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Abstract

In [1], Downarowicz and Maass proved that the Cantor minimal system associated to a properly ordered Bratteli
diagram of finite rank is either an odometer system or an expansive system. We give a new proof of this truly
remarkable result which we think is more transparent and easier to understand. We also address the question

(Question 1) raised in [1] and we find a better (i.e. lower) bound than the one given in [1]. In fact, we conjecture
that the bound we have found is optimal.

1. Introduction.

The aim of this paper is to give a new proof of the following result.

Theorem 1.1. Let (V,E,≥) be a properly ordered Bratteli diagram, and let (V,E) be of finite
rank. Then the associated Bratteli-Vershik system (X(V,E), T(V,E)) is either an odometer system
or an expansive system.

Remark 1.2. It is well known that an expansive Cantor minimal system is (conjugate to) a
minimal subshift on a finite alphabet (cf. Proposition 2.9). Theorem 1.1 implies that if (V,E ≥)
is a properly ordered Bratteli diagram of finite rank and (V,E) has the ERS-property (cf. Section
2), then (X(V,E), T(V,E)) is either an odometer or a Toeplitz flow [3].

In our judgment the proof given of Theorem 1.1 in [1] is not easy to follow, so we feel that
a more transparent proof – thus hopefully making it more accessible – is in order for such an
important and, frankly speaking, rather surprising result. We also address the question (Question
1) that is raised in [1] about finding a better (i.e. lower) bound than the one they give in their
“Infection Lemma”, and we do indeed find a significantly lower bound (cf. Corollary 4.3), which
we conjecture is optimal.

We will adopt some of the definitions and terminology from [1], but in contrast to [1] we
interpret the definitions directly in terms of the properly ordered Bratteli diagrams in question.
We feel this makes it much easier to grasp the contents of the various definitions. (Cf. also Remark
4.4.) We strongly emphasize that our proof is very much inspired and motivated by the proof in
[1].

2. Bratteli diagrams and Bratteli-Vershik systems.

General references for this section are [4] and [2, Section 3]. A Bratteli diagram (V,E) consists
of a set of vertices V = t∞n=0Vn and a set of edges E = t∞n=1En, where the Vn’s and the
En’s are finite disjoint sets and where V0 = {v0} is a one-point set. The edges in En connect
vertices in Vn−1 with vertices in Vn. If e connects v ∈ Vn−1 with u ∈ Vn we write s(e) = v and
r(e) = u, where s : En → Vn−1 and r : En → Vn are the source and range maps, respectively.
We will assume that s−1(v) 6= ∅ for all v ∈ V and that r−1(v) 6= ∅ for all v ∈ V \V0. A
Bratteli diagram can be given a diagrammatic presentation with Vn the vertices at level n and
En the edges between Vn−1 and Vn. If |Vn−1| = tn−1 and |Vn| = tn then the edge set En
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V0

E1M1 =

[
1
1

]

V1

E2M2 =



5 2
4 1
1 1




V2

E3M3 =

[
1 2 2
1 2 1

]

V3

Figure 1. An example of a Bratteli diagram

is described by a tn × tn−1 incidence matrix Mn = (mn
ij), where mn

ij is the number of edges

connecting vni ∈ Vn with vn−1
j ∈ Vn−1 (see Figure 1). If the row sums are constant for every

Mn, then we say that (V,E) has the ERS-(Equal Row Sum) property. Let k, l ∈ Z+ with
k < l and let Ek+1 ◦ Ek ◦ · · · ◦ El denote all the paths from Vk to Vl. Specifically, Ek+1 ◦
Ek ◦ · · · ◦El = {(ek+1, · · · , el) | ei ∈ Ei, i = k + 1, . . . , l; r(ei) = s(ei+1), i = k + 1, . . . , l − 1}. We
define r ((ek+1, · · · , el)) = r(el) and s ((ek+1, · · · , el)) = s(ek+1). Notice that the corresponding
incidence matrix is the product MlMl−1 · · ·Mk+1 of the individual incidence matrices.

Definition 2.1. Given a Bratteli diagram (V,E) and a sequence 0 = m0 < m1 < m2 < · · ·
in Z+, we define the telescoping of (V,E) to {mn} as (V ′, E′), where V ′n = Vmn and E′n =
Emn−1+1 ◦ · · · ◦ Emn , and the source and the range maps are as above.

Definition 2.2. The Bratteli diagram (V,E) is of finite rank if |Vn| ≤ L <∞ for all n. By
telescoping we may assume that |Vn| = K for all n = 1, 2, . . . . We then say that (V,E) is of rank
K, and write rank(V,E) = K.

Definition 2.3. We say that the Bratteli diagram (V,E) is simple if there exists a telescoping of
(V,E) such that the resulting Bratteli diagram (V ′, E′) has full connection between all consecutive
levels, i.e. the entries of all the incidence matrices are non-zero.

Given a Bratteli diagram (V,E) we define the infinite path space associated to (V,E), namely

X(V,E) = {(e1, e2, . . . ) | ei ∈ Ei, r(ei) = s(ei+1); ∀i ≥ 1} .

Clearly X(V,E) ⊆
∏∞
n=1En, and we give X(V,E) the relative topology,

∏∞
n=1En having the product

topology. Loosely speaking this means that two paths in X(V,E) are close if the initial parts of

the two paths agree on a long initial stretch. Also, X(V,E) is a closed subset of
∏∞
n=1En, and so

is compact.

Let p = (e1, e2, . . . , en) ∈ E1 ◦ · · · ◦ En be a finite path starting at v0 ∈ V0. We define the
cylinder set U(p) =

{
(f1, f2, . . . ) ∈ X(V,E) | fi = ei, i = 1, 2, . . . , n

}
. The collection of cylinder

sets is a basis for the topology on X(V,E). The cylinder sets are clopen sets, and so X(V,E) is
a compact, totally disconnected metric space. An admissable metric d yielding the topology
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is d(x, x′) = 1
n if x = (e1, e2, . . . , en−1, en, . . . ), y = (e1, e2, . . . , en−1, e

′
n, . . . ), where en 6= e′n. If

(V,E) is simple then X(V,E) has no isolated points, and so X(V,E) is a Cantor set. (We will in the
sequel disregard the trivial case where |X(V,E)| is finite.)

Let Pn = E1 ◦ · · · ◦ En be the set of finite paths of length n (starting at the top vertex). We
define the truncation map τn : X(V,E) → Pn by τn ((e1, e2, . . . )) = (e1, e2, . . . , en). If m ≥ n we
have the obvious truncation map τm,n : Pm → Pn.

There is an obvious notion of isomorphism between Bratteli diagrams (V,E) and (V ′, E′);
namely, there exists a pair of bijections between V and V ′ preserving the gradings and intertwining
the respective source and range maps. Let ∼ denote the equivalence relation on Bratteli diagrams
generated by isomorphism and telescoping. One can show that (V,E) ∼ (V ′, E′) iff there
exists a Bratteli diagram (W,F ) such that telescoping (W,F ) to odd levels 0 < 1 < 3 < · · ·
yields a diagram isomorphic to some telescoping of (V,E), and telescoping (W,F ) to even levels
0 < 2 < 4 < · · · yields a diagram isomorphic to some telescoping of (V ′, E′).

An ordered Bratteli diagram (V,E,≥) is a Bratteli diagram (V,E) together with a partial order
≥ in E so that edges e, e′ ∈ E are comparable if and only if r(e) = r(e′). In other words, we have
a linear order on each set r−1(v), v ∈ V \V0. Assume

∣∣r−1(v)
∣∣ = m and the edge f ∈ r−1(v) has

order k, where 1 ≤ k ≤ m. Then we will say that f has ordinal k, and we will write ordinal(f) = k.
(In Figure 5 this is illustrated; the edge f shown there has ordinal 5, so ordinal(f) = 5.) We let
Emin and Emax, respectively, denote the minimal and maximal edges of the partially ordered set
E.

Note that if (V,E,≥) is an ordered Bratteli diagram and k < l in Z+, then the set Ek+1 ◦
Ek+2 ◦ · · · ◦El of paths from Vk to Vl with the same range can be given an induced (lexicographic)
order as follows:

(ek+1 ◦ ek+2 ◦ · · · ◦ el) > (fk+1 ◦ fk+2 ◦ · · · ◦ fl)
if for some i with k + 1 ≤ i ≤ l, ej = fj for i < j ≤ l and ei > fi. If (V ′, E′) is a telescoping of
(V,E) then, with this induced order from (V,E,≥), we get again an ordered Bratteli diagram
(V ′, E′,≥).

Definition 2.4. We say that the ordered Bratteli diagram (V,E,≥), where (V,E) is a simple
Bratteli diagram, is properly ordered if there exists a unique min path xmin = (e1, e2, . . . ) and
a unique max path xmax = (f1, f2, . . . ) in X(V,E). (That is, ei ∈ Emin and fi ∈ Emax for all
i = 1, 2, . . . .)

Let (V,E) be a properly ordered Bratteli diagram, and let X(V,E) be the path space associated
to (V,E). Then X(V,E) is a Cantor set. Let T(V,E) be the lexicographic map on X(V,E), i.e. if
x = (e1, e2, . . . ) ∈ X(V,E) and x 6= xmax then T(V,E)x is the successor of x in the lexicographic
ordering. Specifically, let k be the smallest natural number so that ek /∈ Emax. Let fk be the
successor of ek (and so r(ek) = r(fk)). Let (f1, f2, . . . , fk−1) be the unique least element in
E1 ◦ E2 ◦ · · · ◦ Ek−1 from s(fk) ∈ Vk−1 to the top vertex v0 ∈ V0. Then T(V,E)((e1, e2, . . . )) =
(f1, f2, . . . , fk, ek+1, ek+2, . . . ). We define T(V,E)xmax = xmin. Then it is easy to check that T(V,E)

is a minimal homeomorphism on X(V,E). We note that if x 6= xmax then x and T(V,E)x are cofinal,
i.e. the edges making up x and T(V,E)x, respectively, agree from a certain level on. We will call
the Cantor minimal system (X(V,E), T(V,E)) a Bratteli-Vershik system. There is an obvious way to
telescope a properly ordered Bratteli diagram, getting another properly ordered Bratteli diagram,
such that the associated Bratteli-Vershik systems are conjugate (cf. Definition 2.10)– the map
implementing the conjugacy is the obvious one. By telescoping we may assume without loss of
generality that the properly ordered Bratteli diagram has the property that at each level all the
minimal edges (respectively the maximal edges) have the same source, cf. [4, Proposition 2.8].

We use the term dynamical system to mean a compact metric space X together with a
homeomorphism T : X → X, and we will denote this by (X,T ). We say (X,T ) is minimal if
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all T -orbits are dense. (Equivalently T (A) = A for some closed A ⊆ X implies that A = X or
A = ∅.) If X is a Cantor set and T is minimal, then we say that (X,T ) is a Cantor minimal
system.

Theorem 2.5 ([4]). Let (X,T ) be a Cantor minimal system. Then there exists a properly
ordered Bratteli diagram (V,E,≥) such that the associated Bratteli-Vershik system (X(V,E), T(V,E))
is conjugate to (X,T ).

Remark 2.6. The simplest Bratteli-Vershik model (V,E,≥) for the odometer (see below)
(Ga, T ) associated to a = (ai)i∈N is obtained by letting Vn = 1 for all n, and the number of edges
between Vn−1 and Vn be an.

Let (Ga, ρ1̂) denote the odometer (also called adding machine) associated to the a-adic group

Ga =

∞∏

i=1

{
0, 1, . . .

pi
pi−1

− 1

}
,

where a =
{

pi
pi−1

}
i∈N

(we set p0 = 1) and where ρ1̂(x) = x+ 1̂, where 1̂ = (1, 0, 0, . . . ). We note

that Ga is naturally isomorphic to the inverse limit group

Z/p1Z
φ1←− Z/p2Z

φ2←− Z/p3Z
φ3←− · · ·

where φi(n) is the residue of n modulo pi. It is a fact that the family consisting of compact
groups G that are both monothetic (i.e. contains a dense copy of Z , which of course implies that
G is abelian) and Cantor (as a topological space), coincides with the family of a-adic groups. It

is also noteworthy that all minimal rotations (in particular rotations by 1̂) on such groups are
conjugate. This is a consequence of the fact that the dual group of an a-adic group is a torsion
group. If a = {p}i∈N, where p is a prime, then Ga is the p-adic integers. (We refer to [5, Vol 1]
for background information on a-adic groups.)

Remark 2.7. It is well known, and easy to prove, that the Cantor minimal system (X,T ) is
conjugate (cf. Definition 2.10) to an odometer if and only if it is the inverse limit of a sequence of
periodic systems.

Definition 2.8. (X,T ) is expansive if there exists δ > 0 such that if x 6= y then supn∈Zd(Tnx, Tny) >
δ, where d is a metric that gives the topology of X. (Expansiveness is independent of the metric
as long as the metric gives the topology of X.)

Let Λ = {a1, a2, . . . , an}, n ≥ 2, be a finite alphabet and let Z = ΛZ be the set of all bi-infinite
sequences of symbols from Λ with Z given the product topology – thus Z is a Cantor set. Let
S : Z → Z denote the shift map, S : (xn) → (xn+1). If X is a closed subset of Z such that
S(X) = X, we say that (X,S) is a subshift, where we denote the restriction of S to X again by S.
Subshifts are easily seen to be expansive. We state the following well-known fact as a proposition.
(Cf. [6, Theorem 5.24].)

Proposition 2.9. Let (X,T ) be a Cantor minimal system. Then (X,T ) is conjugate to a
minimal subshift on a finite alphabet if and only if (X,T ) is expansive.

Definition 2.10. We say that a dynamical system (Y, S) is a factor of (X,T ) and that
(X,T ) is an extension of (Y, S) if there exists a continuous surjection π : X → Y which satisfies
S(π(x)) = π(Tx), ∀x ∈ X. We call π a factor map. If π is a bijection then we say that (X,T )
and (Y, S) are conjugate, and we write (X,T ) ∼= (Y, S).
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Let (V,E,≥) be a properly ordered Bratteli diagram, and let (X(V,E), T(V,E)) be the associated
Bratteli-Vershik system. For each k ∈ N let Pk as above denote the paths from V0 to Vk, i.e.
the paths from v0 ∈ V0 to some v ∈ Vk. For x ∈ X(V,E) we associate the bi-infinite sequence

πk(x) =
(
τk(Tn(V,E)x)

)∞
n=−∞

∈ P Z
k over the finite alphabet Pk, where τk : X(V,E) → Pk is the

truncation map. Let Sk denote the shift map on P Z
k . Then the following diagram commutes

X(V,E) X(V,E)

Xk Xk

T(V,E)

Sk

πk πk

where Xk = πk(X(V,E)). One observes that πk is a continuous map, and so Xk is a compact shift-

invariant subset of P Z
k . So (Xk, Sk) is a factor of (X(V,E), T(V,E)), and hence (Xk, Sk) is minimal.

For k > l there is an obvious factor map πk,l : Xk → Xl, and one can show that (X(V,E), T(V,E))
is the inverse limit of the system {(Xk, Sk)}k∈N. We write (X(V,E), T(V,E)) = lim←−(Xk, Sk). All

the systems (Xk, Sk) are clearly expansive. One has the following result which will be important
for us. (See the remarks prededing Theorem 1 of [1].)

Proposition 2.11. Assume (X(V,E), T(V,E)) is expansive. Then there exists k0 ∈ N such that
for all k ≥ k0, (X(V,E), T(V,E)) is conjugate to (Xk, Sk) by the map πk : X(V,E) → Xk.

Proof. Since the πk’s are factor maps, all we need to show is that there exists k0 such that πk is
injective for all k ≥ k0. Recall that (X(V,E), T(V,E)) being expansive means that there exists δ > 0
such that given x 6= y there exists n0 ∈ Z such that d(Tn0

(V,E)x, T
n0

(V,E)y) > δ, where d is some

metric on X(V,E) compatible with the topology. Choose k0 such that d(x, y) < δ if x and y agree
(at least) on the k0 first edges. Now assume that πk(x) = πk(y) for some k ≥ k0. By the definition
of πk this means that, for all n ∈ Z, τk(Tn(V,E)x) = τk(Tn(V,E)y), and so d(Tn(V,E)x, T

n
(V,E)y) < δ for

all n ∈ Z because of our choice of k0. This contradicts that d(Tn0

(V,E)x, T
n0

(V,E)y) > δ. Hence πk is

injective for all k ≥ k0, proving the proposition.

We draw the following conclusions from the above: Let (X(V,E), T(V,E)) be the Bratteli-Vershik
system associated to the properly ordered Bratteli diagram (V,E,≥). Then (X(V,E), T(V,E)) is
not expansive if and only if πk : X(V,E) → Xk (= πk(X(V,E))) is not injective for k = 1, 2, 3, . . . .

3. Key definitions and basic properties.

Set X = X(V,E), T = T(V,E), where (X(V,E), T(V,E)) is the Bratteli-Vershik system associated to
the properly ordered Bratteli diagram (V,E,≥). (We will use the notation introduced in Section
2 as well as the one in [1], and we adopt the terminology of [1].)

Consider a pair (x, x′) of distinct points in X such that πi(x) = πi(x
′) for some i ≥ 1. We call

such a pair i-compatible. Observe that (x, x′) is then k-compatible if k ≤ i. Since x 6= x′, there
exists some j > i such that πj(x) 6= πj(x

′). We say that the pair is j-separated. The largest index
i0 for which the pair (x, x′) is i0-compatible (and hence it is (i0 + 1)-separated) will be called the
depth of compatibility (depth for short) of this pair. In particular, equal elements have depth ∞.
Let (x, x′) be i-compatible and j-separated for some j > i. By telescoping between levels i and j
we obtain that (x, x′) is of depth i, which is easily seen.

We make some observations:
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(i) If (x, x′) is i-compatible and j-separated, then (Tmx, Tmx′) is i-compatible and j-separated
for all m ∈ Z. [This follows since πk(Tmy) = Smk πk(y) for all y ∈ X, k = 1, 2, 3, . . . .]

(ii) If (x, x′) is of depth i, then (Tmx, Tmx′) is of depth i for all m ∈ Z. [This is an immediate
consequence of (i).]

(iii) If (x, x′) is a pair of depth i and (x, x′′) is a pair of depth j > i, then (x′, x′′) is a pair of
depth i (and hence not equal). [Clearly the pair (x′, x′′) is i-compatible. There exists m ∈ Z
such that τi+1(Tmx) 6= τi+1(Tmx′). Since τi+1(Tmx) = τi+1(Tmx′′), the assertion follows.]

An i-compatible and j-separated (j > i) pair (x, x′) is said to have a common j-cut if for some
m ∈ Z, τj(T

mx) and τj(T
mx′) are minimal paths, i.e. consisting of only minimal edges, between

level j and level 0 (i.e. the top vertex). Note that if a pair has a common j-cut it also has a
common j′-cut for every i < j′ ≤ j. It is obvious from the definitions that if (x, x′) has a common
j-cut, then (T lx, T lx′) also has a common j-cut for any l ∈ Z. Observe also that if the pair (x, x′)
has no common j-cut the pair must be j-separated.

v0

v

V0

...

Vi

Vi+1

min max

min max

Figure 2

We make one important observation: Let (x, x′) be of depth i, and assume (x, x′) has a
common (i + 1)-cut. Then for some m ∈ Z, the pair (Tmx, Tmx′) is of depth i such that
τi+1(Tmx) and τi+1(Tmx′) are minimal paths, and r(τi+1(Tmx)) 6= r(τi+1(Tmx′)). [In fact,
by assumption there exists k ∈ Z such that τi+1(T kx) and τi+1(T kx′) are minimal paths. If
v = r(τi+1(T kx)) = r(τi+1(T kx′)) then l iterates of T , say, applied to T kx and T kx′ respectively,
will “sweep over” all the paths between v0 ∈ V0 and v ∈ Vi+1, eventually reaching the max path,
see Figure 2. Applying T one more time to T k+lx and T k+lx′, respectively, will result in τi+1(T px)
and τi+1(T px′) are minimal paths. (Here p = k + l + 1.) If r(τi+1(T px)) 6= r(τi+1(T px′)) we are
done, setting m = p. If r(τi+1(T px)) = r(τi+1(T px′)), we do the same procedure as above. If we
get to a stage where the ranges are distinct we are done. If this does not happen, we play the
same game on T kx and T kx′, but now with iterates of T−1 instead of T . This must lead to a
situation where the ranges are distinct, otherwise πi+1(x) = πi+1(x′), contradicting that (x, x′) is
(i+ 1)-separated.]

4. Proof of Theorem 1.1.

We assume that (X(V,E), T(V,E)) it not expansive and so for all i ≥ 1, πi : X → Xi is not injective.
This is easily seen to have as a consequence that for infinitely many levels i there exist pairs of
points (xi, x

′
i) of depth i. If we telescope between these levels we may assume that for every i ≥ 1

there exists a pair (xi, x
′
i) of depth i. We will show that (X(V,E), T(V,E)) is an odometer, which

will complete the proof. First we set the stage in the sense that we may assume that (V,E,≥)
has the following properties:
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(i) We may assume that rank(V,E) = K (cf. Definition 2.2) is the smallest possible such that
the Bratteli-Vershik system associated to (V,E,≥) is (conjugate to) the given one. (If K = 1
we have an odometer, so there is nothing more to prove.)

(ii) By telescoping we may assume that between consecutive levels there is full connection (cf.
Definition 2.3) and, furthermore, that at each level all the minimal edges (respectively the
maximal edges) have the same source, cf. [4, Proposition 2.8]. (This is not an essential
assumption, but it makes it easier to visualize the Vershik map.)

Note that the property (i) is not affected by the operations performed in (ii).

As before we let X = X(V,E), T = T(V,E). There are two scenarios, mutually exclusive, cf. [1].

(1) There exists i0 such that for all i ≥ i0 and every j > i there exists a pair (x, x′) of depth i
with a common j-cut.

(2) For infinitely many i, any pair (x, x′) of depth i has no common j-cuts for sufficiently large
j > i. (Note that j depends upon (x, x′)!)

The proof is different for case (1) and case (2).

We consider case (1):

The idea is to find another properly ordered Bratteli diagram (V ′, E′,≥) with rank(V ′, E′) < K
(assuming K > 1), such that (X(V ′,E′), T(V ′,E′)) ∼= (X,T ). This contradiction will finish the proof
in this case. Now choose any i ≥ i0. By the observation we made at the end of Section 3 we may
assume that there exists a pair (x, x′) of depth i such that τi+1(x) and τi+1(x′) consist of minimal
edges, and that v = r(τi+1(x)) 6= r(τi+1(x′)) = w. If |r−1(v)| = |r−1(w)| we may insert a new
level (we name it i′) between levels i and i+ 1 with ordering of the edges as shown in Figure 3.
(The ordering at the vertex v′ is the same as the ordering at v and w, the two latter being the

v′

v wu

i

i′

i+ 1

Figure 3. Rank K = 6.

same since (x, x′) is of depth i.) The order of the edges ranging at vertices u ∈ Vi+1 − {v, w} is
replicated at level i′. We notice that if we telescope between levels i and i+ 1 we get the original
ordering. So the insertion of level i′ does not change the Bratteli-Vershik map. Now we have
obtained a level i′ with K − 1 number of vertices. If |r−1(v)| < |r−1(w)|, say, we insert a new
level i′ between levels i and i + 1 as shown in Figure 4. The |r−1(v)| first edges ranging at v
and w are ordered at v′ as they are at v and w while the |r−1(w)| − |r−1(v)| remaining edges
ranging at w are ordered at v′′ as they are at w. As before vertices u ∈ Vi+1 − {v, w} are just
replicated at level i′. We observe that the number of vertices at level i′ is the same as at level
i+ 1, namely K. Now we claim that (x, x′) separates at level i′, and so (x, x′) has depth i in the
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new diagram as well. In fact, by applying L+ 1 iterates of T to x and x′, respectively, we see
that they separate at level i′. Here L is the number of paths from the top vertex ranging at v.
We observe that the number of edges between levels i and i′ is strictly smaller than the number
of edges between levels i and i+ 1. Now we repeat the same construction between levels i and
i′. Since we decrease the number of edges each time, we must eventually arrive at the first case,
where the number of edges ranging at v and w are the same. Doing the construction we did in
the first case will then yield a level which has K − 1 vertices.

1 2

v′ v′′

v wu

i

i′

i+ 1

Figure 4. Rank K = 6.

After we have done this, we do the same construction between levels (i+ 1) and (i+ 2), etc.
If we now telescope to the new levels with K − 1 vertices we wind up with a properly ordered
Bratteli diagram of rank K − 1 which yields a Bratteli-Vershik system conjugate to the original.
From this we conclude that K can not be larger than one and the proof is completed for case (1).

We now look at case (2). By telescoping to appropriate levels we may assume that we have
the following scenario:

For each i ≥ 1 there exists a pair of depth i that has no common (i+ 1)-cuts, and hence no
common j-cuts for any j > i. Now fix any i0 ≥ 1. We shall prove that (Xi0 , Si0) is periodic
(and hence finite). This will imply that (X,T ) is an odometer since (X,T ) = lim←−(Xk, Sk), hence
finishing the proof.

Under the assumption that the above scenario holds we can prove the following lemma.

Sublemma 4.1. For any positive integer L there exist L distinct elements y1, y2, . . . , yL
in X which are pairwise i0-compatible and pairwise have no common j-cuts for some j ≥
i0. In particular, they are pairwise j-separated. (Observe that for all k ∈ Z the elements
T ky1, T

ky2, . . . , T
kyL have the same properties as y1, y2, . . . , yL.)

Proof of Sublemma 4.1. For each i ∈ [i0, i0 + L− 1] let (xi, x
′
i) be a pair of depth i which

do not have a common (i+ 1)-cut. Let {nk}k be a subsequence of natural numbers such that
Tnkxi −→ y0 as k −→∞, where y0 is the unique minimal path xmin in X = X(V,E). (Because of
minimality of (X,T ) such a subsequence exists.) By compactness of X there exists a subsequence
of {nk}k, which we again will denote by {nk}k, such that Tnkx′i −→ yi for some yi ∈ X. By
continuity we get that πi(y0) = πi(yi) since πi(T

nkxi) = πi(T
nkx′i) for all k. So (y0, y1) is

i-compatible. We claim that (y0, yi) is (i+ 1)-separated, and hence (y0, yi) is of depth i. In fact,
there exists k0 such that for all k ≥ k0, τi+1(Tnkxi) = τi+1(y0) and τi+1(Tnkx′i) = τi+1(yi). Since
(xi, x

′
i) do not have a common (i+ 1)-cut we conclude that τi+1(Tnkxi) 6= τi+1(Tnkx′i). Hence
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τi+1(y0) 6= τi+1(yi), and so (y0, yi) is (i + 1)-separated, hence of depth i. By (iii) in Section 3
we get that if i < i′, then (yi, yi′) is a pair of depth i′ and hence, in particular, i0-compatible.
(In particular, the points yi0 , yi0+1, . . . , yi0+L−1 are distinct.) By assumption (2) there exists
j(i, i′) > i′ such that (yi, yi′) have no common j(i, i′)-cut. Let j = max{j(i, i′)|i 6= i′}. Then
y1, y2, . . . , yL are distinct points in X which are pairwise i0-compatible and pairwise have no
common j-cut. (Here we rename the indices by letting i0 → 1, i0 + 1→ 2, . . . , i0 + L− 1→ L.)
This finishes the proof of Sublemma 4.1.

By telescoping between level i0 and level j we may assume that the elements y1, y2, . . . , yL in
Sublemma 4.1 are pairwise of depth i0 and have no common (i0 + 1)-cuts. Choose L in Sublemma
4.1 to be

L = (K − 1)2K−1 + 2.

(Note that L ≥ K+1.) Let us in the sequel denote τi0 by τ1 and τi0+1 by τ2. Let v ∈ Vi0+1 and
let lv be the smallest (positive) difference of the ordinal numbers of any pair (τ2(T pyi), τ2(T pyj))
with common range v, i.e. r(τ2(T pyi)) = r(τ2(T pyj)) = v. Here i, j ∈ {1, 2, . . . , L}, i 6= j, and p
can be any integer such that the range condition is satisfied. (In Figure 5 we have illustrated this
by assuming that lv is obtained at v by (T 0y1 =) y1 = (a, e, . . . ), (T 0y2 =) y2 = (a, f, . . . ). We
see that lv = 5− 1 = 4. Actually, Figure 5 illustrates another point (setting aside that K = 2): In
the general case, if we telescope between level 0 and level i0, then we wind up with a scenario like
the one in Figure 5 except that there are multiple edges instead of the single edge a (respectively
b).)

Assume lv is obtained at v with the pair (τ2(T pyi), τ2(T pyj)). Since
πi0(T pyi) = πi0(T pyj) this has the following consequence: v̂(k) = v̂(k + lv) for k ∈ [1, |v| − lv].
Here |v| denotes the number of paths in Pi0+1 ranging at v, and v̂(k) is the element in Pi0 obtained
by “cutting off” (or truncating) the path in Pi0+1 ranging at v with ordinal number k. (In Figure
5 we have lv = 4, and we get that v̂(1) = v̂(1 + 4) = a, v̂(2) = v̂(2 + 4) = b, v̂(3) = v̂(3 + 4) = a,
v̂(4) = v̂(4 + 4) = b.)

a b

1

3

2 41

e

3 5

f

7

2
4

6
8

v
...

Figure 5. A Bratteli diagram where i0 = 1, |v| = 8, lv = 4, y1 = (a, e, . . . ),
y2 = (a, f, . . . ) and π1(y1) = π1(y2).

Now let ŷ denote the common image of y1, y2, . . . , yL under πi0 , i.e. πi0(y1) = πi0(y2) = · · · =
πi0(yL) = ŷ ⊆ P Z

i0
. Observe that by the definition of ŷ we have that ŷ(l) = τ1(T lyi) for l ∈ Z and
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any i = 1, 2, . . . , L. In particular, ŷ(0) = τ1(yi). We will say that the lv-periodicity law holds
at the coordinate n ∈ Z of ŷ if ŷ(n) = ŷ(n + lv). We make one important observation: If, say,
r(τ2(Tnyi)) = r(τ2(Tnyj)) = v for some yi 6= yj and τ2(Tnyi) < τ2(Tnyj) (n ∈ Z), then the lv
periodicity law holds at the coordinate n of ŷ. In fact, if the ordinal number of τ2(Tnyi) is k,
then k + lv ≤ (ordinal number of τ2(Tnyj)) ≤ |v|, and so v̂(k) = v̂(k + lv). By definition of ŷ it
follows that v̂(k) = ŷ(n). Now τ2(Tn+lvyi) ≤ τ2(Tnyj), and so ŷ(n+ lv) = v̂(k + lv), and hence
the lv-periodicity law holds at the coordinate n of ŷ.

Let us order the vertices at level i0 + 1 by v1, v2, . . . , vK such that lv1 ≤ lv2 ≤ · · · ≤ lvK . (If
there exists some vertex v at level i0 + 1 such that no two T pyi, T

pyj (p ∈ Z, i 6= j) range at v,
then we just ignore that v. This will not cause any problem for the subsequent argument, so we
may just as well assume that there exists no such v.) Retaining the set-up and the notation and
terminology introduced above, we can prove the following lemma.

Sublemma 4.2. Assume that there exists some k ∈ Z such that
∣∣{T kyi

∣∣r(τ2(T kyi)) = v1, i = 1, 2, . . . , L}
∣∣ ≥ K + 1,

where y1, . . . , yL are distinct elements in X which are pairwise of depth i0 and have no common
(i0 + 1)-cuts. Then (Xi0 , Si0) is periodic with periodicity lv1 .

Proof of Sublemma 4.2. By renaming T kyi as yi, i = 1, 2, . . . , L (cf. Sublemma 4.1), we
may assume

|{yi |r(τ2(yi)) = v1, i = 1, 2, . . . , L}| ≥ K + 1.

Let I be the largest interval of integers (obviously containing 0) such that the lv1-periodicity
law holds. Specifically, if i ∈ I, then ŷ(i) = ŷ(i + lv1). If I is infinite at the right end, then
ŷ(i) = ŷ(i + lv1) for all i ≥ 0. Shifting ŷ to the left and using minimality of (Xi0 , Si0), we get
that ŷ is periodic and so (Xi0 , Si0) is periodic, thus finishing the proof. If I has a right end, let
m ∈ Z+ be the first integer to the right of I. At least two of the elements in {Tmyi | r(τ2(yi)) =
v1, i = 1, 2, . . . , L}, say, Tmyi and Tmyj (i 6= j) are such that r(τ2(Tmyi)) = r(τ2(Tmyj)) = vk
for some k ≥ 1. We have ŷ(m) = τ1(Tmyj) = τ1(Tmyi). If vk = v1 then the lv1-periodicity law
holds at m by the observation we made above, contradicting our assumption. So k > 1. Let
the ordinal numbers of τ2(Tmyi) and τ2(Tmyj) be s and t, respectively, and assume s < t. Now
lv1 ≤ lvk ≤ t− s, and so the ordinal number s+ lv1 exists for paths in Pi0+1 ranging at vk.

Applying T−(t−s) to Tmyj results in the following:

τ2(Tmyi) = τ2(T−(t−s)(Tmyj)) = τ2(Tm−(t−s)yj).

In particular, the ordinal numbers of τ2(Tm−(t−s)yj) and τ2(Tmyi) are the same, both equal to s.
We also get

ŷ(m) = τ1(Tmyi) = τ1(Tm−(t−s)yj) = ŷ(m− (t− s)).
Assume we can prove that m− (t− s) > 0. Then m− (t− s) ∈ I and so the lv1 periodicity law
holds at m− (t− s) i.e. ŷ(m− (t− s) + lv1) = ŷ(m− (t− s)). If we apply T lv1 to both Tmyi and
Tm−(t−s)yj , respectively, we get

τ2(Tm+lv1 yi) = τ2(Tm−(t−s)+lv1 yj)

(both having ordinal number s+ lv1), and so

ŷ(m+ lv1) = ŷ(m− (t− s) + lv1) = ŷ(m− (t− s)) = ŷ(m).

So the lv1 -periodicity law holds at m which contradicts our assumption that I has a (finite) right
end, thus finishing the proof. It remains to prove that m− (t− s) > 0. Assume by contradiction
that m − (t − s) ≤ 0, and so m ≤ t. Thus r(τ2(T−m(Tmyj))) = vk, which is impossible since
r(τ2(yj)) = v1. This finishes the proof of Sublemma 4.2.
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We can now finish the proof of Theorem 1.1. By Sublemma 4.2 we have that if there exists
some k ∈ Z such that

∣∣{T kyi | r(τ2(T kyi)) = v1, i = 1, 2, . . . , L}
∣∣ ≥ K + 1, (*)

then we can prove that (Xi0 , Si0) is periodic. So assume that this is not the case. In other words,
for all k ∈ Z we have

∣∣{T kyi | r(τ2(T kyi)) = v1, i = 1, 2, . . . , L}
∣∣ ≤ K.

Assume now that there exists some k ∈ Z such that
∣∣{T kyi | r(τ2(T kyi)) = v2, i = 1, 2, . . . , L}

∣∣ ≥ 2K. (**)

Now we argue exactly as above letting I and m be as above. There will then exist at least
two elements in {Tmyi | r(τ2(yi)) = v2, i = 1, 2, . . . , L}, say Tmyi and Tmyj (i 6= j) such that
r(τ2(Tmyi)) = r(τ2(Tmyj)) = vk, where k ≥ 2. By exactly the same argument as above, we get
that (Xi0 , Si0) is periodic. If both (*) and (**) do not occur, we assume there exists k ∈ Z such
that ∣∣{T kyi | r(τ2(T kyi)) = v3, i = 1, 2, . . . , L}

∣∣ ≥ 4K − 2. (***)

We repeat the same argument as above, again getting that (Xi0 , Si0) is periodic. We continue this
process, and it must eventually stop. The “worst” case scenario is that for all j, k, l, . . . , p, . . . , t ∈ Z
the following simultaneously holds:

∣∣{T jyi | r(τ2(T jyi)) = v1, i = 1, 2, . . . , L}
∣∣ ≤ K

∣∣{T kyi | r(τ2(T kyi)) = v2, i = 1, 2, . . . , L}
∣∣ ≤ 2K − 1

∣∣{T lyi | r(τ2(T lyi)) = v3, i = 1, 2, . . . , L}
∣∣ ≤ 4K − 3

...
...

...

|{T pyi | r(τ2(T pyi)) = vq, i = 1, 2, . . . , L}| ≤ 2q−1K − (2q−1 − 1)

...
...

...
∣∣{T tyi | r(τ2(T tyi)) = vK−1, i = 1, 2, . . . , L}

∣∣ ≤ 2K−2K − (2K−2 − 1)





(****)

Adding up the right hand side of (****) we get (K − 1)2K−1. Now L = (K − 1)2K−1 + 2, and
so for every n ∈ Z (in particular, for n = 0) we have

|{Tnyi | r(τ2(yi)) = vK , i = 1, 2, . . . ,K}| ≥ 2.

Recall the observation we made just before stating Sublemma 4.2 – adapted to our setting:
If r(τ2(Tnyi)) = r(τ2(Tnyj) = vK for some i 6= j, then the lvK -periodicity law holds at the
coordinate n, i.e. ŷ(n) = ŷ(n+ lvK ). This immediately implies that (Xi0 , Si0) is periodic, and so
the proof of Theorem 1.1 is complete.

The following corollary gives a positive answer to Question 1 raised in [1] about finding a
smaller L than the one given in the so-called ”Infection Lemma” in [1], namely L = KK+1 + 1. In
fact, the way the proof of Theorem 1.1 (Case 2) is structured, at each stage seeking the minimal
number of compatible paths in order to ensure periodicity, makes it plausible to conjecture that
the L we have found is optimal.

Corollary 4.3. Let K > 1. If there exists at least

L = (K − 1)2K−1 + 2
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points yk (k ∈ [1, L]) that are i-compatible and have no common j-cut for some j > i (and hence
are j-separated), then (Xi, Si) is periodic.

Remark 4.4. We find some of the assertions at the beginning of ”Proof in case (2)” of Theorem
1 (the same as our Theorem 1.1) in [1, pp. 744-745] needing some explanations. For example, it
is stated that under assumption (2) the following holds: for each i ≥ 1 every (sic) pair of depth i
has no common (i+ 1)-cuts. We do not see why this should be true. However, it does follow from
assumption (2) that there exists (sic) a pair with the desired properties, and that is sufficient for
the proof to work. We also find the subsequent argument for the existence of appropriately many
i0 compatible and j-separated elements with no common j-cuts needing some further explanation.

That said, we have only high praise for the [1] paper. In fact, Downarowicz and Maass had the
insight to realize that such a remarkable result as Theorem 1.1 holds, and also the ingenuity of
finding a proof, the basic idea of which we use in our new proof, though stated in more Bratteli
diagram terms.
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