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SUMMARY

The problem of a high-pressure gas cavity and its interaetith surrounding liquid and a close by structure
is examined numerically. Even Though this is of interest angnpractical applications; here the focus is on
an underwater explosion. A one-way domain-decomposifi@) strategy coupling a radial and a 3D solver
for compressible multi-phase flows is proposed and therdiffecomponents are successfully verified. This
is a time-space DD that assumes the explosion occurs suofficiar from boundaries. It means that the
radial solution is used everywhere until radial symmetrgpplicable. When acoustic waves reach a close
structure, the radial solution initiates the 3D solutiommthe body and continues to be applied only far
from the structure and to provide the boundary conditionstfe 3D sub-domain. The advantage is to limit
the computational costs and preserve reliability and amguiThe radial solution could be applied to assess
local damages during the initial acoustic phase; the tipges DD needs to be used to investigate both local
and global consequences on the vessels. The structure eletbdoth as a rigid wall and as a orthotropic
plate which provides a good representation of the bottoffages of ships. Copyrigh© 0000 John Wiley

& Sons, Ltd.
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2 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

1. INTRODUCTION

Several practical examples exist where gas cavities with initially high messtolve in time
affecting the surrounding liquid and inducing relevant loads on closectates. A military
application is represented by underwater explosions. They have beegnized as one of the
main causes for losses of US navy ships in the last sixty years {Pearnld are an issue both
for ships and offshore structures. This highlights the need for prppetictions of the induced
structural effects and for improvement of vessel design. For thi®nessveral physical tests were
performed along the years, most of them not publicly available, and tisewgee developed (see
[2]). Another dangerous scenario is given by shock waves causietpibysion of cavitating bubbles
near hydraulic machinery which can cause erosion of the structur¢3j3e€he same phenomena
can lead to positive outcomes in rather different contexts. Underwaptostans seem to be an
effective technique to improve the harvest in cold countries. The resulingk waves crush the
ice block covering the soil and enlarge the sunshine duration {§eeAhother positive outcome
is represented by implosion of micro-bubbles with ultrasound in biologicalstldwis is used in
medical field as a noninvasive technique to remove calculi in human bodieg5s All these
problems share similar features: a high-pressure cavity oscillates immeigpadrand generates
acoustic waves. These can interact with sufficiently close structuresaamide totally reflected—-
partially reflected and partially transmitted in the solid. The wave-body interactio cause elastic
or plastic deformations or even the rupture of the material. The reflectegsvean go back to their
source,i.e. the gas cavity, and interact with it (see sketch in figliyeThese phenomena might
lead to cavitation. During these initial stages compressibility matters both in thendaégaid
phases, while later on the strength of the acoustic wave reduces andrtpeessible effects remain
important only for the cavity while the liquid can be considered incompresdihis.means a two-

phase 3D solver can be used coupling an incompressible liquid with a caifghedsubble, as it
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIRASE FLOW 3

Figure 1. Main phenomena during the evolution of a highues cavity in a liquid: 1) bubble oscillations
with acoustic waves moving out of the bubble, 2) and 3) irtioa with a structure can cause deformations

and damages, 4) reflected waves from the body can interdcthgtcavity.

has been presented i6]] There, the flow evolution and induced body loads in this stage have been
studied in the case of water shipping with plunging wave hitting the vesselatetkntrapping a
cavity. Here the more complex phenomena involved in the initial stages arelemts Preliminary
results reported in/] and [8] are combined and widened for a more comprehensive documentation
of the research activity. The aim is to develop a solver able to investigaity exolution from
the acoustic phase until the cavity oscillation phase and so able to asssibdeplogsal and global
consequences on the structures.

Despite being a sensitive research topic, underwater explosionsmademore reference results
for verification and validation of the solver. Therefore it is the scenavitsitlered as application
in the present work. An underwater explosion induces a chemical reastta detonation process
and these are responsible for the formation of a hot gas with high peemsdithe release of a shock
wave traveling in the surrounding fluid. The formed superheated, isphebubble will quickly
expand, reducing the inner high pressure until a maximum radius is kakfter that, the bubble
starts to oscillate and induces oscillations in the pressure of the surrodiggliioly In the first stage
(shock wave) both gas and the surrounding liquid behave as compeessithe later stages (gas
bubble) the acoustic wave will disappear in time and the water can be cawid@re and more
incompressible. The interaction of this two-phase fluid with a body will theeépn the closeness
of the body to the explosion zone and by the presence or less of otheddmies e.g.the sea floor,
the free surface.
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4 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

Here we study the problem after the chemical-reaction and detonation stagestudy
numerically the compressible cavity in a generally compressible liquid. A nunhes@tation
strategy is proposed as a compromise between capability in handling the nsech@overning
the evolution and efficiency. It is characterized by a time-space zomabagh coupling two
compressible solvers: a radial solver and a 3D method. The former isiusked whole domain
as long as the acoustic waves do not reach any boundary and radialesyy is preserved. The
latter is switched on near the boundaries (near a structure in the pregdication) and receives
boundary conditions from the radial solver still used far from the batied. The DD is aimed to
investigate the problem in all stages: 1) initial acoustic phase with compreefiaiés everywhere,
2) cavity-oscillation phase with liquid compressibility reducing in time 3) cavity cekapear or
onto a structure.

The two solvers, the domain-decomposition strategy and the orthotropic pldi edopted to
simulate the bottom of a ship are described in sectionhere, some relevant verification studies
are also provided for the radial solution in infinite fluid domain and for thermuessible added
mass of the plate. In sectid®) underwater explosions interacting with structures are examined.
The radial solution is applied for an underwater explosion in an infinite flodithen a plate is
introduced to assess the induced stresses and deformations on theestitttutime-space domain
decomposition is applied next to verify its robustness and accuracy in sigeoéaan underwater
explosion near a rigid wall. In the last section the main conclusions are drad/future steps are

indicated.

2. NUMERICAL SOLVER

The examined problem is of great interest but rather complicated beitangelves at least two
fluids, with different properties, and a generally deformable strucalnle,to affect the surrounding
fluid. The latter means that hydroelasticity can be excited. The differaniries of the proposed

solution algorithm can be described as follows.
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIRASE FLOW 5

2.1. 3D solution: compressible solver for multi-phase flows

Assuming a Cartesian Earth-fixed coordinate system, =), the governing equation of the problem
can be formally written as

%J +V-F =0, 1)
with U = [u, pu, pv, pw, E]T and F with components F, = [pu, pu® + p, puv, puw, (E +
p)ult, F, = [pv, puv, pv* + p, pvw, (E + p)v]T and F, = [pw, puw, pvw, pw? + p, (E + p)w]7;
moreover(u, v, w) is the velocity vectorp the pressure and the total energyle + (u? + v? +
w?)/2]. For the closure of the problem we need an equation of state (EOS) fepéific internal
energye. Here this is assumed of the forpe = f;(p)p + gs(p) ., with the functionsf; and g,
depending on the fluid (indicated by the subscyipproperties. In particular, the JonesWilkinsLee

EOS is used for the gas generated by the explosion @earjd an isentropic Tait relation for the

water (seel)), i.e.

fo=1/w gg = [—Ag(1— ng/(R1P09))€7Rlpog/p — By(1 - wﬂg/(RQPOg))eiRzpog/pg]/w

=17 gw=(Bw—Aw)Vw/(Yw —1)
(2)

Here the subscriptg andw stand for gas and water, respectively, is the initial gas densityy,,
is the ratio of specific heats for water and the other quantities are paramigtrdater and depend
on the properties and initial conditions for the two fluids soon after the explos

Equation () is solved numerically with a second-order finite-difference scheme ioespad
integrated in time with a Total Variation Diminishing (TDV) third-order Runge-Kgitheme (see
e.g.[10]). This is suitable for solving hyperbolic conservation laws with stable du#iieretization
and ensures suitable accuracy in long-time simulations with relatively limited cotigmatiecosts.
The fluxes in the governing equation are solved using a MUSCL schemé vehécsecond-order
accurate extension of Godunov’s method (s&p[11]).

A level set functiony is used to represent implicitly the interface between the two fluids and it is

advected in time using the equation

09 -
S+ ViVe=0 @3)
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6 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

whereV; is the interface velocity calculated as ih2]. Across the interface a Riemann problem
must be solved to ensure proper reflection and transmission of shodswaving the evolution.
This is locally a 1D problem in the normal direction of the interface and is forntladysame as for
the interface condition in the radial symmetric problem explained in se2tion

To make the solution efficient in time, an adaptive mesh refinement is usedimcrto [13]. The
grid is halved either close to the interface between the two fluids or in proximitygbfgradients
of the fluid variableU. An example of mesh refinement is shown in the left of figirat the

starting time of the explosion. Close to the interface the grid size is extremelgdefivhile the

Numbering scheme for child blocks.

Numbering scheme for 4
block neighbors.

v _:.-"" 3
t 5 &

http:/fwww.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html

Figure 2. Left: example of adaptive mesh refinement closké@tas-water interface. Right: algorithm for

the dynamic refinement.

refinement grades to a coarse mesh far from the interesting region.dapéve-mesh algorithm
can be described as follows: the grid is split in blocks (see on the righedighre) and each block
can be successively split in eight blocks so that the local grid size dyalynitianges and ensures
proper refinement where necessary. To achieve this a variable adshiemonitored, for example
the pressure. If this becomes larger than a certain threshold valuegiopée in block 3 of figure
2, then the block is split in eight blocks and the check is repeated on each éthblocks so that
further refinement is introduced if necessary. At the same time the gridriescooarser in time
where the flow variations are not significant.
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIRASE FLOW 7

In many situations one can expect that the explosion occurs very fardtber boundaries and
that hydrostatic pressure does not affect the explosion phenomEnisrteads to a radial symmetry
of the bubble evolution and to the opportunity to simplify the problem as '1D’ imadlél direction,

as explained next.

2.2. 1D’ radial solution: compressible solver for multi-phase flows

We assume to study the problem just after the chemical reactions and thatdetqrhase have
occurred, so the initial values of bubble radius, density and presseeg, to be obtained from
physical tests or extracted from empirical formulas identified along thes ydéaesearch in this field
(seee.qg.[2]). A compressible 1D’ solver along the radial directions then used to simulate the
flow evolution in an infinite domain. Assuming radial symmetry, the multi-dimensiooiging

equation {) reduces to a one-dimensional Euler equation in-tbeection of the form

oU  OF
ov. . or 4)
o Tar =

with U = [p, pu, E|T, F = [pu, pu?, (E + p)u]T and S = 2[pu/r, pu?/r,u(E + p)/r]T. Hereu is
the radial velocityp the pressure an# the total energy (e + u2/2). The same EOSs as in the 3D
case are used for the specific internal energry close the problem for gas and water.

The problem is solved in time with a first order scheme and using the Harteivdra Leer
(HLL) approximate Riemann solver (se®]]) to estimate the fluxe# in each fluid and enforcing
a two-shock approximation to the Riemann problem at the interface as ppoR.2]. The latter
provides an exact solution when a shock wave is reflected and is rel@bid@g$-gas or gas-water
flow. This is given by solving for the two nonlinear characteristics inteisg@t the interface and
using mass and momentum jump conditions for the transmitted and reflected $hedlesulting
equation system is nonlinear and is solved iteratively with a Newton-Raphstimod givingu;,
pi, pL andpl, respectively, the radial velocity and pressure at the interface anldftrend right
density. To avoid possible instability of the solution, the left and right densatiesorrected by
enforcing an isobaric condition across the interface. This interfaceitgois inserted into a ghost
fluid method (seel2]) providing the conditions across the interface to each fluid. In particlefar
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8 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

us assume that the interface is between node i and i+1 of the computatimhahdrthat we need
to solve for the fluid on the left. Here we consider that for the nogéshe density, velocity and
pressure are, respectively; , u; andp;, and the other needed quantities are obtained in accordance.
A similar technique is used when solving for the fluid on the right. At this stagéukes F' can
be calculated in each fluid and the problem can be stepped forward in tirmdo@étion of the
interface is updated using the velocity.

The solver has been satisfactorily verified against several numenagioss, for fully 1D
problems (in this cas& = 0 in equation 4)) and problems with radial symmetry and showed
to be accurate also in later stages of the evolution. For this reason, theebedia no attempt to

implement a second-order temporal scheme. Examples of comparisomngargdigure3. The use
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| -+~ Wardlaw (1998) | © Interface position
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| 2:t=1.0ms [ 1:t=0.5ms
3:t=22ms 2:t=1.0ms
| | 3:t=2.0ms
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\ : 2
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Figure 3. Top-left: case 1.A. Top-right and bottom-leftseal.E. Bottom-right: case 1.F. The initial

conditions for each case are given in table
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIRASE FLOW 9

of the HLL Riemann solver is assessed in the top-left plot of the figure mpeaoing with a solver
identical to the present but for using an exact Riemann solver for thesfl(@odunov method).
The case refers to a 1D problem with a single materiaklaw gas. The HLL solver agrees with
the Godunov method and has the advantage to be applicable for morel it cnditions. The
other shown numerical solution is obtained from a 3D method combining a fixgd<tan grid with

a Lagrangian approach in case of moving bodies and is document&s.iflere, it is ensured the
reliability of the 3D method which is applied to a systematic list of test cases to praviéference
solution for numerical verifications in connection with underwater explasidm particular the
examined problem corresponds to case 1.Alif.[Except for a slightly smoother behavior near
the interface, the present numerical results are consistent with tho%8.iThe accuracy at large
times is documented in the other plots of the figure referring to two cases efwatgr explosions.
Top-right and bottom-left of the figure refer to case 1Eld and examine the stage with a spherical
explosion shock developing in the water. They give, respectively, thespre distributions at four
time instants and the pressure evolutions at four radial positions from titer ¢ the bubble. The
present method predicts correctly the evolution of the pressure in time,lbasatbe location of
the advancing shock wave and of the gas-liquid interface, represbytdte empty circles. The
bottom-right figure is related to case 1F &[] and considers the collapsing stage of the spherical
bubble. Present results fit exactly the nonlinear behavior of the caitjati®ns reported in15].

The initial conditions for the three cases in fig@rare given in tablé.

Case| r; Fluid Left PoL PoL upr, | Fluid Right POR DOR UQR
1A 2 v=14 2.0 |9.80-10°| 0 v=14 1.0 2.45-10° | 0
1.E | 0.16 JWL 1630.0 | 7.80 - 10° 0 Water 1000.0 1.0-10° 0
1.F | 0.16 JWL 1630.0 | 7.80 - 10° 0 Water 1000.38 | 1.0-10° 0

Table I. Test cases froni§]. The data are given using Sl system.
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10 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

Since the problem equation is hyperbolic, the radial solution can be applileéd ieal cases until
the first shock wave from the explosion becomes close to the bottom of@l\wesnother boundary.
This is because the presence of the structure will not affect the fluidd e shock wave. Once
this wave reaches the boundary three-dimensional effects become inigodally while radial
symmetry is still preserved far from the boundary. This is the case whenal approach can be

applied, as described next when the boundary is represented bguftatire.

2.3. One-way time-space domain decomposition for compressible tvee-fibas

As the shock wave becomes close to a body, a time-space domain-decomp@ipstrategy
is switched on, where the compressible 3D solver described in seztiois initiated by the
simplified radial solution given in sectich2 within an inner region affected by the body and used
to investigate the fluid-body interactions. The radial solution is still appliedréen the structure
and provides the boundary conditions to the 3D solver along a contrfalcgeubounding the inner
domain. This implies a one-way coupling.

Figure 4 shows a sketch of the zonal strategy. The circular region gives the wbere the
problem is radially symmetric and the radial solution is used, while the rectarrggian represents
the boundary of the 3D sub-domain. They have an overlapping layeewine solution is forced to
go smoothly from the radial to the 3D behavior. In particular, the figuregjitie dimensions of the
zonal strategy used for the underwater explosion examined in s€ciorhe radial solution is used
within the circular domain, up to a distance of l#a\z,,. from the bubble center. Her®z,,.. is the
local size in the 3D sub-domain. Within the radial layer ak4,,. from this distance, the problem
is solved both using the radial solver and the 3D method and the numericabsadkiforced to
smoothly go from the radial to the 3D solution. For larger distances, the BOigois applied.
The developed DD limits the computational costs which are quite high if a coniige8® solver
is used for the whole simulation and everywhere due to the limits in the time stepatedwéth
the local speed of sound in the fluid. If the explosion occurs sufficielfdlyecto boundaries, such
as the free surface, the sea floor or vehicles, then three-dimensftatdt @re important since the
beginning and this DD cannot be applied. In this case, the 3D numericakrst#gcribed in section
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIRASE FLOW 11

1/8 of the domain is analyzed (1.5mx3mx3m)

3D Solution

*Finite differences

*TVD 3rd order Runge-Kutta
*MUSCL scheme

*Adaptive mesh refinement

‘\Smoothing length 4Ax;,,

\

1D solution
(R=1m-4A1x,,,)

Figure 4. Radial-3D domain decomposition strategy with vaties used in the underwater-explosion

problem discussed in secti@n3.

2.1 must be used for the whole simulation. This means a computational cost and ayrspace

increasing with a factor

aN + (1 —a)N3

- (5)

wherea is the fraction of the domain solved with rally symmetric 1D solution ahi the number

of points per characteristic length.

2.4. Structural modeling: orthotropic plate and coupling with fluid-dynanmabfem

In a first attempt to estimate the local effects on the bottom of a vessel, thigbasrindelled as a
rectangular orthotropic plate with lengthand widthB in x andy direction, respectively. The plate

is assumed to undergo linear deformatiofx, y, t) governed in time and space by the equation

2 4 4 N
mE + D5 + 25858 + DGt = oy, ©

Herem is the average plate mass per unit arba,and D,, are its flexural rigidities in the two
main directions and3 B is its effective torsional rigidity (see.g.[16]). On the right-hand-sidey
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12 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

is the local hydrodynamic pressure acting on the plate which depends @pdbe, timev and,
in particular, on its time derivatives. If the DD strategy is considepdad,obtained by solving the
fluid-structure coupled probleme. the mentioned dependence on the derivatives &f implicit.

If the radial solution is used to simulate the incident acoustic waiemodelled as

p(w,y,w,t) = 2P;(r,t) — ;£ %% + added-mass contribution (7)

Here P; is the incident wave pressure,is the speed of sound artdis the angle between the
direction of the incident wave reaching locally the plate and the plate norntabrvésee left

sketch in figureb). The first two terms on the right-hand side represent the sum of the intcide

plate

n7

FEL
A 3 I
Acoustic wave
Plate forced to oscillate with X;(x)Y;(») +Plate forced to oscillate in heave with unitary speed
*Rigid fixed part *High-frequency ’free-surface’ condition: ¢=0

——High-freq. free-surface’ condition: ¢=0
Gas cavity

Figure 5. Left: radial acoustic waves reaching a plate affiditien of the angled. Center: problem solved
with a BEM to find the added masses for the elastic modes. Rigbblem solved with a BEM to find the

heave added mass for the plate.

and reflected wave from the wall leading to twiég for a fixed wall 'plus’ an acoustic wave-
radiation damping in the case of rigidly moving or deformable plate. They agiglthe acoustic
phasej.e.when compressibility matters also for the liquid. The last term, not written expliicth
incompressible added-mass contribution which matters when the water betsaveompressible
and the plate oscillates as a consequence of the interaction with the incidastiasvave. In the
present implementation the acoustic wave-radiation damping term is switchg&leff?; becomes
half of the acoustic pressure associated with the incident wavé, P; < pcU;, with U; the radial
velocity of the incident wave. The added-mass term is used during the \sholdation. This
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIRASE FLOW 13

contribution is estimated in an approximated way studying the radiation problesaéh plate
mode and assuming that the plate is surrounded by a fixed wall and then diy'fee® surface’
with velocity potentiakyp = 0 (see center sketch in figuE. This means that it is a high-frequency
added mass estimation. Obviously this is an approximation because in thesealf@ship, the
plate is used to simulate the grillage on the bottom so the free surface will bdigraédawith
the plate. The surrounding fixed wall is used to avoid a pure Neumanteprahich would lead
to a solution in general dependent on an arbitrary constant. The dimeridime fixed wall are
assumed large enough so that increasing them there is practically no @efloerthe added mass.
It was found that an extension alongsay!l,,, > 4L and alongy, sayl,, > 4B, was enough. So
to limit the computational costs, a uniform mesh was used within a zone with similarsexes
as the elastic plate and then a stretching was introduced to have a fixedbnellazger than the
minimum required dimensions. The stretching was continued also on the tirees’. Numerical

convergence of the added-mass results was ensured by succeSaement.

B/L | Form.1| Meas. 1| Form. 2| Form. 3| Meas. 2| Pot. Sol.| Present Sol

0.1 0.950 0.953 | 0.995 0.947 0.971

05 | 0.750 | 0.733 | 0.742 | 0.895 | 0.911 0.757 0.763

1.0 | 0.500 | 0.565 | 0.557 | 0.707 0.694 0.579 0.583

Table II. Infinite-frequency added mass in heave for a pldeze 'Form.’ refers to an empirical formula,
'Meas. to experimental results, 'Pot. sol.” to the potahkflow solution based on a dipole-distribution on
the plate in P4]. The results are presented in the same order as in table23]inllhe numbers correspond

to the nondimensional added mas§, = Ass/[7p(0.5B)?L).

Verifications and validations of the Boundary Element Method (BEM) dg@ezldo estimate the
added masses are presented in tdbdnd figure6, respectively, for the case of infinite-frequency
added-mass in heave for a plate surrounded by an infinite flat fresceu(gee right sketch in figure
5) and for the added masses of the elastic modes for a plate as discusgedlialibe case of the
heave, the present results tend to provide slightly large values but cabfpand close to the other
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14 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN
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Figure 6. Added mass for the elastic modes of a simply-supgamiform plate: present results and solution

from [25]. A%; = 7A;;/(pBL?).

reference solutions. For the elastic modes, they fit well the referenoenal solution based on

energy considerations and estimation of the pressure jump across the plate.

3. APPLICATIONS

Here the problem of underwater explosions with structures is examineddesathe potentiality of

the different parts of the solver and to carry on a more detailed physiesgtigation.

3.1. Radial acoustic waves interacting with a uniform plate

The underwater explosions studied experimentally and numericallyi7h fpr uniform steel
restrained plates is examined here to verify the implementation of the solvediat ireident
acoustic waves and elastic plate and to check the reliability limits of the linear modéhd
structure. The experiments examined a plate at different distapéesm a charge and also varied

the charge weightV’. The combination of these parameters may lead to plastic deformations and
to the rupture of the plate. In this framework a relevant parameter is thé shor defined in

[17] as SF = 0.45v/W /r,. Here we examine two cases with charge weight= 0.005 Kg and
minimum plate distances, = 0.50 and 0.15 m. These two conditions correspondfo= 0.064

and 0.21&/@/m, respectively, and led experimentally to a limited and a more pronounced plastic
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIRASE FLOW 15

deformation of the plate, respectively, without rupture of the structunés Theans that strictly
speaking we are outside the range of applicability of our linear plate modeNouprding to [L7]
the maximum incident wave pressure in the two cases was about 16.45.86dM#a, respectively.
So the underwater-explosion radial solution was designed to achieerttesmum values at the
plate location for the two cases. Left plot of figufeshows the time evolution of the deformation
at the center of the plate as obtained by the present orthotropic plate ahe Bynite Element
Method (FEM) in [L7] when assuming linear behavior of the structure for the casewyith 0.50

m. Since no added-mass contribution is accounted fol fy plso our results consider only the

0.12 —

—@ — Nemerical Without Strain Rate Effects
2000.00 —

— R jeyathile et al. (2000) line - A - Numerical With Strain Rate Effects *
B Present (without added mass) —— Experimental r
002 160000 —| = § :
- - - - Present (without added mass) £ e [0 Presentwithoutadded mass /‘
w, (m) B Ramajeyathilagam et al. (2000)-linear 3 J/ 7 Presentwith added s
0.01 "_. “m £2 nwm Dynumic Yield //[/ 4
o [ ] 3 e
- 2: :
ow”’ - u i §
K% £ 0000 | B oo
'\ Strain Rate N
[ &

-0.01 [ . 40000 —

0 0,001 t(s) 0002

T e T T T
- i "o 60 080 0.00 0.20 0.40 0.60 08

Shock Factor (Kg/m) Shock Factor (Kg*/m )

Figure 7. Underwater explosion studied it/]. Left: evolution of the plate deformation at the center of
the plate forr, = 0.50 m. Center: maximum strain rate and dynamic yield stressirdadafrom empirical
expression §). Right: plastic deformation as obtained by experiment mmmerics in 17] and present
results without and added mass effects. The center and figghres are original figures fronilf] with

present results added.

acoustic-load contributions. The agreement is fairly good both in terms oftadgs and of time
scales of oscillations. This is very promising considering the differeneweden the two structural
solution methods, as well as between the incident wave pressures irsewicailated by the radial
solver and in 17] estimated from a classical empirical formula based on the underwatkrsexp
studies reported for instance i8]] The center plot of figur& examines the dynamic yield stress
o4y as a function of the shock factet,, is obtained using the empirical Cowper-Symonds formula
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16 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

(see [L8])

oay = o,(1+|¢/D|™) (8

with ¢, the static yield stress anl andn two empirical material parameters. In the present case
of high-strength steel;,, = 400 MPa, D = 40/s~! andn = 5. This formula states that the dynamic
yield stress becomes larger than the static value due to effects of the steaimmnahe constitutive
properties of the material. Present, results for the two examined cases have been obtained for
a simulation, after the impact, as long as the reference results and then estimgtingm the
maximumeé recorded. Also in this case the agreement is quite good suggesting simdemd&bns
of the plate in time. The right of figuréexamines the plastic deformation as measured in the model
tests of [L7] and as numerically predicted with a nonlinear structural model accountimgt éor the
change of the dynamic stress due to the strain rate effects. In our cgsethetion of the plastic
deformation is roughly obtained as the difference between the maximundeecdeformation on
the plate and the maximum elastic deformation. The latter is estimated as the maximumediefo
of the plate for maximum stress smaller than or equal to the instantaneous dytelthgtress. The
comparisons show that our predictions are consistent foe= 0.064 with the nonlinear-structural
numerical results in1[7] without strain-rate corrections. This is reasonable in this case because
the plate has a very limited plastic deformation and so the elastic deformation dosniRegsent
results overpredict much the plastic deformation$a# = 0.212 /Kg/m because in this case the
variations in the structural properties of the steel plate are important bothns t&f nonlinear
stress-strain constitutive link and of the temporal increase of the dynartdeyiess. It is interesting
to note that when including the incompressible added-mass effects the estiarattiorates and
becomes very close to the nonlinear solution without strain-rate effects.

The plastic regime is out of the scope of the present work but its analyssihiinteresting
because it has shown that within a certain limit the elastic plate modelling is ablevidgpeorough

estimate of onset and value of plastic deformations.
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIRASE FLOW 17

3.2. Radial acoustic waves interacting with a navy ship bottom

Here the radial solution for the underwater explosion in infinite liquid is usadvestigate the
possible consequences on the bottom of a navy ship as a function of its mindistancer,
from the initial charge. The bottom grillage arrangement is chosen as iffigwation 1a among
those studied experimentally it9] (see sketch in figur8) and an equivalent orthotropic plate was

obtained extended as the grillage and restrained at all edges. The fEraai¢he equivalent plate

Arrangement from full-scale experiments by Smith (1975):

Figure 8. Steel-grillage arrangement for bottom of navypslais studied experimentally ih9]. Here L and

B are the longitudinal and transversal length of the grillagspectivelyz andb are the distance between
two transverse frames and two longitudinal stiffenerspeesvely. In the present case, grillage 1la with 4
transverse frames and 4 longitudinal stiffeners is exathilke parameters alfe= 6.096 m, B = 3.048 m,
t=0.008M, hywz = 0.15367 M, Lz = 0.00721 M, by, = 0.07899 M, L, = 0.01422 M, hyy = 0.25756 M,

twy = 0.00937 M, by, = 0.12548 m, ¢, = 0.01829 m.

are given in tablell .

L B m D, D, BB oy

6.069 | 3.048 | 85.785| 1.262107 | 3.517107 | 2.61410* | 250.410°

Table Ill. Equivalent orthotropic plate for the steel-tagje arrangement 1a of9] documented in figuré.
The values are given Sl systefand B are the plate extensionsinandy direction, respectivelyr, is the

yield stress of the plate.
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18 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

The underwater explosion documented2d][has been considered as test case since it is rather
used as sample of explosion to assess possible ship damages. The initmbfdtle gas cavity is
Ry = 0.16 m and the parameters for the EOS of the fluids, using Sl systenpgre: 1630.0, po, =
8.381-10%, A, =3.712- 10", B, =3.23-10°, Ry =4.15, Ry = 0.95, w = 0.30, po, = 1025.0,

Pow = 1.0-10%, A, = 1.0-10%, B,, = 3.31E8 and~,, = 7.5.

A convergence analysis of the radial solver has been performed asiogiputational domain
10 m long and a uniform radial discretizatiakr. The order of accuracp A (see R1]) was
adopted as measure, which involves the time integral of the selected varabldated with
three discretizations and should be one for a solver accurate to therfiest as in the present
implementation. In our case, using = 0.00125 m, 1.5Ar ant2.25Ar and studying the evolution
up to 0.05 s, at a location~ 44Ry, OA was 1.45, 1.44, 1.32 and 1.56, respectively.fop, p and
E. At the interfaceD A is more limited and was found 0.39, 0.80 and 1.10, for the position of the
interfacey;, and foru; andp;, respectively. This is because across the interface complex phenomena
occur, such as wave reflections and transmissions and generally ¢arglele changes.

The evolution for the finest grid is shown in figugen terms of pressure, velocity and density
distributions and interface location at different time instants during the initadlskvave phase.
This stage involves a cavity expansion and is typically associated with ageéasore thars0%
of the energy from the explosion (s&]). In this example, at first (left plots) a primary shock wave
is caused by the detonation and moves away from the cavity while an expavesie propagates
toward the bubble center lowering the pressure, the velocity and the diesgity the cavity. As time
goes on, the expansion wave is reflected from the bubble center anchérepiressure rises again
moving in the form of a shock wave towards the interface. There, it is fgrtidlected and partially
transmitted into the liquid phase (center plots). As a consequence of theesae reflections,
the strength of the involved shock waves reduces in time and compresddatées dfecome less
important in the liquid (right plots). The described results fit well with the rexfiee numerical
solution in 0], based on an arbitrary Lagrangian-Eulerian version of the adeecipstream-

splitting shock-capturing scheme, also given in the figure. This confirais éige accuracy of the
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Figure 9. Present radial solution for the underwater expiois [20]: pressure (top), radial velocity (center)
and density (bottom) distributions at different time imgt&a The empty circles indicate the instantaneous
radial location of the interface. The triangles are the sues numerical results ir2()]. For sake of clarity,

in the left plot only the Smith’s solutions at 25, 96 and 25/are shown.

developed method. On a longer time scale the cavity reaches a maximum radiogudf2.2 m
(~ 13.8Ry) at about 0.066 s, this is consistent with the values report&tDinThen, within the gas-
bubble phase, the cavity starts to oscillate with smaller amplitudes as shown it ibfefilgdire 10.
Both pressure and velocity at the interface (center and right plots)giredi at the beginning. When
the bubble is compressed the pressure tends to a peak and the velocihebewmgative, both their
magnitudes decreasing in time. According to studie® i, [most of the remaining energy from the
explosion is released during the first bubble pulsation.

The equivalent orthotropic plate described above is introduced at acksta= 35 m, 8 m and
4 m from the initial explosion to check possible consequences on the boftamavy vessel. It
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Figure 10. Present radial solution for the underwater esiptoin [20]: location (left), pressure (center) and

radial velocity (right) of the interface as a function of 8nlrhe results were obtained using a computational

domain long 100 m, with constatdr = 0.00125 m within 10 m and then stretching exponentially outwards.

is assumed that the center of the plate is the first location reached by thsiaewves which, as
time goes on, meet other parts of the structure. The numerical resultsvandmgyfigurellin terms
of the evolution of the maximum stress in thalirection on the plate, occurring at the middle in

this case. For the largest distangg the maximum stress is smaller than the yield stress and the

— 0,,.(MPa) — 0,,.(MPa) — 0, (MPa)
|
wool = G L R o (PP (Po,0) (M)
—— 0, (MPa) —— 0, (MPa) —— 0, (MPa)
=== (P P, (P, 9) (M)
2000 2000} 2000}
-=- A\
[N N AN R .
0 0 N =N O TR, s LY 7
LYY
Yy i S
-2000 -2000+ 2000} *
40005 0.03 t(s) -4000, 0.03 t(s) -4000, 0.03 t(s)

Figure 11. Evolution of the maximum stress on the plate farimum plate distance, = 35 m, (left) 8
m (center) and 4 m (right)?;, po., andp. are the incident pressure at the center of the plate, theeautnbi
pressure in water (without hydrostatic pressure) and tessuire at the center of the plate, respectivgly.

is the yield stress of the plate.

plate will deform elastically with a period depending on the mass and elastic-adogel mass. For
rp, = 8 m, plastic deformation seems likely to occur and it will be more pronounced,fer4 m.

In the latter case, there will be also danger for plate rupture. To quanéfyléstic deformation, as
well as to predict reduction of plate thickness and damage of the ship bottemmettnod must be
extended. An extension is also necessary for other reasons. ®saeiren the body becomes rather
lower than the atmospheric pressure (the pressure at the center oftthis e dashed line on the
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A DOMAIN-DECOMPOSITION STRATEGY FOR A COMPRESSIBLE MULTIRASE FLOW 21

right plot). It means that when adding the hydrostatic pressure at théstigon, the total pressure
is likely to be negative. This cannot happen in reality, when the pressgmnes close to the vapor
pressure, cavitation will occur locally with liquid becoming vapor. The o@e of cavitation and
the further stages of the fluid-body interactions require a more genetlabchén figurellalso the
incident pressure at the center of the plate is reported and indicatesraldadation much shorter
than one-fourth of the highest natural period of the structure. This sniban the plate undergoes
a first short inertial phase followed by a free-vibration phase, similalglescribed in43], if the

plate is not damaged and the elastic deformation is not negligible.

3.3. 3D acoustic waves interacting with a rigid plate

The developed DD is applied as explained in secficdiio the same underwater-explosion problem
examined in sectiofi.2 by assuming an infinite wall at a radial distance of 1.5 m from the center of

the bubble. The 3D sub-domain actually used for the simulation is shown in thé fiefure 12 at a

Ax,,,=0.039R,

L]
Ax,,.=0.312R, '

3D solution (five times coarser than the 1D)
1D solution

t=34518
1=539us

Domain
of
solution 108

A

Pressure maximum 6 >

0.5 i 5 r(m) 2

Figure 12. Left: Radial-3D domain decomposition strateghvwnaximum pressure location at the initial
time of the DD, instantaneous mesh and rigid wall. Rightspuee distribution in radial direction from the

full radial solution and from the DD solution in the 3D subrdain.

certain time instant during the evolution. The figure also shows the domairwieeradial solution
is used and provided to the 3D solution. The mesh is well refined near tfaeswf maximum
pressure and becomes coarse sufficiently far from the zone wheretampfiow evolution occurs.
The 3D solution for the acoustic incident wave to the rigid wall is given in thet 8gle of figurel2
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22 M. GRECO, G. COLICCHIO AND O.M. FALTINSEN

in terms of radial pressure distribution at time- 0.539 ms and compares well with the full radial
solution also reported. A close view of the 3D solution near the zone of [aegsure variation
highlights some small oscillations. These represent a draw-back of usraypierbee limiter (see
e.g.[21]) for the variable fluxes to keep sufficiently sharp the flow gradients.ddcillations remain
limited in time but a more suitable limiter will be considered in the future as improvemeaheof
solution method.

The acoustic wave evolution and its interaction with the wall is examined in figBife terms
of the pressure and maximum density iso-surfaces evolution. As expetéalel of the pressure
reduces in time as the acoustic wave propagates and the density is@surfamtain the radial
symmetry until the acoustic wave reaches the wall. There, the wave is rdfigitkea local rise of
the pressure and a full 3D character of the solution near the wall whielges as time goes on.

Figures14 and 15 summarize the advantage of using the adaptive mesh refinement for this
kind of problems. Two simulations have been carried out: one is obtained eittiyttamic mesh
algorithm, refining the mesh where density exceed a threshold value anditbna fixed mesh
with four levels of discretizations for the mesh blocks. This means that theitmdations have
similar local mesh size in the zones of large pressures. The adaptive neesasies the number
of nodes as the simulation goes on while the fixed mesh has the same high loaslirigrdhe
whole simulation. As a result there is a much larger memory-space requiremerg factor of
about 1.6 in terms of computational time for the same physical time interval simukatether
important advantage of the adaptive mesh algorithm is a smoother and most sohution. This
can be seen in a slice of the pressure solution (figdyend in the surface with maximum pressure
(figure 15) at a time instant during the wave reflection stage from the wall. The fixed giesfian
unphysical smeared behavior of the pressure, when the mesh becanwesitee. This is because
in the fixed mesh the discretization remains as it is and it might be not sufficiamljréim time to
time during the evolution. The 3D solver with adaptive-mesh algorithm is ableptoi@acorrectly
the wave reflection from the rigid wall and predicts a maximum wall pressuce tie incident

wave pressure.
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Figure 13. Time evolution of the pressure at the centrepdaaedensity iso-surfaces maximynon the line
z = 0 andz = 0. Time increases from left to right and from top to bottom and-e€sponds to about 0.480,

0.570, 0.615, 0.660, 0.705 and 0.750 ms.
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Figure 14. Adaptive mesh versus fixed discretization: Cirté-and memory requirements, and snapshot of

a pressure solution.

Adaptive Mesh Refinement Fixed Mesh on 4 levels

Figure 15. Adaptive mesh versus fixed discretization: Imatpsf the surface with maximum pressure.
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4. CONCLUSIONS

The problem of gas cavities surrounded by liquid and interacting with stegisiinvestigated. The
aim is to achieve a solver able to predict the cavity evolution from the acounstgepuntil the cavity
oscillation phase and so to switch from a compressible to an incompressibde fwlthe liquid
phase. Presently only the compressible phase has been focused the, later stage was already
examined in§] so the inclusion of this evolution phase should be manageable. A numeyicalio-
decomposition (DD) strategy has been proposed as a compromise beapedility, accuracy and
efficiency. It is characterized by a one-way coupling from a radiatessible solution to a 3D
compressible solution. The 3D solver is based on a finite-differencenscrd applies an adaptive
mesh algorithm to ensure proper refinement when and were neceBlsarglifferent parts of the
solver have been assessed and physical analyses carried ou¢ fandarwater-explosion cases
examined.

The next steps of the research concern the further developmentDbthto make more flexible
and efficient the solver it is useful that not only the mesh is adaptivelbattlae extension of the
3D sub-domain so to account for the three-dimensional effects whenvhark necessary. The
deformability of the structure must be accounted for in the 3D solver, buisthis easier extension

of the method.
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