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Abstract: This paper considers the problem of constructing a globally convergent position-
and velocity estimator with close-to-optimal noise properties using hydroacoustic long baseline
measurements. Three ways of improving the range robustness of the three stage filter for long
baseline measurements with unknown wave speed are suggested. One addition is employing
depth measurements in addition to pseudo-range measurements, thus increasing range noise
robustness and relaxing requirements for transponder placement from not co-planar to not co-
linear. Furthermore, a Kalman Filter with a linear measurement model is used, instead of a
pseudo-linear time-varying measurement model and a step solving an optimization problem is
also added. The proposed scheme is validated through simulation and compared to a standard
Extended Kalman Filter and a perfect (non-implementable) Linearized Kalman Filter using
real states as linearization point. Simulations suggest that the improved three stage filter will
have similar stationary performance as the EKF while having significantly better transient
performance and stability subjected to inaccurate initial estimates.
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1. INTRODUCTION

Range-based positioning is used in many areas today
such as for indoor positioning of sensors and vehicles,
and global positioning of marine vessels. Many different
methods are applied for acquiring range data. Examples
include the Global Navigation Satellite System (GNSS),
underwater acoustic long baseline (LBL) systems, and
short-range systems such as measuring signal strength of
radio signals or laser-based ranging. These methods are
based on measuring the range from a unit to a known
base position, and determining the position based on
these measurements. However, it is often not the range
itself that is measured, but other parameters relating
directly to the range. This paper considers the time- of-
arrival (TOA) measurement in range based positioning of
underwater units. The measured TOA is modeled as a
pseudo-range; a range affected by an unknown parameter.
As a result the measurement equation has four unknowns
(cartesian position and the unknown parameter), thus
requiring at least four measured pseudo-ranges to estimate
the variables.

Relating the position and unknown parameter to the
pseudo-ranges is a highly nonlinear estimation problem,
and a review of range-based positioning can be found in
Yan et al. (2013). Globally exponentially stable (GES)
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filters for underwater navigation using LBL measurements
are suggested in Batista (2015), Batista (2014), and a
globally asymptotically stable (GAS) filter is suggested
in Batista et al. (2010). Some classical approaches for
underwater navigation using LBL measurements can be
found in Vaganay et al. (1998), Bell et al. (1991), Alcocer
et al. (2007), Kinsey and Whitcomb (2004) and Whitcomb
et al. (1999).

Traditionally the unknown parameter is modeled as an
additive bias to take into account system clock offset
between the sender and receiver, and two main types of
solutions have been suggested in this case. The first is
employing the pseudo-ranges as measurement equations,
and using an estimator for nonlinear systems such as the
Extended Kalman Filter (EKF) where a local approximate
linearization of the measurement model is applied (Alcocer
et al. (2007)) or a particle filter (Ko et al. (2012)). The
second type of solution is employing a globally valid non-
linear transform or an optimization problem to express the
measurements in a linear form with respect to the states
in the filter. This is called a quasi-linear time-varying
measurement model, as the equations are reformulated
to fit a linear measurement model either by introducing
extra states or eliminating non-linear terms. When the
quasi-linear measurement model has been obtained, an
estimator for linear systems can be applied, such as the
Kalman Filter (KF).



However, both of these approaches have weaknesses. The
estimators for the nonlinear system with pseudo-range
measurements do not have proven convergence, and are
often based on linearizing the nonlinear equations about
the current estimate, as is done in the EKF. This makes
the filter dependent on sufficiently accurate initial state
estimates to achieve convergence, and can also lead to slow
convergence if the initial state estimates are inaccurate. It
is possible to use linear filters with proven convergence
by transforming pesudo-ranges into a quasi-linear mea-
surement model. However, the nonlinear transform is not
robust towards noise in each measured pseudo-range. This
can lead to amplification of noise and a bias in measure-
ments which can decrease performance. In addition, if a
KF is used it is assumed that the probability distribution
of the measurements is Gaussian. Even if the noise in the
pseudo-ranges is approximately Gaussian, the probability
distribution of the measurements after the nonlinear trans-
form can be far from Gaussian, which can also decrease
performance.

The Three-Stage Filter (TSF) suggested by Johansen et al.
(2016) is seeking to combine the best properties of the
two approaches; the close-to-optimal noise properties of
the first approach with the globally convergent nature of
the second approach. This is done in three stages; first
the measurements are run through an algebraic transform.
This is then used as input for a KF with a quasi-linear
measurement model. The output from this filter is used
as the linearization point for a Linearized Kalman Filter
(LKF) using the non-linear pseudo-range measurement
equations. The third stage is similar to using an EKF, but
an important difference is that the linearization points are
not the state estimates of the filter itself, thus eliminating
the feedback in the EKF, which can otherwise cause insta-
bility. From cascade theory the system is uniformly glob-
ally asymptotically stable (UGAS) seeing as both filters in
the feed-forward structure are UGAS (Loŕıa and Panteley
(2005), Johansen and Fossen (2016b)). Simulations suggest
that even though the linearization points are somewhat
noisy, the stationary performance of the TSF is similar
to the EKF, and has quicker convergence when initial
estimates are inaccurate. Furthermore, the TSF is UGAS
which is a very important property guaranteeing stability
of the filter.

The general approach of using a globally convergent aux-
iliary state estimator for providing linearization points for
a LKF is called the eXogenous Kalman Filter (XKF) and
is described in detail in Johansen and Fossen (2016b).
Furthermore, the relation between the TSF and the XKF
is discussed in Johansen and Fossen (2016a).

In the case of underwater TOA measurements, it is valu-
able to take into account the fact that the acoustic wave
propagation speed in water can be varying, and as a
result the unknown parameter can be modeled as mul-
tiplicative instead of additive. This has been done in
Stovner et al. (2016), where a TSF is formulated using
a pseudo-range measurement model with a multiplicative
parameter. This leads to a slightly different quasi-linear
measurement model, which involves a quadratic nonlinear
transformation of the pseudo-range measurement. Conse-
quently, the measurement noise of the pseudo-ranges is

amplified linearly with increased pseudo-range, which can
reduce performance.

The main contributions of this paper are methods for
increasing the robustness of the TSF presented in Stovner
et al. (2016). The proof of concept is presented and the
results are verified through simulations. Robustness to
pseudo-range measurement noise is essential in for example
acoustic underwater positioning where temperature layers,
and salinity may introduce transmission errors. We con-
sider here three ways of making the TSF more robust to-
wards pseudo-range measurement noise. Firstly, as almost
all underwater vehicles have a pressure-sensor that relates
directly to depth, the depth measurement can be used
in the measurement equations. This significantly increases
robustness towards pseudo-range measurement noise, and
also increases robustness regarding transponder placement
in the z-direction. Secondly, as the noise in the quasi-
linear measurement model increases linearly with pseudo-
range due to the nonlinear transformation of the pseudo-
range measurement in the C-matrix, it is suggested to
use a calculated algebraic solution for the position and
unknown parameter as the measurement instead. This
solution is available in Stovner et al. (2016) as a part of
calculating the quasi-linear measurement, and leads to a
linear measurement model with a covariance matrix that is
more complicated, but smaller in magnitude. Thirdly, the
suggested improvement is adding an extra step before the
first KF by solving an optimization problem resulting in
a decrease in measurement bias. The paper also contains
discussion regarding measurement variance and bias for
the suggested scheme.

The paper is organized as follows. Section 2 describes how
the computed measurements are found from the original
measurements. Section 3 gives the overall structure of the
position and velocity filters. Section 4 shows simulation
and results, Section 5 provides a short discussion of the
problem and results and Section 6 holds the conclusion.

2. COMPUTED MEASUREMENTS

2.1 Measurement Equation

The pseudo-range measurement model is based on TOA
measurements for an acoustic signal in an underwater
LBL system consisting of several transponders placed in
fixed, known positions on the seabottom. Following the
notation in Stovner et al. (2016), the range measurement
yi is described as yi = c0ti where c0 is the assumed
wave propagation speed, and ti is the TOA for the signal.
However, as the wave propagation speed can vary, the real
wave propagation speed, c, is modeled as c0 multiplied
with a parameter giving c =

√
βc0. The position of the

vehicle is defined as pn = [ x y z ]
T

and the position of

transponder i is defined as p̆ni = [ x̆i y̆i z̆i ]
T

, both in the
NED frame. The geometric range is defined as ρi = cti =
‖pn − p̆ni ‖ where ‖·‖ is the 2-norm. Also considering that
the TOA measurement is subject to measurement noise
it is now possible to write the pseudo-range measurement
equation as

yi =
1√
β

(ρi + εy,i) (1)



where εy,i is assumed to be zero-mean Gaussian white
noise with variance σ2

y,i.

Furthermore, in most underwater vehicles a depth mea-
surement is available. The depth measurement is modeled
as

zm = z + εz (2)

where εz is assumed to be zero-mean Gaussian white noise
with variance σ2

z .

2.2 Algebraic Transformation

In this section it is shown how to extract computed
measurements for all four unknowns in the pseudo-range
measurement equation (pn and β ). This is based on the
approach described in Stovner et al. (2016), and follows the
same notation. As there are four unknowns, it is necessary
to have at least four pseudo-range measurements available
to solve the equation. However, as will be discussed in this
section, when a depth measurement is available, this can
be used as a value for one of the unknowns, reducing both
the number of unknowns and the number of needed range
measurements to three. For the algebraic transformation
TOA measurement noise is neglected, leading to a com-
puted measurement which is sub-optimal with regards to
variance. This is discussed further in Section 2.3 and 2.4.
Neglecting measurement noise, the following measurement
can be contructed

y2i =
1

β
(pn − p̆ni )T (pn − p̆ni ) (3)

Expanding the equation, defining p̄n = [ x y ]
T

and p̊ni =

[ x̆i y̆i ]
T

and assuming zm ≈ z we get

βy2i = r − 2p̊nTi p̄n + ‖p̆ni ‖ − 2z̆izm + z2m (4)

where we have defined the auxiliary variable r = p̄nT p̄n.

Defining

x =

[
x
y
β

]
M =

[
1 0 0
0 1 0
0 0 0

]
where M is a selection matrix, it is possible to express r
in terms of x as

r = xTMx (5)

Furthermore, (4) can now be written as

Cx− rl = k (6)

where

C =

 2p̊nT1 y21
...

...
2p̊nTN y2N

 , k =

 ‖p̆
n
1‖ − 2z̆1zm + z2m

...
‖p̆nN‖ − 2z̆Nzm + z2m


N is the number of pseudo-range measurements and l =

[ 1 · · · 1 ]
T

, a vector of ones with dimension N .

By viewing r as an additional unknown variable, combin-
ing (5) and (6) gives N+1 equations with 4 unknowns. If
C is invertible, it is possible to write

x = rC−1l + C−1k (7)

This will be the case if N = 3 and C has full rank.
However, if N > 3 and C has full rank, it is possible to
use the Moore-Penrose pseudo-inverse, given by

C† = (CTC)−1CT (8)

(7) can now be written

x = rc + w (9)

where c =C−1l and w = C−1k if N = 3, and c =C†l and
w = C†k if N > 3. By inserting (9) into (5) a second order
equation with respect to r is obtained. The resulting two
solutions for the second order equation are given by

r1,2 =
−h±

√
h2 − 4cTMc ·wTMw

2cTMc
(10)

where h = 2cTMw − 1. Considering there will be two
solutions for r, it is necessary to be able to identify which
solution is the correct one. There are several ways of doing
this, mostly considering external information such that β
should be close to 1, or that the transponders are on the
seabottom and it is impossible that the vehicle is below
the tranponders.

When N > 3 it is possible to use (6) alone and solve
the linear set of equations to get a unique solution for
both x and r. However, including (5) even though it is not
necessary provides extra information and increases robust-
ness towards pseudo-range noise significantly. Therefore,
combining (5) and (6) and solving this set of equations is
also done when N > 3.

It is assumed that the correct r is available, and when

inserted into (9) an algebraic solution for x, x̂ =
[
x̂ ŷ β̂

]T
is obtained, which can be used as a measurement for a
filter. However, at certain limited areas, depending on
transponder position, r1 and r2 will be similar, and finding
the correct r might prove difficult. In these areas the bias
and variance of the result of the algebraic transformation
will also increase. The areas are easily detectable by
comparing r1 and r2, and a way of acquiring a good
estimate with respect to variance and bias also for these
positions is by solving an optimization problem. This will
be discussed in the following section.

2.3 Post-transform Optimization

The Moore-Penrose pseudo-inverse can be viewed as the
solution for the minimization problem

arg min
x

(k + rl−Cx)T (k + rl−Cx) (11)

This does not take into account that C contains noisy
elements, which is inaccurate as the noise generated by y2i
can be significant, and is also increasing with range. A way
of taking this noise into account is suggested in Schaffrin
and Wieser (2008), in which the Errors-in-Variables model
is used, given by

k = (C−Ey) · x + ek (12)

where C is the coefficient matrix affected by the random
error matrix Ey, and ek is the random error in k. This
approach is mentioned in Yan et al. (2013), but avoided to
due to the increased computational complexity. However,
due to the significant noise in C appearing as a result of the
multiplicative unknown parameter, it is argued that the
increase in performance is worth the extra computation.

Adapted for combining (5) and (6), the optimization
problem is formulated as

arg min
ey,ek∈RN

ey
TQ−1ey ey + ek

TQ−1ek ek (13)

subject to

k + xTMx · l−Cx + Eyx− ek = 0 (14)



where Ey = [ 0Nx2 ey ], Qey = diag(
[
V ar(y21), · · · ,

V ar(y2N )
]
) and Qek = diag(

[
V ar(−2z̆1zm + z2m), · · · ,

V ar(−2z̆Nzm + z2m)
]
). To decrease the dimension of the

problem, it is possible to assume that the noise in k gen-
erated by 2z̆izm is small compared to the noise generated
by z2m and thus reducing ek to l · ek. This assumption is
valid when z̆i � z seeing as V ar(−2z̆izm) = 4z̆2i σ

2
z and

V ar(z2m) = 4z2σ2
z + 2σ4

z thus making V ar(−2z̆izm) �
V ar(z2m) when z̆i � z. Furthermore, even when this is
not the case, the difference in accuracy of x at the minima
seem to be small compared to the increased computational
effort of having a full ek.

The optimization problem formulated in (13) is not convex
due to the cross-terms in the contraints in (14). Therefore,
some test to detect divergence or convergence to an incor-
rect local minimum must be applied. As we already have a
computed measurement, a simple check that the minimum
is close to the computed measurement should be sufficient.
Furthermore, as it is possible to use the computed mea-
surement as the initial point for optimization, one can
assume that the starting point is close to the correct global
minimum.

2.4 Noise Robustness

When measurement noise is neglected, the approach above
and the approach stated in Stovner et al. (2016) are
equivalent. However, this is not the case in a real scenario
in which both pseudo-range measurements and the depth
measurement will be affected by noise. In this subsection
the robustness against noise for the two approaches will
be discussed.

Performing nonlinear operations on measurements affected
by noise can lead to both a bias and increased variance.
Because of the non-linear transform it is difficult to get
an exact expression for the expected value and covariance
matrix of x̂. However, other methods exist for estimat-
ing both variance and bias. This has been discussed in
Gustafsson and Hendeby (2008), where approximate trans-
formations for nonlinear functions of stochastic variables
are compared, including first- and second order Taylor-
series approximations, unscented transform approximation
and Monte Carlo transformation. It is stated that the
Monte Carlo transformation should “in the limit compute
correct moments”. As there are no demands for compu-
tational time in the analysis of the two approaches, the
Monte Carlo transformation is used for determining bias
and variance. The first order Taylor-series approximation
results in a large and complex expression for the covariance
matrix, and has been used in simulation to give a first
order covariance approximation. This is discussed further
in Section 3.2.

Both bias and variance will be compared by running a
Monte Carlo transformation with 5000 samples, σ2

y = σ2
z =

(0.2 m)2, constant z = −30 m and x- and y-coordinates
defined by the axis in the plot. The position of the

transponders is p̆n1 = [ 10 10 0 ]
T

, p̆n2 = [ 10 −10 −1 ]
T

,

p̆n3 = [−10 10 −2 ]
T

and p̆n4 = [−10 −10 0 ]
T

. For each
x- and y-position a measure of the variance is given by
V =

√
V ar(x̂) + V ar(ŷ) and a measure of the bias is

given by b =
√

(mean(x̂)− x)2 + (mean(ŷ)− y)2 where x̂

(a) Variance measure V [m]

(b) Bias measure b [m]

Fig. 1. Comparison of variance and bias for computed
position with and without using a depth measure-
ment. Left plots are with depth measurement, right
is without.

and ŷ are the position estimates given by (9). The results
are shown in Fig. 1. The current scenario suggests that
both the variance and the bias is significantly lower when
a measurement of z is used, as suggested in this paper. The
difference is smallest in a circle around the origin with a
radius of around 30 m, when the pre-filter optimization is
needed, but in other areas the improvement in accuracy
is significant, especially with increasing distance from the
transponders.

3. POSITION AND VELOCITY FILTERS

The overall structure of the TSF is shown in Fig. 2,
and contains four subsystems which are explained in this
section. The structure is similar to the structure presented
in Stovner et al. (2016), with some alterations; the LTV
Kalman filter in subsystem Σ2 is exchanged with a time-
invariant, linear Kalman Filter. Furthermore, the post-
transform optimization is added when needed in addition
to the algebraic transform in subsystem Σ1 and the depth
measurement is added to the system.

3.1 Subsystem Σ1: Compute Measurement

The pseudo-range measurements and depth measurement
are converted into measurements for pn and β. In addition,
if needed, the optimization algorithm is run. The details
of this process is are discussed in Section 2.

3.2 Subsystem Σ2: Kalman Filter

Subsystem Σ2 is a Kalman Filter using the system model

ṗn = vn

β̇ = εβ
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Kalman Filter (Σ2)

Linearised
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+
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Fig. 2. Overall structure of the TSF. The three stages are
Σ1, Σ2 and Σ4

v̇n = an(t) + εa
or, written in matrix form

χ̇ =

[
0 0 I
0 0 0
0 0 0

]
χ+

[
0
0
I

]
an(t) +

[
0 0
1 0
0 I

] [
εβ
εa

]
(15)

with measurement

y = [ I4x4 04x3 ]χ (16)

where the acceleration measurement in NED frame, an(t)
is viewed as a measured input and εβ , εa is the process
noise with variance σ2

β and covariance matrix Ra. The
state estimate of this KF is denoted χ1. It is important
to note that because the acceleration measurement is in
the NED frame and acceleration measurements are usually
provided in the body frame, a rotation matrix relating
body to NED is needed. This can be provided from an
attitude and heading reference system (AHRS), such as
Grip et al. (2012). The noise properties of the output
from the AHRS are difficult to describe accurately due
to the nonlinear filtering, thus making the choice of Ra

non-trivial.

As discussed in Section 2.4, the covariance of the com-
puted measurements, Rx̂, is dependent on σ2

y, σ2
z , pn and

transponder positions. This relationship is hard to find
explicitly due to the nonlinear transform. However, Rx̂ can
be approximated by employing a Taylor-series approxima-
tion. The first order Taylor-series approximation is given
by (Gustafsson and Hendeby (2008))

Rx̂ ≈ JRyJ
T (17)

where J is the jacobian of x in (9) with respect to εy,1..N , εz
and Ry is the covariance matrix of εy,1..N , εz. It is impor-
tant to note that the linearization point for generating the
jacobian must be chosen, either using χ1 or x̂. x̂ is more
noisy, but using χ1 as the linearization point introduces a
feedback into the system which can compromise stability.
The jacobian will be approximated using finite differences,
taking the central differences approach with step size hfd.

3.3 Subsystem Σ3: Local Linearization

Subsystem Σ3 performs a first order Taylor-series lin-
earization of the measurement equations in (1) and (2)
about the state estimate generated by Σ2, and feeds this
into Σ4. We define the measurement equation h(χ) =

[ y1 · · · yN zm ]
T

. Furthermore, we have

H(χ1) =
∂h

∂χ

∣∣∣∣
χ=χ1

(18)

The first order Taylor-series approximation about χ1 is
now given by

h(χ) ≈ h(χ1) + H(χ1)(χ− χ1) (19)

h(χ1), H(χ1) and H(χ1)χ1 are fed into Σ4.

3.4 Subsystem Σ4: Linearized Kalman Filter

Subsystem Σ4 is a LKF, using the dynamic equations from
(15), the measurements from (1) and (2), the measurement
equation given by (19) and measurement matrix given by
(18). χ2 denotes the state estimates generated by Σ4.

3.5 Stability Analysis

Due to the changes in the structure of the TSF, the
stability proof is similar but somewhat different from
Stovner et al. (2016). However, the two assumptions stated
in Stovner et al. (2016) are still necessary. In addition, an
assumption regarding the optimization problem, and its
solution must be added:

1: The matrix C in (6) has full rank.

2: The ambiguity between r1 and r2 can be resolved.

3: The optimization problem described in Section 2.3
converges to a feasible global minimum when the estimate
from (9) is used as the initial point.

It is argued in Johansen et al.Johansen and Fossen (2016b)
that if Σ2 and Σ4 are UGAS, it follows from standard
results on cascades of UGAS systems that the total system
will be UGAS. This is due to the fact that the linearization
point for generating the measurement matrix is being
forwarded from Σ2 and there is no feedback such that the
total system is a cascade of two UGAS subsystems.

As the measurement matrix in Σ2 given by (16) is con-
stant, unlike in Stovner et al. (2016), the system in Σ2 is
observable regardless of the rank of C. However, it is still
necessary for C to have full rank as inverse/pseudo-inverse
of C is used in the algebraic transformation and full rank is
a requirement for this to exist in Σ1. In practice this means
that the transponder locations must not be colinear.

4. SIMULATION AND RESULTS

The scenario investigated in simulation is a vehicle starting
at the origin, then rising 30 m before doing a lawnmower
pattern lasting a total of 300 s. An example run can be seen
in Fig. 3. The acceleration measurement has a frequency
of 100 Hz, while the range- and depth measurements have
a frequency of 1 Hz. The transponder positions are the
same as in Section 2.4, σ2

y = σ2
z = (0.2 m)2, σ2

β = (1 ·
10−3)2, Ra = 0.12 · I3x3, hfd = 1 · 10−5. The acceleration
measurement is affected by white noise with covariance

Ra. The post-transform optimization is run if |β̂1 − β̂2| <
0.3 as discussed in Section 2.2.

Four different estimators will be compared by using a
Monte Carlo simulation with 400 runs. Furthermore, both
χ1 and χ2 will be plotted to show differences more detailed.
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Even though the output from the filter is Σ4, it is of in-
terest to see the accuracy of the linearization point output
from Σ2, χ1. The different versions are summarized in Tab.
1. As it is argued that the TSF will have similar accuracy
as the EKF, but also be globally stable, an EKF is included
in the simulation. Furthermore, to give a benchmark per-
formance, Σ4 using true values as the linearization point is
also included. Two different simulations will be performed,
one with correct initial position estimate, and one with
an inaccurate initial position estimate, p̂0,1 = [ 0 0 0 ],

p̂0,2 = [ 10 −7 −5 ]. β̂0,1 = 1, β̂0,2 = 0.9, v̂ = [0, 0, 0]
T

,
Q = diag([1 · 10−6,Ra]) and initial covariance matrix
will be P0 = diag([102, 72, 52, 0.1, 0.1, 0.1, 0.1]) for both
Σ2 and Σ4 in both simulations. For the EKF P0 =
diag([0.12, 0.12, 0.12, 0.1, 0.1, 0.1, 0.1]) in simulation 2. This
was necessary to ensure convergence.

Table 1. Filters compared in simulation

Filter Description

a ∑
4
using the exact state as linearization point

b EKF

c TSF

d TSF from Stovner et al. (2016) with added
depth measurement

The results are shown in Fig 4 and 5 and Tab. 2. In this
scenario the performance of the TSF is very similar to
the EKF when the initial position estimate is accurate,
and both filters perform similar to the benchmark filter. It
is apparent that the linearization point χ1 is more noisy,
with χ1,d having the largest error. This is to be expected;
as discussed, the algebraic transform increases noise and
as shown in Section 2.4, χ1,d has a larger variance and bias
than χ1,c. In spite of this, χ2,d is almost not distinguishable
from χ2,a−c. This shows the robustness of the XKF, but
it is of interest to have χ1 as accurate as possible and in a
more noisy scenario the difference in accuracy of χ2 might
increase.

When using initial estimate p0,2 the difference between
EKF and TSF is apparent; convergence of the TSF is very
rapid, and much faster than the EKF due to the lack of
feedback in the filter, and the fast convergence of Σ2. The
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EKF converges very slowly, and has a very large transient
due to the necessary small P 0.

In simulations performed in this section convergence of
the post-transform optimization described in Section 2.3
has always been achieved, after a maximum of around
70 iterations with the SQP solver in MATLAB. Solving
the optimization problem after obtaining x̂ can always
be done, but simulations suggest that the improvement
in accuracy seems to be worth the computational effort
only when r1 and r2 are similar, as mentioned in Section
2.2.

5. DISCUSSION

The simulation performed in this paper shows only a
very specific scenario, and it is therefore difficult to
make general claims about the relative performances of
the filters discussed. However, less noisy state measure-
ments will naturally lead to more accurate estimates. As
shown in Section 2.4, both variance and bias generated by
pseudo-range measurement noise is reduced when a depth-
measurement is added. It is important to note that the
analysis is only valid for the chosen transponder setup,
and setups similar to the current one.

Table 2. Mean Euclidean distance RMSE [m]
over time

Filter Simulation 1, p̂0,1 Simulation 2, p̂0,2

χ1,c 0.377 0.432

χ1,d 2.04 2.05

χ2,a 0.261 0.304

χ2,b 0.260 1.79

χ2,c 0.261 0.304

χ2,d 0.270 0.314
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Fig. 5. RMSE for simulation 2. Euclidean distance error
and error in β. The response of χ2 from filter a,c and
d is very similar, and in this plot indistinguishable

The performance of the EKF is very dependent on tuning
of P0 and Q. Consequently, a different tuning could have
given better performance. This can also be viewed as a
drawback of the EKF, and when initial estimates were
inaccurate it was necessary to choose P 0 far too small to
ensure convergence, even though this does not reflect the
real error of the initial estimate.

Assumption 3 in Section 3.5, regarding convergence of the
optimization problem is an assumption that is impossible
to guarantee in general due to the fact that the problem is
non-convex. The optimization step is only to improve per-
formance further, and can be omitted to have guaranteed
stability properties. The need for the optimization step is
dependent on the magnitude of measurement noise and
transponder geometry, which must be considered for the
specific scenario in which the filter is applied.

6. CONCLUSIONS

In the presented work three ways of increasing range
noise robustness of the TSF in Stovner et al. (2016) has
been suggested; adding a depth measurement, changing
the Σ2 measurement model and adding an optimization
step when needed. This approach is compared to an EKF
and a benchmark filter, an LKF using the real state
as the linearization point. Simulations suggest that the
stationary performance of the suggested TSF is similar
to the EKF and LKF, but the transient performance of
the TSF is faster when the filters have inaccurate initial
state estimates. Furthermore, unlike the EKF, the TSF is
UGAS, guranteeing stability.

It is important to note that no general claims about the
relative performance of the suggested TSF and the EKF
can be made. This is due to the fact that the performances
are dependent on system configuration such as filter tun-
ing, measurement noise and transceiver position. However,

simulations suggest that ensuring convergence of the EKF
may require choosing tuning parameters, especially P0 in
an unrealistic way whereas the TSF can be tuned with
realistic parameters.
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