
A Tool-based Semantic Framework for Security
Requirements Specification

Olawande Daramola
(Department of Computer and Information Sciences

Covenant University, Ota, Nigeria
Olawande.daramola@covenantuniversity.edu.ng)

Guttorm Sindre

(Department of Computer and Information Science
Norwegian University of Science and Technology (NTNU), Trondheim, Norway

guttors@idi.ntnu.no)

Thomas Moser
(Christian Doppler Laboratory for Software Engineering

Integration for Flexible Automation Systems
Vienna University of Technology, Vienna, Austria

thomas.moser@tuwien.ac.at)

Abstract: Attaining high quality in security requirements specification requires first-rate
professional expertise, which is scarce. In fact, most organisations do not include core security
experts in their software team. This scenario motivates the need for adequate tool support for
security requirements specification so that the human requirements analyst can be assisted to
specify security requirements of acceptable quality with minimum effort. This paper presents a
tool-based semantic framework that uses ontology and requirements boilerplates to facilitate
the formulation and specification of security requirements. A two-phased evaluation of the
semantic framework suggests that it is usable, leads to reduction of effort, aids the quick
discovery of hidden security threats, and improves the quality of security requirements.

Keywords: security requirements, ontology, requirements boilerplates, information extraction,
security threat, misuse cases.
Categories: D.2.1, M.4, M.8

1 Introduction

The advent of the Internet and virtual environments that afford systems integration
and collaboration among remotely based systems has increased the importance of
security considerations when developing software systems. Security requirements
specification entails the formal documentation of identified security needs of a system
in order to ensure the development of secure information systems. However, attaining
good quality in security requirements specification requires first-rate professional
expertise, which is scarce. There is a lack of security experts or security requirements
engineers in many organizations. This is because most requirements engineers have
had no training in identifying, analysing, specifying, and managing security
requirements (SR) [Firesmith 04; Salini 11]. Hence, when security requirements are

Journal of Universal Computer Science, vol. 19, no. 13 (2013), 1940-1962
submitted: 7/11/12, accepted: 28/6/13, appeared: 1/7/13 © J.UCS

defined, they are often either too vague or overly specific in constraining designers to
use particular mechanisms [Firesmith 04]. This scenario motivates the provision of
tool-based support for security requirements specification. The tool-based support
will: 1) assist the requirements analyst (subsequently referred to as analyst) to
identify security threats, which is usually a manual procedure in which the quality of
SR depends on the expertise of the human personnel; 2) stimulate the adoption of
appropriate defence strategies to deal with the identified security threats; 3) enable the
formulation of SR in a consistent way, minimizing ambiguity, and enhancing
correctness of SR; and 4) reduce the effort needed for security requirements
specification by allowing the reuse of previously specified SR in subsequent
instances. The overriding aim is to complement the capabilities of the analyst in the
task of security requirements specification so that the quality of SR is improved and
the amount of human effort reduced.

In order to realize this aim, we have adopted a semantic-based approach that uses
an integration of ontologies and requirements boilerplates to complement the
activities of the analyst during security requirements specification. A requirement
boilerplate is a predefined textual template that can guide the way requirements are
written so that a consistent pattern can be maintained when writing structurally
similar requirements [Hull 04]. The use of ontologies provides the necessary
background knowledge, and domain knowledge that is required to identify security
threats, and recommend appropriate countermeasures, while the requirements
boilerplates provide a reusable template for writing SR in a consistent way in order to
minimize ambiguity. Relative to previous approaches, the main contribution of this
work is the provision of an elaborate semantic-based procedure that enables the tool-
assisted formulation of SR in a way that enhances quality, and reduces effort needed
to formulate SR. This is because our approach: 1) enables identification of security
threats from security threat description scenarios; 2) provides recommendation of
defence actions as countermeasure to identified security threats; and 3) enables
pattern-based reuse of requirements boilerplates when writing SR.

The rest of this paper is as follows. Section 2 gives an overview of contextual
background and related work, while Section 3 presents our approach. Section 4
discusses the evaluation, results and threats to validity. The paper is concluded in
Section 5 with a discussion of further work.

2 Background and Related Work

In this section, we provide background information on security requirements
engineering (SRE), application of ontologies to SRE, and the use of boilerplates for
security requirements specification. Additionally, we discuss related work.

2.1 Security Requirements Engineering (SRE)

A requirement is "a condition or capability that must be met by the system to solve a
problem or achieve an objective" [IEEE Std. 98]. Requirements engineering is a
systematic process to elicit, analyse, specify, validate, and manage such requirements
[Kotonya & Sommerville 98]. Security requirements engineering (SRE) can then be
defined as requirements engineering specifically targeting the elicitation,

1941Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

specification, analysis, validation and management of security requirements, where
security can be understood as the ability of the system to cope with malicious attacks,
ensuring confidentiality, integrity and availability of system data and functions. SRE
is designed to ensure early consideration of probable security concerns when
developing secure software systems. It aims to integrate the security needs of a
system particularly from the attacker’s perspective into the software development
process as early as possible. According to [Chandrabrose 11], security requirements
objectives can be categorized as authentication, authorization, integrity, intrusion
detection, non-repudiation, confidentiality, and auditing. Some of the most well-
known SRE approaches are described as follows.

i) Comprehensive, Lightweight Application Security Process (CLASP)
 The CLASP approach [Viega 05; Graham 06] is a life-cycle process that suggests a
number of different activities across the software development life cycle to improve
security. The key steps of the CLASP approach are: 1) identify system roles and
resources; 2) categorize resources into abstractions; 3) identify resource interactions
through the lifetime of the system; 4) for each category, specify mechanisms for
addressing each core security services. The CLASP handles security requirements by
performing a structured walkthrough of resources, and determining how they address
each core security service throughout the lifetime of that resource [Graham 06].

ii) System Quality Requirements Engineering (SQUARE)
SQUARE is a requirements engineering methodology for eliciting, categorizing,
and prioritizing security requirements for information technology systems and
applications [Mead 05]. The process consists of nine steps performed in a
sequential order by a team of requirements engineers, including at least one
expert in risk assessment methods, and project stakeholders. The steps are: 1)
agree on definitions; 2) identify assets and goals; 3) develop supporting artifacts;
4) perform risk assessment; 5) select elicitation technique; 6) elicit security
requirements; 7) categorize requirements; 8) prioritize requirements; 9) inspect
requirements. SQUARE is performed at the requirements elicitation stage of the
development life cycle to develop security-related system requirements. By
guiding stakeholders and requirements engineers through the specification of
security requirements, SQUARE ensures that security is addressed early in the
project life cycle in the same way as functional attributes and other quality
attributes [Salini 11].

iii) The Security Requirements Engineering Process (SREP)
SREP [Mellado 07] is based partially on SQUARE but incorporates consideration of
the Common Criteria [Common Criteria, 99] - an international standard (ISO/IEC
15408) for computer security certification - and notions of reuse. SREP is quite
similar to SQUARE [Salini 11]. It is a nine-step process consisting of the following
activities: 1) agree on definitions; 2) identify vulnerable and/or critical assets; 3)
identify security objectives and dependencies; 4) identify threats and develop
artifacts; 5) risk assessment; 6) elicit security requirements; 7) categorize and
prioritize requirements; 8) requirements inspection; and 9) repository improvement.

1942 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

iv) Secure Tropos
Secure Tropos [Mouratidis 04] is a methodology that is based on the i*-modelling
framework for agent-oriented software development. It extends the Tropos
methodology [Yu 01], by including concepts for modelling the security aspects of
systems. The additional concepts introduced to Secure Tropos are: security
constraint, secure dependency, and secure entity. Thus, the Secure Tropos process
also extends the Tropos process with phases to analyze and model the new concepts.
These activities produce different kinds of diagrams, which are used as input to the
later activities. The activities are: security reference modelling, security constraint
modelling, and secure capabilities modelling [Mouratidis 04].

v) The CORAS Method
CORAS [Braber, 07] is a UML-based method for model-based security analysis that
is originally inspired by the notion of misuse cases. The misuse case (MUC) models
the various ways in which the activities of a malicious user can be a threat to a
system. It is consist of a diagram model – called MUC, and textual equivalent called
the textual misuse case (TMUC). The MUC is an extension of the regular Use Case
(UC) diagram with new additional concepts such as misusers, misuse cases and
mitigation use cases in order to elicit the security requirements of a system [Sindre
05]. CORAS is a seven steps process that provides a customized language for threat
and risk modeling and has a detailed guide on how the language should be used to
capture and model relevant information during the security analysis. CORAS methods
provides a computational tool designed to support documenting, maintaining and
reporting analysis results through risk modeling, table-based documentation,
consistency checking and more. The seven steps of CORAS are: 1) Introduction; 2)
high level analysis; 3) approval of target description; 4) risk identification; 5) risk
estimation; 6) risk evaluation, and 7) risk treatment.

2.2 Application of Ontologies to SRE

Ontology is a shared formal conceptualization of a domain that allows definition of
semantic relationships between entities, and inference of knowledge through
reasoning at run-time [Happel 10]. Ontologies have an important role to play in SRE.
Research efforts on security ontologies such as [Fenz 09; Herzog 07; Kim 05] attest to
this. In [Donner 03] the use of ontology was suggested as the solution to the problem
of vaguely defined vocabularies among security practitioners.

According to [Souag 12], specific applications of ontology to SRE include:
(i) Security taxonomies – this are concept hierarchies of security terms and

concepts.
(ii) General security Ontologies – this contains definition of all aspects of security

such as assets, threats, and vulnerabilities. They are knowledge infrastructures
that are created to support SRE activities such as threat modelling and security
risk analysis.

(iii) Specific security ontologies – this have been developed to support specific
security activities such as intrusion detection, computer network attack, and
system vulnerabilities.

(iv) Security ontologies for Semantic Web – this have been developed for the
security of semantic web resources such as software agents, and web services.

1943Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

(v) Security ontologies for risk analysis – this are designed for the analysis of
industrial risk that are associated with identified security threats.

(vi) Ontologies for security requirements – this supports the definition of security
requirements.

Generally, a good ontology will facilitate more effective reporting of incidents,
sharing of information, and interoperable security collaborations among different
organizations. Our proposed framework uses ontology to ensure the standardization of
vocabulary in security requirements specification, threat identification, and the
recommendation of appropriate countermeasure to identified threats.

2.3 Boilerplates for Security Requirements

The notion of requirements boilerplates (RB) which stems originally from the work of
[Hull 04], and subsequently applied in [Daramola 11] enables the writing of
requirements in a consistent manner. A requirement boilerplate is a pre-defined
structural template for writing requirement statements. It imposes a uniform structure
on the way requirements are written, by affording a level of expressivity akin to using
natural language, yet minimising ambiguity in requirement statements. The fixed
parts of requirement boilerplate are reused when writing requirements, while the
analyst can fill in the parameter parts manually.

An example of a boilerplate taken from the webpage1 is:

“BP2: The <system> shall be able to <action> <entity>”

Here, BP2 is the label of this particular boilerplate. The terms in < > brackets are

parameters where something must be filled in when the boilerplate is instantiated to a
concrete requirement. The words that are outside brackets are the fixed syntax
elements (FSE) that will be kept as-is when the boilerplate is instantiated. An example
of an instantiation of this particular boilerplate, would be "The Internet banking
system shall be able to authenticate all its users". In this case <action> has been
replaced by “authenticate” and <entity> by “all its users”. In some cases, several
boilerplates may be combined to make precise and testable requirements, e.g.
combining BP2 with BP37 ...at least <percentage> of the time will yield the
requirement "The Internet banking system shall be able to authenticate all users at
least 99.99% of the time".

Thus, the use of boilerplate will ensure that a unified structure and style of
writing is used for requirements that pertain to specific classes of system function,
capability, goals, or constraints. The FSE in each boilerplate will remain the same for
all requirements that used a certain boilerplate. For instance, all who used BP2 +
BP37 to specify that the system should be able to do something with some specific
frequency, will now use phrases "shall be able to", "at least", "times per", rather than
various other phrases that could have more or less the same meaning, e.g., "have the
ability to", "be capable of", "a minimum of", "more than", "shots per", etc.

Therefore, using boilerplates will: i) facilitate the reuse of parts of the
requirements text (viz. the FSE), as well as hints what should be filled in for
parameters; (ii) help to attain better quality of requirements, e.g., BP35 reminding

1 http://www.requirementsboilerplates.org

1944 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

analysts that one should be precise about the required frequency of some action, thus
encouraging more quantification of requirements, which is vital for testability (viz.
using boilerplates as preliminary basis for requirements checking); and (iii) lead to
completeness of the specification, e.g., looking at the boilerplates available, the
analyst or domain expert might be reminded of requirements that they would
otherwise have forgotten to specify (viz. using the boilerplates catalogue as a
checklist).

Boilerplates could also be applied to security requirements (SR), and it is possible
to integrate the formulated boilerplates with a security-related ontology for specifying
SR. In [Firesmith 05], Firesmith provided a foundation for the mapping of specific
security requirements to the types of defence actions to address them. He identified
four different types of defence against security threats, which can be used to assign
specific security threats to the types of defence actions to counter them. These are:

(i) Prevention of malicious harm, security incident, security threats and security
risks.

(ii) Detection of malicious attack, security incidents, security threats, and security
risks.

(iii) Reaction to detected malicious attack.
(iv) Adaptation of system to avoid or minimize the negative consequences of the

malicious harm, security incidents, security threats and security risks. This
could also be in terms of recovery of system from attacks.

For each of the defence types, Firesmith also gave specific examples.
The examples in [Firesmith 05], could be the basis for some generic SR

boilerplates, e.g.
SecBP1: The <system> should [prevent | detect] at least <percentage> of <harm |

incident | threat | risk>
SecBP2: Upon detection of <harm | incident | threat | risk> the system shall

<action>
SecBP11: ...of attacks with maximum duration <number> <time unit>
SecBP12: ...made by attackers with profile <attacker profile>
SecBP21: ...at least <[0-100]>% of the time
Here, SecBP11, SecBP12, and SecBP21 are parts that could be optionally
concatenated with SecBP1 or SecBP2 respectively.

The use of boilerplates for security requirements specification in practical terms
will involve formulating requirement boilerplates for the different aspects of security
such as authentication, authorization, integrity, intrusion detection, non-repudiation,
confidentiality, and auditing. Therefore, more boilerplates could be formulated, both
as core parts and as attachments, but since boilerplates for security will vary for
different domains, we cannot go into more detail here. However, experienced
personnel must create the boilerplates prior to security requirements specification as
an upfront investment, while it should be updated periodically as new types of
requirements emerge. By so doing, the boilerplate repository becomes an
organisational asset for security requirements specification that can be useful when
there is paucity of experienced security requirements analyst personnel.

1945Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

2.4 Extending Boilerplates with Ontologies

It is possible to use boilerplates without any ontology, and the originators of
boilerplates did not propose any ontology extension. Without ontologies, the
boilerplates will still be useful in providing reuse of at least the FSE, and probably
some quality increase by writing requirements in a fixed style, where one is reminded
of the need to quantify requirements where possible. Extending the boilerplates with
ontologies gives some extra advantages, such as allowing the validation of terms and
relationships that are contained in requirements to ensure they are used correctly and
acceptably in the domain concerned [Daramola 12]. For example, pertaining to the
parameterized parts in italics in the boilerplate examples above (SecBP1), where the
analysts themselves have to fill in numbers, single words or phrases in the boilerplate
requirements, an ontology could be developed based on standards documents for that
domain. The domain ontology will ensure that whenever the analyst fills in a word or
phrase denoting some recognized concept from the ontology, say "ACC" (Automatic
Cruise Controller) in the case of developing automotive software, the support tool
could search for the concept ACC in the domain ontology, and - if finding it - know
(i) whether there are any other terms which might be synonyms for this, and thus
discover relationships between requirements that would not easily have been
discovered otherwise, because of different terminology used; (ii) what other
components are closely related to the ACC; and (iii) what various security levels is
typically required of ACC, etc. Similarly, for other domains, e.g., aviation, one would
have definitions of relevant concepts there, like flight, plane, pilot, runway, tower, etc.
stored in a domain ontology. Hence, to put it simply, if just using boilerplates without
ontologies, the analysts mainly get help with reusing the FSE (bold phrases) of
examples like those above, but are left on their own with the parameters (italics) to fill
the brackets. With ontologies there is help also with ensuring consistent use of
language, discovering requirements that are related to each other because they address
the same or closely related concepts or procedures in the system, etc. Hence, a tool
platform that enables the leveraging of domain knowledge via an ontology, and use of
boilerplates will be potentially useful to a requirements analyst in the process of
security requirements specification.

2.5 Related Work

We shall approach our review of related work from two perspectives. First we shall
consider the recent approaches of ontology-based frameworks for security and
second, the aspect of tool support for security requirements engineering (SRE).

Recent approaches of ontology-based frameworks for security include [Lasheras
et al., 2009], where an ontology framework for reusing security requirements during
requirements specification was presented. The work involved the creation of a risk
analysis ontology and requirement ontology which are combined to represent reusable
security requirements, and improve the detection of incomplete and inconsistent
requirements, and also semantic processing in requirements analysis. It was an
extensible framework that provided basis for a lightweight method to elicit, and
specify security requirements, based on security standards. The framework is
typically a combination of ontologies that will be useful to ontology experts who are
not experienced in security issues. However, the work was not focussed on detecting

1946 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

security threats from textual sources as done in our own approach, neither was it a
tool-based framework. [Chikh et al., 2011] proposed a framework for information
security requirements (ISRs) using ontologies. The framework enables ISRs
traceability and reuse based on three kinds of generic ontologies – software
requirement ontology, application domain ontology, and information security
ontology. The work proposed the design of an ontology-based information security
requirements engineering framework, which supports analysts in building and
managing their ISRs by leveraging the three ontologies. The authors anticipated that
the proposal will help requirements engineers to create and understand the ISRs. The
work was strictly a proposal that did not include any implementation or evaluation.
[Massacci et al., 2011] presented an amalgamated and extended ontology for
modelling security requirements. The extended ontology integrates the existing
concepts from the Problem Frames and Secure i* methodologies in order to realize a
more complete basis for modelling security requirements due to missing constructs in
the individual approaches. The expressiveness of the proposed extended ontology was
tested by modelling the security requirements of a case study from the Air Traffic
Management domain. Similarly, [Blanco et al., 2011] after conducting a systematic
review of existing proposals, proposed a basis for an integrated and united security
ontology since existing security ontologies seem to focus on specific domains. They
identified three key requirements that an integrated security ontology should consider,
which are static knowledge - which will allow the concepts collected in the ontology
to be properly identified; dynamic knowledge – which will ensure that the knowledge
collected in the ontology can be used to infer other knowledge; and reusability -
which will ensure the fact that the ontology is developed by taking into consideration
aspects that permit its reuse and shareability. The tool-based orientation of our
approach is a deviation from existing ontology-based frameworks for security, in that
it targets real-time support for the requirements analyst during security requirements
specification. It leverages ontology and a template-based approach –boilerplates - for
both the elicitation and formulation of security requirements from textual sources in
order to reduce effort and enhance quality.

In terms of tool support for SRE, we shall classify tool for SRE into two broad
categories – front-end tools and back-end tools. Front-end tools and approaches are
those that facilitate the elicitation, modelling, and analysis of security threats in order
to derive SR, while the back-end tools are those that help with the specification and
validation of SR, and their integration with other requirements. Notable examples of
front-end tools include: SecTro [Pavlidis 12], - a CASE tool that supports automated
modelling and analysis of security requirements based on the Secure Tropos
approach. The ST-Tool [Giorgini 05] supports the Secure Tropos methodology. Its
main goals are to support the translation of Secure Tropos models into formal
specifications, and serve as a front-end tool for formal analysis of Secure Tropos
models. The jMUCMNav editor (Java Use Case Map Navigator), [Bizhanzadeh 11] is
a modelling tool for Misuse Case Maps (MUCMs) in designing secure architectures
for business processes. jUCMNav simply focuses on modelling for use case maps
(UCM) and supports all UCM notations. Other front-end SRE tools that are worth
mentioning are SeaMonster [Tøndel 10; SeaMonster 07], and Suraksha security
workbench [Maurya 09].

1947Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

Currently, there are more front-end tools than back-end tools for SRE. The
SQUARE tool [Mead 05] is a back-end managerial tool that is designed to increase
the quality of SRE process for the adopters of the SQUARE methodology. It supports
core SRE aspects such as definitions, searching, and addition of new terms,
identification of security goals, assets and privacy goals, performing risk assessment,
identifying threats, prioritizing requirements, traceability, and exporting of
requirements to other requirements management tool. Similarly, the prototype tool -
ReqSec tool – that we have developed is an eclipse-based back-end tool that supports
security requirements specification, and enables the integration of SR with other types
of requirements. The unique feature of the ReqSec tool compared to other SRE back-
end tools stems from its capability to facilitate automatic analysis of natural language
requirements in order to assist the analyst during security requirements specification.
It represents a first attempt to use semantic-based procedures for supporting both
security threat identification and security requirements specification. In the wider
requirements engineering context, approaches such as [Gleich 10] – ambiguity
detection-, [Wilson 97; Fabrini 01] – requirement quality assessment-, are also based
on natural language (NL) text analysis but did not use ontologies. The DODT
[Farfeleder 11] tool does not have a focus for SRE, but it bears similarity with our
approach, because it combines the use of ontologies and boilerplates to enable semi-
automatic transformation of NL requirements into boilerplate requirements. However,
it can only ensure the correctness of requirements based on the underlying domain
ontology, and the writing of boilerplate requirements. Our approach does more, in that
it entails the discovery of latent security threats contained in NL descriptions, and the
recommendation of probable defence actions that aids the formulation of semi-formal
boilerplate SR. Hence, the novelty of our approach is the provision of a backend tool
for SRE that will minimize effort needed for security requirements specification, and
offer a credible starting point for security requirements specification, particularly in
cases where there is paucity of experienced personnel.

3 Overview of the Semantic Approach

A high-level schematic overview of our semantic approach is presented in Figure 1.
The process starts with input of description of the security threat scenario, which
should be represented as a textual Misuse Case (TMUC) [Sindre, 05]. This is
followed by identification of type of attack and required defence action through
semantic text analysis of the TMUC, thereafter suggestion of boilerplates to be used
to the analyst, and finally specification of security requirements by the analyst. In
sequel sections, we present a typical example of the description of a security threat
described using a TMUC, and the description of the different activity steps of our
semantic framework.

1948 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

Figure 1: Activity Workflow of the tool-assisted SR Specification Process

3.1 Database Tampering - Example

In order to demonstrate how our tool-based framework can be applied, we hereby
consider the example of a security threat description of database tampering scenario.
The detail of the scenario is presented in Table 1 using a TMUC template.

Table 1: TMUC for Database Tampering Case

Code: QC1

Misuse Case
Title

Tamper with database by web query manipulation

Name of
System

Web Query System

Summary A crook manipulates the web query, submitted from a search form,
to update or delete information, or to reveal confidential
information;

Basic Path The crook provides some values on a product search form and
submits. The system displays the product(s) matching the query.
The crook alters the submitted URL, introducing a query error, and
resubmits. The query fails and the system displays the database
error message to the crook, revealing more about the database
structure. The crook alters the query further, for instance adding a
nested query to reveal secret data or update or delete data, and
submits. The system executes the altered query, changing the
database or revealing content that should have been secret.

Alternative
Path

The crook does not alter the URL in the address window, but
introduces errors or nested queries directly into form input fields.

1949Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

3.2 Input TMC details

The TMUC template [Sindre, 05] has two core aspects namely the basic path, and the
alternative path. The basic path describes the security threat scenario that could be
used by an attacker to cause harm to a system, while the alternative path specifies the
other options that may be explored by an attacker or user with malicious intent. These
two aspects together with the TMUC summary provide the key inputs used to identify
the type of attack, and required defence for the system.

3.3 Identify Type of Attack

We used information extraction techniques to identify the type of attack described by
a TMUC template. The textual input was semantically analysed in order to identify
and extract the theme words. A theme word can be the subject of a sentence (noun),
or an action word (verbs) or a word collocation that connote a security threat to a
system. The knowledge that is captured in the definition of basic threat ontology
(BTO) (see Figure 2), WordNet ontology, and the domain ontology (DO) are used to
facilitate the identification of theme words. Core procedures for semantic analysis of
natural language text such as tokenization, parts-of-speech tagging, syntax parsing,
morphological analysis, and ontology-based inferencing were implemented by using
algorithms that based on the Stanford NLP toolkit2, Word Net java API, and the Jena
semantic framework3.

3.4 Determine the Type of Defence using the Basic Threat Ontology (BTO)

The BTO contains a mapping of different kinds of security threats to specific defence
actions based on information that was gathered from the literature and a number of
existing security ontologies. The BTO is a major investment and a core knowledge
infrastructure of the framework. The defence actions are the ones proposed by
Firesmith in [Firesmith 05]. We reused all the essential aspects of the threat
description in Security Ontology [Herzog 07] as foundation for developing the BTO,
which included some additional concepts. The BTO has a total of 98 classes, 46
restrictions and 9 object properties. The key object properties include hasDefense –
which associates a threat with a specific defensive action, hasThreat – which
associate a threat with an asset, isThreathenedBy – inverse of hasThreat, isThreatTo,
isSameAs, - which describes equivalent concepts. Each security threat in the BTO was
mapped to one or more defence actions (viz. detect, prevent, adapt, react, recover)
using the hasDefense object property. Figure 2, presents a view of the BTO
illustrating how specific types of attacks have been mapped to corresponding defence
actions. The knowledge contained in the BTO is used for automatic recommendation
of appropriate defence actions when a particular type of attack has been identified
from the TMUC input details. The Pellet OWL Descriptive Logics (DL) reasoner was
used as the ontology reasoning engine for the BTO.

2
 http://nlp.stanford.edu/software/lex-parser.shtml

3 http://jena.sourceforge.net/

1950 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

Figure 2: A view of the description of Malformed Input threat in the BTO using

OntoViz

3.5 Suggestion of Relevant Boilerplates

The output of the information extraction process is a list of recommendations
comprising a set of defence-action and attack-type pairs R (see Figure 3) such that:

 R= {r1, r2, ..., rn} i.e. ri = <d, t>
Here d is a defence-action and t is a specific type of attack that has been identified.

For example:
<detect> <eavesdropping>
 <prevent> <code Injection>
 ... etc.
The recommended pairs are derived by combining the relevant theme words that

were extracted from a particular TMUC description and specific attack types (threat
concepts) that are described in the BTO. A theme word will be considered relevant to
a particular security threat scenario if any of the following rules are true [Daramola
12]:

(i) if the theme word syntactically matches an existing BTO threat concept;
(ii) if the theme word in its root form (lemma) can be associated with a BTO threat

concept;
(iii) if the theme word is either a synonym, hyponym, or hypernym of a BTO

threat concepts; and
(iv) if a BTO threat concepts is a sub-concept of a concept already identified by

any of (i) - (iii).
In cases when the theme word is not a single word (e.g. phrase), the head word – that
which is most significant to the meaning – is selected and used in the inference rules.
The corresponding defence action for an identified type of attack is inferred by
exploring the set of pre-defined mappings of specific threats to defence actions that
are specified in the BTO. The analysis of theme words to determine their different
word forms is enabled by the using the WordNet ontology and the WordNet Java API,

1951Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

while the Pellet OWL Descriptive Logic reasoner was used to facilitate ontology
reasoning on the axioms and concepts of the BTO.

Figure 3: A snapshot of suggestions for database tampering from the tool

3.6 Formulation of Security Requirements and Reuse of Boilerplates for
Security Requirements Specification

Beside the suggestion of boilerplates, the semantic framework aids the requirements
analyst during the formulation of SR by facilitating the reuse of existing boilerplates
that are been used previously. The activities of tool-assisted SR formulation and reuse
of boilerplate for security requirements specification are described as follows.

3.6.1 SR Formulation

At the start of the security requirements specification process, when no requirements
have been specified, the analyst will have to select a specific <defence-action, attack-
type> option from the list of recommendations, and from the boilerplate repository,
must select a core boilerplate, and optionally select, a prefix, or suffix or both. For
example, when the analyst, selects SecBP1(core boilerplate), and SecBP21 (suffix)
[see Section 2.3] and highlights a recommended <defence-action, attack-type> option
say “<prevent, Code Injection>”, the resulting boilerplate SR would have keywords
“prevent” and “Code Injection” already inserted in the right places as below:

The <system> should prevent at least <[0-100]>% of Code Injection at least <
[0-100]>% of the time
For each SR formulation, the fixed syntax elements (FSE) in the selected

boilerplate, prefix, and suffix are reused, while the selected <defence-action, attack-
type> substitutes the <action> placeholder in the selected boilerplate. The analyst can
then fill in the remaining part – marked with “< >” - of the boilerplate requirements
that require specific data to complete the SR formulation. While completing the
remaining part, data that can be inferred from knowledge contained in the underlying
DO e.g. the specific system name for <system> are also suggested to the analyst. In
this way, the analyst can save some effort, attain consistency, completeness, and

1952 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

correct use of domain vocabulary, which ultimately improves the quality of specified
SR.

3.6.2 Reuse of Requirement Boilerplates for SR

The tool is able to learn as the analyst selects specific requirement boilerplates and
uses them to formulate SR. It keeps track of the frequency of use of each requirement
boilerplate and maintains an updated count of each one. When the analyst has
completed the formulation of few SR (two or more), the relevant requirement
boilerplate patterns that tend to be more used are displayed in a ranked order as
probable candidates to be reused for a new SR formulation [Daramola 12]. The search
process for relevant requirement boilerplates to reuse entails looking at all previously
used requirements boilerplate patterns that contains the keyword specified in the
highlighted recommended <defence action, <attack type> option and ranking them
based on their frequency of usage. For example if the recommended option “prevent
Code Injection” is highlighted by the analyst, a ranked list of auto-generated
requirements boilerplate patterns – combinations of boilerplate core parts, prefix, and
suffix, that contains the keywords “prevent” that have been previously used are
displayed as candidates to reuse in a new SR formulation. With this, the analyst is
able to find reusable requirement boilerplates quicker, and avoids having to look
through the complete set of boilerplates – core parts, prefix, and suffix in the
boilerplate repository before composing a SR. This way, the analyst can save some
effort by using the tool to specify SR.

4 Evaluation

In order to assess the semantic framework, we have conducted evaluation in two
phases. In the first phase, we assessed the usability of the tool-based semantic
framework to support security requirements specification. We conducted a
preliminary evaluation by using a controlled experiment with seven subjects. The
subjects were Master degree students of software engineering of NTNU, Norway,
who volunteered to participate in the experiment. The participants were paid for
taking part in the experiment. The second phase of evaluation focussed on assessing
the quality of security requirements that were specified by participants in the first
evaluation. To do this, we requested experienced requirements analysts who have
ample experience of working with security requirements to assess the quality of the
SR specified by the participants of the first evaluation that used the tool-based
semantic framework.

4.1 First Evaluation

4.1.1 Background of Participants

An assessment of the background of participants through a pre-experiment
questionnaire revealed that the participants had good background knowledge in the
specific areas such as system security, requirements engineering, ontology, and
boilerplates that pertain to the experiment. They have all taken two relevant courses –
TDT4237 Software security and TDT4242 Requirements engineering and testing at

1953Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

the NTNU, Norway. In addition, the majority of the subjects also claimed to have
some industrial work experience, although the majority only as part time positions or
summer internships while studying.

4.1.2 Evaluation Procedure

The participants were asked to use the Reqsec tool4 during a controlled experiment
that lasted for 1.5 hours. They were presented with four security threat scenarios –
TMUC- in four different domains. The TMUC deals with: (i) Air Traffic Control
System – fabrication of false clearance; (ii) Electronic Passport System – identity
theft of card holder; (iii) Network Security Bridge – hacking of network host
computer; (iv) Database Tampering - manipulation of web query. All the participants
performed the same task at any given time during the experiment. The participants
were given a five minutes tutorial on the use of the tool5 before they commenced the
experiment. They were required to assess the tool along six dimensions - perceived
usefulness (PU), perceived ease of use (PEOU), intention to use (ITU), reuse (reu),
accuracy (acc), and serendipity (sere) - through a post-experiment questionnaire that
was based on a 5-point Likert scale. The mean scores out of a maximum of 5.0 for
each of the six dimensions are shown in Table 1.

4.1.3 Results

The analysis of the results from the post-experiment questionnaire revealed that the
tool had its highest mean rating in the aspects of perceived ease of use (PU), and
serendipity (sere) – the users acknowledged that the tool offered suggestions that they
had not thought about originally. The tool also had good rating in other aspects such
as reuse, accuracy, and intention to use. All the participants stated emphatically that
they would use the tool.

 In the free comments feedback section of the questionnaire, the participants
revealed a positive general perception of the tool as potentially viable to support
security requirements specification, and admitted their willingness to use it. Most
agreed that the tool is easy to use, and capable of assisting the analyst. A few of them
were particularly impressed that the tool enabled them to write security requirements
that they did not think about initially until when they saw the suggestions from the
tool. They all agreed that although the tool offers useful support for security
requirements specification, it cannot be solely relied upon. This is because there were
occasions when the tool failed to suggest certain expected options. Some of them
advised that the tool would perform better if the quality of the underlying ontology is
improved. They also mentioned a number of areas that should be improved in the
tool. This includes the fact that 1) the tool’s interface did not scale well on the MacOs
systems compared to Windows; and 2) the need to be able to save the requirements
that pertain to a TMUC all at once in the repository and not one at a time. We agree
with the observations of the participants and would seek to revise the subsequent
version of the tool based on the observations by participants.

Generally, the result of the first evaluation demonstrates the potential of the tool to
first, simplify, and significantly aid the analyst during the security requirements
specification process, particularly when the analyst is not highly experienced.

4 https://www.idi.ntnu.no/~wande
5 https://www.idi.ntnu.no/~wande/Guide_for_Reqsec_Tool.htm

1954 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

Second, facilitate a reduction in the effort expended on security requirements
specification, particularly as the process progresses. Third, ensure that correct terms
of the domain are used when formulating SR, and in a consistent way, thus reducing
ambiguity. However, our inspection of the specified security requirements revealed
consistency in the use of language and pattern of expression in formulated SR that
pertain to same security threat scenario by different individuals, which is mainly due
to the use of boilerplates and ontologies.

Metric Mean Std

PU 3 0.433013

PEOU 3.714286 0.698638

ITU 3.357143 0.481039

Reu 3.214286 0.393398

Acc 3.285714 0.95119

Sere 4 0.816497

Table 1: Mean score rating for Tool Assessment

4.2 Expert Assessment of Quality of SR

The second phase of the evaluation involved the use of experienced requirements
analysts to assess the quality of the SR specified by the subjects used for the first
phase of evaluation. The assessment was based on ten desirable requirements quality
metrics [Stokes, 1991; IEEE Std. 98], which are defined as follows [Wilson 97]:

i) Complete - the requirements specification precisely define all real world
situations that will be encountered, and the capability to respond to
them.

ii) Consistent - there is no conflict between individual requirement statements,
that define the behaviour of essential capabilities; and specified
behavioural properties and constraints do not have a negative impact on
that behaviour.

iii) Correct - the requirements specification accurately and precisely identify the
individual conditions and limitations of all situations that the desired
capability will encounter, and it defines what should be the proper
response to those situations.

iv) Modifiable - the requirements specifications is able to identify related
concerns and grouped them together, while the unrelated concerns have
been separated.

 Testable - the requirements are stated precisely, such that a pass/fail or
quantitative assessment criteria can be derived to validate their correct
Implementation.

Traceable - each statement of requirements has a unique identification that
makes it easy to trace them subsequently.

v) Unambiguous: the requirement statements are not subject to multiple
interpretations.

vi) Understandable: the language used to specify the requirements are simple,
concise and easy to understand.

1955Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

vii) Valid - all the stakeholders would be able to understand, analyze and accept
or approve the requirements

viii) Verifiable - there is high possibility that requirement specifications at the
current level of abstraction will be consistent with those at another level
of abstraction

4.2.1 Evaluation Procedure

We collated the requirements specified by the seven participants for the four problem
scenarios during the first evaluation into four single lists of merged requirements – a
list for each problem scenario - ensuring that cases of exactly duplicated requirements
do not exist. The summary of the collated requirements is shown in Table 2. The
experienced analysts were then requested to assess the quality of the four sets of
requirements along the ten requirements quality dimensions using a questionnaire that
is based on the 5-point Likert scale. The mean score out of a maximum of 5.0 for each
of the ten dimensions for the four sets of requirements (R1-R4) are shown in Tables 3
and 4.

 Security Problem Scenario Description Total number of
merged
requirements

1. Automatic Traffic Control System
(ATC) – R1

Fabrication of false
clearance

12

2. Electronic Passport System (EPS) –
R2

Identity theft of card
owner

12

3. Network Security Bridge (NSB) –
R3

Hacking of network
host system

26

4. Database Tampering (DAT) – R4 Manipulation of web
query.

19

Table 2: Summary of Collated Requirements

4.2.2 Results

The outcome of the assessment of the quality of SR by the experts revealed that the
specified SR had above average rating in terms of their completeness, consistency,
modifiability, testability, traceability, lack of ambiguity, understandability, and
validity attributes. The SR got relatively higher rating in terms of completeness and
consistency. The SR got below average ratings in the aspect of correctness, and
verifiability. In the free comments feedback section of the questionnaire, the experts
also reviewed many of the specified SR to make them less ambiguous and more
understandable.

1956 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

R1: ATC R2: EPS R3: NSB R4: DAT

mean std mean std mean std mean std

Complete 3 1 3 1 3.3 1.155 3 1

Consistent 4 1 4 1 4 1 3.67 1.155

Correct 2.3 0.577 2 1 2.67 0.577 2.67 0.577

Modifiable 2.67 0.577 2.67 0.577 3.3 0.577 3 1

Testable 2.67 2.081 2.67 2.081 3.3 1.527 3 1.732

Traceable 4.3 1.155 4 1.732 4.3 1.155 4 1.732

Unambiguous 2.33 1.155 2.3 0.577 3 1 2.67 0.577
Understandab
le 3 1.732 2.3 1.527 2.3 1.527 3 1.732

Valid 2.67 1.155 2.67 1.155 2.3 1.5275 2.67 1.155

Verifiable 2.3 1.155 2 1 2 1 2.3 1

Table 3: Mean score rating of Specified SR quality by Experts

Mean R1- R4

Complete 3.075

Consistent 3.917

Correct 2.41

Modifiable 2.91

Testable 2.91

Traceable 4.15

Unambiguous 2.58

Understandab
le

2.65

Valid 2.58

Verifiable 2.15

Table 4: Global Mean score rating of Specified SR quality by Experts

The result of the second evaluation suggests that the tool-based semantic
framework is not only usable to support security requirements specification but can
also facilitate improvement in many of aspects of security requirements quality.
Generally, the result confirms the potential relevance of the tool-based framework to
complement an inexperienced analyst during security requirements specification. We
can also conjecture that the low rating of specified SR in terms of correctness, and
verifiability is due more to the competence level of the subjects used in the
experiment and not necessarily due to a deficiency in the tool-based framework. For
example, we observed that although most of the SR that were specified by
participants by using the tool were syntactically and semantically correct as far as the

1957Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

domain vocabulary is concerned, the experienced requirements analysts still gave a
low rating to many of the specified SR in terms of correctness. This means there are
other implicit considerations for correctness known to the experts that were not
obvious to the less experienced participants. Hence, there is a probability that a more
experienced analyst would be able to specify SR of higher quality in terms of
correctness, and verifiability by using the tool.

4.2 Lessons Learned

Our experience from the first phase of evaluation emphasised the need for high
quality underlying ontologies – BTO, DO - and the boilerplate repository. Hence, an
upfront and crucial investment is to ensure that good quality BTO, DO and a rich
boilerplate repository are available at the onset of the tool. In order to cater to this, the
tool comes pre-loaded with the BTO and the boilerplate repository as basic artefacts,
while a DO can be imported into the tool. Also, provision was made to ensure the
evolution of the BTO, DO, and boilerplate repository with time. To do this, we have
made it possible to continually revise the ontologies BTO, DO, and boilerplate
repository from within the tool’s environment. The tool includes an ontology
management module that allows the addition of new concepts, properties, and axioms
to an existing ontology, while the boilerplate management module allows the
boilerplate repository to be updated. Thus, the tool can be customised, and adapted to
cater for future emerging requirements.

Also, from the second phase of evaluation, it was evident that although the tool-
based framework offer a good starting point for specifying SR, inspection of specified
SR by more experienced personnel will be crucial to further improve quality of SR.
Hence, the tool-based framework will provide optimal value when integrated into
existing security requirements engineering (SRE) frameworks.

4.3 Evaluation Threats

Ordinarily, an industrial case study would give a different perspective to the
evaluation of the tool and the quality of tool support. However, the subjects used for
the controlled experiment during the first phase of evaluation are sufficiently
knowledgeable in the relevant areas such as requirements engineering, system
security, ontologies, and requirements boilerplates having taken taught courses in
these areas. This makes them suitable as reasonable substitutes for real experts in a
preliminary evaluation [Runeson 03]. Also, the evaluation was performed with only
seven users, but although the statistical significance is reduced, the results are
indicative of the acceptance of the approach evaluated. Moreover, our objective is to
assess the potential usability of the tool to support security requirements specification.
Evidence in literature suggests that a minimum of 5 subjects are sufficient to get a
valid opinion on the usability of a tool [27].

Also, a concern could be that if the second phase of evaluation had been
performed with a more number of experts, who have a more diverse background, the
result could be different. We consider that the three experts used for the second
evaluation, have the required experience and competence to give an unbiased and
valid opinion on the quality of SR. The involved persons have a minimum of doctoral
degree in software engineering, with diverse background in security requirements
engineering research and practices. They also belong to different research institutions

1958 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

and from two countries. So, while we currently see no reason to invalidate the
observations of the three experts used to evaluate the quality of specified SR, an
interesting point for further research is to have a wider group of experts to assess the
quality of SR specified by the tool.

Another perspective to the evaluation could be to evaluate the tool alongside
other requirements management tools (e.g. Doors) not specifically focussed on
security, and then see which groups are able to come up with the most and best
security requirements for a certain problem within a given time limit. Another
alternative is to compare the performance of two groups of users – one using the tool
to formulate requirements, and the other group using largely a manual approach to
document requirements, but supported by MS Excel. Many in the industry use Excel
to document requirements where the human has to fully write the requirements from
scratch, and Excel used only to support plain editing, storage, retrieval, and possibly
automated numbering of requirements. Either of this form of evaluation could also
lead to a different result compared to what we have reported. However, comparative
evaluation with other tools is not attractive as at now because, hardly could we find
any other tool that have the same focus, and is set out to do exactly a similar thing as
we envisioned. The option to compare the tool’s performance relative to using MS
Excel by two user groups is a possibility for the future, after this preliminary
evaluation.

5 Conclusion

In this paper, we have presented the notion of semantic-based support for security
requirements specification. Our approach employs a tool-based framework that uses a
combination of ontologies and boilerplates to aid a requirements analyst in the
process of security threat identification and eventual formulation of quality SR. It
provides the attendant benefits of reducing the effort needed for the security
requirements specification process, and offers a good starting point in cases when
sufficiently experienced requirements analyst may not be available. The preliminary
evaluation of the approach confirms that it is viable and usable for supporting security
requirements specification, and that the specified SR have a generally acceptable
rating in most aspects of the ten requirements quality dimensions used for evaluation.
In future work, we will conduct a more elaborate evaluation by using industrial case
studies to further validate the approach. Also, we shall seek means to further improve
the performance of the tool, and extend the concepts to the aspect of safety.

Acknowledgement

The Norwegian Research Council through the ReqSec project, Norway, has supported this work
while the first author of this paper was a Research Scientist at NTNU, Norway. This work has
been supported by the Christian Doppler Forschungsgesellschaft and the BMWFJ, Austria.

References

1959Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

[Bizhanzadeh 11] Bizhanzadeh, Y. and Karpati, P.: “jMUCMNav: an Editor for Misuse Case
Maps”, First Int. Workshop on Alignment of Business Process and Security Modelling
(ABPSM’11), Riga, Latvia, (2011)

[Braber, 07] Braber, F., Hogganvik, M., Lund, Stølen, S., and Vraalsen, F: “Model-based
security analysis in seven steps – a guided tour to the CORAS method”, BT Technology
Journal, 25(1):101-117, (2007)

[Chandrabrose 11] Chandrabrose, A. and Alagarsami: “Security Requirements Engineering – A
Strategic Approach”, International Journal of Computer Applications, 13, 3 (2011), 25-32

[Common Criteria, 99] Common Criteria Implementation Board, “Common Criteria for
Information Technology Security Evaluation”, Part 2: Security Functional Requirements.
(1999).
[Daramola 11] Daramola, O., Stålhane, T., Sindre, G., Omoronyia, I.: “Enabling Hazard
Identification from Requirements and Reuse-Oriented HAZOP Analysis”, In: Proceeding of 4th
International Workshop on Managing Requirements Knowledge, IEEE Press, 3-11 (2011)

[Daramola 12] Daramola, O., Sindre, G., Stålhane, T.: “Pattern-based Security Requirements
Specification Using Boilerplates and Ontologies”, Proceedings of Second International
Workshop on Requirements Patterns (RePa ’12), IEEE Press, (2012), 54-59.

[Donner 03] Donner, M.: “Toward a Security Ontology”, IEEE Security and Privacy, (2003).

[Fabrini 01] Fabrini, F., Fussani, M., Gnesi, S., Lami, G.: “An Automatic Quality Evaluation
for Natural Language Requirements”, In Proceeding of the Seventh International Workshop on
Requirements Engineering Foundation for Software REFSQ ’01, Interlaken, Switzerland, 150-
164 (2001)

[Farfeleder 11] Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Zojer, H., Panis, C.: DODT:
Increasing Requirements Formalism using Domain Ontologies for Improved Embedded
Systems Development, In proceedings of 14th IEEE Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS 2011), (2011), 1 – 4.

[Fenz 09] Fenz S., Ekelhart A.: “Formalizing Information Security Knowledge”, In 4th
International Symposium on Information, Computer, and Communications Security (ASIACCS
’09), (2009), 183-194.

[Firesmith 04] Firesmith, D.: “Specifying Reusable Security Requirements”, Journal of Object
Technology, 3, 1 (2004), 61-75.

[Firesmith, 05] Firesmith, D.: “A Taxonomy of Security-Related Requirements”, Proceedings
of the International Workshop on High Assurance Systems (RHAS’05), Paris, France, (2005)

[Giorgini 05] Giorgini, P., Massacci, P., Mylopoulos, F., Siena, J., Zannone, N.: “ST-Tool: A
CASE Tool for Modeling and Analyzing Trust Requirements”, Lecture Notes in Computer
Science, Vol. 3477, (2005) 415-419.

[Gleich 10] Gleich, B., Creighton, O., and Kof, L.: “Ambiguity Detection: Towards a Tool
Explaining Ambiguity Sources”, In Wieringa, R., Pearson, A (eds.) REFSQ ’10, LNCS, vol.
6182, (2010), 218-232.

[Graham 06] Graham, D.: “Introduction to the CLASP Process”, Build Security In, (2006).
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/ best-practices/requirements/548.html.

[Happel 10] Happel, H., Maalej, W., Seedorf, S.: “Applications of Ontologies in Collaborative
Software Development”, In Mistrík et al. (eds.): Collaborative Software Engineering. Springer,
(2010).

1960 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

[Herzog 07] Herzog A., Shahmehri N., and Duma C.: “An Ontology of Information Security”,
International Journal of Information Security, 1, 4, (2007), 1-23.
[Hull 04] Hull, E., Jackson, K., Dick, J.: “Requirements Engineering”, Springer (2004).

[IEEE std. 98] IEEE Standard 830-1998, “Recommended Practice for Software Requirements
Specifications”, December 2, (1998).

[Kim 05] Kim, A., Luo J., and Kang M.: “Security Ontology for Annotating Resources”, In 4th
International Conference on Ontologies, Databases, and Applications of Semantics
(ODBASE'05) (2005).

[Kontoya, 98] Kotonya, G., Sommerville, I.: “Requirements Engineering: Processes and
techniques”, John Wiley & Sons, 1998.

[Maurya 09] Maurya, S., Jangam, E., Talukder, M., Pais, A.R. Suraksha: A security designers’
workbench. Proc. Hack. (2009), 59–66.

[Mead 05] Mead, N., Stehney, T.: “Security quality requirements engineering (SQUARE)
methodology”, Proceedings of International Conf. on Software Engineering for Secure Systems
(SESS’05), (2005), 1-5.

[Mellado 07] Mellado, D.; Fernandez-Medina, E.; & Piattini, M. “A Common Criteria Based
Security Requirements Engineering Process for the Development of Secure Information
Systems.” Computer Standards & Interfaces 29, 2 (2007): 244-253.

[Mouratidis 04] Mouratidis, H., Giorgini, P.: “Secure Tropos: A security-oriented extension of
the Tropos methodology”, International Journal of Software Engineering and Knowledge
Engineering 17, 2 (2004), 285-309.

[Nielsen, 93] Nielsen, J, and Landauer, T.: “A mathematical model of the finding of usability
problems”, Proceedings of ACM INTERCHI'93 Conference, (1993), 206-213.

[Pavlidis 12] Pavlidis, M., Islam, S. and Mouratidis, H.: “A CASE tool to support automated
modelling and analysis of security requirements”, Lecture Notes in Business Information
Processing, Vol. 107, (2012), 95-109.

[Runeson 03] Runeson, P.: “Using Students as Experiment Subjects – An Analysis on Graduate
and Freshmen Student Data”, In: Linkman, S. (ed.) 7th International Conference on Empirical
Assessment & Evaluation in Software Engineering (EASE’03), (2003), 95–102.

[Salini 11] Salini, P. and Kanmani, S.: “A Survey on Security Requirements Engineering”,
International Journal of Reviews in Computing, 8 (2011), 1-8.

[SeaMonster 07] SeaMonster: “Security Modelling Software” (2007); Retrieved at:
http://sourceforge.net/apps/mediawiki/seamonster/

[Sindre, 05] Sindre, G., and Opdahl, A.: “Eliciting Security Requirements with Misuse Cases”,
In: Requirements Engineering, vol. 10(1), (2005), 34 - 44.

[Souag 12] Souag, A., Salinesi, C., Wattiau, I.: “Ontologies for Security Requirements: A
Literature Survey and Classification”, In Bajec, M. and Eder, J (eds.) Advanced Information
Systems Engineering Workshops, Lecture Notes in Business Information Processing (LNBIP),
112, (2012), 61-69.

[Stokes 91] Stokes, D.: “Requirements Analysis”, Computer Weekly Software Engineer’s
Reference Book, (1991), 16/3-16/21. – Requirements Quality.

[Tøndel 10] Tøndel, I.A., Jensen, J., Røstad, L.: “Combining misuse cases with attack trees and
security activity models”, Proc. ARES’10, (2010) 438-445.

1961Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

[Viega 05] Viega J. “The CLASP Application Security Process”. Vol. 1.1. Training Manual.
Secure Software Inc. (2005).

[Wilson 97] Wilson, W., Rosenberg, L., Hyatt, L.: “Automated Analysis of Requirement
Specifications”, In Proceedings of the International Conference on Software Engineering (ICSE
’97), (1997), 161-171.

[Yu 01] Yu, E.: “Agent-Oriented Modelling: Software Versus the World”, Agent-oriented
software engineering AOSE-2001 Workshop Proceedings, LNCS 2222, (2001), 206-225.

1962 Daramola O., Sindre G., Moser T.: A Tool-based Semantic Framework ...

