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Abstract— This paper addresses the visual masking that 
occurs in the chrominance channels of natural images. We 
present results from a psychophysical experiment designed to 
obtain local thresholds of just noticeable log-Gabor distortion in 
the Cr and Cb channels of natural images. We analyzed the data 
and investigated the correlation between several low-level image 
features and the collected thresholds. As expected, features like 
variance, entropy, or edge density were correlated relatively high 
with the thresholds. We evaluated the performance of linear and 
non-linear regression (using neural networks and support vector 
machines) for thresholds prediction from multiple global image 
features; we also fitted a modified Watson-Solomon’s 
computational model (based on log-Gabor features) for 
thresholds prediction. The evaluation showed that neural 
networks and support vector machines are most suitable for 
thresholds prediction. The computational model performed 
reasonably well, with further prospects of its improvement. 
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I.  INTRODUCTION 

Visual masking occurs when the visibility of a visual target 
is affected by the presence of another visual stimulus (mask). 
It can be quantified with a threshold - the amount of particular 
distortion introduced to the mask from the target, which 
becomes just noticeable by a human observer. As the image 
content changes locally, for many applications it is beneficial 
to have a masking map that is simply a map of thresholds for 
perceptible distortion in different image regions. In image 
quality assessment, masking maps are utilized to weigh the 
objectively measurable distortions according to their visibility 
[1]. In image compression, different schemes for visual 
masking have been used to create perceptually uniform 
quantization tables [2]. In data hiding/watermarking, 
masking/visibility maps are used to properly distribute the 
watermark energy and achieve perceptually equalized data 
embedding [3]. 

Traditionally, studies related to the sensitivity of the 
Human Visual System (HVS) to image distortions have used 
unnatural setups for measuring the distortion detection 
thresholds. Red-green and blue-yellow sinusoidal gratings on 
homogenous background have been used to measure the 
detection thresholds for different spatial frequencies [4], in 
different color spaces like CIELAB and YCbCr [5], for 
different background luminance [6] and across the whole 
visual field [7]. Using isolated chromatic gratings on uniform 

background masks allows precise investigation of its effects 
on the detection thresholds, and provides useful but only 
global understandings of HVS. However, due to the high non-
linearity and complexity of the HVS, results obtained using 
these artificial setups may have limited usage for predicting 
the thresholds in natural masks [8]. Several researchers have 
measured detection thresholds in natural images. Sensitivity to 
phase distortions was measured in grayscale natural images 
[9] and in color images [10], [11]. Alam et al. measured the 
local detection thresholds for a log-Gabor noise target in 
natural grayscale images [12]. The images were block-
segmented and a masking map was obtained for all of the 
images from the CSIQ image database [13]. They found that 
the thresholds depend on visual complexity, fineness of 
texture, sharpness and overall luminance. However, the 
masking maps for grayscale images they have provided may 
not be the most suitable for applications where the image 
distortion is distributed mainly in the chrominance channels, 
for example, like in data hiding applications [14]. 

Despite the obvious need for masking maps in various 
color image-processing applications, we were unable to find a 
large dataset of masking thresholds in chrominance channels 
of natural images. To address this issue, in this paper we 
present results of a visual experiment where we collected 
thresholds for detecting log-Gabor noise targets in the 
chrominance channels of the YCbCr-represented natural 
images. The details of the experiment setup and the analysis of 
collected data are given in the next section. In Section III, we 
investigate the potential of thresholds prediction using both 
regression approaches and a computational model for 
predicting the perceptibility of image differences. 

II. VISUAL EXPERIMENT AND DATA ANALYSIS 

The first part of this section describes the visual 
experiment we performed for collecting just noticeable 
distortion thresholds in the Cr and Cb chrominance channels. 
In the second part, we analyze the collected thresholds and 
their relations with some common statistical image features. 
This analysis is performed in a similar way as it is in [12]. The 
data from our visual experiment can be downloaded from [15]. 

A. Experiment Setup 

For our visual experiment, we used a total of 480 image 
patches of 80×80 size as masks: 160 patches were obtained 



from each of the Kodak [16] and CID:IQ databases [17], 120 
patches were selected from the CSIQ database [13], and 
another 40 patches were obtained from random natural 
images. The patches were selected so they have consistent 
texture, and they include wide variety in terms of luminance 
levels, hues, saturation, and texture types. The visual stimuli 
were displayed on a Dell U2412M LED/LCD monitor using 
its native 1920×1200 resolution. The display was setup to 
conform to the sRGB standard (calibrated to a Gamma curve γ 
= 2.2, D65 white point, the minimum and maximum 
luminance were set to 1cd/m2 and 80cd/m2 respectively). The 
subjects viewed the stimuli in a darkened room at a distance of 
around 90cm. The displayed stimuli consisted of two masks 
and one mask with added target in one of the chrominance 
channels. The noise target was cropped from the same 
510×510 noise target used in the previous gray-scale 
experiment by Alam et al. [12]. It is a normalized log-Gabor 
noise patch with vertical orientation and 5 cycles per degree 
(cpd) spatial frequency for the selected viewing distance and 
monitor resolution. The image that contained the target was 
generated as follows: the RGB mask image was transformed 
to the YCbCr space; the noise target was multiplied by a 
constant (the magnitude) and added to either the Cr or the Cb 
channel. The modified YCbCr image was transformed back to 
the RGB space. The resulting images were padded with 60 
pixels of content from all sides to 200x200 pixels, and then 
were blended with the background using a circular-shaped 2D 
window. The visual angle of the target patch is 1.37°, while 
the whole padded stimuli is 3.41°. An example of the 
displayed stimuli in our visual experiment is shown in Fig. 1. 

The thresholds were collected using the method of 
adjustments. The subjects viewed the three images placed next 
to each other on a 17cd/m2 neutral background. The subjects 
used keyboard input to increase or decrease the visibility of 
the target (by increasing/decreasing the magnitude of the 
inserted target). For each subject there were two separate runs 
of the experiment, denoted as run A and run B. In the run A, 
the starting visibility of the target was very low. Subjects were 
instructed to increase the visibility of the target until they can 
correctly identify which of the three images contains it. In the 
run B, the starting visibility of the target was very high so it 
was easy to identify which of the images initially contains it. 
Subjects were instructed to decrease the visibility of the target 
until they can no longer identify which of the three images 
contains the target. After every increase/decrease, the three 
images disappeared (were substituted with the background) for 
0.25 seconds. During this time, the target was multiplied with 
the new magnitude, and added to one of the three images 
(randomly selected). Around one-half of all of the subjects had 
run A first, the other half had run B first.  

 
Figure 1. Stimuli display setup; log-Gabor target is inserted in the                       

central part of the Cr channel of the left image. 

The total number of observers was 24. Each of the 480 
images was observed by three observers. While one observer, 
Subject1, observed all of the 480 images for both Cr and Cb 
channels, the results for Subject2 and Subject3 were 
effectively consisted of the results from 23 subjects. Each of 
these 23 persons observed at least 48 images for at least one 
channel (Cr or Cb). All of the participating observers had 
normal or corrected-to-normal color vision.  

The thresholds were recorded in terms of magnitude of the 
log-Gabor target, as well as RMS chrominance channel 
difference between the mask and the mask with added log-
Gabor target. The distortion detection threshold per image per 
chrominance channel was calculated as the average threshold 
from the two runs, A and B. 

B. Analysis of Collected Thresholds 

In this subsection, we provide analysis of the collected 
thresholds, their consistency across subjects and their 
correlation with different image features. The results are 
provided in terms of Pearson correlation coefficient (CC) or 
Spearman rank-order correlation coefficient (SROCC).  

The average inter-subject correlation of the collected 
(RMS-based) thresholds, in terms of CC, was 0.76 and 0.88 for 
the Cr and the Cb thresholds, respectively. Table 1 shows the 
correlation between the two runs, A and B, which can be used 
as an indicator of intra-subject consistency. From these results, 
it can be seen that both the inter- and intra-subject 
consistencies are higher for the Cb thresholds. The lower intra-
subject correlation for the Cr thresholds implies that the Cr 
thresholds (the average of the two runs) may have higher 
variance per subject and partly explain why the inter-subject 
correlation for the Cr thresholds has also been lower. Among 
the three subjects, the intra-subject correlation is highest for 
Subject1, which may be expected as the results for Subject1 are 
collected from only one observer. 

The thresholds in the Cr channel are considerably lower 
than the thresholds in the Cb channel. Even though the YCbCr 
space is not considered to have high perceptual uniformity, the 
fact that Cr thresholds are around three times lower than the 
Cb thresholds confirm what has been previously known - the 
sensitivity of the HVS to blue-yellow distortions is lower 
when compared to the sensitivity to red-green distortions. The 
images that have no texture and are virtually “single-color” 
gave the lowest thresholds. Generally, the thresholds are 
increasing as the complexity of the texture increases. The 
perceived sharpness of the image is also related to the 
thresholds – increased sharpness leads to higher thresholds, 
and some heavily blurred images had low thresholds despite 
the obvious complex texture. Regarding the mean luminance, 
the thresholds were higher for the very dark images and for the 
very bright images. Figure 2 shows an example set of images 
that have both the Cr and Cb thresholds in the same percentile 
group. 

TABLE 1. Pearson correlation (CC) between the two runs, A and B. 

CC Subject1 Subject2 Subject3 
Cr channel 0.846 0.758 0.757 
Cb channel 0.896 0.777 0.813 



 
Figure 2. Example of images (80x80) with different levels for both Cb and Cr 
thresholds, grouped from lowest (top row) to highest thresholds (bottom row). 
 

We examined the correlation between the thresholds and 
several global and commonly used image features like: 
average luminance, variance, RMS contrast, edge density, 
entropy, mean saturation, and energy in spatial frequencies 
occupied by the inserted target. We report the results in terms 
of SROCC. 

We calculated separate variance and entropy for each of 
the three YCbCr channels of the mask images of size 80x80 
pixels. We used first-order entropy, where the probability 
distribution was approximated with a 256-bins histogram. The 
RMS contrast of the masks was calculated as in [12] for each 
of the three YCbCr channels. To calculate edge density we 
used Laplacian of Gaussian (LoG) edge detector (of size 
13x13 pixels) for the Y channel, with the threshold set to 
0.002 and the standard deviation of the Gaussian set to σ=2. 
The edge density feature is simply the percentage of edge 
pixels in the resulting binary image. The mean saturation of 
the mask image was calculated in the HSV color space. For 
each of the YCbCr channels we also calculated the energy of 
the spatial frequencies occupied by the log-Gabor target, 
specifically from 3.75 cpd to 6 cpd, – this is denoted in the 

later text simply as sub-band energy. The actual calculation of 
this feature was performed in the FFT domain: it equals the 
sum of the squared amplitudes of all FFT coefficients that 
correspond to spatial frequencies between 3.75 and 6 cpd, 
divided by the mask size (80x80). The SROCC values 
between these mask features and the collected thresholds for 
both channels are shown in Fig. 3. 

From the results in Fig. 3, several conclusions can be made. 
Overall, the correlations between mask features and the (RMS-
based) thresholds of perceivable distortion are higher for the 
Cb channel thresholds. The reason for this may be the higher 
sensitivity to noise in the collected thresholds for the Cr 
channel, as well as the lower dynamic range of Cr channel 
thresholds - they are roughly a third of the Cb channel 
thresholds, and their variance is an order of magnitude lower 
than the variance of Cb thresholds. As expected, the mean 
luminance and mean saturation and are poorly correlated with 
the thresholds. While they may have influence on the 
thresholds, the relation is non-linear and non-monotonic, thus 
unable to be revealed by linear or ranked correlation. The 
variance, entropy, RMS contrast, and sub-band energy in 
general show good correlation with the thresholds. For all of 
them the SROCC was higher than the CC. Among the 
calculated three channels, the variance in the Y channel shows 
highest correlation with the thresholds. Similar pattern can be 
observed for the entropy, the RMS contrast and the sub-band 
energy – the values calculated for the Y channel correlate best 
with both Cr and Cb thresholds. The edge density, as expected, 
was also highly correlated with the thresholds for both Cr and 
Cb channels, with SROCC values of around 0.7. When both Cr 
and Cb thresholds are considered together, the sub-band energy 
feature performed best – the sum of the two SROCC values 
(for Cr and Cb thresholds) was highest. The scatter plots of the 
collected thresholds versus the sub-band energy in the Y 
channel are shown in Fig. 4, where a noisy but clear positive 
correlation can be observed. While certain Y-channel features 
showed relatively high correlation with the RMS-thresholds, 
combining multiple features in a multiple regression approach 
may further improve the correlation, and consequently, lead to 
better thresholds prediction. This is investigated in the next 
section. 

 

 
Figure 3. SROCC values between various image (mask) features and the Cb and Cr thresholds. 



 

Figure 4. Scatter plots of the collected Cb (left) and Cr (right)                            
RMS-thresholds versus the sub-band energy in the Y channel. 

 
III. PREDICTION OF MASKING THRESHOLDS  

In this section, we investigate approaches for predicting the 
thresholds obtained in our visual experiment. We evaluate a 
multiple linear regression approach as well as non-linear 
regression approaches such as neural networks and Support 
Vector Regression (SVR). We also present a modified version 
of the Watson-Solomon’s model [18] that is suitable for 
thresholds prediction.  

A. Prediction using Multiple Linear Regression 

Our first choice for thresholds prediction is Multiple 
Linear Regression (MLR). The thresholds are modelled as a 
linear combination of selected image features. In the previous 
section, we used 15 different features to evaluate how they 
correlate with the collected thresholds. For all of them, the 
feature calculated for the Y channel showed highest 
correlation. One way to choose features as predictors in our 
regression models is to choose the features with highest 
correlation with the thresholds. As the variance and entropy 
are very similar to each other, with SROCC between them of 
0.94, we include only the entropy (the variance is also part of 
the RMS-contrast formula [12]). To account for luminance 
masking, we use the average luminance as input feature. We 
also test whether mean saturation has significant impact on the 
model’s prediction. Thus, the selected two feature sets for our 
regression models are given in Table 2. The regression model 
parameters are fitted by minimizing the least squares (LS) 
error. While this linear model will not be able to capture 
highly non-linear relation between the mask features and the 
thresholds, we are using it here as a baseline regression 
approach. 

B. Prediction using Neural Network 

We choose to use a feed-forward fully-connected two-
layered neural network (NN), a scheme which has been 
proven to perform non-linear regression reasonably well [19]. 
The output layer has only one node since the network is 
performing regression. The number of input nodes (image 
features) is either five or six - we are using the same two 
feature sets that are given in Table 2. The number of nodes in 
the hidden layer has been set to be one plus the number of 
input nodes – which was selected as a good choice using 
empirical tests. We used the Levenberg–Marquardt algorithm 
[20] for training the network; the training set consisted of 
features/thresholds from 312 images (65%), we used 48 (10%) 
for validation and training termination, and the rest 120 (25%) 
images (not presented during training to the network) were 
used for testing the network’s prediction performance.  

C. Prediction using Support Vector Regression 

Our second choice is to use Support Vector Machines 
(SVM) for non-linear regression, specifically the ε–SVR 
method [21]. For the SVR implementation, we used the 
publicly available libSVM library [22]. The error tolerance ε 
was set to 0.001. We used radial basis function kernel that, as 
expected, provided best results when compared to other types 
of kernels. The γ parameter of the radial basis function was set 
to γ = 0.5, while the regularization constant was empirically 
chosen to be C = 100. We used the same two feature sets as in 
the previous two regression approaches. The training data 
consisted of thresholds/features from 360 images (75%), 
whereas the rest 120 (25%) were used for testing. 

D. Prediction using Modified Watson-Solomon’s Model 

The Watson and Solomon’s computational model of pattern 
masking can be used for predicting the perceptibility of 
differences in grayscale images. Even though it was published 
around twenty years ago, its modular structure together with its 
extensive parameters set make it flexible and potentially 
capable of incorporating new findings about the human visual 
system [12], [18].  

There are different ways to extend this model so it could 
predict the perceptibility of difference between color images. 
We trialed few extensions of the model to images represented 
in the opponent-colors YCbCr color space, by introducing 
parallel branches for the additional chrominance channels at 
various points in the original model. For each model structure, 
we trialed different settings by sampling the parameters space 
in the region close to what had been previously selected as 
nearly optimal [12], [23]. The model structure that resulted in 
substantially better predictions is shown in Fig. 5, and the 
parameter set we used in this work is given in Table 3. In Fig. 
5, the two input images to be compared by the model follow 
identical paths, of which only the path for the second image is 
shown. The input images are transformed to the YCbCr space, 
and fed to a bank of 24 real log-Gabor filters - with four 
different passbands (three band-pass and one high-pass) and six 
different orientations. All of the log-Gabor filters are 
normalized to unit energy. Each of the filter-bank outputs are 
summed across the three color channels using YCbCr contrast-
sensitivity weights [24] calculated at the central frequencies of 
the four passbands. The resulting 24 responses are split into 
non-linear excitatory and inhibitory paths. The responses in the 
inhibitory path are pooled across space (5x5 neighborhood) and 
orientation (the closest orientation from each side). The 24 
responses from the two non-linear paths are divided, and then 
the result is subtracted from the one for the other image. Before 
the division, a saturation constant, bq, is used to prevent very 
high responses in the model. 

TABLE 2. Two sets of image features used in the regression models. 

Set1 Set2 
Mean luminance Mean luminance 
Entropy in Y ch. Entropy in Y ch. 

RMS contrast in Y ch. RMS contrast in Y ch. 
Density of edges Density of edges 

Sub-band En. in Y ch. Sub-band En. in Y ch. 
 Mean saturation 

 



 
Figure 5. Modified Watson-Solomon’s model for predicting the perceptibility of image differences in the chrominance channels. 

 

The phenomenon of visual masking is modelled mainly by 
the pooling in the inhibitory path and the division of the 
responses in the two paths – this effectively simulates the 
reduction in the HVS response for spatially co-located 
responses that are close in orientation and frequency. The 
obtained image differences are finally pooled over space (the 
whole image), frequencies (the four bands) and orientations 
(the six orientations), using Minkowski pooling. The obtained 
value is compared to a threshold to decide whether the image 
difference is perceptible. For more detailed explanations of the 
elements in this model, readers are directed to the original 
published work [18]. 

In order to predict local image distortion threshold of just 
noticeable difference, the modified Watson-Solomon’s model 
is used iteratively: the amount of distortion added to the 
second image (or image patch) is increased until the model’s 
response, the Minkowski-pooled difference from the referent 
first image, becomes higher than the model’s threshold Th. The 
actual distortion threshold is then calculated as a weighted 
average of the highest distortion value that results in model’s 
response lower than Th, and the lowest distortion value that 
results in model’s response higher than Th. The value of the 
model’s threshold, Th, can be obtained by calibration with data 
from subjective experiments. In our case, all of the images 
distorted at the collected Cb and Cr thresholds from our 
experiment, were fed to the model (paired with their 
undistorted version), and the average model’s response was 
used as Th.  

E. Evaluation of the four methods for thresholds prediction  

In this subsection, we present evaluation of the four 
different approaches for thresholds prediction. The accuracy of 
prediction was measured in terms of correlation (CC and 
SROCC) and RMS difference between predicted and collected 
thresholds. For the three regression approaches, we split the 
data into training (model-fitting) set (75%) and testing set 
(25%); the results are averages from 100 regression models 
obtained from 100 different pseudo-random training/testing set 
separations (that were the same for the three regression 
approaches). The results for the modified Watson-Solomon’s 
computational model are from a single run on all of the images, 
as the model’s threshold Th was obtained using all of the 
experiment data. 

The performance of the different threshold prediction 
methods are given in Table 4. The values corresponding to the 
best results (highest correlations and lowest RMSE) are in 
bold. Regarding the three regression methods, the correlation 
between the predictions and the actual thresholds has improved 
from using multiple features. Using the mean saturation had no 
impact on predicting the Cr thresholds, but improved the Cb 
thresholds prediction. This improvement is relatively small, 
and it is somewhat expected given that in Fig. 3, mean 
saturation showed small positive correlation with the Cb but 
not for the Cr thresholds. The neural networks performed 
consistently well, with best or next-to-best results. The multiple 
linear regression performed worst among the three regression 
methods. The modified Watson-Solomon’s model compares 
relatively well with the non-linear regression methods, and it 
performed best in terms of SROCC for the Cb thresholds. 
However, the model’s predictions on average had considerably 
highest RMSE, which can be attributed mainly to the very dark 
or very bright images – we suggest that this is because the 
model does not explicitly consider the mean luminance, so it 
leads to bigger errors for these certain types of images. As for 
the algorithm’s complexity, this computational model is much 
more complex than the regression methods, due to the iterative 
implementation, the large Gabor filter bank, and the extensive 
pooling in the model. 

TABLE 3. Parameters used for the modified Watson-Solomon’s model. 

Parameter Value 

Bandwidth of frequency bands 
of log-Gabor filters 

1 octave 

Center frequencies              
of the bands 

2.9, 5.7, 10.6, 21.1 cpd 

Bandwidth of orientation of       
log-Gabor filters 

30° 

Center angles of orientations of 
log-Gabor filters 

0, ±30°, ±60°, 90° 

Spatial pooling kernel 5x5 Gaussian, σ=1 

Pooling across orientations ±30° with equal weights 

Excitatory exponent p 2.3 

Inhibitory exponent q 2 

Semi-saturation constant b 0.05 

Minkowski pooling exponent 4 



TABLE 4. Performance of different threshold predictors. 

 CC SROCC RMSE
  Cr thresholds: 

MLR – Set1 0.68 0.76 1.06
MLR – Set2 0.68 0.75 1.06
NN – Set1 0.70 0.76 1.00
NN – Set2 0.71 0.76 1.01
SVR – Set1 0.70 0.75 1.01
SVR – Set2 0.71 0.74 1.02
Modified      

W.-S. model 
0.68 0.74 1.21 

  Cb thresholds: 
MLR – Set1 0.72 0.76 2.67
MLR – Set2 0.74 0.78 2.59
NN – Set1 0.72 0.76 2.68
NN – Set2 0.76 0.79 2.54
SVR – Set1 0.73 0.76 2.65
SVR – Set2 0.76 0.77 2.57
Modified      

W.-S. model 
0.74 0.80 3.18 

IV. CONCLUSION 

In this paper, we presented results of a visual experiment 
for obtaining thresholds of perceptible distortion in the 
chrominance channels of the YCbCr color space of natural 
images. A total of 480 80×80 images with a variety of natural 
content, texture, hue, luminance and saturation levels were 
used in the experiment as a mask. The distortion target used 
was a log-Gabor patch, and it was inserted in the Cr and Cb 
channels of the mask. The analysis of the experiment data 
showed that the thresholds are influenced by the visual 
complexity of the mask, the texture type and the mean 
luminance levels. We examined the correlation of different 
low-level global image features with the thresholds; several 
features like variance, entropy, edge density, or energy in 
spatial frequencies occupied by the target, have shown high 
correlation with the thresholds – above 0.6. Both linear and 
non-linear regression approaches were investigated for 
improving the threshold prediction from the low-level image 
features. We presented a modified Watson-Solomon’s 
computational model for prediction of the perceptibility of 
image differences in the chrominance channels. Among the 
four different methods for thresholds prediction, the non-linear 
regression methods, especially the neural networks, provided 
marginally better results. Given their low computational 
complexity, we select the neural networks as preferable choice 
for thresholds prediction. The CC/SROCC correlations with the 
collected thresholds improved for around 0.1 percentage points 
when using multiple features in the NN/SVR models. The 
modified Watson-Solomon’s model performed relatively well, 
given that it does not account for luminance masking. Even 
though the model is substantially more computationally 
intensive than the regression methods, its good performance 
should be emphasized because, apart from the final threshold 
Th, the model did not explicitly use the experiment data for 
optimizing its parameters. 

The future work will focus on integrating the masking 
thresholds prediction into the chrominance channels based 
data-hiding scheme [14], in order to achieve perceptual 
uniformity of the introduced distortion from data embedding in 
color images. 
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