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SUMMARY

The problem of a high-pressure gas cavity and its interaction with surrounding liquid and a close by structure

is examined numerically. Even Though this is of interest in many practical applications; here the focus is on

an underwater explosion. A one-way domain-decomposition (DD) strategy coupling a radial and a 3D solver

for compressible multi-phase flows is proposed and the different components are successfully verified. This

is a time-space DD that assumes the explosion occurs sufficiently far from boundaries. It means that the

radial solution is used everywhere until radial symmetry isapplicable. When acoustic waves reach a close

structure, the radial solution initiates the 3D solution near the body and continues to be applied only far

from the structure and to provide the boundary conditions for the 3D sub-domain. The advantage is to limit

the computational costs and preserve reliability and accuracy. The radial solution could be applied to assess

local damages during the initial acoustic phase; the time-space DD needs to be used to investigate both local

and global consequences on the vessels. The structure is modelled both as a rigid wall and as a orthotropic

plate which provides a good representation of the bottom grillages of ships. Copyrightc© 0000 John Wiley

& Sons, Ltd.
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1. INTRODUCTION

Several practical examples exist where gas cavities with initially high pressure evolve in time

affecting the surrounding liquid and inducing relevant loads on close structures. A military

application is represented by underwater explosions. They have been recognized as one of the

main causes for losses of US navy ships in the last sixty years (see [1]) and are an issue both

for ships and offshore structures. This highlights the need for properpredictions of the induced

structural effects and for improvement of vessel design. For this reason several physical tests were

performed along the years, most of them not publicly available, and theories were developed (see

[2]). Another dangerous scenario is given by shock waves caused byimplosion of cavitating bubbles

near hydraulic machinery which can cause erosion of the structure (see[3]). The same phenomena

can lead to positive outcomes in rather different contexts. Underwater explosions seem to be an

effective technique to improve the harvest in cold countries. The resultingshock waves crush the

ice block covering the soil and enlarge the sunshine duration (see [4]). Another positive outcome

is represented by implosion of micro-bubbles with ultrasound in biological flows. This is used in

medical field as a noninvasive technique to remove calculi in human bodies (see [5]). All these

problems share similar features: a high-pressure cavity oscillates immersed inliquid and generates

acoustic waves. These can interact with sufficiently close structures andcan be totally reflected—-

partially reflected and partially transmitted in the solid. The wave-body interaction can cause elastic

or plastic deformations or even the rupture of the material. The reflected waves can go back to their

source,i.e. the gas cavity, and interact with it (see sketch in figure1). These phenomena might

lead to cavitation. During these initial stages compressibility matters both in the gas and liquid

phases, while later on the strength of the acoustic wave reduces and the compressible effects remain

important only for the cavity while the liquid can be considered incompressible.This means a two-

phase 3D solver can be used coupling an incompressible liquid with a compressible bubble, as it
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIPHASE FLOW 3

Figure 1. Main phenomena during the evolution of a high-pressure cavity in a liquid: 1) bubble oscillations

with acoustic waves moving out of the bubble, 2) and 3) interaction with a structure can cause deformations

and damages, 4) reflected waves from the body can interact with the cavity.

has been presented in [6]. There, the flow evolution and induced body loads in this stage have been

studied in the case of water shipping with plunging wave hitting the vessel deckand entrapping a

cavity. Here the more complex phenomena involved in the initial stages are considered. Preliminary

results reported in [7] and [8] are combined and widened for a more comprehensive documentation

of the research activity. The aim is to develop a solver able to investigate cavity evolution from

the acoustic phase until the cavity oscillation phase and so able to assess possible local and global

consequences on the structures.

Despite being a sensitive research topic, underwater explosions can provide more reference results

for verification and validation of the solver. Therefore it is the scenario considered as application

in the present work. An underwater explosion induces a chemical reaction and a detonation process

and these are responsible for the formation of a hot gas with high pressure and the release of a shock

wave traveling in the surrounding fluid. The formed superheated, spherical, bubble will quickly

expand, reducing the inner high pressure until a maximum radius is reached. After that, the bubble

starts to oscillate and induces oscillations in the pressure of the surroundingliquid. In the first stage

(shock wave) both gas and the surrounding liquid behave as compressible, in the later stages (gas

bubble) the acoustic wave will disappear in time and the water can be considered more and more

incompressible. The interaction of this two-phase fluid with a body will then depend on the closeness

of the body to the explosion zone and by the presence or less of other boundaries,e.g.the sea floor,

the free surface.
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4 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

Here we study the problem after the chemical-reaction and detonation stagesand study

numerically the compressible cavity in a generally compressible liquid. A numerical solution

strategy is proposed as a compromise between capability in handling the mechanisms governing

the evolution and efficiency. It is characterized by a time-space zonal approach coupling two

compressible solvers: a radial solver and a 3D method. The former is usedin the whole domain

as long as the acoustic waves do not reach any boundary and radial symmetry is preserved. The

latter is switched on near the boundaries (near a structure in the present application) and receives

boundary conditions from the radial solver still used far from the boundaries. The DD is aimed to

investigate the problem in all stages: 1) initial acoustic phase with compressibleeffects everywhere,

2) cavity-oscillation phase with liquid compressibility reducing in time 3) cavity collapse near or

onto a structure.

The two solvers, the domain-decomposition strategy and the orthotropic plate model adopted to

simulate the bottom of a ship are described in section2. There, some relevant verification studies

are also provided for the radial solution in infinite fluid domain and for the incompressible added

mass of the plate. In section3, underwater explosions interacting with structures are examined.

The radial solution is applied for an underwater explosion in an infinite fluid and then a plate is

introduced to assess the induced stresses and deformations on the structure. The time-space domain

decomposition is applied next to verify its robustness and accuracy in the case of an underwater

explosion near a rigid wall. In the last section the main conclusions are drawnand future steps are

indicated.

2. NUMERICAL SOLVER

The examined problem is of great interest but rather complicated becauseit involves at least two

fluids, with different properties, and a generally deformable structure,able to affect the surrounding

fluid. The latter means that hydroelasticity can be excited. The different features of the proposed

solution algorithm can be described as follows.
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIPHASE FLOW 5

2.1. 3D solution: compressible solver for multi-phase flows

Assuming a Cartesian Earth-fixed coordinate system(x, y, z), the governing equation of the problem

can be formally written as

∂U

∂t
+∇ · F = 0 , (1)

with U = [u, ρu, ρv, ρw,E]T and F with components Fx = [ρu, ρu2 + p, ρuv, ρuw, (E +

p)u]T , Fy = [ρv, ρuv, ρv2 + p, ρvw, (E + p)v]T and Fz = [ρw, ρuw, ρvw, ρw2 + p, (E + p)w]T ;

moreover(u, v, w) is the velocity vector,p the pressure andE the total energyρ[e+ (u2 + v2 +

w2)/2]. For the closure of the problem we need an equation of state (EOS) for thespecific internal

energye. Here this is assumed of the formρe = ff (ρ)p+ gf (ρ) , with the functionsff and gf

depending on the fluid (indicated by the subscriptf ) properties. In particular, the JonesWilkinsLee

EOS is used for the gas generated by the explosion (see [9]) and an isentropic Tait relation for the

water (see [2]), i.e.

fg = 1/ω gg = [−Ag(1− ωρg/(R1ρ0g))e
−R1ρ0g/ρ −Bg(1− ωρg/(R2ρ0g))e

−R2ρ0g/ρg ]/ω

fw = 1/γw gw = (Bw −Aw)γw/(γw − 1)

(2)

Here the subscriptsg andw stand for gas and water, respectively,ρ0g is the initial gas density,γw

is the ratio of specific heats for water and the other quantities are parametersgiven later and depend

on the properties and initial conditions for the two fluids soon after the explosion.

Equation (1) is solved numerically with a second-order finite-difference scheme in space and

integrated in time with a Total Variation Diminishing (TDV) third-order Runge-Kuttascheme (see

e.g.[10]). This is suitable for solving hyperbolic conservation laws with stable spatial discretization

and ensures suitable accuracy in long-time simulations with relatively limited computational costs.

The fluxes in the governing equation are solved using a MUSCL scheme which is a second-order

accurate extension of Godunov’s method (seee.g.[11]).

A level set functionφ is used to represent implicitly the interface between the two fluids and it is

advected in time using the equation

∂φ

∂t
+ V i · ∇φ = 0 (3)
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6 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

whereV i is the interface velocity calculated as in [12]. Across the interface a Riemann problem

must be solved to ensure proper reflection and transmission of shock waves during the evolution.

This is locally a 1D problem in the normal direction of the interface and is formallythe same as for

the interface condition in the radial symmetric problem explained in section2.2.

To make the solution efficient in time, an adaptive mesh refinement is used according to [13]. The

grid is halved either close to the interface between the two fluids or in proximity ofhigh gradients

of the fluid variablesU . An example of mesh refinement is shown in the left of figure2, at the

starting time of the explosion. Close to the interface the grid size is extremely refined, while the

Figure 2. Left: example of adaptive mesh refinement close to the gas-water interface. Right: algorithm for

the dynamic refinement.

refinement grades to a coarse mesh far from the interesting region. The adaptive-mesh algorithm

can be described as follows: the grid is split in blocks (see on the right of the figure) and each block

can be successively split in eight blocks so that the local grid size dynamically changes and ensures

proper refinement where necessary. To achieve this a variable of interest is monitored, for example

the pressure. If this becomes larger than a certain threshold value, for example in block 3 of figure

2, then the block is split in eight blocks and the check is repeated on each of the new blocks so that

further refinement is introduced if necessary. At the same time the grid becomes coarser in time

where the flow variations are not significant.
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIPHASE FLOW 7

In many situations one can expect that the explosion occurs very far from other boundaries and

that hydrostatic pressure does not affect the explosion phenomenon.This leads to a radial symmetry

of the bubble evolution and to the opportunity to simplify the problem as ’1D’ in theradial direction,

as explained next.

2.2. ’1D’ radial solution: compressible solver for multi-phase flows

We assume to study the problem just after the chemical reactions and the detonation phase have

occurred, so the initial values of bubble radius, density and pressure,need to be obtained from

physical tests or extracted from empirical formulas identified along the years of research in this field

(seee.g.[2]). A compressible ’1D’ solver along the radial directionr is then used to simulate the

flow evolution in an infinite domain. Assuming radial symmetry, the multi-dimensional governing

equation (1) reduces to a one-dimensional Euler equation in ther direction of the form

∂U

∂t
+

∂F

∂r
= S , (4)

with U = [ρ, ρu,E]T , F = [ρu, ρu2, (E + p)u]T andS = 2[ρu/r, ρu2/r, u(E + p)/r]T . Hereu is

the radial velocity,p the pressure andE the total energyρ(e+ u2/2). The same EOSs as in the 3D

case are used for the specific internal energye to close the problem for gas and water.

The problem is solved in time with a first order scheme and using the Harten-Lax-Van Leer

(HLL) approximate Riemann solver (see [14]) to estimate the fluxesF in each fluid and enforcing

a two-shock approximation to the Riemann problem at the interface as proposed in [12]. The latter

provides an exact solution when a shock wave is reflected and is reliable for gas-gas or gas-water

flow. This is given by solving for the two nonlinear characteristics intersecting at the interface and

using mass and momentum jump conditions for the transmitted and reflected shock.The resulting

equation system is nonlinear and is solved iteratively with a Newton-Raphsonmethod givingui,

pi, ρLi andρRi , respectively, the radial velocity and pressure at the interface and theleft and right

density. To avoid possible instability of the solution, the left and right densitiesare corrected by

enforcing an isobaric condition across the interface. This interface algorithm is inserted into a ghost

fluid method (see [12]) providing the conditions across the interface to each fluid. In particular, let

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)

Prepared usingnmeauth.cls DOI: 10.1002/nme



8 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

us assume that the interface is between node i and i+1 of the computational grid and that we need

to solve for the fluid on the left. Here we consider that for the nodes≥ i the density, velocity and

pressure are, respectively,ρLi , ui andpi, and the other needed quantities are obtained in accordance.

A similar technique is used when solving for the fluid on the right. At this stage thefluxesF can

be calculated in each fluid and the problem can be stepped forward in time. The location of the

interface is updated using the velocityui.

The solver has been satisfactorily verified against several numerical solutions, for fully 1D

problems (in this caseS = 0 in equation (4)) and problems with radial symmetry and showed

to be accurate also in later stages of the evolution. For this reason, there has been no attempt to

implement a second-order temporal scheme. Examples of comparisons are given in figure3. The use
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Figure 3. Top-left: case 1.A. Top-right and bottom-left: case 1.E. Bottom-right: case 1.F. The initial

conditions for each case are given in tableI.
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIPHASE FLOW 9

of the HLL Riemann solver is assessed in the top-left plot of the figure by comparing with a solver

identical to the present but for using an exact Riemann solver for the fluxes (Godunov method).

The case refers to a 1D problem with a single material, aγ-law gas. The HLL solver agrees with

the Godunov method and has the advantage to be applicable for more general fluid conditions. The

other shown numerical solution is obtained from a 3D method combining a fixed Cartesian grid with

a Lagrangian approach in case of moving bodies and is documented in [15]. There, it is ensured the

reliability of the 3D method which is applied to a systematic list of test cases to provide a reference

solution for numerical verifications in connection with underwater explosions. In particular the

examined problem corresponds to case 1.A in [15]. Except for a slightly smoother behavior near

the interface, the present numerical results are consistent with those in [15]. The accuracy at large

times is documented in the other plots of the figure referring to two cases of underwater explosions.

Top-right and bottom-left of the figure refer to case 1E of [15] and examine the stage with a spherical

explosion shock developing in the water. They give, respectively, the pressure distributions at four

time instants and the pressure evolutions at four radial positions from the center of the bubble. The

present method predicts correctly the evolution of the pressure in time, as well as the location of

the advancing shock wave and of the gas-liquid interface, representedby the empty circles. The

bottom-right figure is related to case 1F of [15] and considers the collapsing stage of the spherical

bubble. Present results fit exactly the nonlinear behavior of the cavity oscillations reported in [15].

The initial conditions for the three cases in figure3 are given in tableI.

Case ri Fluid Left ρ0L p0L u0L Fluid Right ρ0R p0R u0R

1.A 2 γ = 1.4 2.0 9.80 · 105 0 γ = 1.4 1.0 2.45 · 105 0

1.E 0.16 JWL 1630.0 7.80 · 109 0 Water 1000.0 1.0 · 105 0

1.F 0.16 JWL 1630.0 7.80 · 109 0 Water 1000.38 1.0 · 106 0

Table I. Test cases from [15]. The data are given using SI system.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)

Prepared usingnmeauth.cls DOI: 10.1002/nme



10 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

Since the problem equation is hyperbolic, the radial solution can be applied inthe real cases until

the first shock wave from the explosion becomes close to the bottom of a vessel or another boundary.

This is because the presence of the structure will not affect the fluid behind the shock wave. Once

this wave reaches the boundary three-dimensional effects become important locally while radial

symmetry is still preserved far from the boundary. This is the case when a zonal approach can be

applied, as described next when the boundary is represented by a flatstructure.

2.3. One-way time-space domain decomposition for compressible two-phase flows

As the shock wave becomes close to a body, a time-space domain-decomposition (DD) strategy

is switched on, where the compressible 3D solver described in section2.1 is initiated by the

simplified radial solution given in section2.2within an inner region affected by the body and used

to investigate the fluid-body interactions. The radial solution is still applied farfrom the structure

and provides the boundary conditions to the 3D solver along a control surface bounding the inner

domain. This implies a one-way coupling.

Figure 4 shows a sketch of the zonal strategy. The circular region gives the zone where the

problem is radially symmetric and the radial solution is used, while the rectangular region represents

the boundary of the 3D sub-domain. They have an overlapping layer where the solution is forced to

go smoothly from the radial to the 3D behavior. In particular, the figure gives the dimensions of the

zonal strategy used for the underwater explosion examined in section3.3. The radial solution is used

within the circular domain, up to a distance of 1m -4∆xloc from the bubble center. Here∆xloc is the

local size in the 3D sub-domain. Within the radial layer of 4∆xloc from this distance, the problem

is solved both using the radial solver and the 3D method and the numerical solution is forced to

smoothly go from the radial to the 3D solution. For larger distances, the 3D solution is applied.

The developed DD limits the computational costs which are quite high if a compressible 3D solver

is used for the whole simulation and everywhere due to the limits in the time step connected with

the local speed of sound in the fluid. If the explosion occurs sufficiently close to boundaries, such

as the free surface, the sea floor or vehicles, then three-dimensional effects are important since the

beginning and this DD cannot be applied. In this case, the 3D numerical solver described in section
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIPHASE FLOW 11

Figure 4. Radial-3D domain decomposition strategy with thevalues used in the underwater-explosion

problem discussed in section3.3.

2.1 must be used for the whole simulation. This means a computational cost and a memory space

increasing with a factor

αN + (1− α)N3

N
(5)

whereα is the fraction of the domain solved with rally symmetric 1D solution andN is the number

of points per characteristic length.

2.4. Structural modeling: orthotropic plate and coupling with fluid-dynamic problem

In a first attempt to estimate the local effects on the bottom of a vessel, this has been modelled as a

rectangular orthotropic plate with lengthL and widthB in x andy direction, respectively. The plate

is assumed to undergo linear deformationw(x, y, t) governed in time and space by the equation

m∂2w
∂t2 +Dx

∂4w
∂x4 + 2BB ∂4w

∂x2∂y2 +Dy
∂4w
∂y4 = p(x, y, w, t) . (6)

Herem is the average plate mass per unit area,Dx andDy are its flexural rigidities in the two

main directions andBB is its effective torsional rigidity (seee.g.[16]). On the right-hand-side,p
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12 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

is the local hydrodynamic pressure acting on the plate which depends on thespace, timew and,

in particular, on its time derivatives. If the DD strategy is considered,p is obtained by solving the

fluid-structure coupled problem,i.e. the mentioned dependence on the derivatives ofw is implicit.

If the radial solution is used to simulate the incident acoustic wave,p is modelled as

p(x, y, w, t) = 2Pi(r, t)− ρc
cos(θ)

∂w
∂t + added-mass contribution. (7)

HerePi is the incident wave pressure,c is the speed of sound andθ is the angle between the

direction of the incident wave reaching locally the plate and the plate normal vector (see left

sketch in figure5). The first two terms on the right-hand side represent the sum of the incident

Figure 5. Left: radial acoustic waves reaching a plate and definition of the angleθ. Center: problem solved

with a BEM to find the added masses for the elastic modes. Right: problem solved with a BEM to find the

heave added mass for the plate.

and reflected wave from the wall leading to twicePi for a fixed wall ’plus’ an acoustic wave-

radiation damping in the case of rigidly moving or deformable plate. They act during the acoustic

phase,i.e.when compressibility matters also for the liquid. The last term, not written explicitly,is an

incompressible added-mass contribution which matters when the water behaves as incompressible

and the plate oscillates as a consequence of the interaction with the incident acoustic wave. In the

present implementation the acoustic wave-radiation damping term is switched offwhenPi becomes

half of the acoustic pressure associated with the incident wave,i.e. if Pi ≤ ρcUi, with Ui the radial

velocity of the incident wave. The added-mass term is used during the wholesimulation. This
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIPHASE FLOW 13

contribution is estimated in an approximated way studying the radiation problem for each plate

mode and assuming that the plate is surrounded by a fixed wall and then by a flat ’free surface’

with velocity potentialϕ = 0 (see center sketch in figure5). This means that it is a high-frequency

added mass estimation. Obviously this is an approximation because in the real case of a ship, the

plate is used to simulate the grillage on the bottom so the free surface will be not aligned with

the plate. The surrounding fixed wall is used to avoid a pure Neumann problem which would lead

to a solution in general dependent on an arbitrary constant. The dimensions of the fixed wall are

assumed large enough so that increasing them there is practically no influence on the added mass.

It was found that an extension alongx, saylx, ≥ 4L and alongy, sayly, ≥ 4B, was enough. So

to limit the computational costs, a uniform mesh was used within a zone with similar extensions

as the elastic plate and then a stretching was introduced to have a fixed-wall zone larger than the

minimum required dimensions. The stretching was continued also on the ’free surface’. Numerical

convergence of the added-mass results was ensured by successiverefinement.

B/L Form. 1 Meas. 1 Form. 2 Form. 3 Meas. 2 Pot. Sol. Present Sol.

0.1 0.950 0.953 0.995 0.947 0.971

0.5 0.750 0.733 0.742 0.895 0.911 0.757 0.763

1.0 0.500 0.565 0.557 0.707 0.694 0.579 0.583

Table II. Infinite-frequency added mass in heave for a plate.Here ’Form.’ refers to an empirical formula,

’Meas.’ to experimental results, ’Pot. sol.’ to the potential-flow solution based on a dipole-distribution on

the plate in [24]. The results are presented in the same order as in table 3 in [24]. The numbers correspond

to the nondimensional added massA∗

33 = A33/[πρ(0.5B)2L].

Verifications and validations of the Boundary Element Method (BEM) developed to estimate the

added masses are presented in tableII and figure6, respectively, for the case of infinite-frequency

added-mass in heave for a plate surrounded by an infinite flat free surface (see right sketch in figure

5) and for the added masses of the elastic modes for a plate as discussed above. In the case of the

heave, the present results tend to provide slightly large values but comparable and close to the other
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0 2 4 6 8 10
0

1

2

3

Ajj
*

Mode j

Present
Yadykin et. al (2003)

Figure 6. Added mass for the elastic modes of a simply-supported uniform plate: present results and solution

from [25]. A∗

jj = πAjj/(ρBL2).

reference solutions. For the elastic modes, they fit well the reference numerical solution based on

energy considerations and estimation of the pressure jump across the plate.

3. APPLICATIONS

Here the problem of underwater explosions with structures is examined to assess the potentiality of

the different parts of the solver and to carry on a more detailed physical investigation.

3.1. Radial acoustic waves interacting with a uniform plate

The underwater explosions studied experimentally and numerically in [17] for uniform steel

restrained plates is examined here to verify the implementation of the solver as radial incident

acoustic waves and elastic plate and to check the reliability limits of the linear model for the

structure. The experiments examined a plate at different distancesrp from a charge and also varied

the charge weightW . The combination of these parameters may lead to plastic deformations and

to the rupture of the plate. In this framework a relevant parameter is the shock factor defined in

[17] as SF = 0.45
√
W/rp. Here we examine two cases with charge weightW = 0.005 Kg and

minimum plate distancesrp = 0.50 and 0.15 m. These two conditions correspond toSF = 0.064

and 0.212
√

Kg/m, respectively, and led experimentally to a limited and a more pronounced plastic
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIPHASE FLOW 15

deformation of the plate, respectively, without rupture of the structure. This means that strictly

speaking we are outside the range of applicability of our linear plate modelling.According to [17]

the maximum incident wave pressure in the two cases was about 16.45 and 63.55 MPa, respectively.

So the underwater-explosion radial solution was designed to achieve these maximum values at the

plate location for the two cases. Left plot of figure7 shows the time evolution of the deformation

at the center of the plate as obtained by the present orthotropic plate and bythe Finite Element

Method (FEM) in [17] when assuming linear behavior of the structure for the case withrp = 0.50

m. Since no added-mass contribution is accounted for in [17], also our results consider only the

0 0.001 0.002

-0.01

0

0.01

0.02

t (s)

wc (m)
Present (without added mass)

Ramajeyathilagam et al. (2000)-linear

Figure 7. Underwater explosion studied in [17]. Left: evolution of the plate deformation at the center of

the plate forrp = 0.50 m. Center: maximum strain rate and dynamic yield stress obtained from empirical

expression (8). Right: plastic deformation as obtained by experiments and numerics in [17] and present

results without and added mass effects. The center and rightfigures are original figures from [17] with

present results added.

acoustic-load contributions. The agreement is fairly good both in terms of amplitudes and of time

scales of oscillations. This is very promising considering the differences between the two structural

solution methods, as well as between the incident wave pressures in our case simulated by the radial

solver and in [17] estimated from a classical empirical formula based on the underwater-explosion

studies reported for instance in [2]. The center plot of figure7 examines the dynamic yield stress

σdy as a function of the shock factor.σdy is obtained using the empirical Cowper-Symonds formula
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16 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

(see [18])

σdy = σy(1 + |ǫ̇/D|1/n) (8)

with σy the static yield stress andD andn two empirical material parameters. In the present case

of high-strength steel,σy = 400 MPa,D = 40/s−1 andn = 5. This formula states that the dynamic

yield stress becomes larger than the static value due to effects of the strain rate ǫ̇ on the constitutive

properties of the material. Presentσdy results for the two examined cases have been obtained for

a simulation, after the impact, as long as the reference results and then estimatingσdy from the

maximumǫ̇ recorded. Also in this case the agreement is quite good suggesting similar deformations

of the plate in time. The right of figure7 examines the plastic deformation as measured in the model

tests of [17] and as numerically predicted with a nonlinear structural model accounting or not for the

change of the dynamic stress due to the strain rate effects. In our case theprediction of the plastic

deformation is roughly obtained as the difference between the maximum recorded deformation on

the plate and the maximum elastic deformation. The latter is estimated as the maximum deformation

of the plate for maximum stress smaller than or equal to the instantaneous dynamicyield stress. The

comparisons show that our predictions are consistent forSF = 0.064 with the nonlinear-structural

numerical results in [17] without strain-rate corrections. This is reasonable in this case because

the plate has a very limited plastic deformation and so the elastic deformation dominates. Present

results overpredict much the plastic deformation forSF = 0.212
√

Kg/m because in this case the

variations in the structural properties of the steel plate are important both in terms of nonlinear

stress-strain constitutive link and of the temporal increase of the dynamic yield stress. It is interesting

to note that when including the incompressible added-mass effects the estimationameliorates and

becomes very close to the nonlinear solution without strain-rate effects.

The plastic regime is out of the scope of the present work but its analysis here is interesting

because it has shown that within a certain limit the elastic plate modelling is able to provide a rough

estimate of onset and value of plastic deformations.
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIPHASE FLOW 17

3.2. Radial acoustic waves interacting with a navy ship bottom

Here the radial solution for the underwater explosion in infinite liquid is used toinvestigate the

possible consequences on the bottom of a navy ship as a function of its minimumdistancerp

from the initial charge. The bottom grillage arrangement is chosen as the configuration 1a among

those studied experimentally in [19] (see sketch in figure8) and an equivalent orthotropic plate was

obtained extended as the grillage and restrained at all edges. The parameters of the equivalent plate

Figure 8. Steel-grillage arrangement for bottom of navy ships as studied experimentally in [19]. HereL and

B are the longitudinal and transversal length of the grillage, respectively,a andb are the distance between

two transverse frames and two longitudinal stiffeners, respectively. In the present case, grillage 1a with 4

transverse frames and 4 longitudinal stiffeners is examined. The parameters areL = 6.096 m,B = 3.048 m,

t = 0.008 m,hwx = 0.15367 m, twx = 0.00721 m, bfx = 0.07899 m, tfx = 0.01422 m,hwy = 0.25756 m,

twy = 0.00937 m, bfy = 0.12548 m, tfy = 0.01829 m.

are given in tableIII .

L B m Dx Dy BB σy

6.069 3.048 85.785 1.262·107 3.517·107 2.614·104 250.4·106

Table III. Equivalent orthotropic plate for the steel-grillage arrangement 1a of [19] documented in figure8.

The values are given SI system.L andB are the plate extensions inx andy direction, respectively.σy is the

yield stress of the plate.
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18 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

The underwater explosion documented in [20] has been considered as test case since it is rather

used as sample of explosion to assess possible ship damages. The initial radius of the gas cavity is

R0 = 0.16 m and the parameters for the EOS of the fluids, using SI system, are:ρ0g = 1630.0, p0g =

8.381 · 109, Ag = 3.712 · 1011, Bg = 3.23 · 109, R1 = 4.15, R2 = 0.95, ω = 0.30, ρ0w = 1025.0,

p0w = 1.0 · 106, Aw = 1.0 · 106, Bw = 3.31E8 andγw = 7.5.

A convergence analysis of the radial solver has been performed usinga computational domain

10 m long and a uniform radial discretization∆r. The order of accuracyOA (see [21]) was

adopted as measure, which involves the time integral of the selected variable calculated with

three discretizations and should be one for a solver accurate to the first order as in the present

implementation. In our case, using∆r = 0.00125 m, 1.5∆r ant2.25∆r and studying the evolution

up to 0.05 s, at a locationr ≃ 44R0, OA was 1.45, 1.44, 1.32 and 1.56, respectively foru, p, ρ and

E. At the interfaceOA is more limited and was found 0.39, 0.80 and 1.10, for the position of the

interface,ri, and forui andpi, respectively. This is because across the interface complex phenomena

occur, such as wave reflections and transmissions and generally large variable changes.

The evolution for the finest grid is shown in figure9 in terms of pressure, velocity and density

distributions and interface location at different time instants during the initial shock-wave phase.

This stage involves a cavity expansion and is typically associated with a release of more than50%

of the energy from the explosion (see [22]). In this example, at first (left plots) a primary shock wave

is caused by the detonation and moves away from the cavity while an expansion wave propagates

toward the bubble center lowering the pressure, the velocity and the densityinside the cavity. As time

goes on, the expansion wave is reflected from the bubble center and the inner pressure rises again

moving in the form of a shock wave towards the interface. There, it is partially reflected and partially

transmitted into the liquid phase (center plots). As a consequence of these repeated reflections,

the strength of the involved shock waves reduces in time and compressible effects become less

important in the liquid (right plots). The described results fit well with the reference numerical

solution in [20], based on an arbitrary Lagrangian-Eulerian version of the advective upstream-

splitting shock-capturing scheme, also given in the figure. This confirms again the accuracy of the
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Figure 9. Present radial solution for the underwater explosion in [20]: pressure (top), radial velocity (center)

and density (bottom) distributions at different time instants. The empty circles indicate the instantaneous

radial location of the interface. The triangles are the pressure numerical results in [20]. For sake of clarity,

in the left plot only the Smith’s solutions at 25, 96 and 257µs, are shown.

developed method. On a longer time scale the cavity reaches a maximum radius ofabout 2.2 m

(≃ 13.8R0) at about 0.066 s, this is consistent with the values reported in [20]. Then, within the gas-

bubble phase, the cavity starts to oscillate with smaller amplitudes as shown in the left of figure10.

Both pressure and velocity at the interface (center and right plots) are highest at the beginning. When

the bubble is compressed the pressure tends to a peak and the velocity becomes negative, both their

magnitudes decreasing in time. According to studies in [22], most of the remaining energy from the

explosion is released during the first bubble pulsation.

The equivalent orthotropic plate described above is introduced at a distancerp = 35 m, 8 m and

4 m from the initial explosion to check possible consequences on the bottom of a navy vessel. It
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Figure 10. Present radial solution for the underwater explosion in [20]: location (left), pressure (center) and

radial velocity (right) of the interface as a function of time. The results were obtained using a computational

domain long 100 m, with constant∆r = 0.00125 m within 10 m and then stretching exponentially outwards.

is assumed that the center of the plate is the first location reached by the acoustic waves which, as

time goes on, meet other parts of the structure. The numerical results are given in figure11 in terms

of the evolution of the maximum stress in thex direction on the plate, occurring at the middle in

this case. For the largest distancerp, the maximum stress is smaller than the yield stress and the
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Figure 11. Evolution of the maximum stress on the plate for minimum plate distancerp = 35 m, (left) 8

m (center) and 4 m (right).Pi, p0w andpc are the incident pressure at the center of the plate, the ambient

pressure in water (without hydrostatic pressure) and the pressure at the center of the plate, respectively.σy

is the yield stress of the plate.

plate will deform elastically with a period depending on the mass and elastic-modeadded mass. For

rp = 8 m, plastic deformation seems likely to occur and it will be more pronounced forrp = 4 m.

In the latter case, there will be also danger for plate rupture. To quantify the plastic deformation, as

well as to predict reduction of plate thickness and damage of the ship bottom, the method must be

extended. An extension is also necessary for other reasons. The pressure on the body becomes rather

lower than the atmospheric pressure (the pressure at the center of the plate is the dashed line on the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)

Prepared usingnmeauth.cls DOI: 10.1002/nme



A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIPHASE FLOW 21

right plot). It means that when adding the hydrostatic pressure at the shipbottom, the total pressure

is likely to be negative. This cannot happen in reality, when the pressure becomes close to the vapor

pressure, cavitation will occur locally with liquid becoming vapor. The occurrence of cavitation and

the further stages of the fluid-body interactions require a more general method. In figure11also the

incident pressure at the center of the plate is reported and indicates a loading duration much shorter

than one-fourth of the highest natural period of the structure. This means that the plate undergoes

a first short inertial phase followed by a free-vibration phase, similarly as described in [23], if the

plate is not damaged and the elastic deformation is not negligible.

3.3. 3D acoustic waves interacting with a rigid plate

The developed DD is applied as explained in section2.3to the same underwater-explosion problem

examined in section3.2by assuming an infinite wall at a radial distance of 1.5 m from the center of

the bubble. The 3D sub-domain actually used for the simulation is shown in the left of figure12at a

Figure 12. Left: Radial-3D domain decomposition strategy with maximum pressure location at the initial

time of the DD, instantaneous mesh and rigid wall. Right: pressure distribution in radial direction from the

full radial solution and from the DD solution in the 3D sub-domain.

certain time instant during the evolution. The figure also shows the domain where the radial solution

is used and provided to the 3D solution. The mesh is well refined near the surface of maximum

pressure and becomes coarse sufficiently far from the zone where important flow evolution occurs.

The 3D solution for the acoustic incident wave to the rigid wall is given in the right side of figure12
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22 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

in terms of radial pressure distribution at timet = 0.539 ms and compares well with the full radial

solution also reported. A close view of the 3D solution near the zone of largepressure variation

highlights some small oscillations. These represent a draw-back of using the superbee limiter (see

e.g.[21]) for the variable fluxes to keep sufficiently sharp the flow gradients. The oscillations remain

limited in time but a more suitable limiter will be considered in the future as improvement ofthe

solution method.

The acoustic wave evolution and its interaction with the wall is examined in figure13 in terms

of the pressure and maximum density iso-surfaces evolution. As expectedthe level of the pressure

reduces in time as the acoustic wave propagates and the density iso-surfaces maintain the radial

symmetry until the acoustic wave reaches the wall. There, the wave is reflected with a local rise of

the pressure and a full 3D character of the solution near the wall which enlarges as time goes on.

Figures14 and 15 summarize the advantage of using the adaptive mesh refinement for this

kind of problems. Two simulations have been carried out: one is obtained with the dynamic mesh

algorithm, refining the mesh where density exceed a threshold value and onewith a fixed mesh

with four levels of discretizations for the mesh blocks. This means that the two simulations have

similar local mesh size in the zones of large pressures. The adaptive mesh increases the number

of nodes as the simulation goes on while the fixed mesh has the same high loading cost for the

whole simulation. As a result there is a much larger memory-space requirementand a factor of

about 1.6 in terms of computational time for the same physical time interval simulated.Another

important advantage of the adaptive mesh algorithm is a smoother and more robust solution. This

can be seen in a slice of the pressure solution (figure14) and in the surface with maximum pressure

(figure15) at a time instant during the wave reflection stage from the wall. The fixed meshgives an

unphysical smeared behavior of the pressure, when the mesh becomes too coarse. This is because

in the fixed mesh the discretization remains as it is and it might be not sufficiently fine from time to

time during the evolution. The 3D solver with adaptive-mesh algorithm is able to capture correctly

the wave reflection from the rigid wall and predicts a maximum wall pressure twice the incident

wave pressure.
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Figure 13. Time evolution of the pressure at the centreplaneand density iso-surfaces maximumρ on the line

x = 0 andz = 0. Time increases from left to right and from top to bottom and corresponds to about 0.480,

0.570, 0.615, 0.660, 0.705 and 0.750 ms.
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Figure 14. Adaptive mesh versus fixed discretization: CPU-time and memory requirements, and snapshot of

a pressure solution.

Figure 15. Adaptive mesh versus fixed discretization: snapshot of the surface with maximum pressure.
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4. CONCLUSIONS

The problem of gas cavities surrounded by liquid and interacting with structures is investigated. The

aim is to achieve a solver able to predict the cavity evolution from the acoustic phase until the cavity

oscillation phase and so to switch from a compressible to an incompressible solver for the liquid

phase. Presently only the compressible phase has been focused on, but the later stage was already

examined in [6] so the inclusion of this evolution phase should be manageable. A numerical domain-

decomposition (DD) strategy has been proposed as a compromise between capability, accuracy and

efficiency. It is characterized by a one-way coupling from a radial compressible solution to a 3D

compressible solution. The 3D solver is based on a finite-difference scheme and applies an adaptive

mesh algorithm to ensure proper refinement when and were necessary.The different parts of the

solver have been assessed and physical analyses carried out for the underwater-explosion cases

examined.

The next steps of the research concern the further development of theDD. To make more flexible

and efficient the solver it is useful that not only the mesh is adaptive but also the extension of the

3D sub-domain so to account for the three-dimensional effects when andwhere necessary. The

deformability of the structure must be accounted for in the 3D solver, but thisis an easier extension

of the method.
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