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Abstract

Power market analysis should be incorporated in reliability assessments of deregulated power systems. For the Nordic
power system, this is done by using The Multi-area Power-market Simulator (EMPS) for long-term power market
analysis, where EMPS finds the optimal socio-economic dispatch on a weekly basis, with respect to, e.g., hydro reservoir
levels. The EMPS analysis results in a set of load and generation scenarios, and these scenarios are interpreted as a
sample of future power market behaviour, and is used as basis for a reliability assessment. These load and generation
scenarios are referred to as power market scenarios.

The power market analysis produces a large number of power market scenarios, and to include all these scenarios in a
reliability assessment results in excessive computation time. The scenario selection method is presented and discussed.
Scenario selection is used to pick out a subset of the generated power market scenarios, to only use this subset of scenarios
as a basis for the reliability assessment. It is shown that the scenario selection method can reduce the scenario set by
about 90%, with little loss of accuracy in the reliability assessment.

Keywords: Power market analysis, Deregulated power systems, Reliability assessment, Unsupervised learning

1. Introduction

In power system reliability analysis, probabilistic anal-
ysis is a very popular and useful technique for objective
assessment of the power system reliability level, both for
long-term adequacy assessment and short-term security
analysis [1]. The system reliability is affected by, e.g.,
forced outages, maintenance schedules, load level, and gen-
eration dispatch. With more and more intermittent gener-
ation built into power systems, an increasing share of the
generation system has a stochastic nature. This causes an
increase in the variability in the generation scenarios com-
pared to those of conventional power systems where the
generation system mainly consisted of thermal and coal
power plants.

In most restructured and deregulated power systems,
there is no single central operator who has full control over
the system, as the generation and transmission systems
are handled by independent companies, and the load and
generation schedules are determined by bids in the power
market. Thus, the power market behaviour should not be
neglected when load and generation scenarios are modelled
in reliability assessment of deregulated power systems.

When the reliability assessment is based on Monte Carlo
simulation techniques [2], load and generation scenarios
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are generated by random sampling. The generated sce-
narios reflect the stochastic nature of intermittent gener-
ation, but these scenarios are usually generated without
considering how the power market affect the generation
and load scenarios. In analytical techniques, the reliabil-
ity assessment is usually based on one load scenario only,
typically the heavy load situation. To make a connection
between the power market and the generation and trans-
mission system models used in the reliability assessment,
a power market model is used to generate load and gener-
ation schedules for the power system under study [3]. The
discussions and analyses in this paper focus on the Nordic
power system. However, the ideas and methods should
be very relevant for analysis of other deregulated power
systems, but adjustments might be necessary due to, e.g.,
different market structure.

The Nordic power system is a hydro-thermal power sys-
tem, but an increasing share of the generation capacity
is wind power. The Multi-area Power-market Simulator
(EMPS) [5] is designed for simulation of hydro-thermal
power systems, where the market analysis is done by
finding the optimal socio-economic dispatch considering,
e.g., different hydro inflow scenarios and unit commitment
costs. In EMPS, the stochastic nature of hydro inflow is
included in the analysis by using historic weather data as
expected future hydro inflow scenarios. Wind speeds and
temperatures are also coupled with the historic weather
data [6]. Typically, 50-75 years of historic data are used in
the EMPS analysis, with a planning horizon of 3-5 years.

Preprint submitted to International Journal of Electrical Power & Energy Systems May 30, 2013



financial market day-ahead market pre-operational phase operational phase

operating scenario

12pm

market clearing

12am 12am

1pm 2pm

Figure 1: The organisation of the Nordic power market. The trading in the financial and day-ahead markets ends with a market clearing at
noon (12pm) for each hour of the following day starting at midnight (12am to 12am) [4]. After the market clearing, the TSOs are responsible
for trading balancing services to ensure secure system operation. Balancing services are traded in the pre-operational and operational phase.
An operating scenario is the system state for a given hour, after the market clearing, but before balancing services are in effect.

The load model (used in EMPS) is defined to approximate
the expected load in this 3-5 years period. The EMPS
analysis yields a set of load and generation scenarios, which
are referred to as power market scenarios. These power
market scenarios are interpreted as possible future power
system states, after market clearing, and used as a basis
for a reliability assessment. The annual variation in hydro
inflow, wind speed, and temperature is represented by the
historic data, while the variation in load and generation
schedules on a daily, weekly, and seasonal basis, within a
given year, is represented by the power market scenarios
EMPS generated for that year. Thus, the generated power
market scenarios are regarded representative for the load
and generation profiles over the whole year. The (up to) 75
years of historic data is a way of representing the stochas-
tic variability in generation due to weather (hydro inflow,
wind, and temperature), and is not to be interpreted as 75
years of planning.

For each of the hydro inflow years, the dispatch opti-
misation in EMPS is done for each hour within a week,
or by splitting the week into different load periods. For
instance, considering 5 load periods per week for 75 years
of historic data, gives 19500 different power market sce-
narios. This high number of scenarios results in very high
computational requirements for the reliability assessment
[3].

The scenario selection method, first presented in [7], is
designed to reduce the number of power market scenarios
that has to be analysed in the reliability assessment. The
scenario selection method finds groups of similar power
market scenarios, and then, for each group, chooses one
scenario to represent the group characteristics. The set
of chosen scenarios is denoted the representative set, and
only these scenarios will be analysed in the reliability as-
sessment. This will keep the sample variation of the full
sample of power market scenarios more or less intact, but
at the same time severely reduce the computational re-
quirements of the reliability assessment. Reference [7],
discusses the scenario selection method on a very general
basis. In this paper, a set of general guidelines for practical
applications of the scenario selection method is presented.
In addition, it is shown that the method works for both a
small test networks and a large (real size) power system.

A short description of the power market analysis is found
in section 2. The incorporation of power market scenarios
in the reliability assessment, and the evaluation of reliabil-
ity indices, is discussed in section 3. The scenario selection
method is dealt with in section 4. In section 5 and 6, two
case studies are included to illustrate the application of the
scenario selection method. The case studies are followed
by some final remarks in section 7 and a conclusion.

2. The Nordic Power Market

Deregulation of the Nordic power system took place in
the 1990’s and early 2000’s [4], and a common Nordic
power market (Nord Pool) has been established. The
Nordic transmission system is operated by four TSOs - En-
erginet.dk (Denmark), Fingrid (Finland), Statnett (Nor-
way), and Svenska Kraftnät (Sweden).

In addition to being responsible for the real time opera-
tion of the transmission system, the Nordic TSOs defines
available transfer capacities (ATCs) between market zones
[4]. Market zones are defined such that transmission corri-
dors with a high anticipated load connect different zones.
In situations where the market clearing for the whole sys-
tem leads to too high power flow through one or more
of these corridors, the market zones are used to split the
system into price areas, to reduce the power flow through
these corridors.

The organisation of the Nordic power market is illus-
trated in Figure 1. In the financial market, long term
contracts are traded, where the main purpose is hedging
against price fluctuations. In the day-ahead market, phys-
ical power is traded, and at noon the market clearing is
done for each hour of the following day according to the
supply and demand curves. The price for each hour is
determined by the intersection of these two curves. The
market clearing is first done for the whole system, but if
this leads to violations of one or more of the ATCs, the
market zones are used to split the system into two or more
price areas.

After the market clearing in the day-ahead market,
TSOs trade power in the balancing market to, e.g., re-
solve congestion problems within market zones or provide
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Figure 2: Illustration of how power market scenarios are incorporated
in the reliability analysis. Market zones and ATCs are included in
the power market analysis, and the operating (power market) sce-
narios are used as a basis for a reliability assessment. The dotted
path indicates that if the results of the reliability assessment do not
satisfy the targeted reliability criteria, the results of the reliability
assessment should ideally be used to, e.g., indicate how to update
the ATCs.

spinning reserve. Balancing power is traded in the pre-
operational and operational phase in Figure 1, where both
demand response and reserve generation can be bought.
For more details about the Nordic power market, see, e.g.,
[4, 8].

A special characteristic of the Nordic power system is
the high share of large reservoir hydro power plants. Hy-
dro power covers about 95% of the installed capacity in
Norway, and about 45% of the installed capacity in Swe-
den. The rest of the installed capacity consists of some
nuclear power plants in Sweden and Finland, and thermal
generation in Denmark and Finland. In Denmark, 34% of
the installed capacity consists of wind power. There are
some wind farms in the other countries, with more to be
built in the future.

2.1. The Power Market Model

EMPS-NC (Network Constraints) [6, 9], an extension of
EMPS, is used for the power market analysis. In EMPS-
NC, transmission constraints (the ATCs) are included in
the dispatch optimisation, as a linearized power flow is
used to check each scenario to ensure that the dispatch
does not result in too high power flow through corridors
connecting market zones. The TSOs can define ATCs on a
daily basis, while market zones are defined for longer time
periods. However, in the power market analysis in this
paper, the market zones and ATCs are kept constant for
the whole analysis period.

EMPS-NC models loads per bus, and production per
generator, in the analysed power system. Thus, the gener-
ated power market scenarios are suitable as a basis of both
generation and transmission system reliability assessment.

3. Incorporating Power Market Scenarios in the
Reliability Assessment

Depending on the time resolution of the dispatch opti-
misation (hourly or by load periods), EMPS-NC predicts

the system state for that hour or period after the market
clearing, which so far has been referred to as a power mar-
ket scenario. In the reliability assessment in this paper,
the reliability indices are calculated based on the OPAL
methodology [10]. In the OPAL methodology, an operat-
ing scenario is defined as “... a system state valid for a
period of time, characterized by load and generation com-
position including the electrical topological state (breaker
positions etc.) and import/export to neighbouring areas”.

In this paper, the EMPS-NC analysis is done considering
a constant network topology, thus the electrical topologi-
cal state of all the power market scenarios is the same. In
the composite reliability assessment of the Nordic power
system, the power flow problem is solved for the whole
synchronous area of Eastern Denmark, Finland, Norway,
and Sweden. The import/export to Central and Eastern
Europe, through HVDC connections, are modelled as neg-
ative/positive loads in the power flow problem. Thus, with
respect to the reliability assessment discussed in this pa-
per, power market scenarios and operating scenarios are
used synonymously.

The incorporation of power market (operating) scenarios
in the reliability assessment is illustrated in Figure 2. For
each operating scenario, reliability indices are evaluated
by using analytical contingency enumeration techniques,
based on minimal cuts and approximate techniques. The
per operating scenario indices are combined to give annual
indices for each of the hydro inflow years included in the
EMPS-NC analysis. Only evaluation of indices used in the
case studies, described in section 5 and 6, are presented
here. A complete description of the reliability analysis is
found in [3, 10].

3.1. The Operating Scenarios

The ATCs are defined by the TSOs using the N-1 crite-
rion, and thus the probabilistic reliability level is unknown.
The objective of the reliability assessment is to determine
the long-term reliability level (adequacy analysis) of the
power system. As the operating scenarios are interpreted
as a sample of possible future day-ahead market scenarios,
the reliability assessment is concerned with the long-term
adequacy assessment of the operational phase in Figure 1.
In long-term adequacy analysis, the main question is if
there are enough available resources in the system, after
market clearing, to take care of potential system problems
due to forced outages of generators, transmission system
failures, or within market zone congestion. The problem
of within market zone congestion is discussed in [4].

3.2. Consequence Analysis

For each operating scenario, a set of contingencies is
analysed with respect to violations of the operating cri-
teria. The consequence analysis aims at minimising the
consequences, as seen by end users at delivery points, of
these violations. This includes an analysis of the operat-
ing scenario itself, to check for overload on transmission
system components.
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If a forced outage of a component results in violation
of the operating criteria, optimal power flow is used to
minimise the cost of the generation rescheduling needed
to bring the system back within its operating limits. For
linearised power flow, this optimisation problem, denoted
the minimal rescheduling model (MRM), is:

min
~P ,θshift

~cP ·∆~P , where ∆Pk = |Pk − P sched
k | (1)

subject to ~Y DCθ = ~P

~hmin ≤ ~h(θ, ~P ) ≤ ~hmax

θshift,min ≤ θshift ≤ θshift,max

~Pmin ≤ ~P ≤ ~Pmax

Here, ~cP is a vector of marginal costs of rescheduling per
generator included in the optimisation problem, Pk the
power output of generator k after rescheduling, P sched

k the
scheduled power output of generator k (after market clear-

ing), and ~Y DC is the admittance matrix. The branch flow

constraints are defined in ~h(θ, ~P ), and ~P , θ, and θshift

are the generator outputs, bus voltage angles, and phase
shifting transformer settings.

There is a cost related to both up and downward regu-
lation of the generators, since from the TSOs perspective,
this balancing power has to be bought in the balancing
market. In (1), the marginal cost of upward and downward
regulation is the same, which in general is not true. The
actual cost of rescheduling is determined by the bids in the
balancing market, submitted daily by the generators, and
thus it is difficult to estimate this cost in long-term anal-
ysis. However, from an adequacy analysis point of view,
the actual cost is not too important, as the analysis mainly
look into the problem of sufficient reserves. Therefore, the
cost can, e.g., be set equal to (or a little higher than) the
area price.

If rescheduling is not sufficient to solve the system prob-
lems, or if sufficient amounts of demand response cannot
be bought in the balancing market, load shedding is in-
cluded in the objective functions given by (2).

min
~P ,θshift

~cP ·∆~P + ~cL · ~P lshed (2)

Here, ~cL is a vector of marginal cost of load shedding per
delivery point with an interruptible load, ~P lshed is the vec-
tor of the amount of load shedding done at each of those
delivery points. ∆~P , ~cP , and the constraints are as above.

The marginal cost of load shedding per delivery point
~cL depends on, e.g., customer type, interruption duration,
and time of interruption, see [11–13].

There are two main reasons for using the minimal
rescheduling model. First, it minimises the long-term
cost of balancing services, and second, it will (approxi-
mately) minimise the difference between the actual gener-
ation scheduling and the (hydro power) scheduling given
by EMPS-NC. If a forced outage causes a large deviation
from the schedule given by the power market model, this

might affect the power market, and will require an up-
date of the power market analysis. However, the effect of
forced outages on the power market can only be analysed
if a sequential simulation approach is used, as the time and
duration of the outages matter, and is not covered by the
analysis described here.

3.3. Reliability Indices

For operating scenario i, and component outage j, the
interrupted power at delivery point d is:

P inter
i,j,d = Pi,d − SACi,j,d [MW], (3)

where Pi,d is the demand at delivery point d given by
EMPS-NC, and SACi,j,d is the system available capac-
ity at the delivery point, after MRM is used to resolve all
system problems (if any).

Minimal cut sets are found per delivery point, where
each cut in the set causes an (partial) interruption at the
given delivery point (P inter

i,j,d > 0).

3.3.1. Delivery point indices per operating scenario

Reliability indices are calculated for all delivery points.
The expected annualised interruption duration, at delivery
point d, is:

Ua
i,d =

nmc,i,d∑
j=1

rj · λj [h/year],

where λj and rj are the equivalent yearly failure frequency
and mean time to repair for minimal cut set j, and nmc,i,d

is the number of minimal cuts for delivery point d for op-
erating scenario i. The annualised expected energy not
supplied (EENS) for delivery point d is:

EENSa
i,d =

nmc,i,d∑
j=1

P inter
i,j,d · rj · λj [MWh/year], (4)

where λj , rj , and nmc,i,d are as described above.

3.3.2. System indices per operating scenario

System indices are also found per operating scenario i.
The system annualised EENS is:

EENSa
i =

∑
d

EENSa
i,d [MWh/year], (5)

where the sum is over all delivery points, and EENSa
i,d is

given by (4).

The average interruption duration per delivery point in
the system (Ua

i ) is defined as the mean of the expected
annualised interruption durations of all the delivery points.
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Figure 3: Illustration of the scenario selection process. The n scenarios, generated by EMPS-NC, are represented by k scenarios, which forms
the representative set. For each scenario in the representative set, at set of reliability indices ~F (ri) are calculated. As it is assumed that all

scenarios within a cluster/group have the same value of the reliability indices, this is used to estimate the value of reliability indices ~̂F (si)
for each of the n original scenarios.

3.3.3. Annual indices

EMPS-NC analyse different (hydrological inflow) years,
and annual indices are found for each of those years. For
delivery point d, the annual indices for year y is:

Ua
y,d =

nos∑
i=1

Ua
i,d ·

hi
hyear

[h/year], (6)

EENSa
y,d =

nos∑
i=1

EENSa
i,d ·

hi
hyear

[MWh/year], (7)

where nos is the number of operating scenarios in year
y, hi the duration (in hours) of operating scenario i, and
hyear = 8736, the number of hours in an EMPS-year. The
same approach is used to get the annual system indices.

This method neglects that outages of higher order than
those of the minimal cuts might have an additional impact
on the EENS, i.e., only outages of order equal to that of
the minimal cuts are accounted for in the analysis. This is
in general not precise, but is a reasonable approximation
as long as the higher order outage combinations have low
probabilities.

4. The Scenario Selection Method

The main objective of this section is to provide some
general guidelines for application of the scenario selection
method [7], where the guidelines are based on practical
experiences with the method, see, e.g., [14–16]. Similar
ideas for data reduction, in the context of power system
analysis, is found in [17–19].

The overall outline of the method is illustrated in Fig-
ure 3, following the main steps:

1. Find k groups of similar operating scenarios.

2. For each group: Represent the group characteristics
by one of the operating scenarios within that group.

3. Evaluate the reliability indices for the operating sce-
narios picked to represent the groups.

4. Assume that all operating scenarios within a group
have the same value of the reliability indices as the
the group representative (found in the previous step).

4.1. Feature Selection and Data Preparation

For clustering algorithms to be able to find groups of
similar operating scenarios, a set of features (data points)
must be assigned to represent each operating scenario,
such that similarity measures can be used to quantify sim-
ilarity. This feature selection process is discussed in detail
in [7].

In the consequence analysis, the objective function (1)
(and (2)) is defined such that for forced outages which
require rescheduling (and load shedding), the cost of the
corrective actions are minimised. In practice, this means
that the power injections (sum of load and generation)
after rescheduling (and load shedding) are as close as pos-
sible to the power injections given by the initial operating
scenario. Thus, the power injections (sum of load and gen-
eration) at each bus in the analysed system are a natural
choice of features when the goal is to find similar operating
scenarios, the MRM is used for the consequence analysis,
and the initial network topology is the same of all analysed
operating scenarios.

The power injections have been used as features, with
good results, when the scenario selection method has been
used in combination with other consequence models as well
[7]. The power injections provide information regarding
where in the system large loads are, where the genera-
tion is located, and thus indicate how power is transferred
around in the system. The geographical placements of
large loads are especially important in terms of transmis-
sion system reliability. This feature set has also been used,
with success, when classification and clustering algorithms
have been used in other power system reliability studies
[18, 20].

Thus, for each operating scenario si, the data given as
input to the clustering algorithm is:

si = ~si = [Pi,1, Pi,2, . . . , Pi,j , . . . , Pi,d],

where d is the number of buses in the system.
Feature selection is a case dependent process [21], and

ideally the feature selection should be customised to suit
the analysis to get optimal results. However, the power
injections give good results when used as features for sce-
nario selection, and is the best general recommendation.
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To use the power injections as features can lead to an
extensive number of features for large systems. Correla-
tion analysis and projection methods, e.g., principal com-
ponent analysis or multidimensional scaling [21], can in
these situations be used to reduce the dimensionality of
the problem.

4.2. Clustering Algorithm and The Number of Clusters

There is a great variety of unsupervised learning algo-
rithms that can be used to cluster the operating scenarios
[7, 14]. Some techniques exist for determining the number
of clusters k in a dataset [7, 14, 22], but these methods
are usually only suitable (and successful) when applied to
datasets with a few number of clusters.

In the context of scenario selection, different clustering
algorithms and methods for determining the number of
clusters have been tested [7, 14], but there is no evidence
in favour of a clear clustering structure among the oper-
ating scenarios (generated by EMPS-NC). This is not too
surprising, as the power market behaves in a continuous
way. The problem of finding groups of similar operating
scenarios can therefore be interpreted as a segmentation
problem [21].

In a segmentation problem, the goal of the clustering
algorithm is to group together scenarios which are very
similar. An agglomerative clustering algorithm with com-
plete linkage will in general produce small and compact
clusters [21, 23], and should therefore be an appropriate
algorithm for this problem. Results from applications of
the scenario selection method indicates that this is true, as
agglomerative clustering with complete linkage has been,
overall, the algorithm with the best results when applied
for scenario selection.

As the clustering problem in the scenario selection pro-
cess is interpreted as a segmentation problem, it is hard to
define an objective criteria that can be used to determine
k. Thus, choosing the number of groups k by setting k
at a value of about 10% of the total number of scenarios
has been a good compromise between reducing the number
of scenarios, while maintaining the variation in the sam-
ple of operating scenarios. This reduce the computational
requirements of the reliability assessment by about 90%.

4.3. Group Characteristics and Estimating Reliability In-
dices

For each group of operating scenarios, the medoid will
be chosen to represent the whole group. The medoid is
the operating scenario closest to the centre of the group.
The reliability indices of the medoid operating scenario are
evaluated as explained in section 3, and it is assumed that
all operating scenarios within each group have the same
value of the reliability indices as the medoid.

Within each group, the reliability indices of each operat-
ing scenario is set equal to the group representative, which
for, e.g., the annual expected interruption duration will be

marked with a hat, Ûa
y,d, as it now is only an approxima-

tion of the reliability index of the operating scenario. To
get the annual indices per year y:

Ũa
y,d =

nos∑
i=1

Ûi,d ·
hi

hyear
[h/year], (8)

EẼNSa
y,d =

nos∑
i=1

̂EENSi,d ·
hi

hyear
[MWh/year] (9)

This is equivalent to what was done in (6) and (7). These
indices will be the scenario selection indices. Indices per
operating scenario are marked with a hat (as seen in the
last block in Figure 4), while tilde marks annual indices
per modelled hydro inflow year.

Instead of choosing one operating scenario to represent
each group, an alternative is to choose a set of operating
scenarios from each group, evaluate the reliability indices
for each of these operating scenarios, find a weighted av-
erage of these reliability indices, and use this weighted av-
erage to represent the reliability level of each group. How-
ever, this would require a method for picking out the group
characteristics, and would increase the computational re-
quirements. Practical experiences, such as the case studies
included in section 5 and 6, have shown that to only use
the medoid as a group representative gives good results.

5. Case Study I - Test Network

In this case study, a reliability assessment incorporating
power market scenarios is done on a small test network,
which is designed for test purposes for EMPS, see, e.g., [6].
The network consists of three meshed areas, with fairly
weak connections between them, and export to a fourth
area through an HVDC cable.

For the given network, EMPS-NC use four load periods
per week, for 50 years of historic time series, which gives
a total of 10400 operating scenarios.

The reliability assessment includes all third order out-
ages of lines, transformers, and generators. All generators
and loads are included in the optimisation problems in (1)
and (2).

5.1. Reliability Indices

In Figure 4, the average interruption duration and the
system EENS are shown for all 50 years, where the in-
dices are calculated based on both a full analysis of all
10400 operating scenarios, and based a reduced set found
by scenario selection method.

For the average interruption duration in Figure 4a, the
difference between Ua

y and Ũa
y is in the range of [0, 0.2]

(h/year), which means that the scenario selection index

(Ũa
y ) is within a 10% margin of the value of target index

(Ua
y ) for all the 50 years.
For the EENS in Figure 4b, the difference be-

tween EENSa
y and EẼNSa

y is in the range of [0, 12]
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Figure 4: Left: Average interruption duration for the test network. For the scenario selection index, the maximum point wise error is 0.2
h/year. Right: Expected energy not supplied. For the scenario selection index, the maximum point wise error is 12 MWh/year.
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Figure 5: Left: Average system interruption duration for the subsystem in the Nordic system. For the scenario selection indices, the maximum
point wise error is 0.03 h/year. Right: Expected energy not supplied. For the scenario selection indices, the maximum point wise error is 75
MWh/year.
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Figure 6: Annual expected energy not supplied for two delivery points in the Western part of Norway. The value of the scenario selection
indices are close to the value of the indices based on a full analysis.

(MWh/year), which means that the scenario selection in-

dex (EẼNSa
y ) is within a 10% margin of the value of

target index (EENSa
y ) for all 50 years.

For delivery point indices, very similar results apply as
for the system indices when comparing indices based on a
full analysis and the scenario selection method.

6. Case Study II - Nordic System

This second case study analyses the Nordic transmission
system - Eastern Denmark, Finland, Norway, and Sweden.
In the model, Sweden is replaced with a 30 bus network
equivalent, giving a total of about 1700 buses in the sys-
tem.

For the Nordic system, EMPS-NC uses five load periods
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per week, for 50 years of historic time series, which gives
a total of 13000 generated operating scenarios.

The reliability analysis includes all second order trans-
mission outages - lines and transformers, in a 60 bus sub-
system in the Western part of Norway. Only generators,
and loads, within the subsystem can participate in the op-
timisation in (1) and (2).

6.1. System Indices

In Figure 5, the subsystem average interruption dura-
tion and expected energy not supplied are shown for all
50 years, where the indices are calculated based on both
a full analysis of all operating scenarios, and based on the
scenario selection method.

For the average interruption duration in Figure 5a, the
difference between Ua

y and Ũa
y is in the range of [0, 0.03]

(h/year), which means that the scenario selection index

(Ũa
y ) is within a 5% margin of the value of target index

(Ua
y ) for all the 50 years.

For the EENS in Figure 5b, the difference be-
tween EENSa

y and EẼNSa
y is in the range of [0, 75]

(MWh/year), which means that the scenario selection in-

dex (EẼNSa
y ) is within a 10% margin of the value of

target index (EENSa
y ) for all 50 years.

6.2. Delivery Point Indices

In Figure 6 the EENS is shown for two delivery points
in the subsystem, where the error is within a 15% margin
in the left plot and an 8% margin in the right plot, i.e., the
scenario selection method works with reasonable accuracy
for delivery point indices as well.

6.3. Comments

Only transmission outages are included in the analysis,
since this part of the network have some bottlenecks in
the transmission system which dominates the reliability
indices. Including generator outages in the analysis will
only have a marginal effect on the value of the reliability
indices.

Comparing the scenario selection indices in Figure 6a
and Figure 6b, the scenario selection method seems to give
better results for delivery point two than delivery point
one. Delivery point two has a higher load, and a higher
load variability, compared to delivery point one. Thus, de-
livery point two has a more dominant feature value than
delivery point one when quantifying similarity of operating
scenarios, which is why the scenario selection method per-
forms better at delivery point two. If all features should
have equal weight (importance), this can be achieved by
scaling all features onto [0, 1] before the clustering process
is started. However, this will result in worse overall per-
formance of the scenario selection method, as it is in fact
the larger loads that are the most important in order to
get overall good estimates for the reliability indices.

7. Discussion

The scenario selection method can be implemented as a
black box algorithm based on the guidelines given in sec-
tion 4, with good results as shown in the case studies.
However, as for all applications of learning algorithms,
(small) adjustments to fit the algorithm to the problem
at hand, are necessary for optimal results. For instance,
the choice of features and the choice of k (the number of
groups) might be changed according to the objective of the
analysis.

As seen in the case studies, setting k ≈ 0.1 · n tends
to produce scenario selection indices within a 5-10% range
of the target values. The annualised system EENS per
operating scenario, as defined by (5), is in the range of
0 [MWh/year] to about 2500 [MWh/year] for the four-
area test network. For Western Norway, the annualised
system EENS per operating scenario is in the range of
50 [MWh/year] to about 5000 [MWh/year]. Considering
the large range of this index, and the fact that there is no
clear clustering structure in the data, some error in the
scenario selection indices is to be expected. Thus, a 90%
data reduction, with scenario selection indices within a 5-
10% range of the target values, has been set as a reasonable
and acceptable error.

In addition to determine the current probabilistic reli-
ability/risk level, the analysis illustrated in Figure 2, can
be used as an objective method of comparing alternative
ATCs (and market zone) definitions, or to suggest main-
tenance schedules. If this is the objective, the analysis in
Figure 2 must be done several times, as EMPS-NC is used
to generate operating scenarios for, e.g., different values
of ATCs, and a reliability assessment is done based on
each EMPS-NC analysis. In this situation, the scenario
selection method is especially useful as it can be used as
an objective method for reducing the computation time of
each analysis.

In the power market analysis in this paper, the ATCs
were set according to the N-1 criterion, which gives quite
high congestion costs [4], and it puts quite heavy restric-
tions on the market clearing process in EMPS-NC. Thus,
the variability in the sample of operating scenarios is lim-
ited. If the ATCs are defined according to other criteria,
e.g., a probabilistic security criterion [24], this can possi-
bly lead to a larger variability in the sample of operating
scenarios. As long as MRM is used for the consequence
analysis, the power injections should still be a good fea-
ture set, with respect to application of the scenario se-
lection method, as the arguments in section 4.1 are still
valid. However, the number of groups k might have to be
increased to keep the error in the reliability indices within
a reasonable level.

In reliability assessment, the “high impact low probabil-
ity” (HILP) events are of special interest, as these events
have extreme consequences. In the context of scenario se-
lection, the question is if there exist “extreme” operating
(power market) scenarios, or if there are cases where an op-
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erating scenario in combination with a given contingency
constitutes a HILP event. As long as EMPS-NC, in combi-
nation with the N-1 criterion, is used for the power market
analysis, the operating scenarios themselves are not HILP
events, and it is doubtful that an operating scenario can be
a contributing factor in the constitution of a HILP event.
However, if other security criteria are used for the power
market analysis, there might be cases where an operating
scenario itself is a contributing factor in the constitution
of a HILP event. If so, the operating scenario itself should
be considered an outlier, and not be a part of any clus-
ter/group in the representative set. There exist different
techniques for outlier detection, but outlier detection is
outside the scope of the analysis done in this paper. Out-
lier detection, in the context of scenario selection, is briefly
discussed in [7].

One limitation of the reliability analysis of the Western
part of Norway is that only generators within this area can
participate in the generation rescheduling (in (1) and (2)).
If generators from surrounding areas are to be included in
the optimisation problem, a suitable model for this needs
to be defined. In addition, information about the amount
of available support from other areas should be included
in the feature set.

In the reliability assessment, the chronological structure
of the operating scenarios is disregarded, as each scenario
is analysed independently. This again, makes it possible to
use the scenario selection method to reduce the number of
scenarios to be included in the reliability assessment. How-
ever, when combining the results into yearly indices, the
chronological structure of the operating scenarios is used.
This type of analysis will thus distribute the consequences
of the forced outages over the whole analysis period. Ref-
erence [10] contains more details on how to capture the
time dependencies.

The load model in EMPS-NC consists of a firm demand
and a price sensitive demand. Load uncertainty should
ideally be included in the reliability assessment, but this
is not considered in this paper.

As a large portion of the generation in the Nordic system
is based on hydro power, there could be situations where
there is energy shortage due to very low hydro inflow, or
there could be capacity shortage due to, e.g., very low
temperature [25]. These problems should ideally be solved
by the market itself (by increased prices), but the market
might not respond fast enough to sufficiently prevent these
problems [25]. The reliability analysis method discussed
in this paper cannot be used for this type of analysis. An
analysis based on sequential simulations, or the approach
taken in [25], could be used instead.

8. Conclusion

The incorporation of power market scenarios in a relia-
bility assessment is discussed in the context of the Nordic
power system. It is shown how EMPS-NC is used for the

power market analysis, and how the reliability assessment
is done based on the results of the EMPS-NC analysis.

To include all operating scenarios, generated by EMPS-
NC, in the reliability assessment, will in general result in
excessive computation time for the reliability assessment.
The scenario selection method is presented, and used to
reduce the computational requirements. The method picks
out a subset of the results of the EMPS-NC analysis, and
only use this subset as input in a reliability assessment.

The results of the case studies show that the scenario
selection method can reduce the computational require-
ments by about 90%, with only minor information loss in
the final reliability indices.
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