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SUMMARY

A 3D Domain-Decomposition (DD) strategy has been develdpelkal with violent wave-ship interactions
involving water on deck and slamming occurrence. It couplisear potential-flow seakeeping solver with
a Navier-Stokes (NS) method. The latter is applied in anrimteenain where slamming, water on deck,
free-surface fragmentation may occur, involving imporféow nonlinearities. The field solver combines an
approximated Projection method with a Level-Set technfquthe free-surface evolution. A hybrid strategy,
combining the Eulerian Level-Set concept to Lagrangiankerar, is used to enforce more accurately the
body-boundary condition in case of high local curvatureaiMfeatures of the weak and strong coupling
algorithms are described with special focus on the boundangitions for the inner solver. Two ways
of estimating the nonlinear loads by the NS method are iyegstd, based on an extrapolation technique
and an interpolation marching cube algorithm, respegtivehe DD is applied for the case of a freely-
floating patrol ship in head-sea regular waves and compa@y@idst water-on-deck experiments in terms of
flow evolution, body motions, pressure on the hull. Improeetof the solver efficiency and accuracy are

suggested. Copyrigt®) 2011 John Wiley & Sons, Ltd.
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2 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

1. INTRODUCTION

Violent wave-vessel interactions may cause nonlinear phenomenantefevahe local and/or
global behavior of the structure, depending on the vehicle size relatitleetavaves and on the
working conditions. In this context, water shipping and slamming represeimhgortant issue at
design stage. They are also relevant in fixing the proper operational liftite gessels. Nowadays
model tests represent still the most reliable tool for this type of investigatianthé costs remain
high. As a result, carrying on systematic analyses is almost prohibitive agénieral one must
limit the analysis to the examination of the most critical conditions only. On the othed the
computer power is continuously increasing and the Computational Fluid Dysd&@i#®) methods
are growing quickly. In the seakeeping field they need still an importargsassent work in
terms of verification and validation and they are still too time consuming to prowvidefeasible
time, information about the behavior at sea of a vessel with generally corgplexetry. The
numerical research effort is therefore focused on filling the gap in tefnediability and developing
efficient and robust solvers. The authors have proposed in tha [R@iain-Decomposition (DD)
approach (seel] and [2]) as a possible compromise between capability in handling the most
relevant phenomena, accuracy in estimating the physical quantities ofsini@ne efficiency. The
method was implemented as two-dimensional and showed promising results winpared to
reference solutions and experiments. The idea is to split the problem intdosohins, say two,
and use in each of them the most efficient solver, as long as suitable emctac In particular,
the implemented DD used a Navier-Stokes solver able to handle large deforspdiieaking and
fragmentation of the free surface, air entrapment and impact events, irmandomain where
violent water-vessel interactions could occur. The method combines a-Biffikeence scheme
with a Level-Set technique to capture the free-surface evolution. imainéng outer domain, where
the water behaves as inviscid and irrotational, a nonlinear potential-floerdmdged on a Boundary
Element Method (BEM) was adopted.

Here we consider a step forward of that activity. The effort is to incl@Beeffects and to
overcome the implementation issues connected with them. The application is thaldi2siag
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3D DOMAIN-DECOMPOSITION 3

problem of a vessel without forward speed and in regular deep-Weael sea waves. This is relevant
for Floating Production Storage and Offloading (FPSO) ships whichsa@ as oil platforms and are
typically weather vanying which means that head-sea waves represantti critical conditions.
The numerical solver is a DD strategy splitting the problem into an inner domagmeatiolent
wave-body interactions can occur and an outer domain where the fifaeessuemains smooth on
a large scale and linear (or weakly nonlinear) potential flow theory caappbed to capture the
relevant flow features. In our case the inner domain can be identifiedeia jpcstion containing the
forward portion of the ship because there the body motions will be the taagéesslamming and
water shipping phenomena are likely to occur. The rest of the sea donmalire camnsidered as outer
domain,i.e. with dominant potential flow features. The inner domain is solved by a N8takes
method developed as an extension of that applied in 2D flow conditions, thiedmmain is handled
by a potential-flow solver. In the present implementation in general nonkfiesits are neglected in
the outer domain. This has the advantage of using the frequency-dorpagaalp avoiding the need
for solving in time the outer-domain problem, with great saving of computatiasil @ith this, all
the features of the solver can be assessed step-by-step. Later mysicated modellings of the
flow can be included. The solution algorithm is described in the next sedtidesms of the two
adopted solvers and of the DD strategy coupling them, then the seakeeglienp of a patrol ship
at rest in regular head-sea waves is examined and a validation is pedfosnemparing against

the corresponding model tests. Eventually, the main conclusions and $tgypeare outlined.

2. COUPLED METHODS: OUTER SOLVER

Here the water is assumed as incompressible, inviscid and in irrotational mditi@nd nonlinear
effects are neglected. So the global seakeeping problem for a mahicéevat rest and in head-sea
deep-water waves is solved within the linear potential flow theory. Theiémery-domain solver
documented inJ] is used for this purpose. Because the basic theory and the solutiorigeehn
are very well established and can be found in text books, é]ghgre only the main features
are recalled. The method solves the problem by using the variable-8epastategy for the
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4 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

velocity potential,i.e. (P, t) = R{[3;_, &vi(P) + A(po(P) + ¢7(P))le’*}, with ¢ the time,

P the position,p; the velocity potential associated with unitary velodjfyof thei-th rigid degree

of freedom¢;, andy, and p; are, respectively, the spatial incident-wave and scattering velocity
potential per unitary wave amplitude. Furthdrandw = 27 /T are the incident-wave amplitude
and frequency. Each radiation problem and the diffraction problerreecterized by the Laplace
equation, the combined free-surface condition, the radiation conditiohpttmm condition, and the
corresponding body impermeability condition. They are solved using thenGreecond identity
and the Green function solving exactly the free-surface, bottom amti@dconditions. This means
that only the mean-wetted body surface must be discretized and the intggedentation provides
the velocity potential everywhere in the fluid domain. From this, the velocitypedsure field
and the free surface elevation caused by the wave-body interactiangieen frequencw can be
estimated. The integrated loads on the vessel are obtained as addedianggis,g and restoring
terms from the radiation problem and as excitation loads from the diffractmvigm. Actually, the
radiation and diffraction problems must be solved for several valuesspiinning from very small

to very large values because the equation of motions in the coupled problenbensolved in time
domain. As discussed in sectidnusing the Cumminsg] and Ogilvie’s 6] approach, the radiation
loads are characterized by convolution integrals involving the impulse mesgdanctions and the
time derivative of the rigid motions. This means that added mass (or dampiefic@nts must be
available strictly speaking fav € (0, c0). The numerical problems associated with occurrence of

irregular frequencies are overcome asih [

3. COUPLED METHODS: INNER SOLVER

Here the water is assumed as incompressible, viscous and in laminar condh®tsmperature
is assumed uniform and constant, and the surface-tension and ais effethe liquid evolution
are neglected. It means that the governing equations are the consenfdtiad mass and of fluid
momentum for the unknowns velocity and pressurg. They are solved in time, for given initial
and boundary conditions, by a Navier-Stokes solver based on amamated Projection method. A
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3D DOMAIN-DECOMPOSITION 5

Finite-Difference scheme is adopted on a Earth-fixed Cartesian gridoanioiiced with a Predictor-
Corrector scheme for the time integration. The grid is staggered with the seai@oles defined at
the cell center and the velocity components on the grid faces. The methadirsicto the second
order in time and space and involves the solution of a pressure Poissatioadgor each sub-set of
the time-integration algorithm. The details of the solver can be found]ifThe use of an Eulerian
approach makes it necessary an additional technique to follow the evodidtibe free surface and

enforce the boundary condition along moving bodies.

3.1. Free surface: Level-Set technique and solution extension in air

For the free surface, a Level-Set (LS) technique is adopted whichateaha with-sign normal
distance functiony is defined (negative in water and positive in air) from the free surfdads.
evolved in time as a fluid property using a second-order Euler time schereedéfhils of the
adopted technique can be found ] pnd [8], where the numerical choices made have been
identified through careful parameter investigations in order to reduceothpwtational costs and
preserve the physical and accurate behavior of the solution. Here fbefeatures are recalled, in
particular those relevant for the present DD solver.

To save computational timgis correctly defined within a distanees Az from the free surface.
For larger distances it is kept constant and equal@dz. In a narrow layer across the free surface,
+2Aux, the fluid properties are forced to smoothly vary from the water to the apepties, using
the distance) from the surface. This is necessary to prevent numerical instability bdieisnihat
the free surface is actually a layer instead of a sharp surface. Thadatteovered adz — 0. The
smoothing law is chosen as an exponential of a sinusoidal functiongge®hce the instantaneous
¢ distribution is known, the NS equations can be stepped forward in time. Astsaidsed solver
is a one-fluid solver which means that only the water evolution is correcthyitbesl. On the other
hand, the estimate of spatial gradients on a fixed Cartesian grid requireaénadjinformation at
grid points in air and near the free surface (see sketch in fitjur€his means that the solution
must be suitably extended to the air domain to avoid numerical instability andrypeebe solver
accuracy. In this framework, one can distinguish two conditions: withodivndth a surface-piercing
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6 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

On a Cartesian grid velocity should
be defined outside the water
domain for the velocity gradients

Extension of the velocity
from the liquid to the air

Figure 1. Eulerian one-fluid NS solver: solution extensioair.

body. In both cases the NS solution is estimated up to one and half cell in the.aity = 1.5Ax.
In the first case Colicchidg] found that a constant extension fratn= 0.5Ax to the air is enough.
When a surface-piercing body is present, this can cause the formatmfiiaitious vorticity at

the intersection between the body and the free surface, as shown iaZighs long as no body
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Figure 2. 2D ship cross-section forced to oscillate in heav@herwise calm water: NS free-surface and
velocity vectors. Time increases from left to right. Solidels: velocity extension from outside the water
domain. Dashed lines: velocity extension from inside théewadomain. NS discretizationz = Az =

0.012D with D the cross-section draft.
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3D DOMAIN-DECOMPOSITION 7

is present, the air is driven by the water and the extension from aboveethsuirface is suitable.
As soon as the thin layer of air interacts with the body, such an extensiort jglaxsible and

an extension from inside the water (at least —0.5Ax) is required. In our application to a DD
strategy for a 3D seakeeping problem, the constant extension of the sditdia water to air

leads to a more robust and physical solution but, for a given discretizétreduces the numerical
accuracy with respect to the case with constant extension from air tco@mgrove the accuracy
and preserve a physical flow evolution, the solution is not extendedarahysfrom water to air but a

weighting function is applied as shown in the sketch of figdirkn our approach, the local velocity

(1+cos(M(O+AX/2) Ax) )2

distance
from the
free surface ‘

3A%/2 =
[
I

water
-Ax/2

velocity solution from NS solver

velocity
Figure 3. Eulerian one-fluid NS solver: weighted law to egtéme velocity from water to air in the DD

strategy.

solution (solid line) is multiplied by the weighting functiar/2{1 + cos[r(¢ + 0.5Az)/Ax]} so
that the actual velocity profile is given by the dash-dotted line. It meansathat 1.5Ax the
velocity is equal to the NS value @t= —0.5Az (dashed line) and for0.5Az < ¢ < 1.5Az is

between the local NS solution and the constant extension valuegfrem-0.5Ax.

3.2. Body-boundary condition: hybrid technique

The body-boundary condition is approximated as
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8 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

U = 5(Ppody)uB + [1 — 5(Pvody )| Ur 1)

whereur andup are, respectively, the fluid and body velocity aii@s.q, ) is a function defining
the position of the body. (#4044 ) IS @ step function, unitary in the body and null in the fluid, then
the boundary condition would be exactly satisfied. In this work, for contipumaeasonss(¢yoq, )

is substituted with a smoothed function.

For the solid boundary a hybrid technique is applied (see figur&his approach comes from
the idea in 0] but the present implementation follows the work by Colicch@. Here the
major features are briefly outlined. The method combines the Eulerian Levaéé&nique with
Lagrangian markers and is useful when the body geometry presently Ibiggn curvatures or
singularities. In these circumstances, the classical advection of a Let/&k&tion would smooth
out the details of the body geometry and lead to greater numerical erroeslocti enforcement of
the body-boundary condition. Rather than deforming locally or regrididitigne the mesh, a level-
setopoqy (Positive in fluid, negative in the body) is used to transfer the body-thayyncondition at
the collocation points of the numerical fixed grid. In this way it is not neagdsadeform locally,
or regrid, in time the mesh to follow the body motion. Within the hybrid strategy, thwelt®et
function is defined through the Lagrangian markers, they are body lpariigtially defined on a
uniform grid four times finer than the minimum mesh size in the computational griavithah a
band across the body surface six times larger than the maximum mesh sizecofithatational
grid. The related value afy.q, is estimated at the initial time and followed in time through the
markers moving with the body. Their values are used to interpolate,thg value at the current
time instant. To prevent that interpolation errors could affect the acgafadbe Level-Set function
definition, only the values betweerBAx and3Ax are preserved. At larger distances from the body
surface, the threshold value &z is assumed with the consistent sign. This approach results in a
more accurate solution for a given mesh size but also leads to an incesaspdtational time with
a factor about 5. Such additional cost can be reduced using infornfadionthe local topology.
For example, within a time stefi¢ the particles can not move more thathz (with « < 1), so
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3D DOMAIN-DECOMPOSITION 9

the initialization of the Level-Set functiog,.q, is needed to be performed just in a subset of cells

crossed by the markers.

64 particles for each cell!

Figure 4. NS solver: fixed Cartesian grid and Level-Set tephenfor the free surface and the body (left),

and Lagrangian markers to improve the body descriptio{yig

3.3. Hull loads estimations: extrapolation and interpolation algorithms

Within the adopted Eulerian NS solver, the pressure is defined up to a madkabe body surface
®roay = 0, butitis not directly available along,,q, = 0. It means that a proper numerical algorithm
must be identified to estimate the loads on the body. This is a common problem foodseth
using embedded grids, while those applying boundary-fitted grids cartlgirgtegrate the pressure
available from the solution along the body surface. ColiccBjadentified two possible methods to
estimate the loads: (1) the first approximates the surface integrals for tteedea volume integral
introducing an approximated Dirac-Delta function and then estimates the lodbe body surface
as a parabolic extrapolation from the loads estimated at #ygg iso-surfaces, at 0.5, 1 and 1.5
Ax from the body surface; (2) the second approach interpolates theupeesiong the body surface
discretized in triangles and then integrates along each triangle. The triamglégentified at any
needed time instant through the marching-cube scheme which searcheartpelar intersection
of each grid cell with the body surface among fifteen possible scenagtodingction. The second
method was found more accurate and free from numerical oscillationsrimzrwhen using the first
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10 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

approach in the case of body motions and induced by errors in extraggiatiot exactly normally

to the body surface. Therefore it is used here. The negative aspggfet)-time requirements greater
of at least a factor four with respect to the first method. To limit the computdtwost, the more
efficient version proposed by Colicchi@][can be applied. In this case, the triangles are found
once for all at the first time instant and then moved in time rigidly with the body. Miegians that
the triangles are not any longer the intersections of the computational celltheitiody surface,
but generally crossing the grid. To maintain high accuracy, in this caseidmgles are found at
the initial time using the marching-cube algorithm on the grid adopted to defineahgian

markers. Such grid is four times finer than the computational grid.

4. DOMAIN-DECOMPOSITION STRATEGY: WEAK AND STRONG COUPLIN

We assume the 3D seakeeping problem of a vessel without forward spekein regular deep-
water head-sea waves and investigate this by means of a Domain-Deconmp(i3Dip strategy.
We identify an inner domain in a sea area containing the forward portion ofhheand the
rest of the fluid domain is considered as outer domain. The outer and inreink are solved,
respectively, by the potential-flow solver and the Navier-Stokes methgldierd in the previous
two sections. Within the DD the information is exchanged between the two domdingeinVhen
the information travels in one direction onlye. from the outer to the inner domain, the coupling is
called weak or one directional. When the information goes back and fartteba the two domains,
the coupling is named strong. By information we may mean local and/or globhatitjgs. Colicchio
et al.[1] investigated a 2D strong-coupling algorithm where the information wasgivéerms of
local quantities: pressure, velocity and free surface elevation, rgeldebetween the two domains.
Here the information is still given in terms of such variables when going fr@enother to the inner
domain while the information is provided in terms of global quantities when travélorg the
inner to the outer domain. This implies in a way a relaxation of the performedinguand leads
to saving computational time. The inner solution provides the body loads estilnated Navier-
Stokes solver on a body portion always inside the inner domain. Theyigm@ed to the body loads
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3D DOMAIN-DECOMPOSITION 11

estimated in the rest of the body surface by the potential-flow solver andghking loads are used
to estimate the body motions in time. Obviously the loads depend on the motions, as welthe
body velocity and acceleration and on the body wetted surface. Thegigmotion equations are
given by the Newton’s second law and are written here along the bodyiocate frame ¥,Y, 2)

so that the ship generalized mass maivixis constant in time. Formally we can write

ME + Q x Mé = F(€,&,€n,t) )

with & = (&1, .., &) the vector of the six rigid body motion, the angular velocity vectdty, &5, &)

and the upper dots indicating timé) derivatives performed along the instantaneous body axes.
The cross product is meant to give a six-component vector whoséhfiest components are given
by the cross-product aR with the first three components @f¢ and the remaining ones by the
cross-product of2 with the second three components/af¢. The generalized forces (forces and
moments)F' represent the external loads causing the body motions and must besegie the
(X,Y, Z) reference frame. In equatio)(the loads dependence on the ship motignselocities

and accelerations, on the free surface elevajiahthe hull, and on the time, is emphasized. Here it
is assumed that the buoyancy balances the ship weight in the mean cdidigacethat they do not

appear inF’ which is given by

F = Fipner + Fouter
3
= Finner + Foutero + Fouter;r = Aouterock = fy Router(t = T)E(T)dr .
In the top expression of the right-hand side, the first term represenstitieear loads given by the
NS solver in a body portion, sa$y, always inside the inner domain. The second term corresponds
to the linear loads provided by the linear potential-flow theory in the remainidg portion. It
can be decomposed in the sum of the last four terms in the bottom expre§si@ rgght-hand
side, i.e. the excitation (second term), scattering (third term) and radiation loadgH{fand fifth
terms). It means that the corresponding pressure terms have beentedegnly on the aft portion

of the ship. Hered ., ier, o andh,,¢., Stand, respectively, for the infinite-frequency added-mass and
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12 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

impulse-response function matrix associated with the hull portion examined wutbe domain.

In the application discussed here only the heave and pitch motjgramd &5, are different than
zero. As we see, the potential-flow loads solution involves convolution aegonnected with the
free-surface memory effects (ség &nd [6]). It means that we have two degrees of coupling: 1) one
between the outer and inner domain and 2) the other between loads and nmtiensstimated in
time domain. It is convenient to choose the inner domain as a cylindrical doniimestangular
cross section and faces parallel to the main axes of the field-solver @artg#d, as shown in

sketchb giving also the main features of the coupling strategy. The hull portion iigrine sketch

Input: initial Tnput:body Motions=&

conditions /- ~
/&g/ \ mﬂer F o= EE 1)
Outer Domain
Inncr Domam Outer Domain

Input: boundary LOIld.]'[lOIlS

Figure 5. Strong coupling main features: loads partiakyrfrthe inner and partially from the outer solver.

The input information from the outer to the inner solver ds®andicated.

represents, where the inner solver estimates the loads, while the rest of the hull in bladieiew
the linear seakeeping solver evaluates the corresponding loads. The mgtationsZ) must be
solved in time domain and this is done using a second-order Runge-KuttmescBecause the
loads in the right-hand side depend on the ship acceleréiiostability problems could arise if this
load contribution is relevant compared to the corresponding inertial laadvadid such problems
one should identify an explicit form of the added-mass contribution so tikahibe moved on the
left-hand side to make better conditioned the system matrix. Therefore agla estimate of this
load term,A..£ is summed to the two sides of the equations syst®mHere A, is the infinite-
frequency added-mass matrix obtained by the linear potential-flow theotydavhole hull.
Figure 6 shows the flow diagram in the general strong-coupling case. Within the BOirtte
interval At is stated by stability limits and accuracy requirements of the NS solver. In teergre
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3D DOMAIN-DECOMPOSITION 13

LinearPotential |If 7/=0: I.C. | Inner
Seakeeping Solver v £+ B.C. domain

No

v v
Outer domain: ) 4 Inner domain:
Linear Potential Seakeeping Solver > NS-LS Hybrid Solver
= - V-u=0+NS eq.
: = wp, o,
SMZ+QxMg=F . P9 rods {LS +markers
> t+Ar 2MRK sohcmc)j F iner \H t+At (2" PC scheme)

Figure 6. Strong coupling: flow diagram. RK=Runge Kutta. P&sdictor Corrector. = ¢ is the time of

DD starting and = ¢ is the end of the simulation.

implementation the problem starts with the linear potential seakeeping solver up to ime
In this initial interval, a DD strategy with weak-coupling is applied: the innerewteceives the
information from the outer solver but it does not provide the loads bauk.i$ useful to correct the
initial linear potential-flow solution in time and to achieve a more robust solution imtfez domain
when the strong coupling is started. More in detail, the outer domain providesittal velocity
and pressure fields and the initial free surface elevation to the inner ddvi@ieover, the boundary
conditions are made available along the vertical and bottom boundariegiat¢hastants required
within the Predictor-Corrector integration scheme. It has been foundtthatt, = 10At the strong
coupling can switched on without any stability issue. From this time instant oenitegrating
fromt¢tot + At, first the outer solver estimates the body motions using a second-ordgeRurtta
scheme. The excitation and scattering loads are estimated at the exact timeretptaed, while
the infinite-frequency added-mass contribution and the convolution itdéesyi@estimated at time
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14 M. GRECO, G. COLICCHIO, C. LUGNI AND O.M. FALTINSEN

and kept constant during the motion time-step integration. Fird)}y,... is estimated at the exact
time instant required using a local linear extrapolation based on the two noesit ttme instants
when the NS loads have been calculated. The motions calculated At are provided to the
inner solver as constant to perform the time integration ftaot + At. The boundary conditions
in terms of velocity, pressure and free-surface elevation, are prbwdtead at the time instants
used within the Predictor-Corrector scheme. Then at the new time instanelthediver is able
to integrate the pressure along the body portign This providesF;,, .. (t + At) which will be
used to estimate thE;,,,..,- at the time instants required by the outer solver within the second-order
Runge-Kutta scheme for the body-motion equations. This procedure gestimtil the final time
ty of the simulation. IfAt is very small compared with the time scale of the body motions, say
T, to limit the computational timé’;,,,..,. can be estimated everyAt with v+ > 1 and local linear
extrapolation is used to guess the inner loads when required by the olvier HoT'/vAt > 150,
the error committed in doing so is relatively negligible to the numerical errorexed with the
used solution method. In the present applications, at IBagi\¢t = 180 was used.

The numerical algorithm here explained can be easily extended to moreabeorditions, as

long as we identify adequately the inner and outer domains.

5. INNER-DOMAIN BOUNDARY CONDITIONS: ASSESSMENT

The weak-coupling strategy is used here to assess the proper bpwoaddaitions that must be

provided to the NS-LS hybrid solver.

5.1. Vertical inflow boundary portions: overlapping

At the vertical boundary portions, which are upstream relative to theentidlave propagation,
inflow conditions are applied for all variables. More in detail, the potential-floessure and free
surface elevation are sharply enforced, respectively, for a ldyep, @anda; cells, to the NS-LS
hybrid solver. Differently, the velocity varies linearly from the potentialflito the NS solution
within a layer of«, cells. This means that an overlapping is used for the velocity. The effect o
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3D DOMAIN-DECOMPOSITION 15

the overlapping extension is investigated here using the case of a pueepvegagation problem.
The (linear) Airy wave solution with propagation direction inclined with respeche Cartesian
grid main axes is enforced at the two upstream sides of the Navier-Stokegirdand the water
evolution is studied. A wave propagation not parallel to the grid main axesgepts by itself a
good test case to check the method capability to preserve the wave prapEhteetwo upstream
vertical boundaries, relative to the wave propagation, present apagigon region, where the
velocity values are between the linear potential-flow and the NS solution. dinelary portion on
the bottom is a simple contact surface, where the linear potential-flow solutstraiply enforced
for the velocity (as well as for the pressure). The remaining two vertmahbaries in this example
are characterized by outflow boundary conditiares the velocity is obtained by extrapolation from
the NS solution (as well as the pressure and the free surface elevéiigume 7 gives the solution
after two periods in terms of the contour levels of the longitudinal velocity aedsore at a plane
with constantz and in terms of the free surface configuration. In this case the wavensee[s
kA = 0.12 and the wave orientation angle relative to thaxis is = 60°. The results show that an
overlapping extension of at least six cells is needed to avoid irregulavmetof the velocity which
originates at the overlapping and then propagates inside the computatwnaind This choice
ensures both the bounding of the pressure oscillations that can be dnidycke linear-nonlinear
inconsistencies and an adequate definition of the interface to calculate tdnecdisunction in the
narrow band at the interface boundary (sé€g. [The inconsistency between the inflow and internal
pressure, visible for any value of the overlapping width, does nottaffg itself the numerical
solution inside the domaim.e. it remains localized near the boundary. Using these results; 6
(cells) is applied in the domain-decomposition strategy for the wave-bodydatien problem to
interpolate from the potential-flow to the NS solution when inflow condition is reefd for the
velocity at the vertical sides of the boundary. Similar studies have showa tha 6 anda,, = 2 can
be used for the free-surface elevation and for the pressurectesbhe The chosen strategy proved
to be rather robust also for steeper incident waves reaching frealynfigbodies. In particular, the

differences due to the inconsistency between linear and nonlinear sotatiwain localized near
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Figure 7. Pure wave propagation problem: effect of oveilapextensiony, Az. From left to right and
from top to bottomia,, = 4, 5, 6 and 7. Wave steepnesd = 0.12 and wave orientation angle relative to
thez axisd = 60°. Solution after two periods. The small ripples visible oa ftee-surface are not connected

with the numerical solution but due to graphic problems.

the overlapping and do not destroy the flow features inside the NavikesSttomain. Naturally
such inconsistency becomes less important as the wave steepness.rétiisé shown in figure
8 where an Airy wave with steepnegsl = 0.03 enters the NS domain with an angle= 60°. In

this caseqn,, = 6 is used for the overlapping extension and the behavior of the solutiortimear
exchange-information region is more regular than for the steeper waditiom and similar to the

solution provided by the field solver.

5.2. Downstream boundary portion

At the vertical downstream boundary, inflow conditions are providedh® pressure and the wave
elevation, similarly as done at the upstream and side boundaries. Forltlogyyehree different
conditions are checked: outflow, which means that the solution is extrapa@atstantly from the
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Figure 8. Left: Comparison between theoretical (meshedkick and numerical free surface (blue shaded)
after two wave periods. Pressure contours are plotted osidieeof the domain. Right: Comparison between
theoretical (black) and numerical (green) contour plots-@omponent of the velocity. Wave steepness

kA = 0.03 and wave orientation angle relative to thexisé = 60°. Solution after two periodsy,, = 6.

NS solution; inflow, which means that the solution is enforced to be a lineapoi&gion between
the potential-flow and the NS solution as along the other vertical boundanidsnixed. The third
condition is something between the inflow and outflow conditions (see sketoduire fl): at the
body surfacei.e. at the iso-surface.q, = 0, and for a distance less tharA3 from it, the outflow

condition is applied. For distances greater than three cells the inflow condtiapplied. The

Body dist = 3Ax

—

S

LRSS
Transition region between outflow
(close to the body) and inflow (in the
fluid)

Figure 9. Downstream boundary: mixed condition betweew#ind outflow for the velocity.
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inflow and mixed conditions are highly more reliable and accurate than thewuiiodition. The
mixed condition proved to have some advantages with respect to the pume imftbe case of a
body intersecting the inner-domain boundary. The pure potential-flovti@olimplies a free-slip
condition at the body surface while the NS-LS hybrid solver enforces-glip condition at the
body. A pure inflow condition leads to an inconsistency near the bodgsiiietween the inner
and outer solutions which could be responsible for fictitious vorticity formagimhshedding from
the body. The sensitivity of the NS solution to the choice of the downstreamdamy condition is

investigated next using the problem of an oscillating ambient flow past danircyglinder.

2D circular cylinder in infinite fluid A simple example to discuss the consequences of the three
downstream boundary conditions is sketched in figuxea periodic ambient velocity/ cos(2xt/T')
alongzx past a 2D fixed rigid circular cylinder. The period of oscillatibiand the velocity amplitude

are chosen so that the Reynolds @@ numbers are small and correspond to a laminar unseparated
flow. In particularkRn = 2UR/v ~ 10* andKC = UT/D = 0.8. The problem is in thex(, y)-plane

so that there are no gravity effects. The potential flow solution for therlipedblem,i.e. with the

dynamic pressurg = —pd¢/0t, is

u=UR[1l — (R/2)?] cos(2nt/T)
v=—US[l — (R/2)?] cos(2rt/T) (4)

p = pUR[z + R?/z| 2 sin(2nt/T) /T

with z = z + iy the complex coordinate with origin in the cylinder center. This solution is regorte
in figure 11 in terms of velocity vectors, and contour levels of the pressure and vortigitirelds

at the two time instants with zero and maximum ambient velocity, respectively,9.757 and

t = 207. Naturally, in this casey is null in the fluid. This solution has been provided to the NS
solver to study the problem ity R € [—2.5,2.5] andy/R € [—3,0]. The flow symmetry is enforced
at the cylinder center line while at the downstream boundary the inflow is@ed for the velocity.
The results are given in the top-left plots of figures and 13, respectively, at = 19.757 and

t = 207T. As we see, the no-slip condition causes a flow field with not exactly zdozitseat the
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Figure 10. Periodic ambient velocity past a 2D fixed rigiccalar cylinder. Sketch of the problem and
definition of the NS domains used to solve the problem by eirigrthe linear potential-flow solution as
input. The thick box represents the short domain, the thinéselosing it represents the wide domain, for

the NS simulations.
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Figure 11. Periodic ambient velocity past a 2D fixed rigictalar cylinder: linear potential-flow solution.
Velocity vectors, and contour levels of the pressure antloityr (w) fields. From left to rightt = 19.75T

and207.

first time instant and not exactly zero pressure at the second time instamttidity is concentrated
near the body and will remain there as the flow remains attached in these cosditie remaining
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Figure 12. Periodic ambient velocity past a 2D fixed rigidceiar cylinder. Downstream boundary:
sensitivity to the velocity boundary condition. Top-leéftS solution inz/R € [—-2.5,2.5] andy/R € [-3, 0]
using inflow condition for the velocity in the downstream bdary. Remaining plots: NS solution in
z/R € [-2.5,0] andy/R € [—3, 0] using outflow (top-right), inflow (bottom-left) and mixeddtiom-right)

boundary conditions for the velocity in the downstream loarg. Timet = 19.57.

plots of the two figures refer to the outflow, inflow and mixed conditions whenNB solver is
applied in a shorter domain with/R € [—2.5,0] andy/R € [—3,0] so that the body crosses the

downstream boundary. The worst results in terms of velocity and vortielysfiare obtain at the

time instant with zero potential-flow velocity, because the flow features ayesemsitive to the
numerical choices and errors. The worst results are clearly obtairiectimg the outflow condition
to the velocity. At this stage, part of the vorticity formed at the body surétered the fluid and
the flow velocity is rather different than the NS solution in the wider domain. fidve features
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Figure 13. Periodic ambient velocity past a 2D fixed rigidceiar cylinder. Downstream boundary:
sensitivity to the velocity boundary condition. Top-leéftS solution inz/R € [—-2.5,2.5] andy/R € [-3, 0]
using inflow condition for the velocity in the downstream bdary. Remaining plots: NS solution in
z/R € [-2.5,0] andy/R € [—3, 0] using outflow (top-right), inflow (bottom-left) and mixeddtiom-right)

boundary conditions for the velocity in the downstream latarg. Timet = 207

even far from the body show some unphysical behavior. The inflonngred conditions are more
physical and similar, but the vorticity level and its detachment from the badwace are slightly
more pronounced using the inflow condition. At the second time instant stibe/pressure results
are clearly more sensitive to the numerical errors, because the potemtiaefilution would predict
uniform (and zero) pressure. The results by the inflow and mixed consliéice still competitive but
also at this time instant the level of vorticity in the fluid is higher by enforcing tHevincondition.
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Moreover near the body surface, towards the downstream boyrtaryelocity vectors are more

different than enforcing the mixed condition with respect to the NS solutioreimnvider domain.

The mixed condition, being the most robust among the three examined condhimsndeen

chosen to investigate more general conditions.

6. APPLICATION TO A PATROL SHIP

Here the DD strategy is applied to the problem of a patrol ship without fahspeed and free to
oscillate in heave and pitch under the action of incident deep-water regedarsea waves. The
fluid domain is split as shown in the left plot of figube which means that the inner solver is in
x/L €[0.176,0.8], y/L € [-0.252,0] andz/L € [—0.317,0.16], with L the ship length. The NS-
LS hybrid solver provides the loads &fy defined as the ship portion with g 0.22 in the mean
configuration because it remains always inside the inner domain in the exhouonditions. The
weak coupling is used next to assess the validity of the numerical choicesforalle inner solver,

then the strong coupling is applied.

6.1. Weak coupling

The basic grid discretization used is uniform wittx = 0.006L. Left plot of figure14 shows the
effect of using the extrapolation and interpolation techniques for the estmaititne body loads.
The discretized body surface obtained using the marching-cube schi¢ghire tlve interpolation
strategy is shown in the right of the same figure. The case refers to edfbeave problem with
period corresponding to a wavelength~ 1.25L and with amplitudes| = 0.1D, with D the ship
draft. It is used to check the reliability of the two load-calculation strategieai$e of a moving
body. It is evident the more correct behavior of the vertical force gainS, when the interpolation
technique is adopted. The extrapolation leads instead to unphysical ostdlatien for this simple
case with motion parallel to one of the main axes of the computational grid. Sailtations
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represent in general a problem when a strong coupling is considecetha loads from the NS-
LS hybrid inner domain are introduced in the motion equations, and even nin@ dealing with

wave-body interactions involving elastic behavior of the structure.

Extrapolation from the
Vertical Force | surrounding levels

Calculated with
marching cubes

Time

Figure 14. Weak coupling. Left: forced-heave problem. idattforce onsS, as estimated by extrapolation
and interpolation with marching-cube algorithm. Oscitlat period corresponding to a wavelength~
1.25L and motion amplitude¢s|/D = 0.1. Axz/L = 0.006. Right: triangular discretization of the body

surface obtained using the marching-cube scheme.

Figure 15 examines the effect of the downstream boundary condition for the velocitgrms
of the vertical force and pitch moment &y in the case of the diffraction problem with incident
waves long\ ~ 1.25L and steepgc A = 0.05. This case has been preferred to a radiation problem
because in the latter case the body motions could make more difficult the coompan®ng the
different boundary conditions and because the loads results in thactiifin problem will be more
sensitive to numerical inconsistencies connected with the downstreanddrgucondition. The
case is well captured by the linear potential-flow theory due to the small ircikare steepness.
Therefore this solution is taken as reference to assess the corremtidesscuracy of the numerical
solution. From the comparisons, the best results are provided by the noimdiion for the velocity
enforced at the downstream boundary. The outflow condition givesvtist solution with large
underestimate of the loads amplitude, while the inflow condition introduces & jgiias and the
related solution appears slightly less smooth than the other results. This a&bjyralue to the
formation of fictitious vortical structures at the body surface convectetldiffused in time in
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the liquid. The mixed condition is therefore applied to investigate also the radiataltems in

o 0.04r 2
| FJ/pgLBA | F/pgL"BA

0.1

e 1
0 02 0.4 0.6 08 fT 1

Figure 15. Weak coupling: diffraction problem. Verticatde (left) and pitch moment (right) asy. Linear
potential solution (solid lineyersusthe numerical solution enforcing the outflow condition (ued-dotted
line), the inflow condition (dashed-dot-dotted line) and thixed condition (dashed line) for the velocity
at the downstream boundary. Incident wavelength 1.25L and steepnessA = 0.05. T is the incident
wave period and., and B are the ship length and beam, respectivelg, the water density anglthe gravity

accelerationAz/L = 0.006.

linear conditions and compared against the linear potential-flow solutiorreBlidts for the forced
heave and pitch are given in figui® and17, respectively. The forced-heave results show the best
agreement, also with respect to the diffraction problem, while the forceld-m&ults correspond

to the largest discrepancies. This is expected because of the motion meidal@the main grid
axes. Moreover, one must keep in mind that the examined cases are withivetireheory, which
means that the motion amplitudes involved are comparable or similar to the gridreizinedoads

are estimated only on the portidfy of the ship. As a result, the loads are very sensitive to the
numerical choices and errors. The forced-pitch motion, representnmdst challenging motion
for the solver, has been used to assess the method accuracy. Thefa®iracy is used as average
measure of the numerical error. Lgtt) be a local or global physical quantity that we want to
monitor, and let estimate it with the three different discretizations shown inefigiri.e using
alAz, with o = 1,1/+/2 and 1/2, respectively. For each discretization we can estimate the time

Copyright© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2011)

Prepared usingimeauth.cls DOI: 10.1002/nme



3D DOMAIN-DECOMPOSITION

25

[ F./pgLBA

0.04

[F./pgL?BA

0.1

0.02f-

-0.02f-

LN L\ Lt B B B B B B B

-0.1

TR RETTRI RENI ERI SRR ool
0.2 0.4 0.6 08 ¢T 1 o 0.2 0.4 0.6 08 T 1

oF

Figure 16. Weak coupling: forced-heave problem. Verticaté (left) and pitch moment (right) of.

Linear potential solution (solid lineyersusthe numerical solution enforcing the mixed condition foe th
velocity at the downstream boundary (dashed line). Thdlason periodT corresponds to a wavelength
A~ 1.25L and the motion amplitude ig3|/D = 0.1. L, D and B are the ship length, draft and beam,

respectivelyp is the water density anglthe gravity acceleratiom\z/L = 0.006.
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Figure 17. Weak coupling: forced-pitch problem. Vertiaaide (left) and pitch moment (right) o§y. Linear
potential solution (solid lineyersusthe numerical solution enforcing the mixed condition foe trelocity
at the downstream boundary (dashed line). The oscillatwiog 7 corresponds to a wavelength~ 1.25L
and the motion amplitude |{§5|L/2D = 0.37. L, D and B are the ship length, draft and beam, respectively,

p is the water density anglthe gravity acceleratiom\z /L = 0.006.
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integral Io,a, = fttol fanz(t)dt. Then a measure of the numerical accuracy averaged in the time

interval(t,, 1] can be obtained as

B log[(Iaz = Iaxs2)/Upzyyz — Iazy2)] 5
A= log(v/2) . ¥

for the used discretizations. In the specific forced-pitch case, assuftihgqual to the vertical
force on the ship portiors,, we getOA = 2.45 and taking it as the pitch moment on the same
surface, we hav® A = 2.52. These values are consistent with the second-order accuracy of the

present scheme and indicate a convergence rate slightly faster than two.

Ax/ L =0.006 Ax/~2 Ax/?2

3 e

I

—_—

Figure 18. Weak coupling. Convergence study for the fordéchpproblem. Three discretizations with
uniform mesh size. The oscillation peridd corresponds to a wavelength~ 1.25L and the motion

amplitude is|¢;|L/2D = 0.37. L and D are the ship length and draft, respectively.

6.2. Strong coupling

The radiation and diffraction problems investigated in the weak-coupling casespond to the
seakeeping solution provided by linear potential-flow theory in the casecwfeint waves long
A~ 1.25L and with small steepnegsd = 0.05. Figure 19 shows the comparison between the
heave and pitch motions given by this reference solution and the DD stras#gy the strong
coupling approach. The heave is positive upwards and the pitch is gositir bow downwards.
The DD algorithm provides stable results which are in good agreement witinéas solution.
This confirms the correctness of the numerical choices of building up tm@a@ond solver. Next
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Figure 19. Seakeeping problem: comparison between tharlipetential-flow solution (solid line) and
the DD strong-coupling results (dashed line) in terms ofvheand pitch motions. Incident wavelength

A =~ 1.25L and steepnegsA = 0.05. Az /L = 0.006 with L the ship lengthT is the incident-wave period.

figures examine the case of incident waves with the same wavelengktiard).22. The examined

A is in the vertical-motion resonance region and the wave-body interacticesdu the physical
case small impact events at the bow bottom and sides, and water shippdagumsented by the
experimental observations ii]]. These model tests are used here for validating the numerical
solver globally and locally. The basic grid discretization with /L = 0.006 is used to perform the
simulations. The examined patrol ship has a very thin bulwark protectirigibathe deck and a
vertical superstructure at a short distance from the end of the bulisee figure20). Using this
discretization does not allow to reproduce the deck protection as a comsinuel because it is
thinner than the grid size, therefore the bulwark was made as thidk:a$his represents an error

source in terms of amount of shipped water, as discussed later.

Global analysis: flow evolution The ship motion and water evolution from the model tests and
as predicted by the DD are given in figu2é. Qualitatively the results agree globally well at the
different stages of the wave-body interaction. Also the water-on-decltrrence is captured, but the
used discretization does not allow to estimate correctly the amount of shigded Whe numerical
results underestimate clearly this quantity.
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Figure 20. Discretization of the ship portion inside thesndomain using a grid siz&z/L = 0.006 without

(left) and with thickening the bulwark (center). The physiship model is given in the right.

Global analysis: ship motions The comparison in terms of the heave and pitch motion is provided
in figure22. For the experiments two curves are given, they refer to the same tegithusne curve

at a temporal distance of about 15 incident-wave periods from the dthedifferences between the
two experimental curves give a rough measure of the involved experiheerdaand are connected
with seiching occurrence in the towing tank. This refers to the developnfemtshallow-water
standing wave leading to an envelope of the propagating waves. Astedpmech phenomenon
affects mostly the heave motion which is directly connected with the incident-arapéitude. The
error in the pitch motion is instead limited becaygsas affected by the incident-wave steepness,
i.e. by the wave slope which is less sensitive to the seiching occurrence onfigacison between
the measurements performed with an optical system (Krypton) and the nahresalts for the
heave shows differences within the experimental error while the disagraevith the pitch appears
quite relevant near the motion peak. Positive pitch means bow downwaidh wdrresponds to
the phase of water-on-deck occurrence for this case. A possiblanatjpn of the discrepancies
could be given by the fact that the solver underestimates the amount péshiater and therefore
underpredicts the pitch-motion increase under the weight of the liquid ontdeble. Another
possible cause of the differences could be connected with nonlinearbealy interaction effects in
the ship loads. The fully nonlinear inner solver estimdtgs,.,- only in a ship portion with: £, 0.22
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Figure 21. Seakeeping problem: experimental (left in edat) pnd DD results (right in each plot) in terms
of ship motion and water evolution. Time increases fromtiefight and from top to bottom and the graph
in the right of each plot gives the numerical position of thewfard bow at each plotted time instant. Incident
wavelength\ ~ 1.25L and steepnedgsA ~ 0.22. Az/L = 0.006 with L the ship lengthT" is the incident-

wave period.

but nonlinear effects could be relevant in a larger portion of the veBsaheck these aspects, the
simplified 3D DD by Greco and Lugnilp] is used. This couples a weakly-nonlinear seakeeping
solver with a shallow-water method for the evolution of the shipped waterrdsdts provided by
this solver appear closer to the experiments in terms of pitch peak. Wherrapiblis simplified DD
strategy setting to zero the loads induced by the shipped water, the pitcisperknuch affected.
So, this suggests that nonlinear effects along the hull can be the majon feashe discrepancies.
The present DD has then been applied including the second-ordetséfiehe incident waves and

in the Froude-Kriloff and hydrostatic loads contributions provided by throsolver in the aft
portion of the vessel. One must note that this is inconsistent because w®higvaccounted for
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Figure 22. Seakeeping problem: heave and pitch motions asured (two solid curves in each plot) and
predicted by the present DD (dashed line), by the simplifi€&l Midith shallow-water solver on the deck

(dashed-dotted line), by the simplified DD without wateraetk loads (triangles), and by the present DD
with second-order effects associated with the incidentesaand with the Froude-Kriloff and hydrostatic
loads on the outer ship portion (circles). Incident wavegthn ~ 1.25L and steepnegsA ~ 0.22. Ax/L =

0.006 with L the ship lengthT is the incident-wave period.

some second-order effects. For instance we did not consider théciotns from the radiation and
scattering phenomena. This approximated version of the 3D weakly-nankeakeeping solver
coupled with the NS-LS hybrid method is just used to understand what iscplysmissing. In
terms of pitch peak the results are closer to the experiments than as proyitieel driginal DD;
while the trough prediction is slightly worsened. This highlights a sensitivity totméinear effects
in the hull loads and suggests that they could be an important reason fdisttiepancies. For
this incident wavelength, the model tests show that nonlinear effects aretémpalso for smaller
steepnesses (seE]). The results for the smallest value ofl studied experimentally are reported
in figure 23 in terms of heave and pitch motions and show limited seiching effects. In this case
there is no water on deck and the heave motion is dominated by linear potemigdkftmomena,
except for near the peak. Present DD is closer to the model tests in thiamégoincides with the
solution obtained including second-order effects connected with the irtoie/es, and with the
Froude-Kriloff and hydrostatic loads. The approximated DD by Greablamgni [12] looses a bit
near the heave through. For the pitch, the numerical curves are consisteunderestimate slightly
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Figure 23. Seakeeping problem: heave and pitch motions asured (two solid curves in each plot) and
predicted by the present DD (dashed line), by the simplifi€&l Midith shallow-water solver on the deck
(dashed-dotted line), by the present DD with second-orffects associated with the incident waves, and
with the Froude-Kriloff and hydrostatic loads on the outeipgportion (circles) and by the linear potential-
flow theory (triangles). Incident wavelength~ 1.25L and steepnessA ~ 0.091. Az/L = 0.006 with L

the ship lengthT is the incident-wave period.

the measurements. We can not rule out the possibility that some physicas effe missing in the
used flow models, but the discrepancies could also be due to an effbet aflopted experimental
set up. This explanation would be consistent with the fact that also at tpestard examined in

figure 22 the model tests showed larger pitch motion amplitudes than all numerical results.

Local analysis: pressure on the hull Since the numerical solution withz/L = 0.006 does not
predict the correct amount of shipped water, the evolution of the flowtbietdeck and the induced
pressure on the vessel are not analyzed here and left for a fubukeowce the inner solver has been
made more efficient and then using a sufficiently fine discretization. In tleeviag the pressures
measured in the bow region, on the bottom and at the side of the ship, aneexa

Despite the relatively course grid used for the simulation, the present Dilplfog the linear
potential-flow solver with the nonlinear NS-LS method) is able to capture the reaiares of the
pressure time evolutions at the two locations examined in figdr®©ne must note however some
oscillatory behavior of the numerical pressure suggesting the needhioredetailed description
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Figure 24. Seakeeping problem: pressure at the bottonioste8) and at the side (station 19) of the hull.
The measurements (solid line) are compared with the pré&@nrdashed lineAt/T ~ 0.0005) and with
the simplified DD with shallow-water solver on the deck (ddstted line). The dotted line for the bottom
pressure represents the present DD whthfive times smaller (i.eAt/T ~ 0.0001) obtained restarting the
numerical simulation from the solution with¢ /7" ~ 0.0005. Incident wavelength ~ 1.25L and steepness

kA ~0.22. Az/L = 0.006 with L the ship lengthT is the incident-wave period.

of the local flow. The impact occurring at the ship bottom is not handled bysitmulation with
At/T ~ 0.0005 due to the short duration of the phenomenon which shows also a stocledstiddr
from the measurements (se€l]). A decrease of a factor five of the time step is suitable to model
the impact and provides a pressure peak comparable with the secomunexgial peak shown in
the figure. The simplified DD (coupling a shallow-water approximation on tok déth a weakly-
nonlinear potential flow seakeeping solver) includes a local Wagnerggfution and is able to
detect the impact occurrence but overpredicts the pressure pedhkef@hown events. Present
pressure on the side of the hull is more consistent with the measurements ehaasutis from
the simplified DD. In particular it shows a fast pressure rise, right afeeptssure sensor becomes
wet, due to the water-hull impact. This impact phenomenon is affected by therfldnis portion of
the vessel and is completely disregarded by the simplified DD showing maintjradtstic increase
of the pressure. The examined results are promising however, for arebemsive assessment of
the method, numerical convergence should be examined also for this akgeping problem. Due
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to the high computational cost required, this is left to future work after pgaronprovement of the

solver efficiency.

7. CONCLUSIONS AND FUTURE WORK

A 3D Domain-Decomposition (DD) strategy has been developed. This coaplieear potential
seakeeping solver, in an outer domain, with a nonlinear Navier-Stokesr $@ged on a Projection
method that combines a Finite-Difference scheme with a Level-Set techraqtieef free-surface
evolution and with a hybrid method made of the Eulerian Level-Set approad¢H_agrangian
markers for the body motion, in an inner domain. The main features of théezbsplvers have been
outlined, special development of the inner solver connected with the DEegyravas described.
Weak and strong coupling approaches have been examined and thecalirdieoices in terms
of inner domain boundary conditions were addressed. Verification stadithe different solver
features have been presented. The application to a patrol ship wafousedher verification of
the numerical choices by examining radiation and diffraction problems aplyiag the weak-
coupling approach. Then the strong coupling was applied to investigatedkeeping problem
of the vessel interacting with regular head-sea waves. The solver weasssfully verified by
comparison against the fully linear potential-flow solution in the case of intidaves with small
steepness and validated against model tests in the case of steeperi@vasxt steps concern
the improvement of the code efficiency. Figutg gives the time profiling of the solver when
using the marching-cube scheme for the loads time integration. As we canese®jibr cost is
connected with the solution of the fluid-momentum equations, then we have tlohingacube
algorithm cost that can be reduced using the approach by Colicchig),ifr¢r example in the
case of mesh witi\z /L = 0.006, the CPU time required for the loads calculation can be reduced
of a factor about 1000. Finally the costs of the body motion and the frgaesuevolution which
are comparable. A substantial improvement of the numerical efficiennybeabtained moving
from an incompressible to a pseudo-compressible solver. In this way lingosoof the Poisson
equation is avoided and the solver can easily be parallelized. This appsopieferred to the use
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Calculation of loads Level-Set free surface

Body motion
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Figure 25. Time profiling: relative cost of the main partstw solver.

of a multigrid approach to solve the Poisson equation, because the latter i€los®ly related to
the specific geometry of the problem and so less elastic. At present theégssempressible solver
is under development with promising results in terms of accuracy and efficfen internal-flow

problems.
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