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SUMMARY

A 3D Domain-Decomposition (DD) strategy has been developedto deal with violent wave-ship interactions

involving water on deck and slamming occurrence. It couplesa linear potential-flow seakeeping solver with

a Navier-Stokes (NS) method. The latter is applied in an inner domain where slamming, water on deck,

free-surface fragmentation may occur, involving important flow nonlinearities. The field solver combines an

approximated Projection method with a Level-Set techniquefor the free-surface evolution. A hybrid strategy,

combining the Eulerian Level-Set concept to Lagrangian markers, is used to enforce more accurately the

body-boundary condition in case of high local curvatures. Main features of the weak and strong coupling

algorithms are described with special focus on the boundaryconditions for the inner solver. Two ways

of estimating the nonlinear loads by the NS method are investigated, based on an extrapolation technique

and an interpolation marching cube algorithm, respectively. The DD is applied for the case of a freely-

floating patrol ship in head-sea regular waves and compared against water-on-deck experiments in terms of

flow evolution, body motions, pressure on the hull. Improvement of the solver efficiency and accuracy are

suggested. Copyrightc© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Violent wave-vessel interactions may cause nonlinear phenomena relevant for the local and/or

global behavior of the structure, depending on the vehicle size relative tothe waves and on the

working conditions. In this context, water shipping and slamming represent an important issue at

design stage. They are also relevant in fixing the proper operational limits of the vessels. Nowadays

model tests represent still the most reliable tool for this type of investigations but the costs remain

high. As a result, carrying on systematic analyses is almost prohibitive and ingeneral one must

limit the analysis to the examination of the most critical conditions only. On the other hand the

computer power is continuously increasing and the Computational Fluid Dynamics (CFD) methods

are growing quickly. In the seakeeping field they need still an important assessment work in

terms of verification and validation and they are still too time consuming to provide,in a feasible

time, information about the behavior at sea of a vessel with generally complexgeometry. The

numerical research effort is therefore focused on filling the gap in termsof reliability and developing

efficient and robust solvers. The authors have proposed in the pasta Domain-Decomposition (DD)

approach (see [1] and [2]) as a possible compromise between capability in handling the most

relevant phenomena, accuracy in estimating the physical quantities of interest, and efficiency. The

method was implemented as two-dimensional and showed promising results when compared to

reference solutions and experiments. The idea is to split the problem into sub-domains, say two,

and use in each of them the most efficient solver, as long as suitable and accurate. In particular,

the implemented DD used a Navier-Stokes solver able to handle large deformations, breaking and

fragmentation of the free surface, air entrapment and impact events, in aninner domain where

violent water-vessel interactions could occur. The method combines a Finite-Difference scheme

with a Level-Set technique to capture the free-surface evolution. In a remaining outer domain, where

the water behaves as inviscid and irrotational, a nonlinear potential-flow solver based on a Boundary

Element Method (BEM) was adopted.

Here we consider a step forward of that activity. The effort is to include3D effects and to

overcome the implementation issues connected with them. The application is the 3D seakeeping
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3D DOMAIN-DECOMPOSITION 3

problem of a vessel without forward speed and in regular deep-waterhead sea waves. This is relevant

for Floating Production Storage and Offloading (FPSO) ships which are used as oil platforms and are

typically weather vanying which means that head-sea waves represent the most critical conditions.

The numerical solver is a DD strategy splitting the problem into an inner domain where violent

wave-body interactions can occur and an outer domain where the free surface remains smooth on

a large scale and linear (or weakly nonlinear) potential flow theory can beapplied to capture the

relevant flow features. In our case the inner domain can be identified in a sea portion containing the

forward portion of the ship because there the body motions will be the largest and slamming and

water shipping phenomena are likely to occur. The rest of the sea domain can be considered as outer

domain,i.e. with dominant potential flow features. The inner domain is solved by a Navier-Stokes

method developed as an extension of that applied in 2D flow conditions, the outer domain is handled

by a potential-flow solver. In the present implementation in general nonlineareffects are neglected in

the outer domain. This has the advantage of using the frequency-domain approach avoiding the need

for solving in time the outer-domain problem, with great saving of computational cost. With this, all

the features of the solver can be assessed step-by-step. Later more complicated modellings of the

flow can be included. The solution algorithm is described in the next sectionsin terms of the two

adopted solvers and of the DD strategy coupling them, then the seakeeping problem of a patrol ship

at rest in regular head-sea waves is examined and a validation is performed by comparing against

the corresponding model tests. Eventually, the main conclusions and futuresteps are outlined.

2. COUPLED METHODS: OUTER SOLVER

Here the water is assumed as incompressible, inviscid and in irrotational motion.Air and nonlinear

effects are neglected. So the global seakeeping problem for a marine vehicle at rest and in head-sea

deep-water waves is solved within the linear potential flow theory. The frequency-domain solver

documented in [3] is used for this purpose. Because the basic theory and the solution technique

are very well established and can be found in text books, e.g. [4], here only the main features

are recalled. The method solves the problem by using the variable-separation strategy for the

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2011)

Prepared usingnmeauth.cls DOI: 10.1002/nme
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velocity potential,i.e. φ(P , t) = ℜ{[
∑6

i=1
ξ̇iϕi(P ) +A(ϕ0(P ) + ϕ7(P ))]eiωt}, with t the time,

P the position,ϕi the velocity potential associated with unitary velocityξ̇i of the i-th rigid degree

of freedomξi, andϕ0 andϕ7 are, respectively, the spatial incident-wave and scattering velocity

potential per unitary wave amplitude. Further,A andω = 2π/T are the incident-wave amplitude

and frequency. Each radiation problem and the diffraction problem arecharacterized by the Laplace

equation, the combined free-surface condition, the radiation condition, thebottom condition, and the

corresponding body impermeability condition. They are solved using the Green’s second identity

and the Green function solving exactly the free-surface, bottom and radiation conditions. This means

that only the mean-wetted body surface must be discretized and the integralrepresentation provides

the velocity potential everywhere in the fluid domain. From this, the velocity andpressure field

and the free surface elevation caused by the wave-body interaction fora given frequencyω can be

estimated. The integrated loads on the vessel are obtained as added-mass,damping and restoring

terms from the radiation problem and as excitation loads from the diffraction problem. Actually, the

radiation and diffraction problems must be solved for several values ofω spanning from very small

to very large values because the equation of motions in the coupled problem must be solved in time

domain. As discussed in section4, using the Cummins [5] and Ogilvie’s [6] approach, the radiation

loads are characterized by convolution integrals involving the impulse response functions and the

time derivative of the rigid motions. This means that added mass (or damping) coefficients must be

available strictly speaking forω ∈ (0,∞). The numerical problems associated with occurrence of

irregular frequencies are overcome as in [3].

3. COUPLED METHODS: INNER SOLVER

Here the water is assumed as incompressible, viscous and in laminar conditions, the temperature

is assumed uniform and constant, and the surface-tension and air effects on the liquid evolution

are neglected. It means that the governing equations are the conservation of fluid mass and of fluid

momentum for the unknowns velocityu and pressurep. They are solved in time, for given initial

and boundary conditions, by a Navier-Stokes solver based on an approximated Projection method. A
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3D DOMAIN-DECOMPOSITION 5

Finite-Difference scheme is adopted on a Earth-fixed Cartesian grid and combined with a Predictor-

Corrector scheme for the time integration. The grid is staggered with the scalarvariables defined at

the cell center and the velocity components on the grid faces. The method is accurate to the second

order in time and space and involves the solution of a pressure Poisson equation for each sub-set of

the time-integration algorithm. The details of the solver can be found in [7]. The use of an Eulerian

approach makes it necessary an additional technique to follow the evolutionof the free surface and

enforce the boundary condition along moving bodies.

3.1. Free surface: Level-Set technique and solution extension in air

For the free surface, a Level-Set (LS) technique is adopted which means that a with-sign normal

distance functionφ is defined (negative in water and positive in air) from the free surface.It is

evolved in time as a fluid property using a second-order Euler time scheme. The details of the

adopted technique can be found in [7] and [8], where the numerical choices made have been

identified through careful parameter investigations in order to reduce the computational costs and

preserve the physical and accurate behavior of the solution. Here the major features are recalled, in

particular those relevant for the present DD solver.

To save computational timeφ is correctly defined within a distance±6∆x from the free surface.

For larger distances it is kept constant and equal to±6∆x. In a narrow layer across the free surface,

±2∆x, the fluid properties are forced to smoothly vary from the water to the air properties, using

the distanceφ from the surface. This is necessary to prevent numerical instability but implies that

the free surface is actually a layer instead of a sharp surface. The latteris recovered as∆x → 0. The

smoothing law is chosen as an exponential of a sinusoidal function (see [9]). Once the instantaneous

φ distribution is known, the NS equations can be stepped forward in time. As said, the used solver

is a one-fluid solver which means that only the water evolution is correctly described. On the other

hand, the estimate of spatial gradients on a fixed Cartesian grid requires in general information at

grid points in air and near the free surface (see sketch in figure1). This means that the solution

must be suitably extended to the air domain to avoid numerical instability and preserve the solver

accuracy. In this framework, one can distinguish two conditions: without and with a surface-piercing
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6 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

Figure 1. Eulerian one-fluid NS solver: solution extension in air.

body. In both cases the NS solution is estimated up to one and half cell in the air,i.e.atφ = 1.5∆x.

In the first case Colicchio [8] found that a constant extension fromφ = 0.5∆x to the air is enough.

When a surface-piercing body is present, this can cause the formation ofa fictitious vorticity at

the intersection between the body and the free surface, as shown in figure 2. As long as no body

Figure 2. 2D ship cross-section forced to oscillate in heavein otherwise calm water: NS free-surface and

velocity vectors. Time increases from left to right. Solid lines: velocity extension from outside the water

domain. Dashed lines: velocity extension from inside the water domain. NS discretization∆x = ∆z =

0.012D with D the cross-section draft.
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3D DOMAIN-DECOMPOSITION 7

is present, the air is driven by the water and the extension from above the free surface is suitable.

As soon as the thin layer of air interacts with the body, such an extension is not plausible and

an extension from inside the water (at leastφ = −0.5∆x) is required. In our application to a DD

strategy for a 3D seakeeping problem, the constant extension of the solution from water to air

leads to a more robust and physical solution but, for a given discretization, it reduces the numerical

accuracy with respect to the case with constant extension from air to air. To improve the accuracy

and preserve a physical flow evolution, the solution is not extended constantly from water to air but a

weighting function is applied as shown in the sketch of figure3. In our approach, the local velocity

Figure 3. Eulerian one-fluid NS solver: weighted law to extend the velocity from water to air in the DD

strategy.

solution (solid line) is multiplied by the weighting function1/2{1 + cos[π(φ+ 0.5∆x)/∆x]} so

that the actual velocity profile is given by the dash-dotted line. It means thatat φ = 1.5∆x the

velocity is equal to the NS value atφ = −0.5∆x (dashed line) and for−0.5∆x < φ < 1.5∆x is

between the local NS solution and the constant extension value fromφ = −0.5∆x.

3.2. Body-boundary condition: hybrid technique

The body-boundary condition is approximated as

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2011)
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8 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

u = s(φbody)uB + [1− s(φbody)]uF
(1)

whereuF anduB are, respectively, the fluid and body velocity ands(φbody) is a function defining

the position of the body. Ifs(φbody) is a step function, unitary in the body and null in the fluid, then

the boundary condition would be exactly satisfied. In this work, for computation reasons,s(φbody)

is substituted with a smoothed function.

For the solid boundary a hybrid technique is applied (see figure4). This approach comes from

the idea in [10] but the present implementation follows the work by Colicchio [8]. Here the

major features are briefly outlined. The method combines the Eulerian Level-Set technique with

Lagrangian markers and is useful when the body geometry presents locally high curvatures or

singularities. In these circumstances, the classical advection of a Level-Set function would smooth

out the details of the body geometry and lead to greater numerical errors in the local enforcement of

the body-boundary condition. Rather than deforming locally or regriddingin time the mesh, a level-

setφbody (positive in fluid, negative in the body) is used to transfer the body-boundary condition at

the collocation points of the numerical fixed grid. In this way it is not necessary to deform locally,

or regrid, in time the mesh to follow the body motion. Within the hybrid strategy, the Level-Set

function is defined through the Lagrangian markers, they are body particles initially defined on a

uniform grid four times finer than the minimum mesh size in the computational grid andwithin a

band across the body surface six times larger than the maximum mesh size of thecomputational

grid. The related value ofφbody is estimated at the initial time and followed in time through the

markers moving with the body. Their values are used to interpolate theφbody value at the current

time instant. To prevent that interpolation errors could affect the accuracy of the Level-Set function

definition, only the values between−3∆x and3∆x are preserved. At larger distances from the body

surface, the threshold value of3∆x is assumed with the consistent sign. This approach results in a

more accurate solution for a given mesh size but also leads to an increasedcomputational time with

a factor about 5. Such additional cost can be reduced using informationfrom the local topology.

For example, within a time step∆t the particles can not move more thanα∆x (with α < 1), so

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2011)
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3D DOMAIN-DECOMPOSITION 9

the initialization of the Level-Set functionφbody is needed to be performed just in a subset of cells

crossed by the markers.

Figure 4. NS solver: fixed Cartesian grid and Level-Set technique for the free surface and the body (left),

and Lagrangian markers to improve the body description (right).

3.3. Hull loads estimations: extrapolation and interpolation algorithms

Within the adopted Eulerian NS solver, the pressure is defined up to a cell across the body surface

φbody = 0, but it is not directly available alongφbody = 0. It means that a proper numerical algorithm

must be identified to estimate the loads on the body. This is a common problem for methods

using embedded grids, while those applying boundary-fitted grids can directly integrate the pressure

available from the solution along the body surface. Colicchio [8] identified two possible methods to

estimate the loads: (1) the first approximates the surface integrals for the loads as a volume integral

introducing an approximated Dirac-Delta function and then estimates the loads on the body surface

as a parabolic extrapolation from the loads estimated at threeφbody iso-surfaces, at 0.5, 1 and 1.5

∆x from the body surface; (2) the second approach interpolates the pressure along the body surface

discretized in triangles and then integrates along each triangle. The trianglesare identified at any

needed time instant through the marching-cube scheme which searches the triangular intersection

of each grid cell with the body surface among fifteen possible scenarios per direction. The second

method was found more accurate and free from numerical oscillations occurring when using the first

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2011)
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10 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

approach in the case of body motions and induced by errors in extrapolating p not exactly normally

to the body surface. Therefore it is used here. The negative aspectis CPU-time requirements greater

of at least a factor four with respect to the first method. To limit the computational cost, the more

efficient version proposed by Colicchio [8] can be applied. In this case, the triangles are found

once for all at the first time instant and then moved in time rigidly with the body. Thismeans that

the triangles are not any longer the intersections of the computational cells withthe body surface,

but generally crossing the grid. To maintain high accuracy, in this case the triangles are found at

the initial time using the marching-cube algorithm on the grid adopted to define the Lagrangian

markers. Such grid is four times finer than the computational grid.

4. DOMAIN-DECOMPOSITION STRATEGY: WEAK AND STRONG COUPLING

We assume the 3D seakeeping problem of a vessel without forward speed and in regular deep-

water head-sea waves and investigate this by means of a Domain-Decomposition (DD) strategy.

We identify an inner domain in a sea area containing the forward portion of theship and the

rest of the fluid domain is considered as outer domain. The outer and inner domains are solved,

respectively, by the potential-flow solver and the Navier-Stokes method explained in the previous

two sections. Within the DD the information is exchanged between the two domains intime. When

the information travels in one direction only,i.e. from the outer to the inner domain, the coupling is

called weak or one directional. When the information goes back and forth between the two domains,

the coupling is named strong. By information we may mean local and/or global quantities. Colicchio

et al. [1] investigated a 2D strong-coupling algorithm where the information was given in terms of

local quantities: pressure, velocity and free surface elevation, exchanged between the two domains.

Here the information is still given in terms of such variables when going from the outer to the inner

domain while the information is provided in terms of global quantities when travelingfrom the

inner to the outer domain. This implies in a way a relaxation of the performed coupling and leads

to saving computational time. The inner solution provides the body loads estimatedby the Navier-

Stokes solver on a body portion always inside the inner domain. They are summed to the body loads

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2011)
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3D DOMAIN-DECOMPOSITION 11

estimated in the rest of the body surface by the potential-flow solver and the resulting loads are used

to estimate the body motions in time. Obviously the loads depend on the motions, as wellas on the

body velocity and acceleration and on the body wetted surface. The rigid-body motion equations are

given by the Newton’s second law and are written here along the body coordinate frame (X,Y, Z)

so that the ship generalized mass matrixM is constant in time. Formally we can write

Mξ̈ + Ω×Mξ̇ = F (ξ, ξ̇, ξ̈, η, t) (2)

with ξ ≡ (ξ1, .., ξ6) the vector of the six rigid body motions,Ω the angular velocity vector(ξ̇4, ξ̇5, ξ̇6)

and the upper dots indicating time (t) derivatives performed along the instantaneous body axes.

The cross product is meant to give a six-component vector whose firstthree components are given

by the cross-product ofΩ with the first three components ofMξ̇ and the remaining ones by the

cross-product ofΩ with the second three components ofMξ̇. The generalized forces (forces and

moments)F represent the external loads causing the body motions and must be expressed in the

(X,Y, Z) reference frame. In equation (2) the loads dependence on the ship motionsξ, velocities

and accelerations, on the free surface elevationη at the hull, and on the time, is emphasized. Here it

is assumed that the buoyancy balances the ship weight in the mean configuration so that they do not

appear inF which is given by

F = F inner + F outer

= F inner + F outer,0 + F outer,7 −Aouter,∞ξ̈ −
∫ t

0
houter(t− τ)ξ̇(τ)dτ .

(3)

In the top expression of the right-hand side, the first term represents thenonlinear loads given by the

NS solver in a body portion, sayS0, always inside the inner domain. The second term corresponds

to the linear loads provided by the linear potential-flow theory in the remaining body portion. It

can be decomposed in the sum of the last four terms in the bottom expression of the right-hand

side, i.e. the excitation (second term), scattering (third term) and radiation loads (fourth and fifth

terms). It means that the corresponding pressure terms have been integrated only on the aft portion

of the ship. HereAouter,∞ andhouter stand, respectively, for the infinite-frequency added-mass and

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2011)
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12 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

impulse-response function matrix associated with the hull portion examined in theouter domain.

In the application discussed here only the heave and pitch motions,ξ3 andξ5, are different than

zero. As we see, the potential-flow loads solution involves convolution integrals connected with the

free-surface memory effects (see [5] and [6]). It means that we have two degrees of coupling: 1) one

between the outer and inner domain and 2) the other between loads and motionsto be estimated in

time domain. It is convenient to choose the inner domain as a cylindrical domain with rectangular

cross section and faces parallel to the main axes of the field-solver Cartesian grid, as shown in

sketch5 giving also the main features of the coupling strategy. The hull portion in grey in the sketch

Figure 5. Strong coupling main features: loads partially from the inner and partially from the outer solver.

The input information from the outer to the inner solver are also indicated.

representsS0 where the inner solver estimates the loads, while the rest of the hull in black is where

the linear seakeeping solver evaluates the corresponding loads. The motion equations (2) must be

solved in time domain and this is done using a second-order Runge-Kutta scheme. Because the

loads in the right-hand side depend on the ship accelerationξ̈ instability problems could arise if this

load contribution is relevant compared to the corresponding inertial load. To avoid such problems

one should identify an explicit form of the added-mass contribution so that itcan be moved on the

left-hand side to make better conditioned the system matrix. Therefore as a rough estimate of this

load term,A∞ξ̈ is summed to the two sides of the equations system (2). HereA∞ is the infinite-

frequency added-mass matrix obtained by the linear potential-flow theory for the whole hull.

Figure6 shows the flow diagram in the general strong-coupling case. Within the DD the time

interval∆t is stated by stability limits and accuracy requirements of the NS solver. In the present

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2011)
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3D DOMAIN-DECOMPOSITION 13

Figure 6. Strong coupling: flow diagram. RK=Runge Kutta. PC=Predictor Corrector.t = t0 is the time of

DD starting andt = tf is the end of the simulation.

implementation the problem starts with the linear potential seakeeping solver up to timet = t0.

In this initial interval, a DD strategy with weak-coupling is applied: the inner solver receives the

information from the outer solver but it does not provide the loads back. This is useful to correct the

initial linear potential-flow solution in time and to achieve a more robust solution in theinner domain

when the strong coupling is started. More in detail, the outer domain provides the initial velocity

and pressure fields and the initial free surface elevation to the inner domain. Moreover, the boundary

conditions are made available along the vertical and bottom boundaries at thetime instants required

within the Predictor-Corrector integration scheme. It has been found thatatt = t0 = 10∆t the strong

coupling can switched on without any stability issue. From this time instant on, when integrating

from t to t+∆t, first the outer solver estimates the body motions using a second-order Runge-Kutta

scheme. The excitation and scattering loads are estimated at the exact time instant required, while

the infinite-frequency added-mass contribution and the convolution integrals are estimated at timet

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2011)
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14 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

and kept constant during the motion time-step integration. FinallyF inner is estimated at the exact

time instant required using a local linear extrapolation based on the two most recent time instants

when the NS loads have been calculated. The motions calculated att+∆t are provided to the

inner solver as constant to perform the time integration fromt to t+∆t. The boundary conditions

in terms of velocity, pressure and free-surface elevation, are provided instead at the time instants

used within the Predictor-Corrector scheme. Then at the new time instant the field solver is able

to integrate the pressure along the body portionS0. This providesF inner(t+∆t) which will be

used to estimate theF inner at the time instants required by the outer solver within the second-order

Runge-Kutta scheme for the body-motion equations. This procedure continues until the final time

tf of the simulation. If∆t is very small compared with the time scale of the body motions, say

T , to limit the computational timeF inner can be estimated everyγ∆t with γ > 1 and local linear

extrapolation is used to guess the inner loads when required by the outer solver. If T/γ∆t > 150,

the error committed in doing so is relatively negligible to the numerical error connected with the

used solution method. In the present applications, at leastT/γ∆t = 180 was used.

The numerical algorithm here explained can be easily extended to more general conditions, as

long as we identify adequately the inner and outer domains.

5. INNER-DOMAIN BOUNDARY CONDITIONS: ASSESSMENT

The weak-coupling strategy is used here to assess the proper boundary conditions that must be

provided to the NS-LS hybrid solver.

5.1. Vertical inflow boundary portions: overlapping

At the vertical boundary portions, which are upstream relative to the incident-wave propagation,

inflow conditions are applied for all variables. More in detail, the potential-flow pressure and free

surface elevation are sharply enforced, respectively, for a layer of αp andαf cells, to the NS-LS

hybrid solver. Differently, the velocity varies linearly from the potential flow to the NS solution

within a layer ofαu cells. This means that an overlapping is used for the velocity. The effect of
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3D DOMAIN-DECOMPOSITION 15

the overlapping extension is investigated here using the case of a pure wave propagation problem.

The (linear) Airy wave solution with propagation direction inclined with respect to the Cartesian

grid main axes is enforced at the two upstream sides of the Navier-Stokes domain and the water

evolution is studied. A wave propagation not parallel to the grid main axes represents by itself a

good test case to check the method capability to preserve the wave properties. The two upstream

vertical boundaries, relative to the wave propagation, present a superposition region, where the

velocity values are between the linear potential-flow and the NS solution. The boundary portion on

the bottom is a simple contact surface, where the linear potential-flow solution issharply enforced

for the velocity (as well as for the pressure). The remaining two vertical boundaries in this example

are characterized by outflow boundary conditions,i.e. the velocity is obtained by extrapolation from

the NS solution (as well as the pressure and the free surface elevation).Figure7 gives the solution

after two periods in terms of the contour levels of the longitudinal velocity and pressure at a plane

with constantx and in terms of the free surface configuration. In this case the wave steepness is

kA = 0.12 and the wave orientation angle relative to thex axis isθ = 60o. The results show that an

overlapping extension of at least six cells is needed to avoid irregular behavior of the velocity which

originates at the overlapping and then propagates inside the computational domain. This choice

ensures both the bounding of the pressure oscillations that can be induced by the linear-nonlinear

inconsistencies and an adequate definition of the interface to calculate the distance function in the

narrow band at the interface boundary (see [7]). The inconsistency between the inflow and internal

pressure, visible for any value of the overlapping width, does not affect by itself the numerical

solution inside the domain,i.e. it remains localized near the boundary. Using these results,αu = 6

(cells) is applied in the domain-decomposition strategy for the wave-body interaction problem to

interpolate from the potential-flow to the NS solution when inflow condition is enforced for the

velocity at the vertical sides of the boundary. Similar studies have shown that αf = 6 andαp = 2 can

be used for the free-surface elevation and for the pressure, respectively. The chosen strategy proved

to be rather robust also for steeper incident waves reaching freely floating bodies. In particular, the

differences due to the inconsistency between linear and nonlinear solutionremain localized near
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Figure 7. Pure wave propagation problem: effect of overlapping extensionαu∆x. From left to right and

from top to bottom:αu = 4, 5, 6 and 7. Wave steepnesskA = 0.12 and wave orientation angle relative to

thex axisθ = 60o. Solution after two periods. The small ripples visible on the free-surface are not connected

with the numerical solution but due to graphic problems.

the overlapping and do not destroy the flow features inside the Navier-Stokes domain. Naturally

such inconsistency becomes less important as the wave steepness reduces. This is shown in figure

8 where an Airy wave with steepnesskA = 0.03 enters the NS domain with an angleθ = 60o. In

this case,αu = 6 is used for the overlapping extension and the behavior of the solution nearthis

exchange-information region is more regular than for the steeper wave condition and similar to the

solution provided by the field solver.

5.2. Downstream boundary portion

At the vertical downstream boundary, inflow conditions are provided for the pressure and the wave

elevation, similarly as done at the upstream and side boundaries. For the velocity, three different

conditions are checked: outflow, which means that the solution is extrapolated constantly from the
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Figure 8. Left: Comparison between theoretical (meshed in black) and numerical free surface (blue shaded)

after two wave periods. Pressure contours are plotted on theside of the domain. Right: Comparison between

theoretical (black) and numerical (green) contour plots ofx-component of the velocity. Wave steepness

kA = 0.03 and wave orientation angle relative to thex axisθ = 60o. Solution after two periods.αu = 6.

NS solution; inflow, which means that the solution is enforced to be a linear interpolation between

the potential-flow and the NS solution as along the other vertical boundaries;and mixed. The third

condition is something between the inflow and outflow conditions (see sketch in figure9): at the

body surface,i.e. at the iso-surfaceφbody = 0, and for a distance less than 3∆x from it, the outflow

condition is applied. For distances greater than three cells the inflow conditionis applied. The

Figure 9. Downstream boundary: mixed condition between inflow and outflow for the velocity.
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inflow and mixed conditions are highly more reliable and accurate than the outflow condition. The

mixed condition proved to have some advantages with respect to the pure inflow in the case of a

body intersecting the inner-domain boundary. The pure potential-flow solution implies a free-slip

condition at the body surface while the NS-LS hybrid solver enforces a no-slip condition at the

body. A pure inflow condition leads to an inconsistency near the body surface between the inner

and outer solutions which could be responsible for fictitious vorticity formationand shedding from

the body. The sensitivity of the NS solution to the choice of the downstream boundary condition is

investigated next using the problem of an oscillating ambient flow past a circular cylinder.

2D circular cylinder in infinite fluid A simple example to discuss the consequences of the three

downstream boundary conditions is sketched in figure10: a periodic ambient velocityU cos(2πt/T )

alongx past a 2D fixed rigid circular cylinder. The period of oscillationT and the velocity amplitude

are chosen so that the Reynolds andKC numbers are small and correspond to a laminar unseparated

flow. In particularRn = 2UR/ν ≃ 104 andKC = UT/D = 0.8. The problem is in the (x, y)-plane

so that there are no gravity effects. The potential flow solution for the linear problem,i.e. with the

dynamic pressurep = −ρ∂φ/∂t, is

u = Uℜ[1− (R/z)2] cos(2πt/T )

v = −Uℑ[1− (R/z)2] cos(2πt/T )

p = ρUℜ[z +R2/z] 2π sin(2πt/T )/T

(4)

with z = x+ iy the complex coordinate with origin in the cylinder center. This solution is reported

in figure11 in terms of velocity vectors, and contour levels of the pressure and vorticity(ω) fields

at the two time instants with zero and maximum ambient velocity, respectively,t = 19.75T and

t = 20T . Naturally, in this case,ω is null in the fluid. This solution has been provided to the NS

solver to study the problem inx/R ∈ [−2.5, 2.5] andy/R ∈ [−3, 0]. The flow symmetry is enforced

at the cylinder center line while at the downstream boundary the inflow is enforced for the velocity.

The results are given in the top-left plots of figures12 and 13, respectively, att = 19.75T and

t = 20T . As we see, the no-slip condition causes a flow field with not exactly zero velocity at the
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Figure 10. Periodic ambient velocity past a 2D fixed rigid circular cylinder. Sketch of the problem and

definition of the NS domains used to solve the problem by enforcing the linear potential-flow solution as

input. The thick box represents the short domain, the thin box enclosing it represents the wide domain, for

the NS simulations.
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Figure 11. Periodic ambient velocity past a 2D fixed rigid circular cylinder: linear potential-flow solution.

Velocity vectors, and contour levels of the pressure and vorticity (ω) fields. From left to right:t = 19.75T

and20T .

first time instant and not exactly zero pressure at the second time instant. A vorticity is concentrated

near the body and will remain there as the flow remains attached in these conditions. The remaining
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Figure 12. Periodic ambient velocity past a 2D fixed rigid circular cylinder. Downstream boundary:

sensitivity to the velocity boundary condition. Top-left:NS solution inx/R ∈ [−2.5, 2.5] andy/R ∈ [−3, 0]

using inflow condition for the velocity in the downstream boundary. Remaining plots: NS solution in

x/R ∈ [−2.5, 0] andy/R ∈ [−3, 0] using outflow (top-right), inflow (bottom-left) and mixed (bottom-right)

boundary conditions for the velocity in the downstream boundary. Timet = 19.5T .

plots of the two figures refer to the outflow, inflow and mixed conditions when the NS solver is

applied in a shorter domain withx/R ∈ [−2.5, 0] andy/R ∈ [−3, 0] so that the body crosses the

downstream boundary. The worst results in terms of velocity and vorticity fields are obtain at the

time instant with zero potential-flow velocity, because the flow features are very sensitive to the

numerical choices and errors. The worst results are clearly obtained enforcing the outflow condition

to the velocity. At this stage, part of the vorticity formed at the body surfaceentered the fluid and

the flow velocity is rather different than the NS solution in the wider domain. Theflow features
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Figure 13. Periodic ambient velocity past a 2D fixed rigid circular cylinder. Downstream boundary:

sensitivity to the velocity boundary condition. Top-left:NS solution inx/R ∈ [−2.5, 2.5] andy/R ∈ [−3, 0]

using inflow condition for the velocity in the downstream boundary. Remaining plots: NS solution in

x/R ∈ [−2.5, 0] andy/R ∈ [−3, 0] using outflow (top-right), inflow (bottom-left) and mixed (bottom-right)

boundary conditions for the velocity in the downstream boundary. Timet = 20T .

even far from the body show some unphysical behavior. The inflow andmixed conditions are more

physical and similar, but the vorticity level and its detachment from the body surface are slightly

more pronounced using the inflow condition. At the second time instant shown, the pressure results

are clearly more sensitive to the numerical errors, because the potential-flow solution would predict

uniform (and zero) pressure. The results by the inflow and mixed conditions are still competitive but

also at this time instant the level of vorticity in the fluid is higher by enforcing the inflow condition.
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Moreover near the body surface, towards the downstream boundary, the velocity vectors are more

different than enforcing the mixed condition with respect to the NS solution in the wider domain.

The mixed condition, being the most robust among the three examined conditions, has been

chosen to investigate more general conditions.

6. APPLICATION TO A PATROL SHIP

Here the DD strategy is applied to the problem of a patrol ship without forward speed and free to

oscillate in heave and pitch under the action of incident deep-water regularhead-sea waves. The

fluid domain is split as shown in the left plot of figure5, which means that the inner solver is in

x/L ∈ [0.176, 0.8], y/L ∈ [−0.252, 0] andz/L ∈ [−0.317, 0.16], with L the ship length. The NS-

LS hybrid solver provides the loads onS0 defined as the ship portion withx ' 0.22 in the mean

configuration because it remains always inside the inner domain in the examined conditions. The

weak coupling is used next to assess the validity of the numerical choices made for the inner solver,

then the strong coupling is applied.

6.1. Weak coupling

The basic grid discretization used is uniform with∆x = 0.006L. Left plot of figure14 shows the

effect of using the extrapolation and interpolation techniques for the estimation of the body loads.

The discretized body surface obtained using the marching-cube scheme within the interpolation

strategy is shown in the right of the same figure. The case refers to a forced-heave problem with

period corresponding to a wavelengthλ ≃ 1.25L and with amplitude|ξ3| = 0.1D, with D the ship

draft. It is used to check the reliability of the two load-calculation strategies in case of a moving

body. It is evident the more correct behavior of the vertical force acting onS0 when the interpolation

technique is adopted. The extrapolation leads instead to unphysical oscillations even for this simple

case with motion parallel to one of the main axes of the computational grid. Such oscillations
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represent in general a problem when a strong coupling is considered and the loads from the NS-

LS hybrid inner domain are introduced in the motion equations, and even more when dealing with

wave-body interactions involving elastic behavior of the structure.

Figure 14. Weak coupling. Left: forced-heave problem. Vertical force onS0 as estimated by extrapolation

and interpolation with marching-cube algorithm. Oscillation period corresponding to a wavelengthλ ≃

1.25L and motion amplitude|ξ3|/D = 0.1. ∆x/L = 0.006. Right: triangular discretization of the body

surface obtained using the marching-cube scheme.

Figure15 examines the effect of the downstream boundary condition for the velocityin terms

of the vertical force and pitch moment onS0 in the case of the diffraction problem with incident

waves longλ ≃ 1.25L and steepkA = 0.05. This case has been preferred to a radiation problem

because in the latter case the body motions could make more difficult the comparison among the

different boundary conditions and because the loads results in the diffraction problem will be more

sensitive to numerical inconsistencies connected with the downstream boundary condition. The

case is well captured by the linear potential-flow theory due to the small incident wave steepness.

Therefore this solution is taken as reference to assess the correctnessand accuracy of the numerical

solution. From the comparisons, the best results are provided by the mixed condition for the velocity

enforced at the downstream boundary. The outflow condition gives theworst solution with large

underestimate of the loads amplitude, while the inflow condition introduces a phase error and the

related solution appears slightly less smooth than the other results. This is probably due to the

formation of fictitious vortical structures at the body surface convected and diffused in time in
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the liquid. The mixed condition is therefore applied to investigate also the radiationproblems in

0 0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1
F3/ρgLBA

t/T 0 0.2 0.4 0.6 0.8 1
-0.04

-0.02

0

0.02

0.04
F5/ρgL2BA

t/T

Figure 15. Weak coupling: diffraction problem. Vertical force (left) and pitch moment (right) onS0. Linear

potential solution (solid line)versusthe numerical solution enforcing the outflow condition (dashed-dotted

line), the inflow condition (dashed-dot-dotted line) and the mixed condition (dashed line) for the velocity

at the downstream boundary. Incident wavelengthλ ≃ 1.25L and steepnesskA = 0.05. T is the incident

wave period andL andB are the ship length and beam, respectively,ρ is the water density andg the gravity

acceleration.∆x/L = 0.006.

linear conditions and compared against the linear potential-flow solution. Theresults for the forced

heave and pitch are given in figure16 and17, respectively. The forced-heave results show the best

agreement, also with respect to the diffraction problem, while the forced-pitch results correspond

to the largest discrepancies. This is expected because of the motion not aligned to the main grid

axes. Moreover, one must keep in mind that the examined cases are within thelinear theory, which

means that the motion amplitudes involved are comparable or similar to the grid size, and the loads

are estimated only on the portionS0 of the ship. As a result, the loads are very sensitive to the

numerical choices and errors. The forced-pitch motion, representing the most challenging motion

for the solver, has been used to assess the method accuracy. The order of accuracy is used as average

measure of the numerical error. Letf(t) be a local or global physical quantity that we want to

monitor, and let estimate it with the three different discretizations shown in figure 18, i.e using

α∆x, with α = 1, 1/
√
2 and 1/2, respectively. For each discretization we can estimate the time
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Figure 16. Weak coupling: forced-heave problem. Vertical force (left) and pitch moment (right) onS0.

Linear potential solution (solid line)versusthe numerical solution enforcing the mixed condition for the

velocity at the downstream boundary (dashed line). The oscillation periodT corresponds to a wavelength

λ ≃ 1.25L and the motion amplitude is|ξ3|/D = 0.1. L, D andB are the ship length, draft and beam,

respectively,ρ is the water density andg the gravity acceleration.∆x/L = 0.006.
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Figure 17. Weak coupling: forced-pitch problem. Vertical force (left) and pitch moment (right) onS0. Linear

potential solution (solid line)versusthe numerical solution enforcing the mixed condition for the velocity

at the downstream boundary (dashed line). The oscillation periodT corresponds to a wavelengthλ ≃ 1.25L

and the motion amplitude is|ξ5|L/2D = 0.37. L, D andB are the ship length, draft and beam, respectively,

ρ is the water density andg the gravity acceleration.∆x/L = 0.006.
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integral Iα∆x =
∫ t1
t0

fα∆x(t)dt. Then a measure of the numerical accuracy averaged in the time

interval [t0, t1] can be obtained as

OA =
log[(I∆x − I∆x/2)/(I∆x/

√
2
− I∆x/2)]

log(
√
2)

. (5)

for the used discretizations. In the specific forced-pitch case, assumingf(t) equal to the vertical

force on the ship portionS0, we getOA = 2.45 and taking it as the pitch moment on the same

surface, we haveOA = 2.52. These values are consistent with the second-order accuracy of the

present scheme and indicate a convergence rate slightly faster than two.

Figure 18. Weak coupling. Convergence study for the forced pitch problem. Three discretizations with

uniform mesh size. The oscillation periodT corresponds to a wavelengthλ ≃ 1.25L and the motion

amplitude is|ξ5|L/2D = 0.37. L andD are the ship length and draft, respectively.

6.2. Strong coupling

The radiation and diffraction problems investigated in the weak-coupling case correspond to the

seakeeping solution provided by linear potential-flow theory in the case of incident waves long

λ ≃ 1.25L and with small steepnesskA = 0.05. Figure 19 shows the comparison between the

heave and pitch motions given by this reference solution and the DD strategyusing the strong

coupling approach. The heave is positive upwards and the pitch is positive with bow downwards.

The DD algorithm provides stable results which are in good agreement with thelinear solution.

This confirms the correctness of the numerical choices of building up the compound solver. Next
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Figure 19. Seakeeping problem: comparison between the linear potential-flow solution (solid line) and

the DD strong-coupling results (dashed line) in terms of heave and pitch motions. Incident wavelength

λ ≃ 1.25L and steepnesskA = 0.05. ∆x/L = 0.006 with L the ship length.T is the incident-wave period.

figures examine the case of incident waves with the same wavelength andkA ≃ 0.22. The examined

λ is in the vertical-motion resonance region and the wave-body interaction causes in the physical

case small impact events at the bow bottom and sides, and water shipping, asdocumented by the

experimental observations in [11]. These model tests are used here for validating the numerical

solver globally and locally. The basic grid discretization with∆x/L = 0.006 is used to perform the

simulations. The examined patrol ship has a very thin bulwark protecting partially the deck and a

vertical superstructure at a short distance from the end of the bulwark (see figure20). Using this

discretization does not allow to reproduce the deck protection as a continuous wall because it is

thinner than the grid size, therefore the bulwark was made as thick as∆x. This represents an error

source in terms of amount of shipped water, as discussed later.

Global analysis: flow evolution The ship motion and water evolution from the model tests and

as predicted by the DD are given in figure21. Qualitatively the results agree globally well at the

different stages of the wave-body interaction. Also the water-on-deckoccurrence is captured, but the

used discretization does not allow to estimate correctly the amount of shipped water. The numerical

results underestimate clearly this quantity.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2011)

Prepared usingnmeauth.cls DOI: 10.1002/nme



28 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

Figure 20. Discretization of the ship portion inside the inner domain using a grid size∆x/L = 0.006 without

(left) and with thickening the bulwark (center). The physical ship model is given in the right.

Global analysis: ship motions The comparison in terms of the heave and pitch motion is provided

in figure22. For the experiments two curves are given, they refer to the same test runwith one curve

at a temporal distance of about 15 incident-wave periods from the other.The differences between the

two experimental curves give a rough measure of the involved experimental error and are connected

with seiching occurrence in the towing tank. This refers to the development of a shallow-water

standing wave leading to an envelope of the propagating waves. As expected such phenomenon

affects mostly the heave motion which is directly connected with the incident-waveamplitude. The

error in the pitch motion is instead limited becauseξ5 is affected by the incident-wave steepness,

i.e. by the wave slope which is less sensitive to the seiching occurrence. The comparison between

the measurements performed with an optical system (Krypton) and the numerical results for the

heave shows differences within the experimental error while the disagreement with the pitch appears

quite relevant near the motion peak. Positive pitch means bow downwards which corresponds to

the phase of water-on-deck occurrence for this case. A possible explanation of the discrepancies

could be given by the fact that the solver underestimates the amount of shipped water and therefore

underpredicts the pitch-motion increase under the weight of the liquid onto thedeck. Another

possible cause of the differences could be connected with nonlinear wave-body interaction effects in

the ship loads. The fully nonlinear inner solver estimatesF inner only in a ship portion withx ' 0.22
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Figure 21. Seakeeping problem: experimental (left in each plot) and DD results (right in each plot) in terms

of ship motion and water evolution. Time increases from leftto right and from top to bottom and the graph

in the right of each plot gives the numerical position of the forward bow at each plotted time instant. Incident

wavelengthλ ≃ 1.25L and steepnesskA ≃ 0.22. ∆x/L = 0.006 with L the ship length.T is the incident-

wave period.

but nonlinear effects could be relevant in a larger portion of the vessel.To check these aspects, the

simplified 3D DD by Greco and Lugni [12] is used. This couples a weakly-nonlinear seakeeping

solver with a shallow-water method for the evolution of the shipped water. Theresults provided by

this solver appear closer to the experiments in terms of pitch peak. When applying this simplified DD

strategy setting to zero the loads induced by the shipped water, the pitch peakis not much affected.

So, this suggests that nonlinear effects along the hull can be the major reason for the discrepancies.

The present DD has then been applied including the second-order effects in the incident waves and

in the Froude-Kriloff and hydrostatic loads contributions provided by the outer solver in the aft

portion of the vessel. One must note that this is inconsistent because we have only accounted for
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Figure 22. Seakeeping problem: heave and pitch motions as measured (two solid curves in each plot) and

predicted by the present DD (dashed line), by the simplified DD with shallow-water solver on the deck

(dashed-dotted line), by the simplified DD without water-on-deck loads (triangles), and by the present DD

with second-order effects associated with the incident waves, and with the Froude-Kriloff and hydrostatic

loads on the outer ship portion (circles). Incident wavelengthλ ≃ 1.25L and steepnesskA ≃ 0.22. ∆x/L =

0.006 with L the ship length.T is the incident-wave period.

some second-order effects. For instance we did not consider the contributions from the radiation and

scattering phenomena. This approximated version of the 3D weakly-nonlinear seakeeping solver

coupled with the NS-LS hybrid method is just used to understand what is physically missing. In

terms of pitch peak the results are closer to the experiments than as provided by the original DD;

while the trough prediction is slightly worsened. This highlights a sensitivity to thenonlinear effects

in the hull loads and suggests that they could be an important reason for thediscrepancies. For

this incident wavelength, the model tests show that nonlinear effects are important also for smaller

steepnesses (see [12]). The results for the smallest value ofkA studied experimentally are reported

in figure 23 in terms of heave and pitch motions and show limited seiching effects. In this case

there is no water on deck and the heave motion is dominated by linear potential-flow phenomena,

except for near the peak. Present DD is closer to the model tests in this case and coincides with the

solution obtained including second-order effects connected with the incident waves, and with the

Froude-Kriloff and hydrostatic loads. The approximated DD by Greco and Lugni [12] looses a bit

near the heave through. For the pitch, the numerical curves are consistent and underestimate slightly
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Figure 23. Seakeeping problem: heave and pitch motions as measured (two solid curves in each plot) and

predicted by the present DD (dashed line), by the simplified DD with shallow-water solver on the deck

(dashed-dotted line), by the present DD with second-order effects associated with the incident waves, and

with the Froude-Kriloff and hydrostatic loads on the outer ship portion (circles) and by the linear potential-

flow theory (triangles). Incident wavelengthλ ≃ 1.25L and steepnesskA ≃ 0.091. ∆x/L = 0.006 with L

the ship length.T is the incident-wave period.

the measurements. We can not rule out the possibility that some physical effects are missing in the

used flow models, but the discrepancies could also be due to an effect ofthe adopted experimental

set up. This explanation would be consistent with the fact that also at the largestkA examined in

figure22 the model tests showed larger pitch motion amplitudes than all numerical results.

Local analysis: pressure on the hull Since the numerical solution with∆x/L = 0.006 does not

predict the correct amount of shipped water, the evolution of the flow ontothe deck and the induced

pressure on the vessel are not analyzed here and left for a future work once the inner solver has been

made more efficient and then using a sufficiently fine discretization. In the following the pressures

measured in the bow region, on the bottom and at the side of the ship, are examined.

Despite the relatively course grid used for the simulation, the present DD (coupling the linear

potential-flow solver with the nonlinear NS-LS method) is able to capture the main features of the

pressure time evolutions at the two locations examined in figure24. One must note however some

oscillatory behavior of the numerical pressure suggesting the need for amore detailed description
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Figure 24. Seakeeping problem: pressure at the bottom (station 18) and at the side (station 19) of the hull.

The measurements (solid line) are compared with the presentDD (dashed line,∆t/T ≃ 0.0005) and with

the simplified DD with shallow-water solver on the deck (dash-dotted line). The dotted line for the bottom

pressure represents the present DD with∆t five times smaller (i.e.∆t/T ≃ 0.0001) obtained restarting the

numerical simulation from the solution with∆t/T ≃ 0.0005. Incident wavelengthλ ≃ 1.25L and steepness

kA ≃ 0.22. ∆x/L = 0.006 with L the ship length.T is the incident-wave period.

of the local flow. The impact occurring at the ship bottom is not handled by the simulation with

∆t/T ≃ 0.0005 due to the short duration of the phenomenon which shows also a stochastic behavior

from the measurements (see [11]). A decrease of a factor five of the time step is suitable to model

the impact and provides a pressure peak comparable with the second experimental peak shown in

the figure. The simplified DD (coupling a shallow-water approximation on the deck with a weakly-

nonlinear potential flow seakeeping solver) includes a local Wagner-type solution and is able to

detect the impact occurrence but overpredicts the pressure peak forthe shown events. Present

pressure on the side of the hull is more consistent with the measurements than the results from

the simplified DD. In particular it shows a fast pressure rise, right after the pressure sensor becomes

wet, due to the water-hull impact. This impact phenomenon is affected by the flare in this portion of

the vessel and is completely disregarded by the simplified DD showing mainly a hydrostatic increase

of the pressure. The examined results are promising however, for a comprehensive assessment of

the method, numerical convergence should be examined also for this ship seakeeping problem. Due
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to the high computational cost required, this is left to future work after a proper improvement of the

solver efficiency.

7. CONCLUSIONS AND FUTURE WORK

A 3D Domain-Decomposition (DD) strategy has been developed. This couples a linear potential

seakeeping solver, in an outer domain, with a nonlinear Navier-Stokes solver based on a Projection

method that combines a Finite-Difference scheme with a Level-Set technique for the free-surface

evolution and with a hybrid method made of the Eulerian Level-Set approach and Lagrangian

markers for the body motion, in an inner domain. The main features of the coupled solvers have been

outlined, special development of the inner solver connected with the DD strategy was described.

Weak and strong coupling approaches have been examined and the numerical choices in terms

of inner domain boundary conditions were addressed. Verification studies of the different solver

features have been presented. The application to a patrol ship was usedfor further verification of

the numerical choices by examining radiation and diffraction problems and applying the weak-

coupling approach. Then the strong coupling was applied to investigate the seakeeping problem

of the vessel interacting with regular head-sea waves. The solver was successfully verified by

comparison against the fully linear potential-flow solution in the case of incident waves with small

steepness and validated against model tests in the case of steeper waves.The next steps concern

the improvement of the code efficiency. Figure25 gives the time profiling of the solver when

using the marching-cube scheme for the loads time integration. As we can see the major cost is

connected with the solution of the fluid-momentum equations, then we have the marching-cube

algorithm cost that can be reduced using the approach by Colicchio in [8], For example in the

case of mesh with∆x/L = 0.006, the CPU time required for the loads calculation can be reduced

of a factor about 1000. Finally the costs of the body motion and the free-surface evolution which

are comparable. A substantial improvement of the numerical efficiency, can be obtained moving

from an incompressible to a pseudo-compressible solver. In this way the solution of the Poisson

equation is avoided and the solver can easily be parallelized. This approach is preferred to the use
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Figure 25. Time profiling: relative cost of the main parts of the solver.

of a multigrid approach to solve the Poisson equation, because the latter is moreclosely related to

the specific geometry of the problem and so less elastic. At present the pseudo-compressible solver

is under development with promising results in terms of accuracy and efficiency for internal-flow

problems.
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