.2.4. Analytic normal derivatives

As mentioned in the previous section, the numerical tests of the boundary
conditions were well-behaved for the test case in question. However, when
studying island films with higher truncation ratios, i.e. where the islands
are only slightly truncated by the substrate3, some anomalous results ap-
peared in the boundary condition tests. In Figures 6.11–6.12, the second
boundary condition is again checked on the system defined in Parameter
set 1 in Table 6.1, but now with a truncation ratio of tr = 0.75.

From these figures it appears that the second boundary condition is
not at all satisfied in this case. From the behaviour of these errors it
seems likely that numerical errors become significant in the limit of high
truncation ratios. It is also observed that the error increases with higher
truncation ratio tr and multipole order M . Furthermore, it is clear from
the figures that the error is dependent on the polar angle (θ, η), since
it grows out of proportion close to the top of the island. Note from Fig-
ure 6.11 that the calculation of the second boundary condition only breaks

3see section 3.3 for the definition of truncation ratio
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(a) (b)

(c) (d)

Figure 6.7: Real part of the potential ψ just outside (+) and inside (−) the
outermost spheroidal interface s = 1, evaluated at the (a) φ = 0 half
and (b) φ = π half of the xz-plane at the energy E = 2.4 eV. (c) and
(d) shows the real part of the error e1 evaluated at the same points.
The vertical dashed line indicates where the island is truncated by
the substrate.
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(a) (b)

(c) (d)

Figure 6.8: Real part of the normal derivative of the potential times the permit-
tivity ε∂nψ just outside (+) and inside (−) the outermost spheroidal
interface s = 1, evaluated at the (a) φ = 0 half and (b) φ = π half
of the xz-plane at the energy E = 2.4 eV. (c) and (d) shows the
real part of the error e2 evaluated at the same points. The vertical
dashed line indicates where the island is truncated by the substrate.
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(a) (b)

(c) (d)

Figure 6.9: Real part of the potential ψ just outside (+) and inside (−) the inner
spheroidal interface s = 2, evaluated at the (a) φ = 0 half and (b)
φ = π half of the xz-plane at the energy E = 2.4 eV. (c) and (d)
shows the real part of the error e1 evaluated at the same points. The
vertical dashed line indicates where the island is truncated by the
substrate.
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(a) (b)

(c) (d)

Figure 6.10: Real part of the normal derivative of the potential times the per-
mittivity ε∂nψ just outside (+) and inside (−) the inner spheroidal
interface s = 2, evaluated at the (a) φ = 0 half and (b) φ = π half
of the xz-plane at the energy E = 2.4 eV. (c) and (d) shows the
real part of the error e2 evaluated at the same points. The vertical
dashed line indicates where the island is truncated by the substrate.

(a) (b)

Figure 6.11: Real part of the finite-difference normal derivative times the per-
mittivity just outside (+) and inside (−) the outermost spheroidal
interface s = 1 at the energy E = 2.4 eV for a high truncation ratio
of tr = 0.75. The figures show ε∂nψ evaluated at the (a) φ = 0 half
and (b) φ = π half of the xz plane. Note that ε∂nψ seems to behave
normally outside the interface.
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(a) (b)

Figure 6.12: Real part of the finite-difference normal derivative times the permit-
tivity just outside (+) and inside (−) the inner spheroidal interface
s = 2 at the energy E = 2.4 eV for a high truncation ratio of
tr = 0.75. The figures show ε∂nψ evaluated at the (a) φ = 0 half
and (b) φ = π half of the xz plane.

down in the interior of the island, and seems to be correct for the region
outside the island.

It seems likely that the origin of this error lies in the python script
used for calculating the normal derivatives of the potential using a finite-
difference approach. In order to make sure that these errors in fact were
due to this approximation, and rule out any problems with the GranFilm
code itself, an analytical calculation of the normal derivatives was carried
out.

The calculation of the analytic normal derivatives of the potential was
implemented in a new module in GranFilm. The normal derivatives are
found by differentiating Eqs. (4.32)–(4.33) with respect to ξ and evalu-
ating this on both sides of the spheroidal interfaces using the multipole
coefficients. The details of this calculation can be found in Appendix C.2.
As can be seen in Figs. 6.13–6.13, this evaluation yields a much better
result, and the second boundary condition turns out to be reasonably well
satisfied in the case of a high truncation ratio as well.

6.2.5. Dependence on the multipole order M

In theory, an infinite number of multipoles are required in order to solve
the system of equations in Eqs. (4.72)–(4.73). In practice, however, the
number of multipoles must be limited when calculating the potential nu-
merically in order to be able to run the simulations in a reasonable amount
of time. By varying the number of multipoles included in the simulations,
the convergence properties of the new parts of the code can be studied.
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(a) (b)

Figure 6.13: Real part of the analytic normal derivative times the permittivity
just outside (+) and inside (−) the outermost spheroidal interface
s = 1 at the energy E = 2.4 eV for a high truncation ratio of
tr = 0.75. The figures show ε∂nψ evaluated at the (a) φ = 0 half
and (b) φ = π half of the xz plane.

(a) (b)

Figure 6.14: Real part of the analytic normal derivative times the permittivity
just outside (+) and inside (−) the inner spheroidal interface s = 2
at the energy E = 2.4 eV for a high truncation ratio of tr = 0.75.
The figures show ε∂nψ evaluated at the (a) φ = 0 half and (b) φ = π
half of the xz plane.
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(a) (b)

Figure 6.15: Average error in the first (a) and second (b) boundary condition at
E = 2.7 eV, as a function of multipole order. Note that the error
at the outer interface (s = 1) is greater than the error at the inner
interface (s = 2).

Convergence of boundary conditions

As discussed in section 6.2.3, the error in the boundary conditions on
the spheroidal interfaces can be seen as a measure of the correctness of
the implementation. One should therefore expect that a higher multipole
order gives a better fulfilment of these boundary conditions.

In Figures 6.15–6.16 the average error in both boundary conditions at
the two spheroidal interfaces of the test system in the previous section
is plotted for various multipole orders. This is done at the two energies
E = 2.7 eV and E = 4.5 eV, where first energy is close to the main
resonance peak, while the second is far from any resonances. As indicated
by these figures, the average error decreases with increasing multipole
order, as it should. Note that the average errors at the energy close to the
resonance peak in Fig. 6.15 are around one order of magnitude greater than
the average errors at the energy far from the resonance in Fig. 6.16. This is
not unreasonable, since the potential exhibits a more dramatic behaviour
close to the resonances. A greater error can therefore be expected here.

From this one could be led to believe that a higher multipole order is
always better. Although this is true up to a certain point, it turns out
that if one includes multipoles of too high orders the average error starts
increasing again. This is probably due to numerical round-off errors in
the calculations. These errors were observed to start dominating around
M = 25 in some cases.

80



6. Numerical modelling 6.2. Numerical tests

(a) (b)

Figure 6.16: Average error in the first (a) and second (b) boundary condition at
E = 4.5 eV, as a function of multipole order. Note that the error
at the outer interface (s = 1) is greater than the error at the inner
interface (s = 2).

Convergence of SDRS curves

With an increasing number of multipoles included in the calculation, one
also expects that the observable differential reflectance spectrum of the
island film converges towards a ‘true’ spectrum. The results of this test is
in Figure 6.17.

Here the resulting SDRS curves of several runs of the test case defined
in Parameter set 1 in Table 6.1, but with different multipole orders M ,
are compared. It is quite clear that the SDRS curves converges towards
a single curve with an increasing number of multipoles. By subtracting
the curve corresponding to M = 24 from the others, this tendency is even
clearer. This is presented in Figure 6.18.

It should be noted from Figure 6.17c that the ‘shoulder’ on the SDRS
curve around 2.7 eV is not visible for M < 12. This indicates that mul-
tipoles of this order are needed in order to capture some of the effects of
the SDRS curves.
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(a)

(b) (c)

Figure 6.17: (a) Comparison of the SDRS curves for different multipole orders.
The curves seem to converge towards a single curve for higher M .
(b) Detailed view of the behaviour around the main resonance peak.
(c) Detailed view of the behaviour close to the ‘shoulder’ around
2.7 eV. Note that the higher order multipoles are needed to describe
this feature.
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Figure 6.18: SDRS curves for different multipole orders, where the M = 24 curve
have been subtracted from all other curves. The curves converges
towards this ‘true’ curve with increasing multipole order M .

83



84



7. Characterization of
eigenmodes

As discussed in section 2.3, the peaks and valleys in the SDR spectrum
of an island film are due to plasmon resonances. Using the functionality
included in GranFilm of evaluating the potential in the near-field around
an island, these plasmon modes can be studied in more detail. This is the
subject of this chapter. Section 7.1 discusses two methods of finding the
resonance energies of a particular geometry, while section 7.2 is a study of
the resonances modes in the case of a hemispherical island covered by an
oxide coating. In section 7.3 the hybridized plasmon modes of a metallic
shell are studied.

7.1. Localization of resonances

When solving the system of equations in Eqs. (4.68)–(4.69) in GranFilm,
the linear system of equations is first written in the matrix form

Ax = b (7.1)

where A is the matrix containing the integral abbreviations in Eqs. (4.44),
(4.45), (4.50) and (4.51) (also called matrix elements), x is a vector con-

taining the unknown expansion coefficients A
(i)
`m and B

(i)
`m, and b is a vector

containing the potential contributions from the incident radiation. The
linear system is solved for x using a standard linear algebra library [17],
and the potential expansion coefficients are then used for calculating the
island polarizabilities or evaluating the potential itself.

As all information about the island system is contained in the matrix
A, one can use this to study the resonance modes of the system. By
turning off the external field, i.e. setting b = 0, one is left with the the
corresponding homogeneous set of equations for the system

Ax = 0. (7.2)
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The non-trivial solutions x of this equation are the resonance modes or
eigenmodes of the system, and the energies at which a non-trivial solution
exists are its resonance energies. From linear algebra we know that in
order for this equation to have any non-trivial solutions, the matrix A
must be singular, which means that the determinant of A must be equal
to zero [18]. The eigenmodes of the system can therefore be identified by
calculating the determinant det(A) for a range of energies, and locating
the energies for which det(A) is zero. The system is still energy dependent,
even with no incident radiation, due to the complex dielectric functions
εi(ω) of the media.

When the incident field is set to zero, the system described by Eq. (7.2)
is essentially a damped oscillating system with no driving forces. The
damping forces comes from the imaginary part of the complex dielectric
functions εi(ω), which give rise to an exponentially decaying factor in the
electric field. In order to be able to study the resonances in more detail,
GranFilm includes an option of reducing these damping forces artificially
by setting the imaginary part of the dielectric function to a small number.
As seen from Eq. (2.25), this increases the quality factor Q, and thus the
lifetime, of the surface plasmons. This has the effect of enhancing the
resonant behaviour of the system, without affecting the location of the
resonances.

The fact that the dielectric functions are complex also means that any
zeros of det(A) do not necessarily lie on the real energy axis, but rather
somewhere in the complex frequency plane. By reducing the imaginary
part of the dielectric function, these zeros move closer to the real axis, and
they should therefore become easier to identify when studying |det(A)| for
a range of (real) energies.

In the results below the imaginary part of the dielectric function is set
to 1% of its physical value, which effectively removes most of the damping
in the system.

The test case studied in this section consists of hemispherical silver islands
of radius 8.0 nm on a MgO substrate, surrounded by air. This is the same
test case as was used in [3], and similar resonances to those found there
should therefore be expected in these tests. The parameters of this test
system are summarized in Table 7.1.

In Figure 7.1, the normalized1 SDRS curves for this system are com-
pared for the cases of physical dielectric functions and reduced damping.

1Divided by its maximum value. Here the amplitudes of the resonance peaks are not
relevant, only their location on the energy axis.
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Parameter set 2a

Substrate medium MgO
Island medium Ag
Radius R 8.0 nm
Truncation ratio tr 0.0
Multipole order M 16

Table 7.1: Main test parameters used in the GranFilm runs of this section.

Figure 7.1: Comparison of the (normalized) SDRS curves in the case of a phys-
ical dielectric function and in the case where the damping has been
artificially reduced by 99 %.

From this it can be seen that the removal of damping leads to sharper res-
onance peaks. In Figure 7.2 the absolute value of det(A) for m = 0, 1 in
the undamped system is plotted for a range of energies and compared with
the normalized SDRS curve. Although the determinant reaches extremely
high values and is nowhere near zero for any energy, it is clear that each
resonance peak corresponds to a dip of several orders of magnitude in the
determinant of one of the matrices (m = 0 or m = 1). This agrees with
what one would expect from the discussion above, and indicates that the
actual zeros lie in the complex plane, close to these dips.

By turning the damping completely off, i.e. setting Im[ε] = 0 for the
island, and increasing the resolution on the energy axis it is observed that
the dips in |det(A)| grow deeper. It seems likely that | det(A)| reaches
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Figure 7.2: The absolute values of the determinant of the matrix A, for different
energies and m = 0, 1. The corresponding SDRS curve is plotted for
the same energies. Note that each resonance peak in the SDRS curve
corresponds to a dip in the matrix determinant.

zero in the center of the dips, but it was not possible to observe this, even
at very high resolutions.

In Figure 7.2 the dips corresponding to the three main resonances (a),
(b) and (c) of the SDRS curve have been marked. When plotting the
potential at the corresponding energies, the resonance modes which lead
to the peaks can be identified. This is done in Figure 7.3, and the three
resonances are recognized as

(a) a dipolar mode, parallel to the substrate,

(b) a quadrupolar mode,

(c) a dipolar mode, perpendicular to the substrate.

These results agree with the resonance modes found for the same system
in [3].

Note also from Figure 7.2 that the resonances (a) and (b) correspond to
a dip in | det(A)| for the m = 1 system of equations, while (c) corresponds
to a dip in |det(A)| for m = 0. One would therefore expect the (c) mode to
be rotational symmetrical around the z-axis, since the spherical harmonics
Y`m with m = 0 all have this symmetry. This seems to agree with Fig. 7.3c.
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(a) (b) (c)

Figure 7.3: Potential maps of the system at the three main resonance energies,
showing the three main resonance modes. (a) Parallel dipolar mode
at E = 2.50 eV (b) Quadrupolar mode at E = 3.05 eV (c) Normal
dipolar mode at E = 3.61 eV.

Eigenvalues of A

Another way of looking for solutions to Eq. (7.2), is to first find the ei-
genvalues λi and eigenvectors vi of the matrix A. This is done by solving
the eigenvalue system

Av = λv. (7.3)

When an eigenvalue λi approaches zero, one is left with the homogeneous
equation above, Eq. (7.2). In the limit of an eigenvalue λi equal to zero,
the matrix A must be singular (i.e. have a determinant equal to zero),
because the eigenvector vi is non-zero by definition [18]. To look for
energies where an eigenvalue of A approaches zero is thus equivalent to
looking for energies where det(A) approaches zero, and the energies at
which this occurs will therefore again correspond to the eigenmodes of the
system. In Figure 7.4 the inverse of the minimum absolute value of the
eigenvalues of the matrix A is plotted for each energy and for m = 0, 1,
and compared with the SDRS curve. In Figure 7.5 the same is shown for
the case where the damping part of the dielectric function again has been
artificially reduced to 1 % of its actual value. From these figures it is quite
clear that the resonances of the SDRS curve occur at the energies where
the smallest absolute eigenvalue of A approach zero.

Notice from Figure 7.4 that the valley in the SDRS curve at (c) seems
to occur at a slightly higher energy than the corresponding maxima in
1/min|λi|. The reason for this energy shift is seen when the damping
is removed in Figure 7.5. The complex behaviour in 1/min|λi| around
3.7 eV leads to an equally complex response in the SDR spectrum at this
energy. This seems to have the effect of shifting the observable dip in the
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Figure 7.4: The inverse minimum absolute eigenvalues of A along with the SDRS
curve for the test system with physical ε-values. The peaks of the
SDRS curve seem to correspond to the various maxima in 1/min|λi|.

reflectance in Figure 7.4 towards a higher energy.

Although the eigenvalue-approach to locating the eigenmodes gives
the same results as when looking for local minima in |det(A)|, the sharper
peaks in Figure 7.5 makes it easier to i) find the exact resonance ener-
gies and ii) distinguish between the m = 0 and the m = 1 peaks. This
approach is therefore preferred in the next sections.

7.2. Oxide-coated islands

It is also useful to study how a dielectric coating layer on the metallic
islands affects the eigenmodes, and the tests of the previous sections are
therefore repeated for coated particles. The test system used in this section
is therefore the same as in the previous section, but now with a dielectric
coating layer on the hemispherical silver islands. In order to simulate the
effect of the oxidisation process which occurs when silver is exposed to
oxygen, the coating layer is set to consist of silver oxide. The thickness
of the coating layer is such that the radius ratio of the silver core is 0.95.
These system parameters are summarized in Table 7.2.
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Figure 7.5: The inverse minimum absolute eigenvalues of A along with the nor-
malized SDRS curve for the test system with Im[εAg] reduced to 1 %
of its actual value. Here each peak in the SDRS curve is clearly
related to a m = 0 or m = 1 eigenvalue approaching zero.

7.2.1. Coated island resonances

In Figure 7.6 the differential reflectivity curve of the coated system is
plotted along with the inverse minimum absolute eigenvalues of the matrix
A. When comparing this to the uncoated system in Figure 7.5, it is
observed that the main resonances are shifted towards lower energies, and
also that some new resonances arise. Note how the complex behaviour of
the SDRS curve around 3.7 eV in the uncoated case has been replaced by
a single sharp peak in the coated case. Instead, six new and approximately
equidistant peaks have arisen in the region 2.7− 3.2 eV.

The potential at the five peaks (a)–(e) is depicted in Figure 7.7a–
7.7e. The potentials at these energies suggest that the resonances can be
attributed to the following modes:

(a) A dipolar mode, parallel to the substrate. This is similar to the mode
in Figure 7.3a.

(b) Possibly a quadrupolar mode, similar to the one in Figure 7.3b.

(c) A quadrupolar mode. Note that this mode was not observed in the
uncoated case.
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Parameter set 2b

Substrate medium MgO
Core medium Ag
Coating medium Ag2O
Radius R 8.0 nm
Core radius ratio χ2 0.95
Truncation ratio tr 0.0
Multipole order M 16

Table 7.2: Main test parameters used in the GranFilm runs of this section.

(d) A normal dipolar mode, or possibly a quadrupolar mode (due to the
small minima close to the substrate).

(e) A normal dipolar mode, similar to the one in Figure 7.3c.

The eigenmodes found for the uncoated islands in the previous section are
thus also found in the coated case, but at different energies. Note that
some of the resonances are difficult to attribute to a single plasmon mode.
For the (c) and (e) resonances, this can be explained by the fact that there
is a peak in 1/min(|λi|) for both m = 0 and m = 1 at these energies. This
means that the potentials in Figures 7.7c and 7.7e could be combinations
of two eigenmodes.

7.2.2. Dependence on coating thickness

For a more quantitative study of the effect of adding a dielectric coating to
the island, the differential reflectivity curves for varying coating thickness
are calculated and the positions of the various resonance peaks compared.
In Figure 7.8 this is shown in the cases of no coating and a coating of
0.1R. Here it can be seen that all the resonance peaks are shifted towards
lower energies, by various amounts. In Figure 7.9 this is shown more
systematically for a coating thickness ranging from 0 to 0.2R. This shows
that the resonances all shift towards lower energies with increasing coating
thickness. It is, however, worth noting that this effect is greatest for a
thin layer of coating. This means that even a really thin layer of dielectric
coating can have a large impact on the resonance energies.

It should be noted that in the tests above the thickness of the coating
layer was increased by reducing the radius ratio of the metal core. This
means that the properties of the system in theory could change not only
due to the thickness of the coating layer, but also because the metallic
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Figure 7.6: The inverse minimum absolute eigenvalues of A along with the nor-
malized SDRS curve for the coated test system with Im[εAg] reduced
to 1 % of its actual value.

(a) (b) (c)

(d) (e)

Figure 7.7: Maps of the real part of the potential at the energies indicated in
Figure 7.6. (a) Parallel dipolar mode at E = 2.34 eV (b) Possible
quadrupolar mode at E = 2.67 eV (c) Quadrupolar mode at E =
3.12 eV (d) Normal dipolar, or possible quadrupolar mode at E =
3.43 eV (e) Normal dipolar mode at E = 3.64 eV.
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Figure 7.8: Normalized SDRS curves in the cases of uncoated islands (left) and
islands with an oxide coating of thickness 0.1R (right). Note how the
resonances (a)–(d) shifts towards lower energies when the coating is
applied.

Figure 7.9: Position of the resonances (a)–(d) in Figure 7.8 on the energy axis
with varying coating thickness.
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Figure 7.10: SDRS curves of uncoated, spherical islands of three different radii.
The position of the resonance peaks on the energy axis is not de-
pendent on the particle radius.

islands are getting relatively smaller. In order to rule out the effect of
this, the SDRS curves for three uncoated hemispherical island systems of
varying radius are compared in Figure 7.10. This shows that although the
radius has some effect on the amplitude of the resonances, their position
on the energy axis is not changed by varying the radius. The movement
of the resonances along the energy axis observed in Fig. 7.9 can therefore
be attributed to the coating thickness alone.

7.2.3. Dependence on island interactions

When performing calculations in GranFilm, the metallic islands are
placed in a regular lattice configuration with a typical distance between
islands called the lattice parameter L. In the calculations up to this point,
this distance has been assumed to be so large that each island can be
considered an independent system. When this is not the case, GranFilm
also has the option of including island–island interactions. This is done
by taking into account not only contributions from the multipoles and
image multipoles of the island itself, but also the multipoles and image
multipoles of the neighbouring islands. As a first approximation, this is
modelled by including a correction in the island polarizabilities of dipolar
order, as described in [7].

In Figure 7.11 the SDRS curves have been plotted for the coated and
uncoated systems with no corrections due to island–island interactions and
with corrections to dipolar order included. By comparing the SDRS curves
in these cases, it seems that the effect of turning island–island interactions
on is smaller in the coated case than in the uncoated case. This makes

95



7.3. Resonances of metallic shells 7. Characterization of eigenmodes

Figure 7.11: Effect of island–island interactions on the SDRS curves in the cases
of uncoated islands (left) and islands with an oxide coating of thick-
ness 0.1R (right). The islands are placed in a square lattice config-
uration with a lattice parameter of L = 20.

intuitively sense, as the dielectric coating ‘shields’ the islands from the
contributions of its neighbours.

7.3. Resonances of metallic shells

As discussed in section 2.3.1, the plasmon resonances of a metallic shell
can be found as a hybridization of the plasmon modes of a metallic sphere
and a spherical cavity in a metal. For the metallic shell, these modes are
split into a low energy symmetric mode and a high energy antisymmetric
mode. The physics behind this hybridization of plasmons is not expected
to change considerably for truncated particles, and one could therefore
expect to observe the same behaviour when placing truncated metallic
shells on a substrate.

The test case used when looking for this effect consists of hemispherical
silver shells around cores of glass2, placed on a MgO substrate. The radius
ratio of the inner glass core is 0.7, and the damping of the system is still
artificially reduced by setting Im[εAg] to 1 % of its actual value, in order
to better locate the resonances. The system parameters are summarized
in Table 7.3

When plotting the inverse minimum absolute eigenvalues together with
the SDRS curve of the system, the main resonances are identified, as seen
in Figure 7.12. Here, the two m = 1 peaks corresponding to the symmetric

2More specifically, borosilicate crown glass (BK7).
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Parameter set 3

Substrate medium MgO
Core medium Glass (BK7)
Shell medium Ag
Radius R 8.0 nm
Core radius ratio χ2 0.7
Truncation ratio tr 0.0
Multipole order M 16

Table 7.3: Main test parameters used in the GranFilm runs of this section.

and antisymmetric plasmon modes are marked. The potential maps at
these energies are shown in Fig. 7.13–7.14, and the potential at (a) and
(b) are recognized as the symmetric and antisymmetric configurations in
the schematic in Fig. 2.2, respectively. The energy of the symmetric mode
is lower than the energy of the antisymmtric mode, in agreement with the
hybridization model.

In section 7.1, the same system is studied, but with solid silver hemi-
spheres instead of hemispherical shells. The corresponding dipolar plas-
mon energy of this system lies between the hybridized energies, as seen in
Figs. 7.2–7.3a, so that

Esymmetric < Esolid < Eantisymmetric. (7.4)

This also agrees with the schematic in Fig. 2.2.
Note that the maxima of the potentials in the symmetric mode in

Figure 7.13a are more than one order of magnitude higher than in the
antisymmetric mode in Figure 7.13b. This makes sense, since the potential
maxima and minima of this mode are quite close and are thus partially
cancelling each other out. The fact that the symmetric mode corresponds
to the main resonance peak in the SDR spectrum, while the antisymmetric
mode gives a lower and narrower peak, can also be attributed to this.

In Figure 7.15 the SDR spectrum in the case of physical Im[ε]-values
is compared with the spectrum in the case of reduced damping, which is
studied in this section. From this it is observed that the antisymmetric
mode is responsible for a small local maximum in the observable SDRS
curve of the system as well.
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Figure 7.12: Inverse minimum absolute values of the eigenvalues of the matrix A
along with the SDR spectrum for the metallic shell system defined
in Parameter set 3.

(a) (b)

Figure 7.13: Potential maps of the metallic shell system showing the two hybrid-
ized resonance modes. (a) Symmetric mode at E = 1.93 eV. (b)
Antisymmetric mode at E = 2.85 eV
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Figure 7.14: Close-up view of the left and right part of the antisymmetric mode
in Figure 7.13b.

Figure 7.15: Normalized SDRS curves of the system in the case where the actual
(physical) ε-values have been used and in the case where damping
is reduced by setting Im[εAg] to 1 % of its actual value. The anti-
symmetric hybridized mode at (b) leads to a small maximum in the
physical case as well.
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8. Summary and conclusions

The first goal of this work was to implement into GranFilm the func-
tionality needed in order to calculate the optical properties of an island
film of truncated and coated prolate spheroidal nanoparticles, as derived
in chapter 4. The implementation was carried out and the code checked
thoroughly for errors. The fact that the functionality was to be added
to the existing GranFilm 2.0 framework and not be built from scratch,
made the implementation a more manageable task. Although consisting
of a vast body of code, the GranFilm framework has clearly been built
with such future additions in functionality in mind, which made my job of
adding prolate spheroid support easier. I have tried to follow this principle
of allowing for future additions and modifications in my code as well.

The second goal of this work was directly linked to the first, and con-
sisted of testing the implementation of the new functionality rigorously
in the appropriate limits. In fact, this turned out to be the most time-
consuming part of this thesis. In section 6.2, the various test are detailed.
The new code is first shown to give results in the spherical limit that are
consistent with the results from the old code. This is done by studying
the main output of the program, which is the differential reflectance spec-
trum (SDRS) of the surface system, in this limit. By changing the radii of
the island particles slightly in a number of subsequent runs, the particle
shape changes from oblate spheroidal to spherical and then from spherical
to prolate spheroidal, invoking all three branches of the code. By com-
paring the SDR spectra in these runs, they are found to converge towards
the spherical case from both sides, as can be seen in Figures 6.2–6.3. The
same is observed when the islands have a dielectric coating, as can be seen
in Figures 6.4–6.5. Although it is not a proof of correctness that the SDRS
curves behave consistently for the three geometries in the spherical limit,
it is certainly a good indication that the implementation was successful.

Another possible output of GranFilm is the potential in the near field
evaluated at a set of points specified by the user. When plotting the real
part of the potential in the cross-section of an island for the three differ-
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ent geometry types in the spherical limit, the same qualitative behaviour
should be expected. This is done in section 6.2.2, and by comparing Fig-
ures 6.6a–6.6c, it is seen that the potential evaluated by the new prolate
implementation exhibits the same behaviour as in the two other geomet-
ries.

It was, however, observed that if one tries to use the spheroidal code
on geometries too close to the spherical limit, the SDRS curves behave
oddly or the calculation breaks down entirely. This is due to numerical
issues arising from the fact that ξ0 → ∞ and a → 0 for spheroids in the
spherical limit. This means that the user must be careful when studying
spheroidal systems close to the spherical limit. In the case of a geometry
very close to a sphere, it is probably best to approximate the islands as
spheres and perform the calculations using the spherical branch of the
GranFilm program.

The tests above are of course just indications that the implementation
has been carried out without error. The ultimate test of the correctness
of the implementation is to check that the boundary conditions, Eq. (4.4),
at the spheroidal interfaces are fulfilled. From the uniqueness theorem we
know that if the potential is a solution of Laplace’s equation and satisfies
the boundary conditions of the system, this must be the one and only solu-
tion. Since the multipole expansions for the potential in Eqs. (4.26)–(4.27)
satisfy Laplace’s equation and the boundary conditions at the flat inter-
faces by construction, it is the degree to which the boundary conditions
at the spheroidal interfaces are fulfilled that decides the success of the
implementation. In section 6.2.3 this fulfilment is tested quantitatively,
and the results are presented in Figures 6.7–6.10. These results show that
both boundary conditions are relatively well satisfied at all the spheroidal
interfaces. It is noted that the first boundary condition is better satisfied
than the second, but this is not unreasonable, since the derivatives of the
potential are expected to change more rapidly than the potential itself. At
all the spheroidal interfaces, the biggest error is observed at the interface
between the ambient and the substrate. There are at least two reasons
why this makes sense. First, this is the point where the spheroidal inter-
face crosses the substrate interface, and when potential in this region is
forced into fulfilling the boundary conditions at both interfaces simultan-
eously, this could lead to conflicts. Second, as seen in Figures 6.6a–6.6c,
this is the region where the potential has the largest value for the partic-
ular resonance corresponding to the main peak in the SDRS curve. Since
this is the region with the most dramatic behaviour in the potential, it is
reasonable that the error is greatest here.
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The continuity of the normal derivatives of the potential times the
permittivity, ε∂nψ, across a spheroidal interface was checked using a finite-
difference approximation of the derivatives. When checking the fulfilment
of this boundary condition for an island with high truncation ratio, this
calculation broke down, as seen in section 6.2.4. The reason for this was
not found, but in order to make sure that this boundary condition was
satisfied for this system as well, an analytical calculation of the normal
derivatives was implemented. This calculation proved successful.

In theory, an infinite number of multipoles are needed in order for the
potential expansion to be valid. In practice this is impossible, and the mul-
tipole expansion must be truncated at an order M . One would, however,
expect the results to improve with an increasing number of multipoles, and
this is also observed in the implementation, as seen in section 6.2.5. While
more multipoles are always better in the analytical derivation, the picture
is different when it comes to numerics. This is due to the finite precision
of the numbers used in the calculation. This is a purely numerical effect,
but may actually lead to higher errors when including multipoles of very
high orders. The result is that the number of multipoles to be included in
the calculation must be chosen from a finite interval. Too few multipoles
will lead to imprecise results, while too many will give these round-off
errors. The maximum number of multipoles that can be included before
such errors start dominating seem to depend on the geometry of the sys-
tem, but was observed to be as low as the mid-twenties in some cases.
Most of the GranFilm runs performed in this work used M = 16, which
gave satisfactory results without taking too much time.

The third goal of this thesis was to study the resonance modes of
supported island particles. A reasonable place to start is always to try to
reproduce results found by others, so first the resonance modes of a simple
film of uncoated, hemispherical silver islands was studied. This was the
same system studied by Lazzari and Simonsen in [3], and the resonance
modes should therefore match the ones identified there. As can be seen
in Figure 7.3, the three main resonance modes for this system could be
identified as a parallel dipolar mode, a quadrupolar mode and a normal
dipolar mode using GranFilm. This was in agreement with the results
in [3].

The resonance modes were located on the energy axis in two differ-
ent ways. Both methods used the fact that the matrix A containing the
integral terms of the system of equations for the multipole expansion coef-
ficients is singular at a resonance energy. These energies were first located
by studying the absolute value of the determinant of the matrix, since
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the determinant should approach zero when the matrix becomes singular.
It turned out that the determinant did not approach zero at any energy
tested. It did, however, have dips of several orders of magnitude at certain
energies. These energies corresponded to the energies at which a peak or
a valley (indicating resonant behaviour) was observed in the SDRS curve
of the island film. By increasing the resolution on the energy axis, it was
observed that the dips grew deeper, but it was not possible to find the
exact zero. This is probably due to the finite precision in the calculations.
The second method of locating the resonance energies was to study the ei-
genvalues of the matrix A. In a similar way, the smallest absolute value of
the eigenvalues should approach zero when the matrix becomes singular,
and the energies at which this happens will therefore correspond to the
resonance energies of the system. Like the determinant, the eigenvalues
did not reach exactly zero, but by plotting the inverse minimum absolute
value of the eigenvalues, a series of sharp peaks could be seen. These cor-
responded exactly to the various peaks in the SDRS signal, and made it
easy to identify the possible resonance energies of the system. Because of
the sharper peaks, the eigenvalue method was therefore found to be the
better of the two methods of locating the resonances.

The resonance modes of a film of coated hemispherical islands were also
studied, and the results are presented in section 7.2.1. These results show
that the dielectric coating has the effect of shifting the resonances towards
lower energies. The added coating also results in a more complex response
with more dominating resonances, as seen when comparing Figures 7.5 and
7.6. The main eigenmodes corresponding to these resonances can be found
by studying the potentials in Fig. 7.7. Here the three modes found in the
uncoated system are found again, in addition to two new ones. These were
difficult to characterize, but are likely dipolar or quadrupolar too.

The resonance modes of this coated system were then studied with
varying thickness of the coating. By gradually increasing the coating thick-
ness, it was observed that the resonance modes were shifted towards lower
energies and that this effect was greatest when the coating was thinnest.
This is shown in Figure 7.9. This means that even a very thin layer of
coating will have a big impact on the location of the resonances. When
studying the correction in the SDRS spectrum due to island-island inter-
actions for metallic islands with and without a dielectric coating, it was
also observed that the correction is smaller in the coated case. This agrees
with what one intuitively would expect, since the dielectric coating layer
can be considered a shielding layer, thereby isolating the neighbouring
islands from each other.
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The final test case studied in this work was a truncated metallic shell
system. This consisted of an island film of hemispherical silver shells with
glass cores. The plasmon modes of such a nanoshell have been shown to
be a hybridization of the modes supported by a solid metal particle and by
a cavity in a metal [9]. It was expected that a film of hemispherical shells
would show a similar behaviour, and the resonances of this system were
therefore located and maps of the potential at these energies compared.
As Figure 7.13 shows, the hybridization also occurs in this system. The
single parallel dipolar mode found in the solid silver islands is split into two
new modes, a low energy symmetric one and a high energy antisymmetric
one. By comparing the energies of these two modes with the energy of the
single solid silver mode, found in section 7.1, it is observed that the energy
of this original mode lies between the energies of the two hybridized ones,
as it should according to the hybridization model.

In conclusion, the three main goals of this thesis can be said to have
been reached. The prolate spheroid functionality added to GranFilm
seems to behave as it should, and the various tests performed confirm this
numerically. The plasmon resonance modes of various metallic islands
have been studied in more detail, with some interesting results. In par-
ticular, the fact that plasmonic hybridization of a metallic shell can be
observed in GranFilm is an interesting find.

With the implementation of prolate spheroid support, GranFilm now
supports island films of a wide range of geometries. In theory, islands
shapes ranging from flat discs to thin needles are now supported, but
these limits have not been tested. Some further study of the performance
of the software in these limits could therefore be useful. Support for the
case of islands only slightly truncated by the substrate, with internal layers
entirely lying above the substrate, could also be a useful future addition
to GranFilm.
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A. Dimensionless equations

When implementing Eqs. (4.72)–(4.73) in GranFilm, a slightly modified
set of equations are actually used, in order for the multipole coefficients
to be dimensionless. This convention was used in the original GranFilm
implementation, as described in [3, 16], and the equations for the prolate
spheroidal system was therefore implemented in a similar way.

The multipole expansions coefficients A
(i)
`m and B

(i)
`m as defined in Eq.

(4.17) have the dimensions Vm`+1 and Vm−`, respectively. In the imple-
mentation, these have been replaced by their dimensionless equivalents,
defined as

Â
(i)
`m = R−`−2

⊥,1 A
(i)
`m/E0

B̂
(i)
`m = R`−1

⊥,1B
(i)
`m/E0

(A.1)

where R⊥,1 is the semimajor axis of the outermost spheroidal interface
and E0 is the field strength of the incident radiation. When replacing the
coefficients in Eqs. (4.72)–(4.73) with these dimensionless quantities, the
new set of equations to be solved becomes
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A. Dimensionless equations

M∑
`′=1

ζm``′χ
−`′−2
s

[
Â

(2s−1)
`′m Im(2s−1)

``′ (t(s)r , ξ0,s)− Â(2s+1)
`′m Im(2s+1)

``′ (t(s)r , ξ0,s)
]

+
M∑
`′=1

ζm``′χ
`′−1
s

[
B̂

(2s−1)
`′m Km(2s−1)

``′ (t(s)r , ξ0,s)− B̂(2s+1)
`′m Km(2s+1)

``′ (t(s)r , ξ0,s)
]

= δs1

√
4π

3
cos θ0

{
ξ−1

0,1

ε1

ε2
X̃0

1 (ξ0,1)δ`1 +

(
ε1

ε2
− 1

)[√
3t(1)
r ζ0

`0Q
0
`0(−1, t(1)

r )

− ξ−1
0,1ζ

0
`1X̃

0
1 (ξ0,1)Q0

`1(−1, t(1)
r )
]}
δm0

− δs1

√
2π

3
ξ−1

0,1 sin θ0e
−iφ0X̃1

1 (ξ0,1)δ`1δm1

∀ s = 1, 2, ..., S; ` = 0, 1, 2, ...,M ; m = 0, 1,
(A.2)

and

M∑
`′=1

ζm``′χ
−`′−2
s

[
Â

(2s−1)
`′m Jm(2s−1)

``′ (t(s)r , ξ0,s)− Â(2s+1)
`′m Jm(2s+1)

``′ (t(s)r , ξ0,s)
]

+
M∑
`′=1

ζm``′χ
`′−1
s

[
B̂

(2s−1)
`′m Lm(2s−1)

``′ (t(s)r , ξ0,s)− B̂(2s+1)
`′m Lm(2s+1)

``′ (t(s)r , ξ0,s)
]

= δs1ξ
−1
0,1

{
ε1

√
4π

3
cos θ0

∂X̃0
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

δm0δ`1

−
√

2π

3
sin θ0e

−iφ0 ∂X̃
1
1 (ξ)

∂ξ

∣∣∣∣
ξ=ξ0,1

(
(ε1 − ε2)ζ1

`1Q
1
`1(−1, t(1)

r ) + ε2δ`1

)
δm1

}
∀ s = 1, 2, ..., S; ` = 0, 1, 2, ...,M ; m = 0, 1,

(A.3)
where it has been used that R⊥,s = χsR⊥,1, where χs is the radius ratio
of the interface s. Equations (A.2)–(A.3) are the ones that are actually
solved in GranFilm.
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B. Integrals

In order to solve the system of equations for the multipole expansion
coefficients, the integrals defined in Eqs. (4.39)–(4.40)

Ṽ m
``′ [κz, ξ](η1, η2) ≡

∫ η2

η1

dηPm` (η)Pm`′ (ηκ(ξ, η))Z̃m`′ (ξκ(ξ, η)), (B.1)

and

W̃m
``′ [κz, ξ](η1, η2) ≡

∫ η2

η1

dηPm` (η)Pm`′ (ηκ(ξ, η))X̃m
`′ (ξκ(ξ, η)), (B.2)

and their derivatives with respect to ξ

∂

∂ξ

[
Ṽ m
``′ [κz, ξ](η1, η2)

]
ξ=ξ0

=

∫ η2

η1

dηPm` (η)

{
∂ηκ
∂ξ

∂Pm`′ (ηκ)

∂ηκ
Z̃m`′ (ξκ)

+
∂ξκ
∂ξ

∂Z̃m`′ (ξκ)

∂ξκ
Pm`′ (ηκ)

}
,

(B.3)

∂

∂ξ

[
W̃m
``′ [κz, ξ](η1, η2)

]
ξ=ξ0

=

∫ η2

η1

dηPm` (η)

{
∂ηκ
∂ξ

∂Pm`′ (ηκ)

∂ηκ
X̃m
`′ (ξκ)

+
∂ξκ
∂ξ

∂X̃m
`′ (ξκ)

∂ξκ
Pm`′ (ηκ)

}
,

(B.4)
need to be calculated numerically. The integrands of these integrals con-
tains special functions which had to be implemented in GranFilm. In
section B.1 the implementation of the Associated Legendre polynomials
Pm` and Qm` , the Prolate radial functions Z̃m`′ and X̃m

`′ and their derivatives
∂
∂ηP

m
` (η), ∂

∂ξ Z̃
m
`′ (ξ) and ∂

∂ξ X̃
m
`′ (ξ) is treated in detail. In section B.2 the

implementation of the coordinate transformations ξκ(ξ, η), ηκ(ξ, η) and
their derivatives ∂

∂ξ ξκ(ξ, η), ∂
∂ξηκ(ξ, η) is covered.
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B.1. Legendre polynomials B. Integrals

B.1. Legendre polynomials

The associated Legendre Polynomials are needed both in the implement-
ation of the Spherical harmonics, Eq. (4.11), and in the implementations
of the prolate X̃m

` (ξ, a) and Z̃m` (ξ, a) functions, Eqs. (4.18a)–(4.18b). In
the former case only the first order function is needed, defined on the
interval −1 ≤ η ≤ 1. This was already in place in GranFilm, since
these polynomials are also needed in the spherical and oblate spheroidal
cases. In the latter case both the first and the second order functions are
needed, now defined on the interval 1 ≤ ξ <∞, where ξ is a real number.
These are special for the prolate spheroidal case and were implemented in
GranFilm using the definitions in Eqs. (4.7) and (4.9) and the following
recursion formulas [13]

Pm` (ξ) =
1

`−m
[(2`− 1)ξPm`−1 − (`+m− 1)Pm`−2]

Qm` (ξ) =
1

`−m
[(2`− 1)ξQm`−1 − (`+m− 1)Qm`−2].

(B.5)

From these formulae, all the associated Legendre polynomials of the first
and second order, defined on the interval 1 ≤ ξ < ∞, can be determined
from the first few terms, which can be found directly from the definitions
in Eqs. (4.7) and (4.9)

P 0
0 (ξ) = 1

P 0
1 (ξ) = ξ

P 1
1 (ξ) = −i

√
ξ2 − 1

P 1
2 (ξ) = −3iξ

√
ξ2 − 1

Q0
0(ξ) =

1

2
ln

(
ξ + 1

ξ − 1

)
Q0

1(ξ) =
1

2
ξ ln

(
ξ + 1

ξ − 1

)
− 1

Q1
1(ξ) = − 1√

ξ2 − 1

[1

2
(ξ2 − 1) ln

(
ξ + 1

ξ − 1

)
− ξ
]

Q1
2(ξ) = − 1√

ξ2 − 1

[1

2
(3ξ3 − 3ξ) ln

(
ξ + 1

ξ − 1

)
− 3ξ2 + 2

]
.

(B.6)

When calculating the integrals B.3–B.4, the derivatives of the associated
Legendre polynomials with respect to ξ are needed. These can be found
from a second set of recursion formulas [13]
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B.2. Coordinate transformations B. Integrals

d

dξ
Pm` (ξ) =

1

ξ2 − 1

[
(`−m+ 1)Pm`+1(ξ)− (`+ 1)ξPm` (ξ)

]
d

dξ
Qm` (ξ) =

1

ξ2 − 1

[
(`−m+ 1)Qm`+1(ξ)− (`+ 1)ξQm` (ξ)

]
.

(B.7)

It should be noted that the associated Legendre polynomials were imple-
mented in GranFilm with quadruple precision in order to avoid round-off
errors.

The prolate radial functions X̃m
` (ξ, a) and Z̃m` (ξ, a), Eqs. (4.18a)–

(4.18b), and their derivatives ∂
∂ξ X̃

m
` (ξ, a) and ∂

∂ξ Z̃
m
` (ξ, a) were imple-

mented using the above Legendre polynomials. In order to avoid integer
overflow when calculating the factorial factors in these expressions, these
factors were re-written in the following way

(`−m)!

(2`− 1)!!
=



∏̀
i=1

i

2i− 1
if m = 0

1

`

∏̀
i=1

i

2i− 1
if m = 1

(B.8)

and

(2`+ 1)!!

(`+m)!
=



∏̀
i=1

2i+ 1

i
if m = 0

1

`+ 1

∏̀
i=1

2i+ 1

i
if m = 1

(B.9)

where it was used that (2k ± 1)!! =
∏k
i=1(2i± 1) and k! =

∏k
i=1 i.

B.2. Coordinate transformations

In addition to the transformations between prolate spheroidal coordinate
systems shifted by ∆z, as defined in Eqs. (3.16)–(3.17), the derivatives
of these transformations are also needed when implementing the derivat-
ives of the integrals Ṽ m

``′ and W̃m
``′ in Eqs. (B.3)–(B.4). By differentiating

Eqs. (3.16) and (3.17) with respect to ξ, the following expressions are
obtained

∂

∂ξ
ξ′[∆z, a](ξ, η) =

1√
2

(
C7 +

ξC8

2C7

)
(B.10)
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B.2. Coordinate transformations B. Integrals

and

∂

∂ξ
η′[∆z, a](ξ, η) =

√
2

[
∆z

aξ2

1

C7
− 1

2

(
η − ∆z

aξ

)C8

C3
7

]
, (B.11)

where

C1 =1 +
(∆z)2

a2ξ2
− 2∆z

aξ
η +

η2

ξ2

C2 =
2

ξ

(
∆z

aξ
− η
)

C3 =
∂

∂ξ
C1 = − 2

ξ3

(
∆z

a

)2

+
2η

ξ2

∆z

a
− 2η2

ξ3

C4 =
∂

∂ξ
C2 = −4∆z

aξ3
+

2η

ξ2

C5 =
√
C2

1 − C2
2

C6 =C1C3 − C2C4

C7 =
√
C1 + C5

C8 =C3 +
C6

C5
.

(B.12)
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C. Potential calculations

The module in GranFilm which calculates the potential from the expan-
sion coefficients needed to be extended to also include the case of prolate
spheroids. In this section some of the mathematics of this implementation
is detailed.

C.1. Evaluating the potential

When the multipole expansion coefficients have been found, the potential
may be evaluated explicitly from Eqs. (4.32)–(4.33). Using the dimension-

less multipole coefficients Â
(i)
`m and B̂

(i)
`m introduced in Appendix A, these

equations now take the form

ψi(r) =δi,1ψinc(r) + ψ
(i)
0 + E0

′∑
`m

R`+2
⊥,1 Â

(i)
`m

[
Z̃m` (ξµ, a)Y m

` (arccos ηµ, φµ)

+ (−1)`+mRiZ̃m` (ξµ̄, a)Y m
` (arccos ηµ̄, φµ̄)

]
+ E0

′∑
`m

R−`+1
⊥,1 B̂

(i)
`m

[
X̃m
` (ξµ, a)Y m

` (arccos ηµ, φµ)

+ (−1)`+mRiX̃m
` (ξµ̄, a)Y m

` (arccos ηµ̄, φµ̄)
]
,

(C.1)
for a region i above the substrate and

ψi+1(r) =δi,1ψtr(r) + ψ
(i+1)
0

+ TiE0

′∑
`m

[
R`+2
⊥,1 Â

(i)
`mZ̃

m
` (ξµ, a)

+R−`+1
⊥,1 B̂

(i)
`mX̃

m
` (ξµ, a)

]
Y m
` (arccos ηµ, φµ).

(C.2)

for a region i+ 1 below the substrate.
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C.1. Evaluating the potential C. Potential calculations

When solving the system of equations for the multipole expansion
coefficients, it was only necessary to consider the equations for the cases
m = 0, 1, as discussed in section 4.9. This was due to the symmetry in
the matrix elements with respect to m, which made the case m = −1
redundant.

When calculating the potential, however, all values of m must be con-
sidered. Thus, the functions X̃m

` (ξ, a) and Z̃m` (ξ, a), the spherical har-
monics Y m

` (arccos η, φ), as well as the multipole coefficients, for m = −1
are needed. It can be shown, using Eq. (4.10), that the two first functions
are independent of a change of sign in m, i.e. that

X̃m
` (ξ, a) = X̃−m` (ξ, a)

Z̃m` (ξ, a) = Z̃−m` (ξ, a).
(C.3)

The spherical harmonics for m = −1 are found from Eqs. (4.10)–(4.11),
and can be written

Y 0
` (arccos η, φ) =

√
2`+ 1

4π
P 0
` (η)

Y −1
` (arccos η, φ) =

√
2`+ 1

4π`(`+ 1)
P 1
` (η)e−iφ

Y 1
` (arccos η, φ) = −

√
2`+ 1

4π`(`+ 1)
P 1
` (η)eiφ

(C.4)

for the three cases m = 0,−1, 1. Using Eqs. (C.3)–(C.4) and (A.2)–(A.3),
it can now be shown that the dimensionless multipole coefficients have the
following symmetry in m

Â
(i)
`,−1 = −ei2φ0Â(i)

`,1

B̂
(i)
`,−1 = −ei2φ0B̂(i)

`,1.
(C.5)

The constant terms of the potential are calculated from Eq. (4.74),
which, using the dimensionless coefficients, takes the form
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C.2. Analytic derivatives C. Potential calculations

[
ψ

(2s+1)
0 − ψ(2s−1)

0

]
=
E0χsR⊥,1

2
√
π

M∑
`′=1

ζ0
0`′χ

−`′−2
s

[
Â

(2s−1)
`′0 I0(2s−1)

0`′ (t(s)r , ξ0,s)

− Â(2s+1)
`′0 I0(2s+1)

0`′ (t(s)r , ξ0,s)
]

+
E0χsR⊥,1

2
√
π

M∑
`′=1

ζ0
0`′χ

`′−1
s

[
B̂

(2s−1)
`′0 K0(2s−1)

0`′ (t(s)r , ξ0,s)

− B̂(2s+1)
`′0 K0(2s+1)

0`′ (t(s)r , ξ0,s)
]

+ δs1R⊥,sE0 cos θ0

(
ε1

ε2
− 1

){
1√
3
ζ0

01Q
0
01(−1, t(1)

r )

+ t(1)
r

[
1− ζ0

00Q
0
00(−1, t(1)

r )
]}

∀ s = 1, 2, 3, ..., S.

(C.6)

C.2. Analytic expression for the potential
derivatives

The normal derivatives of the potential at an interface are calculated by
differentiating Eqs. (4.32)–(4.33) with respect to ξ. This yields the follow-
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C.2. Analytic derivatives C. Potential calculations

ing expressions

∂

∂ξ
ψi(r) = δi,1

∂

∂ξ
ψinc(r)

+ E0

′∑
`m

R`+2
⊥,1 Â

(i)
`m

{[ ∂

∂ξµ
Z̃m` (ξµ, a)

∂ξµ
∂ξ

Y m
` (arccos ηµ, φµ)

+ Z̃m` (ξµ, a)
∂

∂ηµ
Y m
` (arccos ηµ, φµ)

∂ηµ
∂ξ

]
+ (−1)`+mRi

[ ∂

∂ξµ̄
Z̃m` (ξµ̄, a)

∂ξµ̄
∂ξ

Y m
` (arccos ηµ̄, φµ̄)

+ Z̃m` (ξµ̄, a)
∂

∂ηµ̄
Y m
` (arccos ηµ̄, φµ̄)

∂ηµ̄
∂ξ

]}

+ E0

′∑
`m

R−`+1
⊥,1 B̂

(i)
`m

{[ ∂

∂ξµ
X̃m
` (ξµ, a)

∂ξµ
∂ξ

Y m
` (arccos ηµ, φµ)

+ X̃m
` (ξµ, a)

∂

∂ηµ
Y m
` (arccos ηµ, φµ)

∂ηµ
∂ξ

]
+ (−1)`+mRi

[ ∂

∂ξµ̄
X̃m
` (ξµ̄, a)

∂ξµ̄
∂ξ

Y m
` (arccos ηµ̄, φµ̄)

+ X̃m
` (ξµ̄, a)

∂

∂ηµ̄
Y m
` (arccos ηµ̄, φµ̄)

∂ηµ̄
∂ξ

]}
,

(C.7)
for a region i above the substrate and

∂

∂ξ
ψi+1(r) =δi,1

∂

∂ξ
ψtr(r)

+ TiE0

′∑
`m

{
R`+2
⊥,1 Â

(i)
`m

[ ∂

∂ξµ
Z̃m` (ξµ, a)

∂ξµ
∂ξ

Y m
` (arccos ηµ, φµ)

+ Z̃m` (ξµ, a)
∂

∂ηµ
Y m
` (arccos ηµ, φµ)

∂ηµ
∂ξ

]
+R−`+1

⊥,1 B̂
(i)
`m

[ ∂

∂ξµ
X̃m
` (ξµ, a)

∂ξµ
∂ξ

Y m
` (arccos ηµ, φµ)

+ X̃m
` (ξµ, a)

∂

∂ηµ
Y m
` (arccos ηµ, φµ)

∂ηµ
∂ξ

]}
.

(C.8)
for a region i+ 1 below the substrate.
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