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Problem Description

The purpose of this Master’s Thesis is to develop an optimisation model to manage manganese alloy
production. Efficient allocation of resources across multiple plants is essential to ensure optimal
production. The primary objectives of this thesis are to formulate a model that handles complex
chemical and pooling restrictions and to apply a solution method to verify the global optimum.

Main contents:

1. Description of the problem.

2. Presentation of the mathematical formulation developed for the problem.

3. Presentation of the solution method applied to solve the problem.

4. Implementation and testing of the mathematical formulation using the appropriate software.

5. Presentation and discussion of the results and an evaluation of the applicability of the model.
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Abstract

The average concentration of manganese in the earth’s crust is nearly 0.1%, making it the fourth
most abundant of the metals in commercial use. Manganese alloys are mainly consumed as alloy-
ing elements in the steel industry. Manganese ores are extracted at mining sites and smelted to
manganese alloys at smelting sites. In the production of manganese alloys, the problem is to find
the optimal combination of ores, fluxes, coke, and slag to feed the furnaces that yields alloys that
meet customer specifications and to optimally decide the volume, composition, and allocation of
the produced slag between furnaces. The alloys are either sold or further refined and then sold. The
authors name the problem as the manganese alloy multi-plant production problem.

Current decisions in the industry are based on experience and process knowledge and are denoted
as single furnace optimisation. Single furnace optimisation is the practice of optimising the profit
for each single furnace without considering the overall production. A multi-plant optimisation
model can provide decision support to the industry and improve the current practice.

A pooling problem formulation is presented to solve the problem. To the authors’ knowledge, little
work has been done on formulating the pooling problem for production of manganese alloys, and
no formulations for multi-plant production exist in this industry. The formulation presented is flow
and quality based and is a hybrid between the standard and the general pooling problem. The model
is, however, subject to simplifying assumptions that may limit how realistic it is in its current state.

The bilinear terms in the mathematical formulation are linearised using the Multiparametric Dis-
aggregation Technique (MDT) and the formulation is implemented in the linear solver FICO R©

Xpress. To the authors’ knowledge, this is the first model that applies the MDT to solve large-
scale, real instances. The model is applied to test instances based on the industrial partner Eramet
Norway’s plant layout and solved to a global optimality within 3% using the MDT-algorithm. The
computational study shows that the optimisation model presented can solve problem sizes of up to
ten furnaces to a global optimality gap within 8% for the allotted run time, that the MDT scales
well with the problem sizes tested, and that our model outperforms single furnace optimisation.
It should be noted that the single furnace optimisation practice is based on mimicking the actual
practice by using our model and not actual practice results. Comparing the model to real produc-
tion data remains an objective, but the results indicate that multi-plant production planning can be
of considerable value to manganese alloy production.

A paper based on the contents of this thesis has been written in cooperation with the supervisors.
This paper, with the title "Optimisation of Manganese Alloy Production", is appended to the end of
the thesis. As the paper is based on this thesis, there is overlapping content.
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Sammendrag

Gjennomsnittlig mangankonsentrasjon i jordskorpen er rundt 0.1%. Mangan er dermed det fjerde
mest forekommende metallet blant metaller i kommersiell bruk. Manganlegeringer blir hoved-
sakelig konsumert som legeringselementer i stålindustri. Manganmalm blir utvunnet gjennom
gruvedrift og legeringer produseres i smelteverk ved å smelte malm sammen med andre råstof-
fer i ovner. Legeringene har gitte kvalitetsspesifikasjoner og kan selges som de er, eller videre
raffineres og selges.

Problemet i manganlegeringsproduksjon er å finne en optimal kombinasjon av malmer, flussmiddel,
koks og slagg å benytte i ovnene til å produsere de sluttproduktene som tilfredsstiller kundenes krav,
samt å bestemme volum, komposisjon og transport av slaggstoff som kommer fra ovnene. Dette
problemet blir betegnet som multifabrikks-manganlegeringproduksjons-problemet. I dag baseres
produksjonsbeslutninger på erfaring og prosesskunnskap, dette blir betegnet som enkeltovnsopti-
mering. Enkeltovnsoptimering er praksisen med å optimere profitt for hver enkelt ovn og tar ikke
hensyn til den helhetlige produksjonen. En multifabrikkmodell kan bidra som beslutningsstøtte til
industrien og forbedre den nåværende praksisen.

En optimeringsmodell basert på poolingproblemet presenteres for å løse problemet. Etter det for-
fatterne kjenner til, er lite arbeid gjort for å formulere et poolingproblem for manganlegeringspro-
duksjon og ingen multifabrikkmodell eksisterer for denne industrien. Modellen er flyt- og kvalitets-
basert og er en kombinasjon av en standard og en generell poolingproblemformulering. Modellen
inneholder forenklinger og antagelser som begrenser hvor realistisk den er i sin nåværende tilstand.

De bilineære leddene i den matematiske formuleringen er lineærisert ved bruk av multiparametrisk
disaggregeringsteknikk (MDT). Formuleringen er deretter implementert i det lineære optimer-
ingsprogrammet FICO R© Xpress. Til forfatternes kunnskap er modellen som presenteres den første
hvor MDT benyttes til å løse store, reelle probleminstanser. Modellen benyttes til å teste prob-
leminstanser basert på Eramet Norge sitt fabrikkoppsett og disse løses til et globalt optimalitetsgap
innenfor 3% ved bruk av MDT-algoritmen. En beregningsstudie viser at optimeringsmodellen kan
løse probleminstanser på størrelser opp til ti ovner til et globalt optimalitetsgap innenfor 8% på
tillatt kjøretid, at MDT skalerer godt med størrelsen på probleminstansene som testes og at vår
modell presterer bedre enn enkeltovnsoptimering. Det gjøres oppmerksom på at praksisen med
enkeltovnsoptimering er basert på en etterligning av den virkelige produksjonen ved å bruke vår
optimeringsmodell og ikke resultater fra en faktisk produksjon. Sammenligning av modellen mot
reelle data gjenstår fremdeles som et mål, men resultatene indikerer at bruk av vår optimeringsmod-
ell kan være av betraktelig verdi for manganlegeringsproduksjon.

En artikkel basert på innholdet i denne masteroppgaven har blitt skrevet i samarbeid med veilederene.
Denne artikkelen, med tittelen "Optimisation of Manganese Alloy Production", er lagt ved i slutten
av oppgaven. Siden artikkelen er basert på masteroppgaven, er det overlappende innhold.

VI



Table of Contents

Problem Description I

Preface III

Abstract V

Sammendrag VI

Table of Contents VII

List of Tables XI

List of Figures XIII

Dictionary XV

1 Introduction 1

2 Industry Insight 3
2.1 Market Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Market Supply and Demand . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Supply Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The Production Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 The FeMn Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 The SiMn Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Ores, Fluxes, Quartz, and Coke . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.4 The Furnace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.5 The MOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.6 The LC SiMn Refining Station . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.7 The Crushing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.8 By-products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 The Production Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 The Discard Slag Practice . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 The Duplex Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Furnace Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Eramet Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Problem Description 15
3.1 The Manganese Alloy Multi-plant Production Problem . . . . . . . . . . . . . . . 15

VII



TABLE OF CONTENTS

4 Literature Review 17
4.1 The Blending Problem Versus the Pooling Problem . . . . . . . . . . . . . . . . . 18
4.2 The Pooling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Classifications of the Pooling Problem . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Pooling Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 The Pooling Problem in Different Industries . . . . . . . . . . . . . . . . . . . . . 23
4.6 Solution Methods for the Pooling Problem . . . . . . . . . . . . . . . . . . . . . . 25
4.7 The Multi-period Pooling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Model Formulation 31
5.1 Modelling Choices and Model Assumptions . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Problem Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 Raw Material Supply and Costs . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 Chemical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.4 Slag Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.5 By-products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.6 End-product Content Specifications . . . . . . . . . . . . . . . . . . . . . 34
5.1.7 Furnace Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.8 Process Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.9 Recovery of Thermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Definition of Sets, Indices, Parameters, and Variables . . . . . . . . . . . . . . . . 35
5.3 Pooling Problem Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Resource Inventory Constraints . . . . . . . . . . . . . . . . . . . . . . . 41
Furnace Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Furnace Power Consumption Constraints . . . . . . . . . . . . . . . . . . 42
Furnace - Slag Connection Constraints . . . . . . . . . . . . . . . . . . . . 44
MOR Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
LC SiMn Refining Station Constraints . . . . . . . . . . . . . . . . . . . . 46
Crushing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Final Inventory and Demand Constraints . . . . . . . . . . . . . . . . . . 48
Chemical Balance Constraints . . . . . . . . . . . . . . . . . . . . . . . . 48
Boudouard Reaction Constraints . . . . . . . . . . . . . . . . . . . . . . . 50
Chemical Content Constraints . . . . . . . . . . . . . . . . . . . . . . . . 50
Non-negativity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Multi-period Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Solution Method 55
6.1 Definition of Sets, Indices, Parameters, and Variables . . . . . . . . . . . . . . . . 55
6.2 The Multiparametric Disaggregation Technique . . . . . . . . . . . . . . . . . . . 57
6.3 The Lower Bound Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 HC FeMn Furnace - Slag Connection . . . . . . . . . . . . . . . . . . . . 57
6.3.2 MC SiMn Furnace - Slag Connection . . . . . . . . . . . . . . . . . . . . 59

6.4 The Upper Bound Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.1 HC FeMn Furnace - Slag Connection . . . . . . . . . . . . . . . . . . . . 60
6.4.2 MC SiMn Furnace - Slag Connection . . . . . . . . . . . . . . . . . . . . 62

6.5 The Global Optimality Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 64

VIII



TABLE OF CONTENTS

6.6 Decreasing the Computational Time . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6.1 Merging Identical Furnaces . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6.2 Symmetry Breaking Constraints . . . . . . . . . . . . . . . . . . . . . . . 65

7 Computational Study 67
7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Definition of the Base Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2.1 Plants, Furnaces, MORs, and LC SiMn Refining Stations . . . . . . . . . . 68
7.2.2 End-products, By-products, and Slag . . . . . . . . . . . . . . . . . . . . 69
7.2.3 Raw Materials and Refining Resources . . . . . . . . . . . . . . . . . . . 71
7.2.4 Raw Material Costs, Discard Costs, and Slag Transportation Costs . . . . . 71
7.2.5 MDT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.6 Multiple Time Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3 Technical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3.1 Solution Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3.2 Decreasing the Solution Time . . . . . . . . . . . . . . . . . . . . . . . . 76

Merging Identical Furnaces . . . . . . . . . . . . . . . . . . . . . . . . . 76
Symmetry Breaking Constraints . . . . . . . . . . . . . . . . . . . . . . . 77

7.3.3 Global Optimality Gap with Increasing Run Time . . . . . . . . . . . . . . 78
7.3.4 Solution Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.5 Solution Sensitivity For Different Slag Composition Intervals . . . . . . . 80
7.3.6 The Effect of Changes to the LBP and UBP Optimality Gaps . . . . . . . . 81
7.3.7 MDT Parameter Setting Effects . . . . . . . . . . . . . . . . . . . . . . . 82
7.3.8 Multi-period MAMP Run Statistics . . . . . . . . . . . . . . . . . . . . . 83

7.4 Economic Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4.1 The Value of Increasing the Run Time . . . . . . . . . . . . . . . . . . . . 84
7.4.2 Comparison of the MAMP to Single Furnace Optimisation . . . . . . . . . 84
7.4.3 The Value of Solving the Pooling Problem . . . . . . . . . . . . . . . . . 87
7.4.4 Slag Behaviour with Increasing Demand . . . . . . . . . . . . . . . . . . 88

End-product Production Volumes . . . . . . . . . . . . . . . . . . . . . . 88
Evenly Distributed End-product Demand . . . . . . . . . . . . . . . . . . 89
End-product Demand Skewed Towards FeMn Alloys . . . . . . . . . . . . 90
End-product Demand Skewed Towards SiMn Alloys . . . . . . . . . . . . 91

7.4.5 Sensitivity to Changes in Raw Material Procurement Costs . . . . . . . . . 92
7.4.6 Comparison of the MAMP to Single Furnace Optimisation: High Slag-to-

Metal Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.7 Switching Furnace Production Setups . . . . . . . . . . . . . . . . . . . . 95
7.4.8 Multi-period Production Planning . . . . . . . . . . . . . . . . . . . . . . 96

8 Concluding Remarks 99

9 Future Research 101

Bibliography 103

Appendix 107

A Chemical Constraints 107
A.1 Main Chemical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2 Critical Chemical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.3 Reduction Relating Chemical Constraints . . . . . . . . . . . . . . . . . . . . . . 110

IX



TABLE OF CONTENTS

A.4 The Boudouard Reaction Chemical Constraints . . . . . . . . . . . . . . . . . . . 110
A.5 Slag Specific Oxide Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B Weight Relationship Parameters 112

C Furnace Mass Balance 113

D Raw Material Compositions 115

E Thermodynamic Properties 117

F Paper: Optimisation of Manganese Alloy Production 119

X



List of Tables

2.1 Supply and demand in 2014 for the most important manganese alloys . . . . . . . 4

4.1 Overview of pooling problem literature relevant to the formulation of the MAMP . 21
4.2 Overview of solution method literature relevant to the pooling problem . . . . . . . 26

5.1 Definition of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Definition of indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Definition of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Definition of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Definition of sets for the multi-period MAMP . . . . . . . . . . . . . . . . . . . . 52
5.6 Definition of indices for the multi-period MAMP . . . . . . . . . . . . . . . . . . 52
5.7 Definition of parameters for the multi-period MAMP . . . . . . . . . . . . . . . . 53
5.8 Definition of variables for the multi-period MAMP . . . . . . . . . . . . . . . . . 53

6.1 Definition of sets for the MDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Definition of indices for the MDT . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Definition of parameters for the MDT . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Definition of variables for the MDT . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 Base instance: Plant and furnace layout overview . . . . . . . . . . . . . . . . . . 68
7.2 Base instance: Furnace mass and electrical power capacity . . . . . . . . . . . . . 69
7.3 Base instance: Undersized lump feed limit for different process stages . . . . . . . 69
7.4 Base instance: Fixed and optional contract demands and revenues . . . . . . . . . 70
7.5 Base instance: End-product compositions . . . . . . . . . . . . . . . . . . . . . . 70
7.6 Base instance: Upper and lower bounds on the slag composition . . . . . . . . . . 70
7.7 Base instance: By-product yield from each process stage . . . . . . . . . . . . . . 71
7.8 Base instance: Raw material procurement costs . . . . . . . . . . . . . . . . . . . 72
7.9 Base instance: Refining resource costs . . . . . . . . . . . . . . . . . . . . . . . . 72
7.10 Base instance: By-product revenues and costs . . . . . . . . . . . . . . . . . . . . 72
7.11 Base instance: Slag transportation costs between plants . . . . . . . . . . . . . . . 72
7.12 Multi-period instances: Fixed and optional contract demands and revenues . . . . . 73
7.13 Accepted optimality gaps and run times . . . . . . . . . . . . . . . . . . . . . . . 74
7.14 Definition of furnace setups for instances used in the technical study . . . . . . . . 74
7.15 LBP computational statistics for the test instances . . . . . . . . . . . . . . . . . . 75
7.16 Optimality gaps and run times for the test instances . . . . . . . . . . . . . . . . . 75
7.17 Definition furnace merging test instances . . . . . . . . . . . . . . . . . . . . . . . 76
7.18 Furnace merging results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.19 Furnace merging LBP objective value and UBP best bound . . . . . . . . . . . . . 77
7.20 Definition of test instances including symmetry breaking constraints . . . . . . . . 77
7.21 Results of including symmetry breaking constraints . . . . . . . . . . . . . . . . . 78

XI



LIST OF TABLES

7.22 Base instance solution stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.23 Definition of test instances with various slag composition intervals . . . . . . . . . 80
7.24 Results for various slag composition intervals . . . . . . . . . . . . . . . . . . . . 81
7.25 Optimality gaps and run times for the multi-period test instances . . . . . . . . . . 83
7.26 Comparison of the MAMP formulation to single furnace optimisation for the FeMn

production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.27 Comparison of the MAMP formulation to single furnace optimisation for the SiMn

production and total profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.28 Definition of pre-determined slag composition instances . . . . . . . . . . . . . . 87
7.29 Objective values for the pre-determined slag composition instances . . . . . . . . . 88
7.30 Comparison of the MAMP formulation to single furnace optimisation for the FeMn

production. Low FeMn alloy demand, high SiMn alloy demand . . . . . . . . . . . 94
7.31 Comparison of the MAMP formulation to single furnace optimisation for the SiMn

production and total profit. Low FeMn alloy demand, high SiMn alloy demand . . 94
7.32 Definition of test instances with alternative furnace production setups . . . . . . . 95
7.33 End-product production volumes and objective values for alternative furnace setups 96
7.34 Comparison of the multi-period to the single-period MAMP formulation . . . . . . 97

D.1 Raw material composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

E.1 Formation and sensible enthalpies for elements and oxides . . . . . . . . . . . . . 117

XII



List of Figures

2.1 High-carbon ferromanganese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Global manganese alloy production 2010 - 2013 . . . . . . . . . . . . . . . . . . . 5
2.3 Global crude steel production 2000 - 2015 . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Manganese alloy prices 2014 - 2015 for China, India, USA, and Europe . . . . . . 5
2.5 Overview of the manganese alloy industry supply chain . . . . . . . . . . . . . . . 6
2.6 Overview of the material flow in manganese alloy production using the duplex

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 (a) Illustration of a submerged arc furnace

(b) Cross-sectional illustration of a submerged arc furnace . . . . . . . . . . . . . 8
2.8 Illustration of the furnace and the most important chemical reactions . . . . . . . . 12
2.9 The industry partner’s plant locations in Norway: Sauda, Porsgrunn, and Kvinesdal 14

4.1 Illustration of the difference between the blending problem and the pooling problem 18
4.2 Illustration of the generalised pooling problem with an intermediate pool connection 20
4.3 Illustration of the P- and Q-formulation . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Illustration of the feasible region for different accuracy settings for two parame-

terised variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 The MAMP superstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Potential flow from HC FeMn furnaces to MC SiMn furnaces within and between

plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 (a) Plant layouts with original furnace setups
(b) Plant layouts with merged furnace setups . . . . . . . . . . . . . . . . . . . . . 65

7.1 Global optimality gap with increasing run time . . . . . . . . . . . . . . . . . . . 78
7.2 Run time for increasing LBP and UBP optimality gaps . . . . . . . . . . . . . . . 81
7.3 Global optimality gap for increasing LBP and UBP optimality gaps . . . . . . . . 81
7.4 Global optimality gap for various qpf and σpfgh settings . . . . . . . . . . . . . . 82
7.5 LBP objective value and UBP best bound for increasing run time . . . . . . . . . . 84
7.6 Average slag composition for single furnace optimisation . . . . . . . . . . . . . . 87
7.7 Average slag composition for the MAMP . . . . . . . . . . . . . . . . . . . . . . 87
7.8 End-product production volumes for increasing demand, evenly distributed . . . . 89
7.9 End-product production volumes for increasing demand, skewed towards FeMn

alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.10 Slag-to-metal ratio for increasing demand, evenly distributed . . . . . . . . . . . . 89
7.11 Slag composition for increasing demand, evenly distributed . . . . . . . . . . . . . 89
7.12 Slag-to-metal ratio for increasing demand, skewed towards FeMn alloys . . . . . . 90
7.13 Slag composition for increasing demand, skewed towards FeMn alloys . . . . . . . 90
7.14 Slag-to-metal ratio for increasing demand, skewed towards SiMn alloys . . . . . . 91

XIII



LIST OF FIGURES

7.15 Slag composition for increasing demand, skewed towards SiMn alloys . . . . . . . 91
7.16 Cumulative HC FeMn furnace raw material consumption for changes in the raw

material procurement costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.17 Cumulative MC SiMn furnace raw material consumption for changes in the raw

material procurement costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.1 Furnace mass balance overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

XIV



Dictionary

Abbreviations Elements and Oxides
LS – Left side Al – Aluminium

NA – Not applicable Al2O3 – Aluminium oxide

RS – Right side C – Carbon

CaCO3 – Limestone

CaMg(CO3)2 – Dolomite

Industry Terminology CaO – Calcium oxide

Calcine – To convert to calx by heating or burning CO – Carbon monoxide

Calx – The oxide substance that remains after CO2 – Carbon dioxide

metals have been thoroughly roasted Cu – Copper

HC – High Carbon Fe – Iron

LC – Low Carbon FeMn – Ferromanganese

MC – Medium Carbon FeO – Iron(II) oxide

MOR – Manganese Oxygen Refining Fe2O3 – Iron(III) oxide

Reactant – Any substance that undergoes a chemical Fe3O4 – Iron(II, III) oxide

change in a given reaction FeSi – Ferrosilicon

Redox – Reduction-oxidisation Mg – Magnesium

Resultant – The result from the combination of two MgO – Magnesium oxide

or more reactants Mn – Manganese

Tonne – Metric tonne, 1000kg MnO – Manganese(II) oxide

MnO2 – Manganese dioxide

Mn2O3 – Manganese(III) oxide

Optimisation Terminology Mn3O4 – Manganese(II, III) oxide

BLP – Bilinear Program P – Phosphorus

GOP – Global Optimisation Algorithm Si – Silicon

LP – Linear Program SiMn – Silicomanganese

MAMP – Manganese Alloy Multi-plant Production SiO2 – Silicon dioxide

problem

MDT – Multiparametric Disaggregation Technique

MILP – Mixed Integer Linear Program

MINLP – Mixed Integer Nonlinear Program

NLP – Nonlinear Program

RLT – Reformulation-Linearisation Technique

SLP – Successive Linear Programming

XV





Chapter 1
Introduction

Manganese is a hard, brittle, silvery metal that exists in nature in the form of minerals, mainly
as oxides (Olsen et al., 2007). It is an important element in steel and aluminium alloys. In steel,
manganese improves strength, wear resistance, and workability. Steel alloys are used to create
railway tracks, safes, and prison bars among other applications (Royal Society of Chemistry, 2016).
Manganese in aluminium alloys increases the resistance against corrosion. Such alloys are used in
beverage cans, kitchenware, roofing, and car radiators (Metalpedia, 2016).

There is an increasing focus on environmental impacts caused by production industries (United
Nations Environment Programme, 2016; Olsen et al., 2007). Consequences of unsustainable pro-
duction of manganese alloys are environmental degradation, resource depletion, and emissions of
carbon dioxide and other pollutants into the atmosphere. Efficient production and resource con-
sumption are, consequently, necessary to address. Producers of manganese alloys are, therefore,
looking for ways to better utilise available resources and to make the production more sustainable.

The manganese alloy industry is world spanning and can be divided into two parts: ore mining
and alloy production. In the alloy production, manganese ores are melted in furnaces to create
manganese alloys. Some by-products are also produced in the furnaces, where the most significant
by-product is slag. The slag can either be discarded or reused to save raw materials. A more
thorough presentation of the industry and its production methods is given in Chapter 2.

The total production of manganese alloys has been approximately twenty million tonnes annually
in the recent years (d’Harambure, 2015). An average price for manganese alloys around 2 USD/kg
(InvestmentMine, 2017) makes the manganese alloy production a multi-billion dollar industry. One
actor in the industry is the Eramet Group who is a world leader in production of alloying metals,
employing about 14 000 people in 21 countries (Eramet Group, 2016b). A division of this company,
Eramet Norway, is our industrial partner. They produce manganese alloys mostly for the European
and North American markets and have three plants located in Norway, producing ferromanganese
and silicomanganese alloys (Eramet Norway, 2016a).

The industry partner’s current operational practice is, according to the problem owner, to make
decisions based on the metallurgist’s experience, process knowledge, and to optimise the produc-
tion for each furnace separate instead of considering the overall production. Slag is sent to the
furnaces where the transportation costs are the lowest. The industry partner is uncertain whether
this is a good operational practice or if it could be improved. Finding the best way to utilise the
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slag while accounting for the overall production can result in more efficient resource consumption.
The industrial partner is interested in a decision support tool that can help them make complex
decisions for the production across multiple plants instead of optimising the production in each
furnace separately. An optimisation model that considers the integrated production of ferroman-
ganese and silicomanganese alloys across multiple plants can improve the current practice. In the
remainder of the thesis, the considered problem is denoted as the Manganese Alloy Multi-plant
Production problem (MAMP).

Optimisation literature is studied to investigate if the problem is addressed in previous work. The
production problem is identified as a pooling problem. The pooling problem is solved for various
problems in multiple industries, but little work has been done on formulating it for manganese alloy
production. To the authors’ knowledge, only one paper is written on the topic, where the model
presented is only capable of calculating the production for single ferromanganese and silicoman-
ganese furnaces. As the manganese alloy production industry is a large and complex industry, an
optimisation model can provide the industry with production planning support that can result in
better utilisation of resources, less waste, and less energy consumption in the furnaces per tonne
alloy produced. Thus, resulting in savings for both the manganese alloy producer and the environ-
ment. The objective of this thesis is therefore to formulate a general model that can be used as a
decision support tool for multi-plant production planning of manganese alloys.

The contributions of this thesis are:

• A clear description and definition of a multi-plant manganese production problem previously
not analysed.

• A general nonlinear formulation of the problem in consideration, applicable to any alloy
production with similar processes as manganese alloy production.

• Linearisation of the nonlinear formulation using the Multiparametric Disaggregation Tech-
nique so that the MAMP can be solved using a linear solver.

• Showing that the Multiparametric Disaggregation Technique can be applied to a large-scale,
industrial pooling problem.

• Results indicating that multi-plant production planning is superior to the current practice of
single furnace optimisation.

The thesis has the following structure: Chapter 2 is a background chapter where an overview of
the manganese alloy production industry, the operational processes including power consumption
and furnace chemistry, and information about our industrial partner are presented. The problem
description outlining the MAMP is provided in Chapter 3. A review of the relevant literature to the
MAMP is conducted in Chapter 4. In Chapter 5, simplifications and underlying assumptions are
presented before the mathematical formulation of the MAMP is given. Chapter 6 presents the so-
lution method applied to solve the MAMP. The implementation of the MAMP and a computational
study are presented in Chapter 7. Concluding remarks are presented in Chapter 8, before thoughts
on future research are described in Chapter 9.

A paper based on the contents of this thesis has been written in cooperation with the supervisors.
This paper, with the title "Optimisation of Manganese Alloy Production", is appended to the end
of the thesis in its unreviewed and unpublished form, in Appendix F. As the paper is based on this
thesis, there is overlapping content.
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Chapter 2
Industry Insight

This chapter outlines the manganese alloy manufacturing industry. The motivation is to give the
reader a thorough understanding of the manganese alloy industry, both of its markets and produc-
tion processes. This industry overview is a necessity for understanding the complexities of the
production and the structure of the Manganese Alloy Multi-plant Production problem (MAMP).

An overview of the industry is provided in Section 2.1. The supply chain is outlined in Section 2.2
and a detailed description of the alloy production process is given in Section 2.3. Production
methods are presented in Section 2.4. An approximation of the furnace power consumption for
manganese alloy production is presented in Section 2.5. In Section 2.6, the chemical reactions oc-
curring in the furnaces are presented. Lastly, an overview of our industrial partner Eramet Norway
and the locations of the company’s plants in Norway are given in Section 2.7.

2.1 Market Overview

The average concentration of manganese (Mn) in the earth’s crust is nearly 0.1%, making it the
fourth most abundant of the metals in commercial use (Gasik, 2013). Only iron (Fe), aluminium
(Al), and copper (Cu) are ranked higher than manganese in abundance (Kalagadi Manganese,
2013). Although there is an abundance of manganese ore, it is only mined in a few countries.
South Africa, Australia, China, and Gabon stand for 70% of the total manganese ore mined in 2011.
Together with Brazil and Ukraine, these countries hold 90% of the world’s confirmed manganese
reserves (Cannon, 2014). South Africa, Australia, Gabon, and Brazil are the main suppliers of
high-grade ore, while Australia, South Africa, and India are the main suppliers of medium-grade
ore. China dominates the market for low-grade ore by producing more than 90% of the world’s
low-grade manganese ore (Risk & Policy Analysts Limited, 2015).

Manganese is widely used in everyday life. As an alloy, manganese decreases the brittleness of steel
and imparts strength (Cannon, 2014), toughness, and hardness (Gasik, 2013). Figure 2.1 illustrates
high-carbon ferromanganese (HC FeMn), a manganese alloy. There has not yet been identified
satisfactory substitutes for manganese as an alloying element that combines the low production
costs and the key properties manganese possesses. These traits make it an attractive metal to use
in steel alloys (Kalagadi Manganese, 2013). Manganese is mainly consumed in the steel industry,
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which consumes about 90% of the total manganese supply (International Manganese Institute
and Hatch, 2015). Thus, the world consumption of manganese alloys heavily depends on the
consumption of steel. On average, 10 kg manganese alloy is used per tonne (1000 kg) produced
steel (Gasik, 2013).

Figure 2.1: High-carbon ferromanganese. Photo repro-
duced from Marmara Metal (2016).

2.1.1 Market Supply and Demand

The production of manganese alloys has been steadily increasing the recent years, in correlation
with the increasing crude steel production. This increase can be seen from Figures 2.2 and 2.3. The
supply and demand in 2014 for the most important manganese alloys can be seen in Table 2.1. Asia
is by far both the largest supplier and consumer of manganese alloys with a market share of around
70 - 80% within both sectors for all the manganese alloy types listed in Table 2.1 (d’Harambure,
2015). For manganese alloy production, there has been a shift in demand away from HC FeMn to-
wards medium carbon silicomanganese (MC SiMn) and refined alloys of both (Olsen et al., 2007),
primarily for economic reasons (Olsen and Tangstad, 2004).

Table 2.1: Supply and demand in 2014 for the most important manganese alloys: silicomanganese (SiMn),
high-carbon ferromanganese (HC FeMn), and refined ferromanganese (medium carbon ferromanganese
(MC FeMn) and low carbon ferromanganese (LC FeMn)). Based on data from d’Harambure (2015).

Manganese alloys Supply (in
million tonnes)

Supply increase
Year-over-Year (%)

Demand (in
million tonnes)

Demand increase
Year-over-Year (%)

SiMn 12.80 -4.3% 13.20 -2.5%
HC FeMn 4.90 9.0% 4.97 5.0%
Refined FeMn 1.84 7.3% 1.86 7.7%

4



Chapter 2. Industry Insight 2.1 Market Overview

Figure 2.2: Global manganese alloy
production 2010 - 2013 in million tonnes.
Figure reproduced from Risk & Policy
Analysts Limited (2015).

Figure 2.3: Global crude steel production 2000 - 2015 in mil-
lion tonnes. Figure reproduced from d’Harambure (2015).

Figure 2.4: Manganese alloy prices 2014 - 2015 for China, India, USA, and Europe.
Figure reproduced from d’Harambure (2015).

The global crude steel production driving the consumption of manganese alloys has shown a steady
increase in production since the early 2000s, as seen from Figure 2.3, and the crude steel demand
is expected to increase by a 2% compound annual growth rate. Despite the fact that the demand
for manganese alloys and steel are highly correlated, prices for most manganese alloys have been
decreasing in the period 2014 - 2015, illustrated in Figure 2.4. This decrease is primarily due to
the slowing steel demand in China combined with cheap manganese alloys becoming abundant
(d’Harambure, 2015).
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2.2 The Supply Chain

The manganese industry can be divided into two categories: ore mining and alloy production. The
supply chain is illustrated in Figure 2.5. The ore mining process consists of extracting ore from
the ground, hauling the ore to a processing plant where the ore is crushed, separated and benefi-
ciated, transportation of ores to sinter plants, and sintering (Olsen et al., 2007). Sintering is the
solidification of powder, forming a compact material after temperature treatment below the mate-
rial’s melting point (Foundry Lexicon, 2016), making it possible to use fine ores which otherwise
are unusable in the furnace (Olsen et al., 2007). The alloy production process consists of smelting
ores, fluxes, quartz, and coke in a furnace, tapping and casting, further refining, crushing, and reuse
of by-products (International Manganese Institute and Hatch, 2015). The focus of this thesis is on
the alloy production process of the supply chain, illustrated inside the blue rectangle in Figure 2.5.

Figure 2.5: Overview of the manganese alloy industry supply chain. Figure re-
produced from International Manganese Institute and Hatch (2015). The alloy
production process is inside the blue rectangle.

2.3 The Production Process

This section offers a detailed description of the different stages in the alloy production process.
Figure 2.6 provides an overview of the material flow between the processes under consideration.
The FeMn and SiMn production paths are separated with slag being the only coupling between the
two. The production path flows for both the FeMn and SiMn production are described in detail in
the following two sections. More information about the furnaces, refining, and crushing process is
given in sections 2.3.4 - 2.3.7.
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Figure 2.6: Overview of manganese alloy production material flow using the duplex method (presented in
section 2.4.2). The figure is based on Olsen et al. (2007). Green colour: raw materials. Red: wastes. Yellow:
reusable/saleable materials. Blue: final alloys. Scales of grey: the furnace, refining, and crushing processes.

2.3.1 The FeMn Production

As seen from Figure 2.6, the inventory of raw materials supplies the necessary resources to the
HC FeMn furnace. A furnace can be considered as a pool where the material constituents are
blended into output products. The output products from the HC FeMn furnace are HC FeMn alloy,
slag, nonprofitable dust, and off-gases. The HC FeMn alloy can follow two paths through the
production chain: either directly to crushing or through the process of manganese oxygen refining
(MOR), before crushing. In the MOR, oxygen is added to reduce HC FeMn to medium carbon
ferromanganese (MC FeMn). MC FeMn is the primary output of the MOR, with saleable dust as a
by-product. After crushing, the respectable alloy type is sent to a final inventory for that alloy. The
leftover from the crushing, called undersized lumps, are sent to inventories for undersized lumps.
Inventories are separated into HC FeMn and MC FeMn undersized lump inventories as lumps are
used different processes. HC FeMn undersized lumps are reused in the HC FeMn furnace while
MC FeMn undersized lumps are reused in the MOR.
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2.3.2 The SiMn Production

As for the HC FeMn furnace, the same inventory of raw materials feeds the MC SiMn furnace. The
only difference between the two feeding processes is that slag is fed to the MC SiMn furnace and
that it originates from the HC FeMn furnace, not the inventory of raw materials. Mixing occurs
in the furnace, and the outputs are MC SiMn, nonprofitable dust, slag dump, and off-gases. The
MC SiMn alloy can follow two paths through the production: either directly to crushing or through
the low carbon silicomanganese (LC SiMn) refining station before crushing. In the LC SiMn re-
fining station, silicon waste is added to the process which alters the composition of the MC SiMn,
yielding LC SiMn. Crushing and the rest of the SiMn production is identical to the FeMn produc-
tion.

2.3.3 Ores, Fluxes, Quartz, and Coke

Blending manganese ores from different sources is common, for instance, to obtain a specific end-
product specification. Manganese ores vary widely in their content, such as in Mn, Fe, silicon
dioxide (SiO2), Al, magnesium (Mg), limestone (CaCO3), and phosphorus (P). Producers of alloys
have considerable flexibility in the blending of ores, making it possible to produce the demanded
alloy at a low production cost. Fluxes are added to secure proper furnace operation, high man-
ganese yield, and to give the slag suitable chemical properties, viscosity, and smelting temperature.
Commonly used fluxes are limestone and dolomite (CaMg(CO3)2). Quartz is a SiO2 bearing raw
material. Coke is the regular source of carbon (C) for manganese ore reduction (Olsen et al., 2007).

(a) (b)

Figure 2.7: (a) Submerged arc furnace. (b) Cross-sectional illustration of a submerged arc furnace.
The photos are reproduced from Gulf Manganese Corp. Ltd. (2017).

2.3.4 The Furnace

Today’s furnaces are mainly of the submerged arc furnace variant, illustrated in Figure 2.7a and
Figure 2.7b. This furnace type makes for a flexible production as it can be utilised for production
of both HC FeMn and MC SiMn alloys (Olsen et al., 2007). The furnaces are operated at high tem-
perature ranges, varying with the type of alloy to be produced (Gasik, 2013). The operation of the
MC SiMn process is more difficult than the HC FeMn process since a higher process temperature
is required to obtain the necessary silicon-specification of the alloy (Olsen et al., 2007).
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In the furnace, manganese ores are mixed with fluxes, quartz, and coke. Also, reusable slag and un-
dersized alloy lumps can be added to the mix to replace some of the manganese ore. The producer’s
main objectives are to make sure that the furnace operates with a high and stable load, minimises
coke and energy consumption, secures a high yield of manganese, and most importantly: produces
alloy and slag of correct compositions. The main cost drivers for the furnace are the prices of
electricity and coke (Olsen et al., 2007).

2.3.5 The MOR

MORs have been used in Norway and the United States since 1976 and are in principle similar to
the oxygen steelmaking processes (Gasik, 2013). In this process, HC FeMn is reduced to MC FeMn
by blowing oxygen into liquid HC FeMn. The output is MC FeMn, which is sent to crushing (Olsen
et al., 2007), and dust from off-gases. MC FeMn is used in special grades of steel where controlling
the carbon content is essential. The MOR process happens at high temperatures (>1750◦C), and
there is excessive evaporation and oxidation of excess oxygen, mainly producing manganese(II,
III) oxide (Mn3O4), which is collected in the gas cleaning system (Gasik, 2013). The collected
oxide dust can be sold. There is a considerable cost of electricity consumption in the MOR process
(Olsen et al., 2007).

2.3.6 The LC SiMn Refining Station

LC SiMn is produced using ladle refining (Olsen et al., 2007), which raises the temperature and
allows adjustment of the chemical composition of the molten alloy (Inductotherm Corp., 2016).
Adjustment of the chemical composition is done by adding silicon waste from the ferrosilicon
industry to the MC SiMn. Silicon waste can even be favourable for MC SiMn production since it
reduces the specific energy consumption and consequently allows for a larger production volume
(Olsen et al., 2007).

2.3.7 The Crushing Process

The finished alloys have to satisfy a certain lump size to meet the customer’ specifications. De-
pending on the size of the uncrushed material, two types of crushers are commonly used: jaw
crusher and sole roller crusher. A jaw crusher is suitable for materials that must be crushed in all
directions, while a sole roller crusher can be applied to materials that have the correct size in one
direction. As with all crushing activities, some of the output is undersized and not suitable for sale.
The undersized lumps of unsatisfactory size can be re-melted in the proper process. The size limit
of lumps is typically set to 10 mm, although some consumers accept sizes down to 4 mm (Olsen
et al., 2007). The output of sufficient size is stored in an inventory for finished alloys, ready to be
shipped to customers.
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2.3.8 By-products

The alloy production processes produce several by-products, some of which are of value. The by-
products from the furnace, MOR, and crushing process are reusable slag, non-profitable slag, and
profitable and non-profitable dust. Approximately 500 - 1000 kg slag is produced per tonne alloy
in the HC FeMn furnace. This relationship is known as the slag-to-metal ratio and highly depends
on the ore types combined in the furnace and the furnace temperature (Olsen et al., 2007). The
amount of reusable slag a furnace produces can, therefore, be manipulated. Non-profitable slag
and dust produced in a furnace are wastes and must be discarded at a cost (Eramet Norway, 2013).
Profitable dust is sold for use in other industries.

The reusable slag couples the furnaces with different production settings, as seen in Figure 2.6.
There may be a potential cost saving in using the slag from an HC FeMn furnace in an MC SiMn
furnace by replacing ore with slag. Manganese(II) oxide (MnO) dust is another by-product from
the furnace that can be sold as a valuable pigment, but due to the small quantities of MnO produced,
it gives low economic value compared to the alloy production (Westfall et al., 2016).

2.4 The Production Methods

There are two main operational practices in the industry, commonly referred to as the discard slag
practice and the duplex method practice, also called high-MnO practice. The latter is the most
common practice (Olsen et al., 2007).

2.4.1 The Discard Slag Practice

The aim of this practice is to reduce the ore in one process step, yielding HC FeMn and a "throw-
away" slag (Olsen et al., 2007). This one step reduction is accomplished by the assistance of basic
fluxes such as calcium oxide (CaO) or magnesium oxide (MgO), or by decreasing the silicon (Si)
activity in the slag and increasing the MnO activity. The manganese recovery in the HC FeMn
furnace is around 80%, where 15 - 20% MnO remains in the slag and is consequently discarded,
as recovery of manganese at such concentrations is not economical (Gasik, 2013). The operation
involves high consumption of carbon and electricity (Olsen et al., 2007).

2.4.2 The Duplex Method

Slag from the HC FeMn furnace can be an important manganese-bearing material for MC SiMn
production (Westfall et al., 2016). A blend of several ores is used to achieve the correct alloy and
slag composition in the HC FeMn furnace, where the slag contains as much as 30 - 50% MnO.
The slag can then be reprocessed and used in the production of MC SiMn. The result is that the
MnO content in the slag output from the MC SiMn furnaces can be reduced to 5%, with an overall
increase in manganese recovery of 85 - 90% with less use of coke and few or no fluxes needed
(Gasik, 2013). The duplex production method is shown in Figure 2.6.
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2.5 Furnace Power Consumption

An essential cost driver in manganese alloy production is the electric power consumption in the
furnaces. The energy consumption in a furnace is determined by the net effect of exothermic and
endothermic reactions and the enthalpy of the materials entering and leaving the furnace (Olsen
et al., 2007). Since most metallurgical processes follow paths of substantially constant pressure,
called isobaric processes, the change in heat content of a process is only dependent on the initial
and final state of the process and not on the path of the process (Ghosh and Ray, 1991). The
change in enthalpy ∆H for an isobaric process can, therefore, be used to calculate the furnace
power consumption. The change in enthalpy is given by equation (2.1) (Ghosh and Ray, 1991),
where Hin is the total enthalpy of the elements and oxides entering the system, Hout is the total
enthalpy of the elements and oxides exiting the system, Q is the heat added to the system, and W
is the work done on the system.

∆H = Hout −Hin = Q+W (2.1)

Reformulating the equation with respect to W , equation (2.1) becomes (2.2).

W = Hout −Hin −Q (2.2)

The total enthalpy consists of a formation enthalpy and a sensible enthalpy. The formation enthalpy
is the energy required to form a compound from its elements at a certain temperature, usually
defined at 25◦C. The formation enthalpy for elements is zero. The formation enthalpies make it
possible to calculate the energy change in a chemical reaction based on the difference in formation
enthalpies between the reactants and the resultants. This is known as Hess’ Law (Ghosh and Ray,
1991). Sensible enthalpy is the heat required to change the temperature of an element or oxide from
an initial temperature to a given temperature and is defined to be zero at 25◦C. Following the given
definitions; the enthalpy Hout becomes HF

out + HS
out, where HF

out represents the formation enthalpy
and HS

out the sensible enthalpy of the resultants at the exit temperature. Hin becomes HF
in + HS

in,
where HF

in represents the formation enthalpy and HS
in the sensible enthalpy of the reactants at the

entry temperature. Equation (2.2) then becomes (2.3).

W = (HF
out +HS

out)− (HF
in +HS

in)−Q (2.3)

The raw materials enter the furnaces at 25◦C. Thus, the term HS
in = 0 by definition and equa-

tion (2.3) becomes (2.4). This equation gives the total electrical work required to produce alloys
by the chemical reactions occurring in a furnace, in addition to the heat lost to the surroundings.

W = (HF
out +HS

out)−HF
in −Q (2.4)

As a result of the thermodynamic properties of the elements and oxides, different slag practices
consume different amounts of energy. The discard slag practice consumes about 2900 - 3400
kWh/tonne alloy produced, while the duplex method consumes about 2650 - 3100 kWh/tonne
alloy produced in the HC FeMn furnaces. The higher energy consumption from using the discard
slag practice is due to the extra power used to calcine the fluxes and continue smelting to obtain a
higher recovery of metal (Downing, 2013).
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The power required to produce standard MC SiMn alloy from mixing ores, HC FeMn slag, and
Si-rich metallic remelts, is usually in the range of 3500 - 4500 kWh/tonne alloy. More energy
is consumed for higher Si-content in the final alloy, as well as the amount of slag produced
per tonne MC SiMn. About 50 kWh of extra energy is consumed per additional 100 kg slag
produced, and 100 kWh/tonne alloy and some coke are saved if ascending carbon monoxide (CO)
gas from the melt-reduction zone is utilised to reduce the ore fraction in the charge to MnO (Olsen
and Tangstad, 2004).

2.6 Chemical Reactions

The mass of the end-products is related to the mass of ores, fluxes, quartz, and coke used in the
furnaces through a set of chemical reactions. The main chemical reactions occurring in a furnace
are given in reactions (2.5) - (2.17), where parentheses denote the slag phase and underlines the
metal phase. Note that these reduction-oxidisation (redox) reactions give a simplified description
of a highly complex chemical process occurring over a wide range of temperatures. An illustration
of a furnace and the most important chemical reactions is provided in Figure 2.8.

Figure 2.8: The furnace and the most important chemical reactions. The photo is re-
produced from Eramet Norway (2013).

Manganese oxides are present in the ores mainly as manganese dioxide (MnO2), manganese(III)
oxide (Mn2O3), Mn3O4, and MnO (Olsen et al., 2007). In contact with CO in the furnace, MnO2,
Mn2O3, and Mn3O4 are reduced according to reactions (2.5) - (2.7). The resulting MnO, and
supplied MnO from the ores, then react with solid carbon in the coke bed of the furnace, resulting
in liquid manganese metal and CO-gas. This chemical reaction is given by reaction (2.8).
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2 MnO2(l) + CO(g) −−→ Mn2O3(l) + CO2(g) (2.5)

3 Mn2O3(l) + CO(g) −−→ 2 Mn3O4(l) + CO2(g) (2.6)

Mn3O4(l) + CO(g) −−→ 3 (MnO) + CO2(g) (2.7)

(MnO) + C(s) −−→ Mn + CO(g) (2.8)

The final alloy contains a certain amount of carbon. The carbon from the raw material feed dis-
solutes into the metal up to a saturation point (Olsen et al., 2007). This dissolution is given by
reaction (2.9).

C(s) −−→ C (2.9)

Similar to the reduction of manganese oxides, iron oxides and silicon oxides are also reduced in
the furnace. Iron(III) oxide (Fe2O3) and iron(II, III) oxide (Fe3O4) are reduced through chemical
reactions with CO. The final reductions of iron(II) oxide (FeO) to Fe, and SiO2 to Si, take place in
the coke bed. The chemical reactions are provided in reactions (2.10) - (2.13).

3 Fe2O3(l) + CO(g) −−→ 2 Fe3O4(l) + CO2(g) (2.10)

Fe3O4(l) + CO(g) −−→ 3 (FeO) + CO2(g) (2.11)

(FeO) + C(s) −−→ Fe + CO(g) (2.12)

(SiO2) + 2 C(s) −−→ Si + 2 CO(g) (2.13)

In the furnace, carbon reacts with carbon dioxide (CO2) resulting from the chemical reactions (2.5)
- (2.7) and (2.10) - (2.11) and forms CO. This reaction is known as the Boudouard reaction and
is given in reaction (2.14). The amount of CO2 that enters the Boudouard reaction from reactions
(2.7) and (2.10) - (2.11) is defined as the degree of pre-reduction. 100% pre-reduction is defined as
when no CO2 from the given reactions react with carbon and activate the Boudouard reaction, 0%
pre-reduction is defined as when all CO2 from the given reactions react with carbon according to the
Boudouard reaction. CO2 resulting from reactions (2.5) - (2.6) is not expected to react according to
the Boudouard reaction under normal furnace operation. The specified degree of pre-reduction has
a significant impact on consumed electrical power (Olsen et al., 2007). The Boudouard reaction,
together with the feed of CO resulting from the chemical reactions (2.8) and (2.12) - (2.13), is
critical for the feeding of CO to the chemical reactions (2.5) - (2.7) and (2.10) - (2.11).

C(s) + CO2(g) −−→ 2 CO(g) (2.14)

The feed to the furnace also contains oxides that do not enter the final alloy. These oxides are
important constituents of the slag, giving it different thermodynamic and physical properties. The
oxides are aluminium oxide (Al2O3), MgO, and CaO. The oxides enter the furnace as solids, and
dissolute into the slag phase. The reactions are given by (2.15) - (2.17).
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Al2O3(l) −−→ (Al2O3) (2.15)

MgO(l) −−→ (MgO) (2.16)

CaO(l) −−→ (CaO) (2.17)

2.7 Eramet Norway

Eramet Norway is our industry partner. The layout of the company’s plants in Norway forms the
basis for the instances used to test the formulation presented later in this thesis. Eramet Norway is
a part of the Eramet Group, which is a French mining and metallurgical group and a world leader
within its business sectors. The Eramet Group’s businesses are manganese ore extraction and
alloy production, nickel and ferronickel production, and alloy parts manufacturing by high-power
closed die-forging (Eramet Group, 2016b). The Eramet Group operates in 21 countries across five
continents. Their main markets are Europe, Asia, and North America (Eramet Group, 2016a).

Eramet Norway operates within the manganese alloy production sector and exports all of its pro-
duction of manganese alloys primarily to Europe and North America. Around 98% of the export is
transported by ship and the remaining percentages by road or rail (Eramet Norway, 2013). There
are three plants located in Norway: in Sauda, Porsgrunn, and Kvinesdal. Their locations can be
seen in Figure 2.9. The Sauda plant has two 40 MW furnaces, with an annual power consumption
of 750 GWh at full capacity. The Porsgrunn plant also has two furnaces, with an annual power
consumption of 570 GWh, where 200 GWh of thermal energy in the form of CO gas is recovered
to Yara. The Kvinesdal plant has three modern 30 MW furnaces, with an annual power consump-
tion of 750 GWh.

The Porsgrunn plant manufactures 65 000 tonnes of SiMn and 115 000 tonnes refined FeMn alloys
annually. Further, sales of gas to Yara and sales of manganese dust earned the factory an income of
41 MNOK and 57 MNOK in 2013, respectively (Eramet Norway, 2013). Annual output is 180 000
tonnes of SiMn alloy at the Kvinesdal plant (Eramet Norway, 2016b). Sauda is the largest plant in
Norway measured in tonnes produced. It has the highest output of refined FeMn alloys, processing
about 70% of the manganese ore imported by Eramet Norway (Eramet Norway, 2014).

Figure 2.9: The industry partner’s plant locations in Norway: Sauda, Porsgrunn, and Kvinesdal.
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Chapter 3
Problem Description

This chapter contains the problem description of the Manganese Alloy Multi-plant Production
problem (MAMP), presented in Section 3.1. The purpose of the MAMP is to optimise the inte-
grated production of FeMn and SiMn alloys across multiple plants to maximise profit. The profit is
determined by deciding the optimal volumes of end-products to produce by mixing raw materials
while satisfying given quality specifications. Production costs are considerable, and the MAMP
should, therefore, ensure optimal use of raw materials to the furnaces and refining processes. The
solution to the MAMP should also describe the optimal slag volume and slag composition to be
produced in the HC FeMn furnaces and the allocation of slag to the MC SiMn furnaces.

3.1 The Manganese Alloy Multi-plant Production Problem

A manganese alloy manufacturer has a set of furnaces located at plants to produce manganese
alloys. The alloys produced are given by customer specifications. The production is, therefore,
based on contracts that must be satisfied. Customer specifications include order volume and alloy
composition, resulting in a wide range of possible order sizes and end-products. To meet the
end-product specifications set by the customers, a set of raw materials, including ores, fluxes and
coke sources, containing different concentrations of various elements and oxides is available to the
production. The raw materials are blended in the furnaces and further processed to produce the
desired end-products. Any excess end-product produced can be sold on optional contracts in the
spot market or held as an inventory for later contracts. Producing manganese alloys also yields
various by-products, where some are valuable, and others are not. The by-products can, therefore,
either be sold or discarded.

The furnaces are used to smelt the raw materials. These can produce both HC FeMn and MC SiMn
alloys, but only one alloy type at a time. Each furnace has a mass and electrical power capacity that
limits the raw material feed to the furnace. The furnaces also have a limitation on the volume of
undersized lumps from the crushing process it is possible to feed, as feeding too much undersized
lumps is problematic for the furnace operation. An MOR and an LC SiMn refining station are
required to produce MC FeMn and LC SiMn, respectively. These refining units have a mass and
power capacity limiting the feed to each process. The crushing process is where all the alloy types
are crushed into lumps of adequate size.
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Each plant has inventories for storing resources and end-products. The inventories at each plant are
divided into raw material inventories, refining resource inventories, and end-product inventories.
The raw material inventories store all resources used in the furnaces and the refining inventories
store all resources used in the refining processes. The end-product inventories store all of the
end-products produced. All inventories have capacity limits.

The first step of the production is to blend raw materials together in a furnace to produce either
HC FeMn or MC SiMn. Besides the alloys, by-products in the form of slag, nonprofitable dust,
and off-gases are also outputs from the furnaces. The slag produced by the HC FeMn furnaces
is in proportion to the metal produced, and this slag-to-metal ratio can fluctuate between a lower
and upper bound dependent on furnace alloy and slag characteristics. It is possible to produce slag
of varying element and oxide content in each HC FeMn furnace. Further, the HC FeMn furnace
slag can be reused in the MC SiMn furnaces. The reuse of slag in MC SiMn furnaces is the only
coupling between the FeMn and SiMn productions, which otherwise would have been completely
separated productions. Slag from the MC SiMn furnaces and the non-profitable dust produced by
both furnace types must be discarded.

The next step is to send the produced HC FeMn alloy and MC SiMn alloy either to further refining
in the MOR and LC SiMn processes, respectively, or to the crushing process. In the MOR process,
oxygen is added to liquid HC FeMn to get MC FeMn. The MOR process also produces a by-
product in the form of a metallic-oxide dust which can be sold. In the LC SiMn refining process,
silicon waste is added to the liquid MC SiMn to get LC SiMn (Olsen et al., 2007). In the crushing
process, the alloy from the furnaces and the refining processes is crushed and then sent to the end-
product inventories. A given percentage of the crushed end-product is undersized and cannot be
sold to the customer and is, therefore, sent back to the associated process inventories for resmelting.

Revenues and costs are linked to various parts of the production. The resources used in the pro-
duction, except the undersized lumps, are associated with a procurement cost. Smelting the raw
materials in the furnaces requires energy in the form of electricity. Thus, the furnace process in-
curs electricity costs. Reusing slag produced by HC FeMn furnaces in MC SiMn furnaces at other
plants incurs a transportation cost per tonne slag transported. Slag from the HC FeMn furnaces can
also be discarded instead of reused, which incurs a discard cost. The other by-products that must
be discarded incur a discard cost. The metallic-oxide dust from the MOR process can be sold, and
is, therefore, associated with a revenue. Each end-product is associated with a revenue per tonne
sold on fixed and optional contracts.

The chemical reactions occurring in a furnace should be accounted for, and are given by reactions
(2.5) - (2.17) in Chapter 2. These reactions are essential to correctly model the flow of mass in
a furnace and the quality attributes of the slag and end-products. Mass-to-mole conversion and
reactions for Mn, Fe, Si, C, Al, Mg, Ca, and oxides of these elements should be used to establish
the relationship between the content of each element in a raw material fed to a furnace and the
content of each output product.

An approximation of the furnace power consumption should be included to better model a realistic
production, as the power consumption greatly affects the choice of raw materials to consume. The
power consumption can be approximated by the thermodynamic relation given by equation (2.4) in
Chapter 2. Enthalpies are commonly provided in kJ/mole and should be converted to kWh/tonne
for the furnace to yield the conventional unit of electrical work per tonne produced alloy.
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Chapter 4
Literature Review

In this chapter, a review of the literature relevant to the Manganese Alloy Multi-plant Produc-
tion problem (MAMP) is presented. To the authors’ knowledge, there is a limited number of
operations research publications on manganese production optimisation. This literature review is,
therefore, expanded to relevant optimisation literature covering industries with problems similar to
the MAMP, like the petrochemical and wastewater management industries. Various solution tech-
niques for the pooling problem are reviewed to identify a suitable method to linearise the bilinear
constraints present in the MAMP.

In the problem description in Chapter 3, it is observed that the problem consists of raw material
mixing of different qualities in the furnaces and refining processes. Based on this, the MAMP can
be seen as either a blending or pooling problem. The raw materials correspond to sources. The
furnaces, the MORs, and the LC SiMn refining stations are intermediate pools where blending
occurs. End- and by-products are modelled as terminals. The problem is complicated by the
coupling of intermediate pools. Slag flowing from the HC FeMn furnaces are of varying volume
and quality and is sent to MC SiMn furnaces for further blending. It is therefore of interest to look
into the literature on both the blending and the pooling problem to be able to define and formulate
the MAMP.

In Section 4.1, the blending problem is described before the complicating factors that generalise it
into the pooling problem are explained. Section 4.2 outlines the pooling problem. In Section 4.3,
five classes of the pooling problem identified by Misener and Floudas (2009) are presented. The
classifications are compared to the MAMP to determine the class the MAMP belongs to. In Sec-
tion 4.4, different formulations for the pooling problem are presented. Existing problems solved
in other industries using the pooling problem formulation are presented in Section 4.5 to place
the MAMP into an industrial context. Solution methods developed for the pooling problem are
reviewed in Section 4.6. A review of the multi-period pooling problem is conducted in Section
4.7. In Section 4.8, our contribution to the existing literature on the pooling problem within the
manganese alloy industry is presented.
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4.1 The Blending Problem Versus the Pooling Problem

A common problem in many industries is blending several raw materials into various end products.
The blending problem appears in refinery processes where feeds with different attribute qualities,
such as sulphur or octane number, are mixed directly into end-products at terminal nodes (Audet
et al., 2004), as shown in Figure 4.1a.

The pooling problem, a generalisation of the blending problem, is used to model systems that have
intermediate mixing pools in the blending process (Audet et al., 2004). This is confirmed by Alfaki
(2012) who states that a special case of the pooling problem occurs when the intermediate nodes
are not needed. The flows are directly blended at the terminal nodes, reducing the pooling problem
to the blending problem. The difference between the blending and pooling problem, therefore, lies
in the presence of intermediate pools, as illustrated in Figure 4.1a and Figure 4.1b.

(a) Blending problem. (b) Pooling problem.

Figure 4.1: Illustration of the difference between the blending problem (a) and the pooling problem (b)
defined by Haverly (1978). S denotes sources, P pools, and T terminals. The figures are based on figures
found in Alfaki (2012).

The classical blending problem can be modelled as a linear program (LP), while the pooling prob-
lem has nonlinear terms yielding a bilinear program (BLP) (Audet et al., 2004; Alfaki, 2012). Due
to the blending constraints, the pooling problem can have multiple local optima (Alfaki, 2012).
Several intermediate pools are present in the MAMP, making it a pooling problem. The focus is,
therefore, on literature related to the pooling problem in the rest of the literature review.

4.2 The Pooling Problem

The pooling problem usually occurs in chemical processing such as petroleum refining and wastew-
ater treatment. It originates from the petrochemical industry where various process streams with
different qualities are blended to form final products (Gounaris et al., 2009).

The objective of the pooling problem is according to Gounaris et al. (2009) to find the most effi-
cient combination of flows through the network that produces final products with the correct quality
properties. The pooling problem involves a network of source nodes, intermediate nodes, terminal
nodes, and arcs connecting the nodes. The source nodes represent the inventory of feeds, the in-
termediate nodes represent the intermediate pools and other production processes, and the terminal
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nodes represent the final products. The arcs are the possible flows between processes. Intermediate
pools are process stages where mixing of feeds into products of specified quality occurs. Usually,
the products mixed at an intermediate pool are sent to another intermediate pool for further mixing,
but the flow can also go straight to the terminal node.

Feeds can be of varying quality and composition, making blending of several feeds necessary to
obtain the desired end-products. It is the restrictions on the properties of the end-products at the
terminal nodes that set the framework for the feeds that can be mixed in the pools (Misener and
Floudas, 2009; Gounaris et al., 2009; Kolodziej et al., 2013b). The need for blending occurs
when the requirements of a product are not met by any single feed, or there are fewer intermediate
pools available than feeds or products. Linear blending of all qualities is assumed to occur in each
intermediate and output node (Gounaris et al., 2009). Adhya et al. (1999) point out that the pooling
problem becomes harder to solve with multiple quality requirements. Audet et al. (2004) find that
the complexity of a model increases when multiple pools are linked together in series or in parallel,
where exiting blends are allowed to enter other intermediate pools.

When intermediate pools are present in the problem, monitoring pool composition requires either
nonconvex trilinear or bilinear terms depending on whether there are pools in series or not. In
both cases, the problem is a nonlinear program (NLP) (Misener and Floudas, 2009). One of the
early models attempting to solve the pooling problem is based on recursive linear programming
techniques. It was observed that this procedure did not always converge due to the occurrence of
local optima (Haverly, 1978). The nonconvexities of the pooling problem prevents linear, convex,
and stochastic solvers from verifying global optimality (Misener and Floudas, 2009). Finding a
global solution, particularly for large-scale, real instances, has proven difficult since the problem
exhibit a multiplicity of local solutions due to these nonconvexities (Gounaris et al., 2009).

4.3 Classifications of the Pooling Problem

Misener and Floudas (2009) present five sub-classes of pooling problems: standard pooling, gen-
eralised pooling, extended pooling, nonlinear blending, and crude oil operations. These sub-classes
constitute the classifications used for the pooling problem in this literature review.

In the standard pooling problem, the source nodes, intermediate nodes, and terminal nodes are pre-
determined, and the flow rates are optimised to maximise profit subject to constraints on the quality
of the final product constituents. The standard pooling problem only considers linear blending of
qualities with one layer of intermediate pools, disregarding the possibility of further blending in
other intermediate pools. This makes the bilinear terms that arise from the quality balances in the
pools the only sources of nonconvexities (Misener and Floudas, 2009).

Audet et al. (2004) and Meyer and Floudas (2006) generalise the pooling problem to allow a more
general network topology, such as connections between intermediate pools. The generalised pool-
ing problem is the extension of the standard pooling problem to the case where exiting blends of
some intermediate pools feed other intermediate pools (Audet et al., 2004). The generalised pool-
ing problem is shown in Figure 4.2. In the generalised pooling problem, arcs between pools are
allowed, and intermediate nodes are treated as discrete alternatives. This results in a nonconvex,
disjunctive program that can be modelled as a mixed integer nonlinear program (MINLP). By not
fixating the arcs, the problem becomes combinatorial complex with respect to the binary decision
variables and bilinear terms (Misener and Floudas, 2009).
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Figure 4.2: Illustration of the generalised pooling problem with an intermediate pool connection.
S denotes sources, P intermediate pools, and T terminals. The figure is based on Alfaki (2012).

The extended pooling problem adds a set of environmental constraints to the pooling problem
formulation. For instance, the model sets upper limits on toxic emissions of reformulated gasoline,
NOX-gases, and volatile organic compounds, in addition to appending three sets of emission model
equations to the standard pooling problem (Misener and Floudas, 2009).

Nonlinear blending is a subclass of pooling problems and classifies problems where the simplifying
assumption of linear blending is not valid. Examples of important fuel qualities that blends non-
linearly are Reid vapour pressure, motor octane number, and research octane number (Misener and
Floudas, 2009).

According to Misener and Floudas (2009), crude oil operations span the subclass of pooling prob-
lems at the front-end of a refinery. The source nodes are arriving supply ships, the intermediate
nodes are storage and charge tanks, and the terminal nodes are crude oil distillation units. The
scheduling aspect is added to the pooling problem in the crude oil operations due to oil tankers
arriving at discrete times.

In the MAMP, the flow through the production is optimised to maximise profit for a predefined
set of plants and furnaces subject to quality restrictions on the end-products. Some of the proper-
ties of the standard pooling problem are, consequently, properties of the MAMP. Linear blending
occurs in the MAMP, but there are multiple layers of pools, differentiating this problem from the
standard pooling problem. In accordance with the generalised pooling problem, the exiting blends
of intermediate pools feed other intermediate pools. Specifically for the MAMP, this is HC FeMn
furnaces feeding slag to MC SiMn furnaces. Arcs between furnaces are allowed, but unlike the
generalised pooling problem, nodes are fixed and not discrete alternatives. Arcs, on the other hand,
are not fixed but treated as optional since an arc flow might be zero, making the MAMP combina-
torial complex. The MAMP is not an extended pooling problem since emissions to the atmosphere
are not included in the problem. The MAMP is excluded as a nonlinear blending problem since
linear blending applies. The problem does not belong to the crude oil operations class either, since
source nodes, intermediate nodes, and terminal nodes in the MAMP represent different processes
than in the crude oil operations, and there is no scheduling aspect in the MAMP. The conclusion
is that the MAMP is a hybrid of the standard and generalised pooling problem. In the subsequent
sections, the literature review is therefore limited to papers related to the standard and generalised
pooling problems.
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4.4 Pooling Problem Formulations

Multiple optimisation formulations for the pooling problem are found in the literature. Formulating
the standard pooling problem in different ways have varying ramifications for the problem size
and relaxation tightness, although the formulations are mathematically equivalent (Misener and
Floudas, 2009). The most common formulations for the standard and generalised pooling problem
are the P-formulation, the Q-formulation, and the PQ-formulation. Also, the TP-formulation, TSP-
formulation, and the S-formulation are presented. An overview of the most significant pooling
problem literature relevant to the MAMP formulation is provided in Table 4.1.

Table 4.1: Overview of pooling problem literature relevant to the formulation of the MAMP.

Paper Formulation Qualities Findings

Haverly (1978) P-formulation Single One of the first models to describe and represent the pooling
problem.

Ben-Tal et al.
(1994)

Q-formulation Multiple Introduces the Q-formulation.

Quesada and
Grossmann (1995)

PQ-
formulation

Single Introduces the PQ-formulation.

Adhya et al. (1999) P-formulation Multiple Compares single and multiple quality cases.
Audet et al. (2004) P-, Q-, and PQ-

formulation
Multiple Introduces the generalised pooling problem.

Alfaki and
Haugland (2013)

TP- and TSP-
formulation

Multiple Proposes two new formulations based on the PQ-formulation.

Hellemo and
Tomasgard (2016)

Formulation S Multiple Presents a general formulation that allows interconnected
pools and processing facilities.

The P-formulation originally used in Haverly (1978), commonly used in chemical process indus-
tries (Adhya et al., 1999), is based on total flows and component composition. The model seeks
to find the optimal pooling of supply streams while satisfying the demand for a set of products
with specified qualities. The objective is to minimise cost or maximise profit. Various stream
qualities are estimated and fixed, and the resulting LP is solved. From the linear programming so-
lution, the estimated properties are recalculated and the procedure repeated (Haverly, 1978). The
P-formulation of the pooling problem is illustrated in Figure 4.3a. The flow rate from a source i to a
pool l is denoted by the variable fil. Flow from a pool l to a terminal node j is denoted by the flow
rate variable xlj . Flow directly from a source i to a terminal j is denoted zij . Each pool has a level
of quality for each attribute denoted by the variable plk for the level of quality k in pool l. Audet
et al. (2004) identify the P-formulation to be advantageous when there are few quality attributes
present because the number of complicating variables is small in this case. The P-formulation is
perhaps the most intuitive formulation, as individual qualities in the streams are represented with
mass fractions of the total flow (Kolodziej et al., 2013b).

The Q-formulation used in Ben-Tal et al. (1994) does not explicitly use pool specifications as
variables, but uses variables based on flow proportions that each exit stream supply to the total
input stream of each pool (Lotero et al., 2016). According to Kolodziej et al. (2013b), this leads
to a more compact formulation. In the Q-formulation presented by Ben-Tal et al. (1994), the
feedstock flow rate variables fil are replaced with proportional flow rates qil through the relation
fil = qil

∑
j∈J ylj where ylj is the fraction of the total flow from intermediate pool l that flows
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to terminal j. ylj is equal to xlj in the P-formulation. The flow zij is the bypass flow from
source i directly to output j. An illustration of the Q-formulation is given in Figure 4.3b. Using the
numbers from the figure, the equation fil = qil

∑
j∈J ylj becomes 50 = 0.5(25+75), thus relating

the variables of the P- and the Q-formulation. The corresponding transformation makes the plk
variables redundant in the Q-formulation, thus, resulting in a formulation with fewer variables than
the P-formulation (Misener and Floudas, 2009). Audet et al. (2004) identify the Q-formulation
to be advantageous in the case where the number of attributes increases because the number of
bilinear variables and terms remain the same. According to Misener and Floudas (2009), although
the Q-formulation is smaller than the P-formulation for many configurations, P-formulations are
often tighter after a convex relaxation due to the possibility of tightening the bounds of fil and plk,
while qil are only known to vary between zero and one.

(a) P-formulation. (b) Q-formulation.

Figure 4.3: Illustration of the P- and Q-formulation. The difference is that qil is a fraction of the total
terminal flow in the Q-formulation, while fil is the actual source-pool flow in the P-formulation.

The PQ-formulation is created from the Q-formulation by appending an additional set of con-
straints formulated using the Reformulation-Linearisation Technique (RLT) (Sherali and Alamed-
dine, 1992; Misener and Floudas, 2009). The formulation is first introduced in Quesada and Gross-
mann (1995) and later in Sherali et al. (1998) and Tawarmalani and Sahinidis (2002). The PQ-
formulation introduces no additional bilinear terms in the Q-formulation, but the result is a tighter
relaxation than the Q- and P-formulation when term-wise convex envelopes are implemented to
relax the formulation (Misener and Floudas, 2009).

Two of the latest pooling problem formulations are proposed in Alfaki and Haugland (2013). The
formulations are based on the PQ-formulation and are the result of the extension of the idea of
Ben-Tal et al. (1994) and Sahinidis and Tawarmalani (2005). The first formulation, called the TP-
formulation, uses terminal proportions instead of source proportions used in the PQ-formulation.
The strengths of the TP-formulation and the PQ-formulation are not equal in general, but none
of them dominates the other. The formulations are therefore comparable in strength. The second
formulation, called the TSP-formulation, apply both source and terminal proportions, and is proven
to be stronger than both the TP-formulation and the PQ-formulation (Alfaki and Haugland, 2013).

Hellemo and Tomasgard (2016) present what they call formulation-S. The model explicitly models
component flow, which allows easy inclusion of processing facilities that can alter the flow com-
position. Processing facilities are places in the network where some proportion of the components
may be removed partially or entirely before the remainder continues downstream. Hellemo and
Tomasgard (2016) finds that formulation-S is comparable but inferior to the formulations given
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by Alfaki and Haugland (2013), and that convergence is slower for formulation-S. Formulation-S,
however, solves more general problems including processing facilities. Hellemo and Tomasgard
(2016) conclude that for hard pooling problems without processing facilities, previous formulations
may be preferable.

A common factor for the pooling problem formulations presented is that they are all formulated
using bilinearities. Audet et al. (2004) state that the BLP problem is commonly formulated by
introducing two subsets of variables: linear and nonlinear variables. By further dividing the non-
linear variables into two disjoint subsets of simple and complicating variables, it is possible to get
an LP by fixating the variables from either subset. Audet et al. (2004) analyse two different for-
mulations for the pooling problem, turning it into BLP problems. These formulations are based on
partitioning the variables into either flow and attribute variables, or flow and proportion variables.

For the generalised pooling problem, Audet et al. (2004) state that the Q-formulation is not a
BLP since the variables are not partitioned into two sets, but belongs to the class of quadratically
constrained quadratic programs. They suggest that the hybrid formulation may be used instead to
formulate a generalised pooling problem. In this case, the flow model is applied to all intermediate
pools that have an input flow from at least one other intermediate pool, while the Q-formulation is
used otherwise.

4.5 The Pooling Problem in Different Industries

The literature on manganese production optimisation is limited. To the authors’ knowledge, only
one paper on manganese production optimisation exists. Jipnang et al. (2013) present a FeMn/SiMn
furnace process optimisation model based on mass and energy balances. It optimises a target func-
tion such as total operating costs, energy consumption, Mn-recovery, or the amount of slag pro-
duced. The model relies on software, hiding the modelling choices made in a "black box". It is
only capable of calculating the production for single HC FeMn and MC SiMn-furnaces, and they
state that connecting the two processes and adding possibilities for different production strategies
are considered future research (Jipnang et al., 2013).

The literature search is extended to similar industries as solutions to pooling problems in one may
apply to similar problems present in other industries. The pooling problem has applications in
petroleum refining, mining industry, supply chain operations, wastewater treatment, and communi-
cations (Misener and Floudas, 2009). These problems, classified as bilinear process networks, are
generally difficult to solve to global optimality since bilinear constraints are required to model the
mixing of different streams (Kolodziej et al., 2013b). The authors have been unsuccessful in finding
literature on similar problems relevant to the formulation of the MAMP in other alloy production
industries, such as the steel industry.

Ben-Tal et al. (1994) study the pooling problem in an oil refinery. In this case, it is a two-stage
process consisting of intermediate pools and final blending of end-products. Given component
procurement prices and product sales prices, the aim is to maximise total profit. Amos et al. (1997)
also study the pooling problem within oil refining, but specifically with the aim to solve a problem
for the New Zealand Refining Company. The problem is to decide the quantities of each crude
oil to be processed in each crude distiller and to select the best cut points that yield the specified
fractions. Cut points are the temperatures at which output streams are separated from the rest of
the distillation. This cut point selection is done while trying to minimise the total cost of distil-
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lation. Simplifications are made to the model. Examples are sulphur being distributed uniformly
throughout all crude fractions and crude oils, and the end-products only having two quality prop-
erties. The end-products are assumed to blend directly from downstream fractions of the crude
distillation units.

Boland et al. (2015) study a generalised pooling problem in the mining industry. They model
the raw material blending in a mining supply chain where the inventory is of a given quantity
and quality. Each time raw materials enter or exit the inventory, the quantity and quality change
according to a weighted linear relationship between the inventory’s old quality and the quality of
the incoming raw materials. Instead of associating costs with network flows, costs are coupled
to the deviation from the target qualities. Transfer time and costs are not considered between the
supply points and the demand points. Aggregated demand can always be met. The problem is
to decide how much inventory from each supply point that should be used to meet the demand to
minimise the penalty of not meeting quality specifications. Boland et al. (2015) name the problem
as the mining pooling problem, and it is formulated using the P-formulation.

The water network problem is a collection of processes that consume freshwater and cleanse
wastewater. Source nodes of the process network are freshwater and wastewater disposal sites.
Given a set of processes that use water and a set of treatment units that removes contaminants, the
problem is to find a network configuration that minimises freshwater usage. Mixers and splitters
are necessary to distribute the elements of the water network (Jezowski, 2010). Mixers are pro-
cess components where several streams are mixed into a single stream, while splitters are process
components where single streams are split into multiple streams, as described in Quesada and
Grossmann (1995).

Meyer and Floudas (2006) study a wastewater problem. In this problem, the source nodes repre-
sent exit streams from a set of industrial plants where every stream contains a set of contaminants.
The intermediate nodes represent wastewater treatment plants that may be used to reduce the con-
taminant levels in the streams. Each plant uses a different treatment technology, resulting in unique
processing costs and contaminant reduction levels for each plant. The terminal nodes represent the
rivers that the treated wastewater is released into. Regulations on contaminant concentration exist
for each river. The complexity of the problem arises from the coupling of the nonconvex balance
constraints and the combinatorial network configuration (Meyer and Floudas, 2006).

The majority of the work done in the field of water network problems is related to continuous steady
state operation mode (Jezowski, 2010). According to Kolodziej et al. (2013b), many blending con-
straints present in the water network problem are also present in the pooling problem, making
advances in this field applicable to the pooling problem. An analysis of the water network problem
formulation and an overview of different solution techniques are given in Jezowski (2010). Meyer
and Floudas (2006) concentrate on an industrial case involving seven streams, three stream compo-
nents, ten plants and one terminal. Many feasible network configurations could be found by using
the nonlinear optimisation software GAMS/DICOPT. The lower bound problem is formulated in
three different ways: convex envelopes of bilinear terms, RLT, and a piecewise linear mixed integer
linear program reformulated to a mixed integer linear program (MILP) through the introduction of
additional binary variables (Meyer and Floudas, 2006). Jezowski (2010) concludes there is still a
need for flexible and robust approaches that have wider applications in practice.
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4.6 Solution Methods for the Pooling Problem

Various solution methods for the pooling problem are discussed in the majority of the literature
reviewed by the authors. The proposed solution methods can be classified into local and global
optimisation methods (Alfaki and Haugland, 2013). Guaranteeing global optimality is of ma-
jor importance, as the objective function typically is related to an economic metric (Teles et al.,
2012). A summary of some of the different solution methods is found in Misener and Floudas
(2009), including Successive Linear Programming (SLP), Global Optimisation Algorithm (GOP),
Lagrangian approaches, convex envelopes, RLT, piecewise-affine underestimators, and different
branch-and-bound schemes. A more recent solution method is the Multiparametric Disaggrega-
tion Technique (MDT) found in Teles et al. (2013), Teles et al. (2012), Kolodziej et al. (2013a),
and Kolodziej et al. (2013b). An overview of the literature on different pooling problem solution
methods is presented in Table 4.2.

Haverly (1978) uses a recursive method where every quality variable is fixed to expected values.
This fixation reduces the pooling problem into a solvable LP. The resulting optimal flow of the
LP is then fixed, and new values are found for the quality variables. The method iterates between
fixating the quality variables and fixating the flow until there are no changes in the values. The final
solution of the method proves to be dependent on the initial fixation of the quality variables. Global
optimum cannot be verified. However, the method is still acceptable for quickly computing good
feasible solutions, as done by Audet et al. (2004). They also simplify pooling problem instances
by analysing the basic problem structure. Eliminating some flow variables reduces the size of the
problem while the remaining flow variables are tightened (Audet et al., 2004).

McCormick (1976) develops an efficient relaxation technique based on convex and concave en-
velopes for NLPs. Foulds et al. (1992) propose a pooling problem algorithm inspired by the work
of McCormick (1976). A standard branching step of branch-and-bound is used in this algorithm.
Another branch-and-bound based algorithm, called branch-and-reduce, is developed by Sahinidis
and Tawarmalani (2005) and applied to the PQ-formulation.

SLP linearly approximate the pooling problem by using a first-order Taylor expansion. The LP is
then solved to obtain a new feasible point, then the problem is linearised at the new point, and the
process iterates. SLP usually finds the global optimum when given an acceptable starting point,
but fails for a nonphysical initialisation. As the method cannot guarantee global optimum, it is
therefore mostly used for locally improving processes that already have a reasonable operating
point (Misener and Floudas, 2009).

Floudas and Visweswaran (1990) and Visweswaran and Floudas (1990) present the GOP. This is
the first algorithm that guarantees convergence to a global optimal solution. The GOP approach
and other Lagrangian based methods are built on Lagrangian relaxation and duality theory. The
algorithms alternate between solving a projection of the upper bounding primal problem and lower
bounding relaxed dual problems. Global optimality is attained when the upper bounding problem
converges to the lower bounding problems (Misener and Floudas, 2009). Adhya et al. (1999)
introduce a new Lagrangian approach for developing lower bounds for the pooling problem. This
approach provides stronger bounds for multi-quality pooling problems. Lagrangian relaxation is
also used by Ben-Tal et al. (1994), Audet et al. (2000), and Almutairi and Elhedhli (2009).
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Table 4.2: Overview of solution method literature relevant to the pooling problem.

Paper Solution Method Findings

McCormick (1976) McCormick envelopes Demonstrates how convex underestimating problems can be
generated for NLPs containing factorable terms.

Haverly (1978) Recursive Introduces the P-formulation. Cannot verify global optimum.
Al-Khayyal and Falk
(1983)

Branch-and-bound Proves that the applied algorithm converge to a global solution
of the nonconvex program.

Floudas and
Visweswaran (1990)

GOP Propose a new theoretical approach for the determination of
global optimum for several classes of nonconvex NLP problems.

Visweswaran and
Floudas (1990)

GOP Applies GOP algorithm to quadratic programming problems
with linear and/or quadratic constraints.

Foulds et al. (1992) Branch-and-bound Replaces bilinear terms by their convex and concave envelopes.
Sherali and
Alameddine (1992)

Branch-and-bound Introduces the RLT to generate tight linear programming
relaxations for jointly constrained BLPs.

Ben-Tal et al. (1994) Branch-and-bound Presents Lagrangean relaxation approaches to develop lower
bounds for the pooling problem.

Quesada and
Grossmann (1995)

RLT, spatial branch-
and-bound search

Solves the PQ-formulation with a branch-and-bound procedure,
obtains the global optimal solution.

Li and Chang (1998) RLT The proposed technique can theoretically solve a polynomial
program to find a solution which is close to a global optimum.

Adhya et al. (1999) Lagrangian relaxation Proves Lagrangian approach gives tighter lower bounds than
standard linear programming.

Audet et al. (2000) Branch-and-cut The method yields a global optimal solution of the nonconvex
quadratically constrained quadratic programming problem.

Audet et al. (2004) Branch-and-cut
quadratic programming

Variable neighbourhood search heuristic. Solution of test
problems from literature substantially accelerated.

Liberti and
Pantelides (2006)

RLT Spatial Branch-and-Bound algorithms applied to the
reformulated problem usually obtains the global solution faster
than that of the original NLP.

Meyer and Floudas
(2006)

Convex envelopes, RLT,
piecewise linear RLT

Propose an efficient way of implementing and solving MINLPs
containing bilinear terms.

Almutairi and
Elhedhli (2009)

Lagrangian relaxation The approach is general and can be applied to problems with
similar structure as the pooling problem.

Gounaris et al.
(2009)

Piecewise linearisation Some piecewise linearisation schemes are superior to their
counterparts and should be preferred in pooling process
optimisation.

Teles et al. (2012) MDT Provides close to zero estimated optimality gaps for problems
where the global solver BARON struggles.

Alfaki and Haugland
(2013)

Branch-and-bound Suggests a new branching strategy that performs well in
combination with the TSP-formulation.

Kolodziej et al.
(2013a)

MDT MDT scales more favourably than piecewise McCormick
envelopes.

Kolodziej et al.
(2013b)

MDT MDT can outperform global solvers such as BARON for large
problems.

Sherali and Adams
(2013)

RLT Comprehensive description of RLT.

Teles et al. (2013) MDT Introduces MDT, first published in 2011, republished in 2013.
Approximates NLPs through successive parametrisation and
disaggregation of bilinear variables.

Lotero et al. (2016) Generalised disjunctive
programming

Gives alternative formulation of the multi-period problem.
Algorithm that decomposes the MINLP.
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RLT is extensively described in Sherali and Adams (2013), where the main objective is to develop
and apply RLT as an automatic reformulation procedure and to formulate strong valid inequalities.
RLT is divided into two phases; a reformulation phase and a linearisation/convexification phase
(Sherali and Adams, 2013). The first phase adds redundant constraints to the NLP model, such that
when the problem is relaxed, the resulting underestimation is tighter than without the additional
constraints (Misener and Floudas, 2009). In the second phase, the extended problem is linearised,
except in special cases where certain convex constraints are retained. The linearisation is done
through defining suitable new variables that replace each bilinear term (Sherali and Adams, 2013).

Advances in the pooling problem have the last decade mostly come from combining global opti-
misation algorithms. Misener and Floudas (2009) argue that when bilinear terms are present in
equality constraints, the optimisation problem is not convexifiable and must, therefore, be solved
using global optimisation techniques for optimality to be verifiable. The advances are in the form
of branch-and-bound and relaxation techniques. Examples are the reduced RLT proposed by Lib-
erti and Pantelides (2006) and the piecewise linear relaxation proposed by Gounaris et al. (2009),
called piecewise-affine underestimators.

Piecewise-affine underestimators are based on the observation that a bilinear envelope is tightest
for small domains. The underestimators are constructed by partitioning the domain a priori and
formulate sub-envelopes throughout the domain. This construction results in a tighter relaxation
than that of the original envelope. Only one envelope is active at a given domain point. Thus, the
problem can be represented as an MILP rather than an LP (Misener and Floudas, 2009). Piecewise-
affine underestimators are based on McCormick envelopes and are applied to improve the tightness
of the formulation, as done by Gounaris et al. (2009). Their computational study shows that
piecewise relaxation schemes can significantly improve the lower bounding solution. It is worth
noting that the improvement comes at the expense of computational effort and that one should be
prudent with the extent in which the relaxation schemes are applied.

The presented solution methods each have their strengths and weaknesses. The recursive method of
Haverly (1978) and the SLP method cannot verify global optimality (Misener and Floudas, 2009).
Al-Khayyal and Falk (1983) and Foulds et al. (1992) utilise LP relaxation techniques to obtain
bounds for BLPs. LP relaxations are often weak (Wicaksono and Karimi, 2008). McCormick re-
laxations can be weak or loose and may be slow in lifting the lower bound in a global optimisation
algorithm (Teles et al., 2012). The RLT, although promising in converging to global optimality, is
difficult to implement due to several types of substituting constraints that must be formulated in
a linearised form. Further, the algorithm always has to generate a huge amount of bounded con-
straints in which many are redundant, and there are many ways to design an RLT-process dependent
on the problem structure (Li and Chang, 1998). The most common global optimisation algorithms
use a spatial branch-and-bound framework, which is similar to the standard branch-and-bound
framework, but branches on continuous variables instead of discrete variables. The difficulties in
using the spatial branch-and-bound framework lie in obtaining tight lower and upper bounds, to
identify efficient procedures to obtain the bounds, and to come up with clever branching strategies
to use (Wicaksono and Karimi, 2008).

Due to the reasons mentioned above, other solution methods may be preferable. A promising
linearisation technique developed in more recent times is the MDT. The method is introduced in
Teles et al. (2013) and relies on a concept based on the characteristics of decimal representation of
real numbers. The NLP is transformed into a suitably reformulated problem containing new sets
of continuous and discrete variables. By disaggregating and parameterising the variables in the
nonlinear terms, it is shown how to approximate the original NLP formulation as an MILP.
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Figure 4.4: Illustration of the feasible region for different accuracy settings of the parameterised variables x1
and x2. Accuracy of one digit and two digits on the left and right, respectively, represented by coloured dots.
Figure reproduced from Teles et al. (2013).

For minimisation or maximisation problems, an upper and a lower bounding MILP can be derived.
The MILPs can then be solved to global optimality through standard methods, where the original
problem is approximated to a certain precision level, which can be as tight as desired (Teles et al.,
2013). The quality of the solution is dependent on the number of significant digits used to represent
the number. One drawback with MDT is that only an infinite number of digits in the parametrisation
can guarantee global optimum (Teles et al., 2012). As a part of the research done by Kolodziej et al.
(2013a), two global optimisation algorithms are introduced with the MDT relaxation to locate the
global optimum within a certain global optimality gap.

Kolodziej et al. (2013a) apply the MDT results in a relaxation which is shown to scale more favour-
ably than the relaxation obtained by applying piecewise McCormick envelopes. The MDT yields
smaller mixed-integer problems and faster solution times for similar optimality gaps. Kolodziej
et al. (2013a) show that the MDT relaxation applied to large problems compares well with general
global optimisation solvers. They also show that the solution from the upper and lower bound
formulations converge towards the original nonlinear formulation in the limit of an infinite number
of discretisation intervals.

Nonconvex nonlinear programming problems yielding multiple local optima, such as the pooling
problem, make the application of local NLP solvers ineffective, due to a sub-optimal solution or
failure to even locate a feasible one (Teles et al., 2012; Wicaksono and Karimi, 2008). Compared to
spatial branch-and-bound involving a continuous relaxation, the MDT involves a discrete partition
of the feasible region (Teles et al., 2012). An illustration of the discretisation is shown in Figure 4.4.
This discretisation means one can simply use standard MILP solvers to generate a near to optimal
solution, given that one exists for the selected accuracy settings. Further, the MDT does not require
the specification of an initial point (Teles et al., 2012). For these reasons, the MDT is selected to
be the method for linearising the bilinear constraints present in the MAMP.
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4.7 The Multi-period Pooling Problem

The pooling problem can be extended to allow for multiple time periods in which there can be vari-
ations in inventory, supply, and demand (Lotero et al., 2016). Little literature exists on the pooling
problem for a multi-period perspective. Papers that touch upon the subject are Kolodziej et al.
(2013b) and Lotero et al. (2016). Kolodziej et al. (2013b) introduce a generalised multi-period
scheduling version of the pooling problem to represent blending systems varying in time. Lotero
et al. (2016) address the problem from Kolodziej et al. (2013b) and propose an alternative formu-
lation and a decomposition method. Binary variables are needed to impose operational constraints
(Kolodziej et al., 2013b), such as material movement to and from the tanks in addition to having
control on fixed costs. General purpose global optimisation solvers fail to find a solution for even
small instances (Lotero et al., 2016).

4.8 Our Contribution

Based on the reviewed literature, little research has been done on the pooling problem in relation
to the manganese alloy production industry. Due to the complexity of large-scale manganese alloy
production and that no model currently exists, the authors conclude that there is a great potential
for optimisation models in the manganese alloy industry.

Our contribution is a flow and quality based model specifically developed for manganese alloy
production, named the MAMP. The MAMP is a hybrid between the standard and the generalised
pooling problem. In formulating the problem, the P-formulation is used as this is the most common
formulation used in chemical processing industries and it provides an intuitive understanding of the
process flows and their qualities for this new problem. Jipnang et al. (2013) mention that a future
extension of their model is to introduce the coupling between the HC FeMn and MC SiMn furnaces.
The MAMP includes this coupling. It combines both multiple layers of intermediate pools, as it
models the flow and mixing through the furnaces and refining processes, and multi-plant flow. One
limitation of the MAMP compared to the model used in Jipnang et al. (2013) is that the MAMP
does not delve into detailed thermodynamic balances for a furnace. The MAMP does, however,
include enthalpy balances to approximate the power consumption in the furnaces.

Overall, the focus of the MAMP is on the economic aspects of the production. It attempts to
solve production planning involving a predetermined set of furnaces located at multiple plants.
The problem involves multiple quality components that are mixed into several final products. The
model accounts for wastes in the production and how to model the reuse of already processed
components in the production. A multi-period version of the MAMP is formulated to account for
the time aspect of the production.

The formulations presented by Ben-Tal et al. (1994), Amos et al. (1997), and Meyer and Floudas
(2006) for the oil refinery and water treatment industry, are in some aspects formulated similarly to
the MAMP. Amos et al. (1997) and Meyer and Floudas (2006) formulate the problem using the P-
formulation. The MAMP also uses this formulation. All the formulations include multiple quality
components and multistage processes, but the MAMP and the wastewater treatment problem also
include connections between intermediate pools. In the water network problem, flow between
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intermediate pools are the flows between processing plants, while in the MAMP, this is the flow
between furnaces. All the problems except the MAMP are formulated with the aim to minimise
costs for a process, while the MAMP aims to maximise profit to capture the demand and market
price effects on the production.

The MAMP has bilinear terms to correctly model mixing of the slag quality components and is,
therefore, a nonconvex NLP with multiple local optima. The solution method MDT is applied to
linearise the MAMP such that the problem is in the form of an MILP instead of an NLP. This solu-
tion method results in that the problem can be solved by linear solvers, and that global optimality
is verified within a certain optimality gap when the problem is solved. To our knowledge, we are
the first to apply the MDT to solve large, real problem instances and can, therefore, evaluate the
scaleability of the MDT.
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Chapter 5
Model Formulation

In this chapter, the deterministic, mathematical optimisation model of the Manganese Alloy Multi-
plant Production problem (MAMP) is presented. Multi-plant production, blending, advanced
chemistry, thermodynamics, and the coupling of the FeMn and SiMn productions that make up
the MAMP, add a high degree of complexity to the formulation of the problem. This chapter
starts with listing modelling choices, model assumptions, and the reasoning for each assumption
in Section 5.1 to simplify and reduce the scope of the problem. In Section 5.2, the sets, indices,
parameters, and variables used in the formulation are defined. The flow each variable represent
is illustrated in Section 5.3. The mathematical formulation for a single time period is given in
Section 5.4 with explanations of the objective function and constraints. Lastly, the mathematical
formulation is extended to account for multiple time periods in Section 5.5.

5.1 Modelling Choices and Model Assumptions

This section outlines the modelling choices and the underlying assumptions used to model the
MAMP. The section first describes the problem structure before production related assumptions,
modelling choices, and chemical considerations are presented. At the end of the section, process
and production options entirely disregarded are mentioned.

5.1.1 Problem Structure

The MAMP is formulated in such a way that the model is solved once and the production plan
given by the solution can be used for the planning period in consideration. The time frame of
the production can span days to years. The model can be re-run every time there is a change in
the production conditions, meaning every time there is a significant change in sets or parameters.
Examples are changes in the number of plants or furnaces that are available to the production, the
availability of ores, or the end-products’ composition requirements.
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The end-product demands are assumed to originate from fixed and optional contracts. Fixed con-
tracts are known ahead of production for the entire planning horizon, making a deterministic model
appropriate. Optional contracts of any size are assumed to be found in the spot market, so the model
provides the user with the quantity that should be sold in this market for each end-product. The
chemical composition of the products is assumed to be specified for the fixed contracts, while it
is possible to sell end-products of any composition in the spot market. Fixed contracts must be
fulfilled while optional contracts can be chosen as desired. This modelling choice means that for
every time period, the capacity of the production is always assumed to be greater than the cumula-
tive fixed contract demand, and that is possible to choose between selling excess end-products on
optional contracts or hold the end-products in an inventory for future contracts at a holding cost.
The raw material procurement prices, electricity prices, and sale prices for end- and by-products
are considered constant.

The electricity consumption in each furnace is approximated by the thermodynamic relations de-
scribed in Chapter 2. The assumptions made about the chemical reaction temperatures to calculate
the enthalpies for all elements and oxides are found in Appendix E. All furnaces are assumed to
have no downtime, resulting in a continuous production. Switching furnace settings, or switching
furnaces on and off, are not included in the model. These are reasonable assumptions as furnace
downtime incurs costs and decreases production, and is therefore avoided as much as possible.

The mix of raw materials and slag to blend in a furnace must be decided to produce the demanded
alloys. The flow from the furnaces through the refining processes also have to be decided. The
formulation, therefore, includes intermediate variables to illustrate the material flow between the
furnaces, refining, and crushing processes better. The model generates a production plan for each
plant, illustrating the consumption and mixing of raw materials, slag flow between furnaces, ma-
terial flow through the refining and crushing processes, and the total production of end- and by-
products at each plant. Some of the important decisions are how much slag to feed to the MC SiMn
furnaces, from which HC FeMn furnaces the slag should be allocated, and the composition of the
slag. These decisions are both cost and quality motivated. From a cost perspective, the SiMn
production costs may be significantly changed by feeding slag to the MC SiMn furnaces, as the
slag replaces raw materials. From a quality perspective, slag of different qualities can be mixed
to get the desired quality in an MC SiMn furnace. However, increasing the amount of slag fed
also increases the power consumption as the oxides in the slag requires a greater amount of energy
to be heated.

5.1.2 Raw Material Supply and Costs

Procurement of raw materials is outside the scope of the model. The raw material procurement
cost is connected to the consumption of raw materials. The formulation assumes that inventories of
undersized lumps exist and that undersized lumps are pulled from stock when needed. The lower
cost of using the undersized lumps should ensure that it is favourable to feed this resource to the
furnace. The undersized lumps that later exit the crushing process are sent to different inventories
of undersized lumps and are disregarded for the rest of the problem. Another important aspect of
the production problem is that a sustainable balance for the re-use of undersized lumps should be
found; the process should not consume more undersized lumps than it produces for the result to
be a sustainable production plan over time. The feed of undersized lumps is therefore bounded by
the produced volume of undersized lumps. Inventories of undersized lumps, oxygen, and silicon
waste added to the refining processes are separated from the raw material inventory since these raw
materials are coupled to other processes than the furnace process.
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5.1.3 Chemical Considerations

A large set of chemical reactions is involved in the production of manganese alloys. The model
aims to keep the number of chemical reactions to a minimum, but still at a sufficient level to include
the main reactions occurring in the furnaces to ensure the correct weight fractions of elements in
the final alloy and oxides in the slag. Including chemical reactions to account for minor end-
product constituents would limit the flexibility in end-product specifications in the model. The
minor constituents are indirectly included in the model by making the total raw material fractions
sum up to less than one. The mass entering the chemical reactions is thus less than the mass
fed to the furnace, simulating the feeding of minor constituents, but not including them in the
chemical reactions.

All chemical reactions are assumed to be complete. Thus, all chemical balances from reactions
(2.5) - (2.17) in Chapter 2 translate into linear equality constraints. To enforce the correct chemical
balances, there have to be three constraints for each chemical reaction; one that retains the correct
total balance of the reaction and two that ensure correct ratio of the left and right side components.
All reactions in the furnaces happen through mole balances as this often is the best way to model
chemical relationships.

5.1.4 Slag Properties

In practice, many complicated chemical reactions and incomplete reactions constitute a signifi-
cant amount of the slag, in addition to the most important oxides. It requires extensive chemical
knowledge to model the slag production realistically. Therefore, slag is set to only consist of the
most important oxides in the model. These oxides are MnO, FeO, SiO2, Al2O3, MgO, and CaO.
Elements and oxides considered of minor importance in the model are left out. The amount and
composition of slag produced from each HC FeMn furnace can vary. It is assumed that the slag
produced in the HC FeMn furnaces is sent for reuse in MC SiMn furnaces or discarded. In practice,
the slag may also be sold, but this is disregarded.

As mentioned in Section 5.1.3, all chemical reactions are assumed to be complete. If this had been
true in reality, all oxides would completely reduce to metal, and no slag would be produced. This
is not the case, and the model needs to account for slag production. The slag is accounted for
by removing a variable amount of the important oxides from the final chemical reactions before
they react and form pure metals. The variable amount of important oxides then makes up the
slag constituents. This modelling choice allows for the slag-to-metal ratio and slag composition to
change depending on the demand, cost, and revenue for each end-product.

5.1.5 By-products

By-products resulting from the production processes pose a modelling challenge regarding the
number of elements and oxides the by-products are made up of, as these involve complicated
chemical reactions. In the furnaces, MOR, and LC SiMn refining station both the mass and the
constituents of the by-products are dependent on the chemical reactions in the processes. Including
chemical reactions to accurately model the by-products’ mass and constituents is comprehensive.
The authors, therefore, assume that a predetermined mix of elements and oxides ends up as by-
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products. The mass of each by-product is set as a percentage of each element or oxide in the total
feed to the process. The remaining feed available to the rest of the processes is then the total feed
subtracted by the mass of the by-products produced by the respective process.

In the crushing process, the amount of crushed product that ends up as undersized lumps vary,
but is for modelling purposes set as a fixed percentage of the total mass crushed of each end-
product. The manganese alloy producers probably have good information on the crushing process
to set an accurate estimate for this parameter, making it an acceptable modelling choice. All of
the produced discardable by-products are assumed to be discarded immediately, thus removing the
need to include inventory costs.

5.1.6 End-product Content Specifications

The specific carbon content of an end-product is only considered within medium and high range for
FeMn and low and medium range for SiMn. Detailed classifications of product types by percent-
age carbon content within these ranges are disregarded, resulting in a reduced set of end-products.
Each end-product must have a specified content of pure elements, which in the formulation is split
into a subset of important and unimportant elements. The important elements are fixed require-
ments, while there are upper and lower bounds on the unimportant elements to ensure end-product
specification flexibility.

5.1.7 Furnace Setup

The submerged arc furnaces used in the production of HC FeMn and MC SiMn are reversible.
In the model, however, the furnace setup is predefined and not changeable during the run of the
model. Should the setup of a furnace be changed, it must be done in the parameter settings.

5.1.8 Process Temperature

This model does not aim to have the answer for micromanaging pure process specific consid-
erations. These considerations are best left to the experienced metallurgists who deal with the
production on a daily basis. All processes are therefore assumed to happen at temperatures suffi-
cient to yield the correct alloys and slag. The temperatures used to approximate electrical power
consumption in the furnaces are given in Appendix E. Further temperature considerations are left
out of the model.

5.1.9 Recovery of Thermal Energy

Some plants may have hot water systems in place for use by district heating or reuse in other
plants relying on thermal energy. The heat generating processes in the production may contribute
significant amounts of energy to these heating systems. Although interesting, it is not within the
scope of the MAMP and is therefore disregarded.
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5.2 Definition of Sets, Indices, Parameters, and Variables

Table 5.1: Sets.

Set

B – Set of by-products, B : {1,...,|B|}

C – Set of chemical reactions, C : {1,...,|C|}

E – Set of end-products, E : {1,...,|E |}

Fp – Set of furnaces at plant p, Fp : {1,...,|Fp |}

K – Set of elements and oxides, K : {1,...,|K|}

P – Set of plants, P : {1,...,|P |}

R – Set of raw materials, R : {1,...,|R|}

V – Set of variables present in the chemical reactions, V : {1,...,|V |}

FFeMn
p – Subset of all HC FeMn furnaces at plant p, FFeMn

p ⊆ Fp

FSiMn
p – Subset of all MC SiMn furnaces at plant p, FSiMn

p ⊆ Fp

CO – Subset of original chemical reactions, CO ⊂ C

CC – Subset of critical chemical reactions, CC ⊂ C

CN – Subset of non-critical chemical reactions, CN ⊂ C

CS – Subset of chemical reactions where the slag variable appears, CS ⊂ C

KC – Subset of critical elements and oxides for end-products, KC ⊂ K

KG – Subset of gases, KG ⊂ K

KN – Subset of non-critical elements and oxides for end-products, KN ⊂ K

KS – Subset of elements and oxides in the slag, KS ⊂ K

Table 5.2: Indices.

Index

p, g – Plant

f , h – Furnace

b – By-product

r, ρ – Raw material

e – End-product

k – Element

c – Chemical reaction number

v – Chemical reaction variable

35



5.2 Definition of Sets, Indices, Parameters, and Variables Chapter 5. Model Formulation

Table 5.3: Parameters.

Parameter

Afkcv – Constant for element or oxide k in chemical reaction c for variable v in furnace f
(constraints (a) in Appendix A).

ALS
fkcv

– Constant for element or oxide k in the left side ratio equation for chemical
reaction c for variable v in furnace f (constraints (b) in Appendix A).

ARS
fkcv

– Constant for element or oxide k in the right side ratio equation for chemical
reaction c for variable v in furnace f (constraints (c) in Appendix A).

Bfkc – 1 if element or oxide k exists in chemical reaction c for furnace f , 0 otherwise.

Cr – Procurement cost per tonne raw material r.

CE – Electricity cost per kWh.

CH – End-product inventory holding cost per tonne.

CLSiL – Reheating cost per tonne LC SiMn undersized lumps used.

CMFeL – Reheating cost per tonne MC FeMn undersized lumps used.

CO – Cost per tonne oxygen used. This includes procurement and electricity cost.

CS – Discard cost per tonne slag.

CSiW – Cost per tonne silicon waste used. This includes procurement and electricity cost.

CT
pg – Transportation cost per tonne slag transported from plant p to plant g.

DF
e – Fixed contract demand for end-product e.

DO
e – Optional contract demand for end-product e.

Ipr – Initial inventory of raw material r at plant p in tonnes.

IE
e – Total initial inventory of end-product e for all plants in tonnes.

ILSiL
p – Initial inventory of LC SiMn undersized lumps at plant p in tonnes.

IMFeL
p – Initial inventory of MC FeMn undersized lumps at plant p in tonnes.

IO
p – Initial inventory of oxygen at plant p in tonnes.

ISiW
p – Initial inventory of silicon waste at plant p in tonnes.

HF
k – Formation enthalpy for element or oxide k, in kJ/tonne.

HS
k

– Sensible enthalpy for element or oxide k, in kJ/tonne.

LH – Furnace heat loss factor.

Mk – Molar mass in moles/tonne for element or oxide k.

P pf – Net furnace power capacity for furnace f at plant p, in kW.

QE – Total end-product inventory capacity for all plants in tonnes.

QF
pf – Capacity of furnace f per day at plant p in tonnes.

QMOR
p – Total MOR capacity at plant p in tonnes.

QREF
p – Total LC SiMn refining station capacity at plant p in tonnes.

RB
b – Revenue or discard cost per tonne by-product b.

RF
e – Fixed contract revenue per tonne end-product e sold.

RO
e – Optional contract revenue per tonne end-product e sold.

Tkcv – 1 if element or oxide k exists in chemical reaction c for variable v, 0 otherwise.

∆T – Time horizon for the production, given in days.
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ΓFeMn
k – Lower limit weight percentage for non-critical element or oxide k in HC FeMn alloy.

ΓFeMn
k – Upper limit weight percentage for non-critical element or oxide k in HC FeMn alloy.

ΓSiMn
k – Lower limit weight percentage for non-critical element or oxide k in MC SiMn alloy.

ΓSiMn
k – Upper limit weight percentage for non-critical element or oxide k in MC SiMn alloy.

Λ – Lower limit on the slag-to-metal ratio in the HC FeMn furnaces.

Λ – Upper limit on slag-to-metal ratio in the HC FeMn furnaces.

Υ – Degree of pre-reduction in the HC FeMn furnaces.

Φk – Lower limit on the weight percentage for slag element or oxide k in slag.

Φk – Upper limit on the weight percentage for slag element or oxide k in slag.

ΨB
fbk – Weight percentage of element or oxide k in by-product b from furnace f .

ΨCRUSH
b

– Weight percentage of by-product b from the crushing process.

ΨFeMn
k

– Weight percentage of element or oxide k in HC FeMn alloy.

ΨLSiL – Weight percentage LC SiMn undersized lumps allowed to feed the LC SiMn refining station.

ΨMFeL – Weight percentage MC FeMn undersized lumps allowed to feed the MOR.

ΨMOR
b

– Weight percentage of by-product b from the MOR.

ΨR
rk – Weight percentage of element or oxide k in raw material r.

ΨSiMn
k

– Weight percentage of element or oxide k in MC SiMn alloy.

ΨUL – Weight percentage of undersized lumps allowed to feed a furnace.

ΩMOR – Oxygen-HC FeMn weight relationship factor.

ΩREF – Silicon-MC SiMn weight relationship factor.
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Table 5.4: Variables.

Variable

ap – Tonnage of LC SiMn undersized lumps used in the LC SiMn refining station at plant p.

cp – Tonnage of MC FeMn undersized lumps used in the MOR at plant p.

epf – Electric power consumed by furnace f at plant p, in kWh.

gF
e – Tonnage end-product e sold on fixed contracts.

gO
e – Tonnage end-product e sold on optional contracts.

hp – Tonnage of LC SiMn produced at plant p sent to crushing.

ie – Inventory of end-product e at the end of the production period.

mpf – Tonnage of alloy produced in furnace f at plant p sent to the MOR or LC SiMn refining station.

npfkcv – Moles of element or oxide k in furnace f at plant p in reaction c for variable v.

op – Tonnage oxygen fed to the MOR at plant p.

qpf – Tonnage slag produced in furnace f at plant p.

sp – Tonnage silicon source fed to the LC SiMn refining station at plant p.

upf – Tonnage of alloy produced in furnace f at plant p sent to crushing.

vp – Tonnage of MC FeMn produced at plant p sent to crushing.

xE
pe – Tonnage of end-product e produced at plant p.

xB
pb – Tonnage of by-product b produced at plant p.

ypfr – Tonnage of raw material r fed to furnace f at plant p.

αpfkc – Moles of element or oxide k in chemical reaction c extracted as slag from furnace f at plant p.

σpfgh – Tonnage slag sent from furnace f at plant p to furnace h at plant g.

φpfk – Weight percentage of element or oxide k in the slag produced by furnace f at plant p.

5.3 Pooling Problem Structure

Figure 5.1 illustrates the material flow within a plant and which processes the variables are describ-
ing, using a simplified superstructure. As an example, the variables ypfr and npfkcv are related
to the feeding of the furnaces from the raw material inventory, while ap and sp are related to the
feeding of the LC SiMn refining station from refining resources. φpfk, epf , ie, gF

e , and gO
e are not

included in the figure since these are not process flow variables.

Figure 5.1 only illustrates the flow between two furnaces, the MAMP is, however, defined for
multiple furnaces and several plants. Slag can be sent from an HC FeMn furnace at one plant to
multiple MC SiMn furnaces, at the same plant or other plants. The flow between plants is illustrated
in Figure 5.2.
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Figure 5.1: The MAMP superstructure for two furnaces, one HC FeMn and one MC SiMn furnace. The
same colour coding as in Figure 2.6 is applied. Green: raw materials. Red: wastes. Yellow: reusable/saleable
materials. Blue: final alloys.

Figure 5.2: Potential flow from HC FeMn furnaces to MC SiMn furnaces within and between plants.
The flows are denoted by σpfgh.
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5.4 Mathematical Model

5.4.1 Objective Function

max z =
∑
e∈E

(RF
eg

F
e +RO

e g
O
e ) (5.1a)

+
∑
p∈P

∑
b∈B

RB
b x

B
pb (5.1b)

−
∑
p∈P

∑
f∈Fp

∑
r∈R

Crypfr (5.1c)

−
∑
p∈P

∑
f∈Fp

CEepf (5.1d)

−
∑
p∈P

(COop + CMFeLcp) (5.1e)

−
∑
p∈P

(CSiWsp + CLSiLap) (5.1f)

−
∑
p∈P

∑
f∈FFeMn

p

∑
g∈P

∑
h∈FSiMn

g

CT
pgσpfgh (5.1g)

−
∑
p∈P

∑
f∈FFeMn

p

CS(qpf −
∑
g∈P

∑
h∈FSiMn

g

σpfgh) (5.1h)

−
∑
e∈E

CHie (5.1i)

The objective function z maximises the total profit from selling end- and by-products from man-
ganese alloy production. Part (5.1a) is the total revenue generated by selling end-products on fixed
and optional contracts. Part (5.1b) is the total revenue generated by selling valuable by-products
or the cost of discarding the non-profitable ones. Part (5.1c) is the total cost associated with the
amounts of raw materials consumed in the production. Part (5.1d) is the total electricity cost from
consuming energy in the furnaces. Part (5.1e) is the total cost associated with the amount of oxygen
and MC FeMn undersized lumps added to the MOR process. Part (5.1f) is the total cost associated
with the amounts of silicon waste and LC SiMn undersized lumps added to the LC SiMn refining
station. Part (5.1g) is the total slag transportation cost between plants. Part (5.1h) accounts for
the cost of discarding the slag that is not reused. Part (5.1i) accounts for the total holding cost of
storing end-products.
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5.4.2 Constraints

The constraints are presented in different sections to enhance readability and the understanding of
which constraints restrict each process stage. Additionally, the constraint sections are presented in
the order of process stage in Figure 5.1.

Resource Inventory Constraints

∑
f∈Fp

ypfr ≤ Ipr p ∈ P, r ∈ R (5.2)

op ≤ IO
p p ∈ P (5.3)

sp ≤ ISiW
p p ∈ P (5.4)

cp ≤ IMFeL
p p ∈ P (5.5)

ap ≤ ILSiL
p p ∈ P (5.6)

Constraints (5.2) ensure that the total flow of each raw material to the furnaces at each plant is less
than or equal to the total supply of that raw material at the plant. Constraints (5.3) limit the feed
of oxygen to the MOR to within the available inventory at the plant. Constraints (5.4) does the
same for silicon waste fed to the LC SiMn refining station. Constraints (5.5) and (5.6) set the same
restrictions for the use of undersized lumps of MC FeMn and LC SiMn, respectively.

Furnace Constraints

∑
r∈R

ypfr +
∑
k∈KS

∑
c∈CS

Mknpfkcv ≤ QF
pf∆T p ∈ P, f ∈ Fp, v ∈ {SLAG} (5.7)

Constraints (5.7) ensure that the total mass of raw materials and slag fed to a furnace does not
exceed the mass capacity of the furnace. The capacity is given for one day and is scaled with
the number of production days in the time period, ∆T. The term

∑
k∈KS

∑
c∈CS Mknpfkcv is the

amount of slag fed to a furnace and only contributes to the feed of MC SiMn furnaces. The term is
zero for all HC FeMn furnaces as slag is not sent to HC FeMn furnaces.

ypfr ≤ ΨUL
∑
ρ∈R\r

ypfρ p ∈ P, f ∈ Fp, r ∈ {HC FeMn,MC SiMn} (5.8)

Constraints (5.8) handle the amount of undersized lumps it is possible to feed a furnace. The limit
is set as a fraction of the total feed of raw materials excluding undersized lumps. This limit ensures
that the feed of undersized lumps is proportional to the rest of the feed.
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∑
r∈R

∑
k∈K

ΨR
rkypfr +

∑
k∈KS

∑
c∈CS

Mknpfkc,SLAG +
∑
c∈CO

MOnpf,CO2,c,TOT

+
∑
c∈CO

MCOnpf,CO,c,TOT −
∑
b∈B

∑
k∈K

∑
r∈R

ΨB
fbkΨR

rkypfr

−
∑
b∈B

∑
k∈KS

∑
c∈CS

ΨB
fbkMknpfkc,SLAG −

∑
k∈KG

∑
c∈CO\{18}

Mknpfkc,RSRED

−mpf − upf − qpf = 0 p ∈ P, f ∈ Fp

(5.9)

Constraints (5.9) handle the mass balance in each furnace. Starting from the first term, the con-
straints include the following: the mass of the modelled elements and oxides fed to a furnace, the
mass of the slag fed to a furnace, the mass of oxygen (O) subtracted twice due to the modelling
of CO2 entering the Boudouard reaction, the mass of CO taking part in the prereduction in the
furnace, less the mass of the furnace by-products from the raw material and slag feed, the mass
of CO and CO2 off-gas emissions, the alloy output to either the MOR or the LC SiMn refining
station, the alloy output to the crushing process, and the mass of the produced slag. The term∑
k∈KG

∑
c∈CO\{18}Mknpfkc,RSRED excludes chemical reaction 18, which is the Boudouard reac-

tion, because it uses the variable name RSRED, but accounts for the off-gases leaving the furnace,
and not the re-entering gas as in the Boudouard reaction.

For the HC FeMn furnaces, the slag terms npfkc,SLAG are zero as no slag is sent between HC FeMn
furnaces. For MC SiMn furnaces, the produced slag terms qpf are zero as the slag produced in these
furnaces is assumed to be a discard slag. An extended explanation of the furnace mass balance in
is given in Appendix C.

xB
pb =

∑
f∈Fp

∑
r∈R

∑
k∈K

ΨB
fbkΨR

rkypfr

+
∑
f∈Fp

∑
k∈KS

∑
c∈CS

ΨB
fbkMknpfkcv p ∈ P, b ∈ B, v ∈ {SLAG}

(5.10)

Constraints (5.10) define the relationship between the total raw material and slag feed to the fur-
naces and the amount of a discardable by-product produced by the furnaces at a plant.

Furnace Power Consumption Constraints

The electric power consumption in a furnace is modelled by a thermodynamic relation based on
enthalpy balances, as outlined in Section 2.5 in Chapter 2.
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epf = LH
(∑
k∈K

∑
r∈R

HF
kΨR

rkypfr +
∑
g∈P

∑
h∈FFeMn

g

∑
k∈KS

HF
kφghkσghpf

−
∑
b∈B

∑
k∈K

∑
r∈R

HF
kΨB

fbkΨR
rkypfr +

∑
b∈B

∑
k∈K

∑
r∈R

HS
kΨB

fbkΨR
rkypfr

−
∑
k∈KS

HF
kφpfkqpf +

∑
k∈KS

HS
kφpfkqpf

+
∑
g∈P

∑
h∈FFeMn

g

∑
b∈B

∑
k∈KS

HS
kΨB

fbkφghkσghpf

−
∑
k∈KG

∑
c∈C\{18}

HF
kMknpfkc,RSRED +

∑
k∈KG

∑
c∈C

HS
kMknpfkc,RSRED

+
∑
k∈KG

∑
c∈C

HF
kMknpfkc,TOT −

∑
k∈KG

∑
c∈C

HS
kMknpfkc,TOT

+
∑
k∈KC

∑
c∈CC

HS
kMknpfkc,TOT

)
p ∈ P, f ∈ Fp

(5.11)

Constraints (5.11) ensure that the power used in each furnace equals the difference between the
input and output enthalpy of the entering and exiting components. The terms involving HF

k repre-
sent the formation enthalpies for each element and oxide. The terms involving HS

k represent the
sensible enthalpies. The sensible enthalpies are used to calculate the energy required to increase
the temperature of each element and oxide from room temperature to the furnace temperature. Cal-
culating the sensible enthalpies of the leaving compounds is sufficient, as shown in equation (2.4)
in Chapter 2. The first line on the right side of the constraints describes the formation enthalpies
of the raw materials and the slag fed to a furnace. The second line corresponds to the formation
and sensible enthalpies of furnace by-products. The third line represents the formation and sensi-
ble enthalpies of the HC FeMn furnace slag, while the fourth line represents the sensible enthalpy
required to reheat the HC FeMn slag in the MC SiMn furnace. The MC SiMn slag enthalpy from
ores is accounted for in the terms on the second line of the constraints. The fifth line corresponds to
the formation and sensible enthalpies of the gases produced by a furnace. The Boudouard reaction
is excluded from the first term of line five for the same reasoning as in constraints (5.9). The sixth
line accounts for the formation and sensible enthalpies from gases re-entering the furnace process
through chemical reactions. The last term of the constraints represents the sensible enthalpy of the
alloy output from a furnace. The whole right side of the constraints is multiplied by the heat loss
factor LH to account for the heat lost to the surroundings during production.

epf ≤ P pf∆T p ∈ P, f ∈ Fp (5.12)

Constraints (5.12) ensure that a furnace cannot use more power than its maximum power capacity.
Furnace effectiveness is included in the parameters P pf such that the parameters represent the net
available power capacity of the furnaces. ∆T should be converted from days to hours, to yield the
conventional unit of energy, kWh. The power capacity is scaleable with time in the same way as in
constraints (5.7).
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Furnace - Slag Connection Constraints

φpfkqpf = Mk

∑
c∈CS

Bfkcαpfkc p ∈ P, f ∈ FFeMn
p , k ∈ KS (5.13)

Constraints (5.13) couple the mass of slag constituents φpfkqpf to the mass of the constituents
Mkαpfkc subtracted from the chemical reactions occurring in an HC FeMn furnace. The left-hand
side terms of the constraints are nonlinear and, therefore, complicates the MAMP. The constraints
are specific to this problem because there are no pooling problems in the manganese alloy industry,
to the authors’ knowledge, that extracts a proportion of a specific constituent from a blending
process. The closest similarities may be found in the separation processes in the crude oil industry.

∑
g∈P

∑
h∈FSiMn

g

σpfgh ≤ qpf p ∈ P, f ∈ FFeMn
p (5.14)

Constraints (5.14) state that sending slag to MC SiMn furnaces from an HC FeMn furnace is
optional, by allowing less than the produced slag to be sent. If the slag is unfavourable to feed to
MC SiMn furnaces, it is discarded.

∑
p∈P

∑
f∈FFeMn

p

φpfkσpfgh = Mk

∑
c∈CS

nghkcv g ∈ P, h ∈ FSiMn
g ,

k ∈ KS, v ∈ {SLAG}
(5.15)

The slag and raw material feed to the MC SiMn furnace are coupled by constraints (5.15). These
constraints state that the total mass of the respective element or oxide k fed to an MC SiMn fur-
nace through slag must equal the total mass of element or oxide present in the slag sent from the
HC FeMn furnaces that feed the MC SiMn furnace. These are nonlinear terms common to the
pooling problem.

φpfk ≥ Φk p ∈ P, f ∈ FFeMn
p , k ∈ KS (5.16)

φpfk ≤ Φk p ∈ P, f ∈ FFeMn
p , k ∈ KS (5.17)∑

k∈KS

φpfk = 1 p ∈ P, f ∈ FFeMn
p (5.18)

Constraints (5.16) and (5.17) induce lower and upper bounds on the HC FeMn furnace slag com-
position, respectively. Constraints (5.18) enforce that the sum of the weight percentages of all the
slag constituents must make up the total slag content.

qpf ≥ Λ(mpf + upf ) p ∈ P, f ∈ FFeMn
p (5.19)
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qpf ≤ Λ(mpf + upf ) p ∈ P, f ∈ FFeMn
p (5.20)

In the manganese production industry, it is common to produce according to the slag-to-metal
ratio. The Λ and Λ are the upper and lower bounds on this ratio. Constraints (5.19) make sure that
it is always produced at least a minimum amount of slag in the HC FeMn furnaces relative to the
alloy produced. Constraints (5.20) set the upper bound for the slag production relative to the alloy
production.

MOR Constraints

∑
f∈FFeMn

p

mpf + op + cp ≤ QMOR
p p ∈ P (5.21)

Each plant is modelled to have one MOR that processes HC FeMn from all the HC FeMn furnaces
at the plant. The MOR has a capacity on the amount of feed it can process. Constraints (5.21)
ensure that the feed of HC FeMn, oxygen, and undersized lumps added to the MOR do not surpass
this capacity.

∑
f∈FFeMn

p

mpf + op + cp − vp − xB
pb = 0 p ∈ P, b ∈ {MOR dust} (5.22)

Constraints (5.22) handle the mass balance in the MOR. The HC FeMn, oxygen, and undersized
lumps blended in the MOR equal the output of saleable dust and MC FeMn.

op = ΩMOR
∑

f∈FFeMn
p

mpf p ∈ P (5.23)

Constraints (5.23) state that the oxygen used in the MOR equals a fixed ratio of the added HC FeMn.
According to the assumptions, all chemical reactions are complete. Thus, there has to be an
HC FeMn-oxygen ratio that states the mass of oxygen that has to be added to the process to avoid
leftovers of any reactants. By calculating this ratio, there is no need to include a chemical reaction
when modelling this process. This ratio is calculated in Appendix B.

cp ≤ ΨMFeL
∑

f∈FFeMn
p

mpf p ∈ P (5.24)

Constraints (5.24) set the upper bound on how much MC FeMn undersized lumps it is possible to
add to the MOR relative to the feed of HC FeMn alloy. The addition of undersized lumps decreases
the temperature in the MOR, due to the higher energy required to re-melt the undersized lumps.
This limitation on undersized lumps prevents too low temperatures from occurring in the MOR.
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xB
pb = ΨMOR

b (
∑

f∈FFeMn
p

mpf + op) p ∈ P, b ∈ {MOR dust} (5.25)

Constraints (5.25) state that a certain percentage of the mass fed to the MOR ends up as saleable
MOR dust.

LC SiMn Refining Station Constraints

∑
f∈FSiMn

p

mpf + sp + ap ≤ QREF
p p ∈ P (5.26)

Constraints (5.26) handle the capacity of the LC SiMn refining station. The mass flow from all
MC SiMn furnaces, the added mass of silicon waste, and LC SiMn undersized lumps must be less
than or equal to the capacity of the LC SiMn refining station.

∑
f∈FSiMn

p

mpf + sp + ap − hp = 0 p ∈ P (5.27)

The mass balance in the refining process is handled by constraints (5.27). The mass flow of
LC SiMn from the refining process equals the total flow from the MC SiMn furnaces to the LC
SiMn refining station at the plant, the added silicon waste, and LC SiMn undersized lumps.

sp = ΩREF
∑

f∈FSiMn
p

mpf p ∈ P (5.28)

Constraints (5.28) relate the total amount of silicon waste needed to add to alter the product compo-
sition of MC SiMn to form LC SiMn. The constraints ensure that it is not possible to get LC SiMn
out from the refining process without mixing the correct amount of silicon waste with the incoming
feed of MC SiMn.

ap ≤ ΨLSiL(
∑

f∈FSiMn
p

mpf + sp) p ∈ P (5.29)

There is an upper limit on how much LC SiMn undersized lumps it is possible to add to the refining
process, given by constraints (5.29). Similar to the feeding of MC FeMn undersized lumps to the
MOR, process temperature is the reason for this limit.
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Crushing Constraints

∑
f∈FFeMn

p

upf = xE
pe + xB

pb p ∈ P, e ∈ {HC FeMn}, b ∈ {HC FeMn} (5.30)

∑
f∈FSiMn

p

upf = xE
pe + xB

pb p ∈ P, e ∈ {MC SiMn}, b ∈ {MC SiMn} (5.31)

vp = xE
pe + xB

pb p ∈ P, e ∈ {MC FeMn}, b ∈ {MC FeMn} (5.32)

hp = xE
pe + xB

pb p ∈ P, e ∈ {LC SiMn}, b ∈ {LC SiMn} (5.33)

The model must ensure that the mass balance of alloys from the furnaces and the MOR or LC
SiMn refining station is equal to the amount of each end- and by-product that each plant produces.
Constraints (5.30) and (5.31) ensure that the total amount of HC FeMn and MC SiMn from the
respective set of furnaces equals the end- and by-products produced at the plant. The same balance
applies to the crushing of MC FeMn and LC SiMn from the MOR and LC SiMn refining station.
These are accounted for in constraints (5.32) and (5.33).

xB
pb = ΨCRUSH

b

∑
f∈FFeMn

p

upf p ∈ P, b ∈ {HC FeMn} (5.34)

xB
pb = ΨCRUSH

b

∑
f∈FSiMn

p

upf p ∈ P, b ∈ {MC SiMn} (5.35)

xB
pb = ΨCRUSH

b vp p ∈ P, b ∈ {MC FeMn} (5.36)

xB
pb = ΨCRUSH

b hp p ∈ P, b ∈ {LC SiMn} (5.37)

Constraints (5.34) - (5.37) ensure that a given percentage of the crushed end-products ends up as
undersized lumps.

∑
f∈Fp

ypfr ≤ xB
pb p ∈ P, r ∈ {HC FeMn,MC SiMn},

b ∈ {HC FeMn,MC SiMn}
(5.38)

cp ≤ xB
pb p ∈ P, b ∈ {MC FeMn} (5.39)

ap ≤ xB
pb p ∈ P, b ∈ {LC SiMn} (5.40)

To have a sustainable consumption of undersized lumps, the amount of undersized lumps used in
the processes should be less than or equal to the amount of undersized lumps exiting the crushing
process. Constraints (5.38) - (5.40) ensure that this condition is satisfied. Constraints (5.38) allow
both types of lumps to be used in both the HC FeMn and MC SiMn furnaces.
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Final Inventory and Demand Constraints

gF
e = DF

e e ∈ E (5.41)

gO
e ≤ DO

e e ∈ E (5.42)

Constraints (5.41) handle the demand from fixed contracts, which must be satisfied. Constraints
(5.42) handle the demand from optional contracts.

ie = IE
e +

∑
p∈P

xE
pe − (gF

e + gO
e ) e ∈ E (5.43)

∑
e∈E

ie ≤ QE (5.44)

Constraints (5.43) and (5.44) control the total end-product inventory balance for each end-product
and the total inventory capacity across all plants, respectively.

Chemical Balance Constraints

∑
c∈C

Tkcvnpfkcv =
1−

∑
b∈B

ΨB
fbk

Mk

∑
r∈R

ΨR
rkypfr p ∈ P, f ∈ Fp,

k ∈ K, v ∈ {FED}

(5.45)

Constraints (5.45) connect the chemical processes in a furnace to the raw material feed. The left-
hand side of the constraints states that the total amount of moles of an element or oxide k used in
the chemical reactions in each furnace has to equal the feed of that element or oxide to the furnace.
The parameters Tkcv ensure that npfkcv cannot take any other value than zero where element or
oxide k ∈ K is not present in chemical reaction c for variable v ∈ {FED}. The right-hand side of
the constraints multiplies the weight percentage for each element or oxide k in raw material r with
the total weight of the raw material to find the weight of the element or oxide in the raw material.
The sum is taken over all raw materials so that the total feed of the respective element or oxide is
found. It is then divided by molar mass in mole per tonne to determine the amount of mole fed to
the furnace for element or oxide k. The term (1−

∑
b∈B ΨB

fbk) removes the amount of moles that
ends up as discardable by-products from the feed since the chemical reactions do not account for
the production of these.

∑
v∈V \{SLAG}

∑
k∈K

Afkcvnpfkcv +
∑
k∈KS

(1−
∑
b∈B

ΨB
fbk)Afkc,SLAGnpfkc,SLAG

−
∑
k∈K

Bfkcαpfkc = 0 p ∈ P, f ∈ Fp, c ∈ CO
(5.46)
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∑
v∈V \{SLAG}

∑
k∈K

ALS
fkcvnpfkcv +

∑
k∈KS

(1−
∑
b∈B

ΨB
fbk)ALS

fkc,SLAGnpfkc,SLAG

−
∑
k∈K

Bfkcαpfkc = 0 p ∈ P, f ∈ Fp, c ∈ CO
(5.47)

∑
v∈V

∑
k∈K

ARS
fkcvnpfkcv = 0 p ∈ P, f ∈ Fp, c ∈ CO (5.48)

The general form of the chemical reactions presented in reactions (2.5) - (2.17) in Chapter 2 are
given by constraints (5.46) - (5.48). The constraints enforce that the mole balances equals zero.
Each chemical reaction from Chapter 2 is represented by three constraints to ensure the correct
relationships between reactants and resultants. Constraints (5.46) represent the complete chemical
reaction, while constraints (5.47) ensure correct ratios between the reactants, and constraints (5.48)
the resultants. The SLAG variable is removed from the set V in the first term of constraints (5.46)
and (5.47) because slag is handled by a separate term.

∑
v∈V

∑
k∈K

Afkcvnpfkcv = 0 p ∈ P, f ∈ Fp, c ∈ CC (5.49)

npfk,c+1,RED = npfkc,RSRED p ∈ P, f ∈ Fp,
k ∈ {Mn2O3, Mn3O4, MnO, Fe2O3, Fe3O4, FeO}, c ∈ {1,2,3,6,7}

(5.50)

The output of Mn, Fe, Si, and C from the redox reactions and the direct feed of the respective
elements from ores and undersized lumps are added together in constraints (5.49) to find the total
mass of each element in the furnace output alloy. Constraints (5.49) are general representations
of constraints (A.5), (A.10), (A.11), and (A.12) in Appendix A. The reactants in some of the
chemical reactions originate from a resultant in the previous reaction. Therefore, npfk,c+1,RED in
these chemical reactions equals npfkc,RSRED in the previous reaction. This relation is given by
constraints (5.50).

An example of the application of constraints (5.46) - (5.48) to model the chemical reaction (2.6)
in Chapter 2, 3 Mn2O3(s) + CO(g) −−→ 2 Mn3O4(s) + CO2(g), is provided in equations (5.51a) -
(5.51c). The full set of the constraints for the chemical reactions is given in Appendix A.

2npf,Mn2O3,2,FED + 2npf,Mn2O3,2,RED + 6npf,CO,2,FED

−3npf,Mn3O4,2,RSRED − 6npf,CO2,2,RSRED = 0 p ∈ P, f ∈ Fp
(5.51a)

npf,Mn2O3,2,FED + npf,Mn2O3,2,RED − 3npf,CO,2,FED = 0 p ∈ P, f ∈ Fp (5.51b)

npf,Mn3O4,2,RSRED − 2npf,CO2,2,RSRED = 0 p ∈ P, f ∈ Fp (5.51c)
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Boudouard Reaction Constraints

npf,C,18,FED + npf,CO2,18,TOT − npf,CO,18,RSRED = 0 p ∈ P, f ∈ Fp (5.52a)

npf,C,18,FED − npf,CO2,18,TOT = 0 p ∈ P, f ∈ Fp (5.52b)

npf,CO2,18,TOT = (1−Υ)
∑

c∈C\{1,2}

npf,CO2,c,RSRED p ∈ P, f ∈ Fp (5.53a)

∑
c∈CO

npf,CO,c,TOT ≤ npf,CO,18,RSRED +
∑
c∈CS

npf,CO,c,RSRED p ∈ P, f ∈ Fp (5.53b)

Constraints (5.52a) represent the Boudouard reaction given in reaction (2.14) in Chapter 2. Con-
straints (5.52b) ensure correct ratio between the left side reactants. No constraints are needed for
the right side ratio as only one resultant exists. Constraints (5.53a) handle the degree of prereduc-
tion in a furnace, i.e. how much CO2 that is consumed by the Boudouard reaction. Following the
definition of pre-reduction given in Chapter 2, the term has to be formulated as (1 − Υ) to model
the amount of CO2 re-entering the process correctly. The chemical reactions involving MnO2 and
Mn2O3 are not normally involved in prereduction and are therefore not included in the sum of the
right side term. Constraints (5.53b) ensure that the total CO fed to reactions (2.5) - (2.7) and (2.10)
- (2.11) is less than or equal to the CO resulting from the Boudouard reaction and reactions (2.8)
and (2.12) - (2.13). The CO and CO2 that do not re-enter the process are released as off-gases.

Chemical Content Constraints

Mk

∑
c∈CC

Tkcvnpfkcv = ΨFeMn
k (mpf + upf ) p ∈ P, f ∈ FFeMn

p ,

k ∈ KC, v ∈ {TOT}
(5.54)

Mk

∑
c∈CC

Tkcvnpfkcv = ΨSiMn
k (mpf + upf ) p ∈ P, f ∈ FSiMn

p ,

k ∈ KC, v ∈ {TOT}
(5.55)

Constraints (5.54) and (5.55) ensure that the required content of critical elements is satisfied in the
HC FeMn and the MC SiMn furnaces, respectively.

Mk

∑
c∈CN

Tkcvnpfkcv ≤ ΓFeMn
k (mpf + upf ) p ∈ P, f ∈ FFeMn

p ,

k ∈ KN, v ∈ {TOT}
(5.56)
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Mk

∑
c∈CN

Tkcvnpfkcv ≥ ΓFeMn
k (mpf + upf ) p ∈ P, f ∈ FFeMn

p ,

k ∈ KN, v ∈ {TOT}
(5.57)

Mk

∑
c∈CN

Tkcvnpfkcv ≤ ΓSiMn
k (mpf + upf ) p ∈ P, f ∈ FSiMn

p ,

k ∈ KN, v ∈ {TOT}
(5.58)

Mk

∑
c∈CN

Tkcvnpfkcv ≥ ΓSiMn
k (mpf + upf ) p ∈ P, f ∈ FSiMn

p ,

k ∈ KN, v ∈ {TOT}
(5.59)

To have some slack on the non-critical elements and oxides used in the production, upper and lower
bounds are set for these elements. The bounds are given in constraints (5.56) - (5.59).

Non-negativity Constraints

ap ≥ 0 p ∈ P (5.60)

cp ≥ 0 p ∈ P (5.61)

epf ≥ 0 p ∈ P, f ∈ Fp (5.62)

gF
e ≥ 0 e ∈ E (5.63)

gO
e ≥ 0 e ∈ E (5.64)

hp ≥ 0 p ∈ P (5.65)

ie ≥ 0 e ∈ E (5.66)

mpf ≥ 0 p ∈ P, f ∈ Fp (5.67)

npfkcv ≥ 0 p ∈ P, f ∈ Fp, k ∈ K, c ∈ C, v ∈ V (5.68)

op ≥ 0 p ∈ P (5.69)

qpf ≥ 0 p ∈ P, f ∈ Fp (5.70)

sp ≥ 0 p ∈ P (5.71)

upf ≥ 0 p ∈ P, f ∈ Fp (5.72)

vp ≥ 0 p ∈ P (5.73)

xE
pe ≥ 0 p ∈ P, e ∈ E (5.74)

xB
pb ≥ 0 p ∈ P, b ∈ B (5.75)

ypfr ≥ 0 p ∈ P, f ∈ Fp, r ∈ R (5.76)
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αpfkc ≥ 0 p ∈ P, f ∈ Fp, k ∈ K, c ∈ C (5.77)

σpfgh ≥ 0 p ∈ P, f ∈ Fp, g ∈ P, h ∈ Fg (5.78)

φpfk ≥ 0 p ∈ P, f ∈ Fp, k ∈ KS (5.79)

5.5 Multi-period Model

To extend the MAMP to a multi-period model, the planning horizon is divided into time periods
and the possibility to choose to hold an end-product inventory between time periods is included.
This extension makes the MAMP better able to account for changing demands over time as the
model accounts for when a contract must be fulfilled, and decide whether to produce and sell
excess end-products or hold them in an inventory for later contracts.

The multi-period model is simplified by only allowing end-products to flow between time periods.
The decision at the end of each time period is to sell or keep end-products in stock for future time
periods. A series of assumptions are made to model this: the fixed and optional contracts’ demands
and revenues are defined for each time period. The specifications for the different end-products do
not change between time periods. Demand, sales, and procurement prices are considered constant
within a time period. The raw material inventory is assumed to be restocked to the initial inventory
level for each time period. All of the produced slags are either reused or discarded within the same
time period.

A set of time periods must be defined with a corresponding index. The demand, sales and procure-
ment prices, and all of the variables must be indexed on time, and the end-product inventory balance
is updated to handle sequential periods. New sets are defined in Table 5.5, new indices are defined
in Table 5.6, the updated parameters are listed in Table 5.7, and updated variables used in the new
restrictions are defined in Table 5.8. The updated constraints are provided by constraints (5.80) and
(5.81). Besides this, every constraint in the single-period formulation must be valid for all time
periods and the sum over time periods must be included in all the terms of the objective function.
The full multi-period formulation of the MAMP is omitted for readability.

Table 5.5: Definition of sets for the multi-period MAMP.

Set

T – Set of time periods, T : {1, ..., |T |}

Table 5.6: Definition of indices for the multi-period MAMP.

Index

t – Time period
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Table 5.7: Definition of parameters for the multi-period MAMP.

Parameter

Crt – Procurement cost per tonne raw material r in time period t.

DF
et – Demand for end-product e from fixed contracts in time period t in tonnes.

DO
et – Demand for end-product e from optional contracts in time period t in tonnes.

RF
et – Fixed contract revenue per tonne end-product e sold in time period t.

RO
et – Optional contract revenue per tonne end-product e sold in time period t.

Table 5.8: Definition of variables for the multi-period MAMP.

Variable

iet – Inventory of end-product e at the end of time period t.

xE
pet – Tonnage of end-product e produced at plant p in time period t.

iet = IE
e +

∑
p∈P

xE
pet − (gF

et + gO
et) e ∈ E , t ∈ {1} (5.80)

iet = ie,t−1 +
∑
p∈P

xE
pet − (gF

et + gO
et) e ∈ E , t ∈ T \{1} (5.81)

Including the considerations mentioned above and constraints (5.80) - (5.81) completes the formu-
lation of a multi-period model of the MAMP.
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Chapter 6
Solution Method

The bilinear constraints in the model formulation in Chapter 5 cannot be solved using a linear
solver in their present state. This inability motivates the use of the Multiparametric Disaggregation
Technique (MDT), introduced in the literature review in Chapter 4, to linearise the bilinear terms.
The global optimum can then be verified by implementing the formulation in a linear solver. This
chapter describes the linearisation of the bilinear terms and how to apply this new formulation to
verify the global optimum.

New sets, indices, parameters, and variables necessary for the MDT linearisation are introduced
in Section 6.1. A general description of how the MDT locates the global optimum is given in
Section 6.2. Section 6.3 and Section 6.4 cover the derivation of the linearisation of the lower
and upper bound problem, respectively. Section 6.5 describes the algorithm used to verify global
optimality. Lastly, Section 6.6 describe different approaches to reduce the computational time.

6.1 Definition of Sets, Indices, Parameters, and Variables

The MDT applied to linearise the bilinear terms in the Manganese Alloy Multi-plant Production
problem (MAMP) is based on the descriptions found in Teles et al. (2013), Teles et al. (2012),
Kolodziej et al. (2013b), and Kolodziej et al. (2013a). To be able to parameterise and discretise
the bilinear constraints, new sets, indices, parameters, and variables have to be defined. These
definitions are found in Tables 6.1, 6.2, 6.3, and 6.4, respectively.

Table 6.1: Definition of sets for the MDT.

Set

M – Set of integers, indexed by m

L – Set of integers, indexed by l

Z – Set of all integers
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Table 6.2: Definition of indices for the MDT.

Index

l – Integer in the set L

m – Integer in the setM

Table 6.3: Definition of parameters for the MDT.

Parameter

qpf – Lower bound on the slag produced by furnace f at plant p in tonnes.

qpf – Upper bound on the slag produced by furnace f at plant p in tonnes.

ε – Optimality gap between the objective value of the lower bound problem and the best bound of

the upper bound problem.

σpfgh – Lower bound on the slag sent from furnace f at plant p to furnace h at plant g in tonnes.

σpfgh – Upper bound on the slag sent from furnace f at plant p to furnace h at plant g in tonnes.

Table 6.4: Definition of variables for the MDT.

Variable

bpfghk – The product of φpfkσpfgh. Represents tonnage of element or oxide k sent from furnace f

at plant p to furnace h at plant g.

q̂pfkml – The disaggregated flow variable of the product qpfµpfkml.

wpfk – The product of φpfkqpf . Represents tonnage of element or oxide k produced in furnace f

at plant p.

∆wpfk – Slack variable for the continuous representation of the product ∆φpfkqpf .

µpfkml – 1 if the decimal power l is active for integer m for element or oxide k in furnace f at plant p,

0 otherwise.

µ′pfkml – 1 if the decimal power l is active for integer m for element or oxide k in furnace f at plant p,

0 otherwise.

λpfkl – Discretisation variable for use in reformulating φpfk .

σ̂pfghkml – The disaggregated flow variable of the product σpfghµ
′
pfkml.

∆φpfk – Slack variable for the continuous representation of the discretised variable φpfk .
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6.2 The Multiparametric Disaggregation Technique

By applying the MDT, a lower bound problem (LBP) and an upper bound problem (UBP) for the
MAMP can be derived, such that the problems are in the form of MILPs. The LBP and UBP can
then be solved with increasing accuracy until the global optimality gap ε is satisfactory.

As described in Kolodziej et al. (2013a), the LBP solution yields a lower bound for the original
problem, denoted z ≤ z, where z is the LBP objective value and z is the original problem objective
value. When the precision is increased, the LBP and the UBP converge to the same value as
l→ −∞ (Kolodziej et al., 2013a).

6.3 The Lower Bound Problem

6.3.1 HC FeMn Furnace - Slag Connection

This section describes the linearisation of constraints (5.13) in Chapter 5 for the LBP formulation.
The constraints are reproduced as constraints (6.1) for readability.

φpfkqpf = Mk

∑
c∈CS

Bfkcαpfkc p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.1)

Of the two variables appearing in the bilinear term, one variable must be parameterised and the
other disaggregated (Teles et al., 2012). A continuous variable can be disaggregated into a set of
non-negative continuous variables, which can only assume positive values up to the upper bound
of the original variable (Teles et al., 2013). The φpfk variables are chosen to be parameterised
since they are limited between zero and one, and a given decimal precision. This parametrisation
reduces the feasible region of the problem compared to disaggregating φpfk and parameterising the
qpf variables instead, which have a range between zero and the maximum amount of slag possible
to produce in a furnace.

wpfk = φpfkqpf p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.2)

φpfk =
∑
l∈Z

λpfkl p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.3)

λpfkl =
9∑

m=0
10lm p ∈ P, f ∈ FFeMn

p , k ∈ KS, l ∈ Z (6.4)

Constraints (6.1) contain a nonconvex bilinear term in the form of φpfkqpf . The bilinear term is
precisely represented by (6.2), (6.3), and the disjunction in (6.4) (Kolodziej et al., 2013a). Con-
straints (6.4) is a result of the fact, that in numerical theory, every real number has possibly an
infinite decimal representation (Teles et al., 2013). A number m ∈ {0, ..., 9} is selected for each
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power l ∈ Z. Every l ∈ Z+ represents the integral part of the number, while l ∈ Z− represents
the decimal part. The disjunction is based on a basis of 10 to represent the decimal system. Also,
the disjunction is defined over the domain of all integers; thus an infinite number of disjunctions
is theoretically possible. For practical reasons, however, the disjunction is defined over a finite
domain l ∈ L = {j, j + 1, ..., |L|}, where j is the position of the last digit desired. If a precision
of two decimal numbers is desired, then j = (-2). The variables φpfk are discretised through the
disjunction given in (6.4). This discretisation leads to a continuous, but approximate representation
of (6.2).

λpfkl =
∑
m∈M

10lm · µpfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS, l ∈ L (6.5)

∑
m∈M

µpfkml = 1 p ∈ P, f ∈ FFeMn
p , k ∈ KS, l ∈ L (6.6)

µpfkml ∈ {0, 1} p ∈ P, f ∈ FFeMn
p , k ∈ KS, m ∈M, l ∈ L (6.7)

After a convex hull reformulation of the disjunction given in (6.4), the disaggregated variables are
introduced in (6.5) - (6.7) (Kolodziej et al., 2013a).

φpfk =
∑
l∈L

∑
m∈M

10lm · µpfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.8)

Substituting (6.5) into (6.3), results in (6.8). In (6.8), the variables φpfk are fully parameterised,
and the correct representation of the original variables is ensured.

wpfk =
[∑
l∈L

∑
m∈M

10lm · µpfkml
]
· qpf p ∈ P, f ∈ FFeMn

p , k ∈ KS (6.9)

Substituting the term for φpfk from (6.8) into (6.2) yields (6.9) and transforms the problem from
an NLP to an MINLP.

q̂pfkml = qpfµpfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS, m ∈M, l ∈ L (6.10)

qpf
∑
m∈M

µpfkml = qpf p ∈ P, f ∈ FFeMn
p , k ∈ KS, l ∈ L (6.11)

qpf =
∑
m∈M

q̂pfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS, l ∈ L (6.12)
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The mixed integer nonlinear term qpfµpfkml is substituted by the variables in (6.10) to transform
the formulation into an MILP. Multiplying (6.6) by qpf yields (6.11). Substituting (6.10) into (6.11)
gives the relationship between qpf and the disaggregated variables q̂pfkml, provided by (6.12).

q̂pfkml ≥ qpfµpfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS, m ∈M, l ∈ L (6.13)

q̂pfkml ≤ qpfµpfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS, m ∈M, l ∈ L (6.14)

µpfkml is a binary variable, meaning the term φpfkµpfkml is zero if µpfkml is equal to zero, and
φpfk if µpfkml is equal to one. None of the variables are negative. Thus, qpf and qpf are non-
negative, resulting in the upper and lower bounds given by (6.13) and (6.14).

wpfk =
∑
l∈L

∑
m∈M

10lm · q̂pfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.15)

Substituting qpfµpfkml by q̂pfkml in (6.9) results in (6.15).

This substitution completes the lower bound linearisation of the bilinear term in constraints (6.1),
and it is an exact representation of the original term (Kolodziej et al., 2013a). The bilinear term in
(6.1) is substituted by wpfk from (6.2). The linearisation is then given by constraints (6.6) - (6.8)
and (6.12) - (6.15).

6.3.2 MC SiMn Furnace - Slag Connection

This section describes the linearisation of constraints (5.15) in Chapter 5 for the LBP formulation.
The constraints are reproduced as constraints (6.16) for readability.

∑
p∈P

∑
f∈FFeMn

p

φpfkσpfgh = Mk

∑
c∈CS

nghkcv g ∈ P, h ∈ FSiMn
g ,

k ∈ KS, v ∈ {SLAG}
(6.16)

Constraints (6.16) are linearised using the same procedure as applied to constraints (6.1) in the
previous section, resulting in the following substitution and constraints:

bpfghk = φpfkσpfgh p ∈ P, f ∈ FFeMn
p , g ∈ P, h ∈ FSiMn

g , k ∈ KS (6.17)

bpfghk =
∑
l∈L

∑
m∈M

10lm · σ̂pfghkml p ∈ P, f ∈ FFeMn
p , g ∈ P,

h ∈ FSiMn
g , k ∈ KS

(6.18)
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φpfk =
∑
l∈L

∑
m∈M

10lm · µ′pfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.19)

σpfgh =
∑
m∈M

σ̂pfghkml p ∈ P, f ∈ FFeMn
p , g ∈ P,

h ∈ FSiMn
g , k ∈ KS, l ∈ L

(6.20)

σ̂pfghkml ≥ σpfghµ
′
pfkml p ∈ P, f ∈ FFeMn

p , g ∈ P,

h ∈ FSiMn
g , k ∈ KS, m ∈M, l ∈ L

(6.21)

σ̂pfghkml ≤ σpfghµ
′
pfkml p ∈ P, f ∈ FFeMn

p , g ∈ P,

h ∈ FSiMn
g , k ∈ KS, m ∈M, l ∈ L

(6.22)

∑
m∈M

µ′pfkml = 1 p ∈ P, f ∈ FFeMn
p , k ∈ KS, l ∈ L (6.23)

µ′pfkml ∈ {0, 1} p ∈ P, f ∈ FFeMn
p , k ∈ KS, m ∈M, l ∈ L (6.24)

These constraints complete the lower bound linearisation of the bilinear term in constraints (6.16)
and the linearisation is an exact representation of the original term. The linearisation is given
by (6.18) - (6.24). Implementing the linearisations of constraints (6.1) and (6.16) in the MAMP
formulation yields the LBP formulation.

6.4 The Upper Bound Problem

6.4.1 HC FeMn Furnace - Slag Connection

This section describes the linearisation of constraints (6.1) for the UBP formulation. The same
derivation as for the LBP is used, but with the inclusion of slack variables, leading to a continuous
representation of the discretised variables.

wpfk = φpfkqpf p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.25)

φpfk =
∑
l∈L

∑
m∈M

10lm · µpfkml + ∆φpfk p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.26)
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wpfk =
(∑
l∈L

∑
m∈M

10lm · µpfkml + ∆φpfk
)
· qpf (6.27a)

wpfk =
∑
l∈L

∑
m∈M

10lm · q̂pfkml + ∆φpfk · qpf (6.27b)

wpfk =
∑
l∈L

∑
m∈M

10lm · q̂pfkml + ∆wpfk p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.28)

Substituting the parametrisation of φpfk in (6.26) into (6.25), gives (6.27a). Using the substitution
from (6.10) and realising that ∆φpfk · qpf = ∆wpfk in (6.27b), results in (6.28).

qpf =
∑
m∈M

q̂pfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS, l ∈ L (6.29)

∑
m∈M

µpfkml = 1 p ∈ P, f ∈ FFeMn
p , k ∈ KS, l ∈ L (6.30)

µpfkml ∈ {0, 1} p ∈ P, f ∈ FFeMn
p , k ∈ KS, m ∈M, l ∈ L (6.31)

q̂pfkml ≥ qpfµpfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS, m ∈M, l ∈ L (6.32)

q̂pfkml ≤ qpfµpfkml p ∈ P, f ∈ FFeMn
p , k ∈ KS, m ∈M, l ∈ L (6.33)

Constraints (6.25) - (6.26) and (6.28) - (6.33) are identical to the lower bound formulation, except
that the slack variables ∆φpfk and ∆wpfk are introduced in (6.26) and (6.28), respectively. The
slack variables lead to a continuous representation of the discretised variables as the gap that exists
between discretisation points for a finite l is eliminated (Kolodziej et al., 2013a).

∆wpfk ≥ qpf∆φpfk p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.34)

∆wpfk ≤ qpf∆φpfk p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.35)

∆wpfk ≥ (qpf − qpf )10j + qpf∆φpfk p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.36)
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∆wpfk ≤ (qpf − qpf )10j + qpf∆φpfk p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.37)

Constraints (6.34) - (6.37) are the McCormick envelopes relaxing the slack variables ∆wpfk that
replaces the quadratic term ∆φpfk · qpf in (6.27b), as done in Kolodziej et al. (2013a). Note that j
denotes the first element in L.

∆φpfk ≥ 0 p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.38)

∆φpfk ≤ 10j p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.39)

The slack variables are bounded by the gap between the discretisation points; thus constraints (6.38)
and (6.39) must be included in the formulation (Kolodziej et al., 2013a). The linearisation is then
given by (6.26) and (6.28) - (6.39).

6.4.2 MC SiMn Furnace - Slag Connection

This section describes the linearisation of constraints (6.16) for the UBP formulation. The con-
straints are linearised using the same procedure as for the linearisation in Section 6.4.1, but with
the introduction of slack variables to create a continuous representation of the discretised variables.
This results in the following substitution and constraints:

bpfghk = φpfkσpfgh p ∈ P, f ∈ FFeMn
p , g ∈ P, h ∈ FSiMn

g , k ∈ KS (6.40)

bpfghk =
∑
l∈L

∑
m∈M

10lm · σ̂pfghkml + ∆bpfghk p ∈ P, f ∈ FFeMn
p ,

g ∈ P, h ∈ FSiMn
g , k ∈ KS

(6.41)

φpfk =
∑
l∈L

∑
m∈M

10lm · µ′pfkml + ∆φpfk p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.42)

σpfgh =
∑
m∈M

σ̂pfghkml p ∈ P, f ∈ FFeMn
p , g ∈ P,

h ∈ FSiMn
g , k ∈ KS, l ∈ L

(6.43)
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∑
m∈M

µ′pfkml = 1 p ∈ P, f ∈ FFeMn
p , k ∈ KS, l ∈ L (6.44)

µ′pfkml ∈ {0, 1} p ∈ P, f ∈ FFeMn
p , k ∈ KS, m ∈M, l ∈ L (6.45)

σ̂pfghkml ≥ σpfghµ
′
pfkml p ∈ P, f ∈ FFeMn

p , g ∈ P,

h ∈ FSiMn
g , k ∈ KS, m ∈M, l ∈ L

(6.46)

σ̂pfghkml ≤ σpfghµ
′
pfkml p ∈ P, f ∈ FFeMn

p , g ∈ P,

h ∈ FSiMn
g , k ∈ KS, m ∈M, l ∈ L

(6.47)

∆bpfghk ≥ σpfgh∆φpfk p ∈ P, f ∈ FFeMn
p , g ∈ P, h ∈ FSiMn

g , k ∈ KS (6.48)

∆bpfghk ≤ σpfgh∆φpfk p ∈ P, f ∈ FFeMn
p , g ∈ P, h ∈ FSiMn

g , k ∈ KS (6.49)

∆bpfghk ≥ (σpfgh − σpfgh)10j + σpfgh∆φpfk p ∈ P, f ∈ FFeMn
p ,

g ∈ P, h ∈ FSiMn
g , k ∈ KS

(6.50)

∆bpfghk ≤ (σpfgh − σpfgh)10j + σpfgh∆φpfk p ∈ P, f ∈ FFeMn
p ,

g ∈ P, h ∈ FSiMn
g , k ∈ KS

(6.51)

∆φpfk ≥ 0 p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.52)

∆φpfk ≤ 10j p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.53)

These constraints complete the upper bound linearisation of the bilinear term in constraints (6.16).
The linearisation is given by (6.41) - (6.53). Implementing the linearisations of constraints (6.1)
and (6.16) in the MAMP formulation yields the UBP formulation.
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6.5 The Global Optimality Algorithm

An algorithm is applied to verify that the global optimum is found. The algorithm initiates with a
coarse discretisation and solves both the LBP and UBP. If the difference between the LBP objective
value and the UBP best bound is less than a given global optimality gap ε, the program ends, if not,
the precision is increased, and the problems are resolved (Kolodziej et al., 2013a). The algorithm
is more formally presented in Algorithm 1. It is inspired by the algorithm presented in Kolodziej
et al. (2013a).

Algorithm 1 Algorithm for verifying global optimum.

1: procedure VERIFYGLOBALOPTIMUM
2: Select solution gap for the LBP and UBP
3: Select j = L = blog10φpfkc
4: Solve the LBP to find the solution z
5: Solve the UBP to find the best bound ẑ
6: if z is infeasible then
7: Let z = −∞

8: if
∣∣∣∣ ẑ − zz

∣∣∣∣ ≤ ε then

9: stop, solution z is global optimum
10: else
11: set j = j− 1, return to step 4

There may be infeasibilities in the discretised problem even if the original problem is feasible. To
avoid this, j and |L| have to be chosen appropriately. There are some general guidelines to help
ensure precision based feasibility. The highest power of 10 (L) must be large enough to ensure that
10j is of the same order of magnitude as the upper bound on φpfk, given asL = blog10φpfkc. Also,
j need to be sufficiently small to ensure that at least one discretisation point is located between the
upper and lower bounds for φpfk, meaning j ≤ |L| is the minimum requirement. Feasibility is
more likely as j decreases since this results in increased precision. The guidelines do not guarantee
feasibility of the LBP and UBP in all cases but represent the minimum precision level required to
have reasonable bounds on φpfk (Kolodziej et al., 2013a).

6.6 Decreasing the Computational Time

The water-using network design problem studied by Kolodziej et al. (2013a) shows that finding the
global optimal solution can involve significant computational time. It is reasonable to believe that
computational time is significant for the MAMP as well, therefore, different approaches to reduce
the computational time is presented. The feasible region of the MAMP can be unnecessary large
due to symmetry in the problem, for instance as a result of homogeneous furnaces. Elimination of
potential symmetry in the problem can yield the same solution in a shorter time.
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6.6.1 Merging Identical Furnaces

One approach to remove symmetry is to merge furnaces of the same type at the same plant into
one larger furnace, thus, reducing the feasible region of the problem by reducing the number of
furnaces and slag transportation possibilities. The changes are done in the parameter settings, so
they do not have any impact on the mathematical formulation. When using this approach, it is
critical to set the correct upper bound on the disaggregated variables qpf and σpfgh from the MDT,
as these parameters impact the computational time and the solution. Illustrations of the furnace
setup at each plant before and after the furnace merging for a case of three HC FeMn and four
MC SiMn furnaces distributed between three plants are given in Figures 6.1a and 6.1b.

When the furnaces produce only one end-product for each furnace type, it is possible that the
optimal slag composition and combination of ores are the same for all furnaces of identical setup.
It might, however, lead to the loss of better solutions as a result of fewer slag mixing possibilities.
When there are multiple HC FeMn and MC SiMn products to produce, merging furnaces is not
an option since each furnace can produce output products of different compositions. Thus, the
furnaces must be kept separate in this case. As multiple HC FeMn and MC SiMn end-products are
not currently modelled, it is of interest to compare furnace merging with the original setup to see
how it affects the solution and the computational time.

(a) (b)

Figure 6.1: (a) Plant layouts with original furnace setups. (b) Plant layouts with merged furnace setups.

6.6.2 Symmetry Breaking Constraints

Another approach to remove symmetry in the problem is to formulate symmetry breaking con-
straints. These constraints could prioritise furnaces on the volume of alloy they send to refining or
crushing processes, the weight fraction of one oxide in the slag from the furnaces, or the amount
of slag chosen to be sent to homogeneous MC SiMn furnaces.
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The complicating constraints are the ones involving the slag composition. Eliminating symmetry
in this part of the problem can decrease the computational time. This elimination can be done by
removing symmetry in one of the three variables present in the complicating constraints: φpfk, qpf ,
and σpfgh. Proposed symmetry breaking constraints for these variables are found in (6.54) - (6.56).

φp,f+1,k ≥ φpfk p ∈ P, f ∈ FFeMn
p , k ∈ KS (6.54)

qp,f+1 ≥ qpf p ∈ P, f ∈ FFeMn
p (6.55)

σpfg,h+1 ≥ σpfgh p ∈ P, f ∈ FFeMn
p , g ∈ P, h ∈ FSiMn

p (6.56)

Adding symmetry breaking constraints may cut away global optimal solutions. The symmetry
breaking constraints should optimally not have any effect on the optimal objective value, but a
deviation in objective value may be acceptable if the computational time is significantly reduced.

It is also possible to explore if breaking symmetry in other parts of the production might contribute
to lower computational times. The constraints considered are provided in (6.57) - (6.58).

mp,f+1 ≥ mpf p ∈ P, f ∈ FFeMn
p (6.57)

up,f+1 ≥ upf p ∈ P, f ∈ FFeMn
p (6.58)
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Chapter 7
Computational Study

This chapter aims to evaluate the applicability and limitations of the Manganese Alloy Multi-plant
Production problem (MAMP) formulation through a computational study. A comparison to actual
production data would contribute to the validation of the model. However, it is not possible for
us to evaluate the performance of the model against real production configurations and operational
results since this is restricted data the authors have been unable to obtain from the industry partner.
The computational study, therefore, consists of an extensive evaluation of model performance and
economic aspects based on a semi-realistic instance.

A base instance is created to perform the computational study. The layout of the industry partner’s
plants in Norway has been used as an inspiration to create the base instance, in which different
parameters can be varied. It is important to note that some of the parameters are taken from lit-
erature on manganese production, some are set by the authors, and that data provided by Eramet
Norway is perturbed for confidentiality purposes. These imprecisions may lead to inaccurate costs,
revenues, and consumption of raw materials compared to actual values. However, the intention
of this computational study is not to accurately depict real production conditions, but rather to
evaluate economic aspects of manganese alloy production in relation to variations in different pa-
rameters. Also, it is desirable to evaluate if the MAMP formulation can add value to manganese
alloy multi-plant production planning when used as a decision support tool.

A description of the MAMP implementation is given in Section 7.1. Section 7.2 presents the base
instance used in the computational study. The computational study is separated into a technical
and an economic study. The technical study is conducted in Section 7.3 and the economic study
in Section 7.4.

7.1 Implementation

The model is written in the algebraic modelling language Mosel and run in FICO R© Xpress Op-
timisation Suite 7.9 using an HP EliteDesk 800 G2 SFF computer with Intel R© Core

TM
i7-6700

3.40 GHz CPU and 32GB RAM. The operating system in use is Windows 10 Education 64-bit.
The MAMP is formulated in a manner that requires some of the data provided by the industry part-
ner to be pre-processed in Microsoft Excel before being imported into the optimisation software.

67



7.2 Definition of the Base Instance Chapter 7. Computational Study

The Multiparametric Disaggregation Technique (MDT) is implemented to be able to solve the
problem in the linear solver Xpress. The bilinear terms present in the model formulation must,
therefore, be replaced by the variables in the MDT that substitute these terms. The implementation
follows Algorithm 1 outlined in Chapter 6. Optimality gaps and maximal run times for the LBP and
UBP can be varied, and a global optimality gap ε chosen for the main file. The algorithm describes
that a precision in the range {0,−∞} is used to solve the pooling problem with the MDT. For
practical purposes, values of {0, 1} are too course to be able to model the chemical composition
of the slag correctly. Producing alloy and slag with precisions of {−4,−∞} is not practically
achievable. The algorithm is thus left with the precisions {−2,−3}.

7.2 Definition of the Base Instance

This section describes the setting of all input parameters. Data not provided by the industry partner
have been sought out in literature on manganese alloy production or set to reasonable values by the
authors in agreement with the problem owner to simulate realistic instances as closely as possible.

7.2.1 Plants, Furnaces, MORs, and LC SiMn Refining Stations

The base instance used to evaluate the MAMP formulation considers a single time period produc-
tion. A single time period represents ∆T = 30 days of production. The base instance considers
three HC FeMn and four MC SiMn furnaces distributed over three plants, and is named B1-3Fe4Si.
The plants, furnaces located at each plant, and furnace production setups are given in Table 7.1.

Table 7.1: Plant and furnace layout overview. Plant locations are numbered. Each
furnace is numbered and located at a plant. The furnaces are divided into subsets
based on the production setup of HC FeMn or MC SiMn for each plant.

Plant p Furnace set Fp HC FeMn furnaces
in the set F FeMn

p

MC SiMn furnaces
in the set F SiMn

p

1 Porsgrunn {1, 2} {1} {2}
2 Kvinesdal {3, 4, 5} {3, 4, 5}
3 Sauda {6, 7} {6, 7}

Each furnace is set to have a pre-reduction of 22%, as used in Olsen et al. (2007), thus Υ =
0.22. Each furnace loses 35% of the heat to the surroundings, thus LH = 1.35. Alloy production
companies often have lucrative electricity price agreements, therefore, the electricity price is set to
CE = 0.00118 USD/kWh. The mass and electrical power capacities of each furnace are listed in
Table 7.2. The electrical power capacity is based on information about the furnaces at the industry
partner’s plants, and the mass capacity is set proportionally to this. In practice, it usually is the
electrical power that limits furnace capacity. Each plant has, in addition to the furnaces, MOR and
LC SiMn refining station capabilities. The input capacities for these are set sufficiently high not to
be the limiting factors in the base instance.
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Table 7.2: Furnace mass and electrical power capacity. Mass capacity given in tonnes. Power
capacity given in kW.

Plant p Furnace f Mass Capacity Qpf Power Capacity Ppf

1 Porsgrunn 1 1 000 40 000
1 Porsgrunn 2 750 30 000
2 Kvinesdal 3 750 30 000
2 Kvinesdal 4 750 30 000
2 Kvinesdal 5 750 30 000
3 Sauda 6 1 000 40 000
3 Sauda 7 1 000 40 000

The feed limit for each type of undersized lumps is given as a weight fraction of the raw material
feed to the furnaces, or the liquid alloy feed to the MOR and LC SiMn refining station. The weight
fractions are presented in Table 7.3 and are based on values found in Olsen et al. (2007).

Table 7.3: Undersized lump feed limit for different process stages. The feed is given as a
weight fraction of the total raw materials feed to the furnaces, or liquid metal feed to the
MOR or LC SiMn refining station.

Process stage Parameter Undersized lump feed limit

Furnace ΨUL 0.10
MOR ΨMFeL 0.10
LC SiMn refining station ΨLSiL 0.10

7.2.2 End-products, By-products, and Slag

The plants produce one or more of the end-products listed in Table 7.4. The demands and revenues
of fixed and optional contracts for the various end-products are also provided in this table. The fixed
revenues have been obtained from the industry partner and are perturbed, while the revenues from
optional contracts are set 5% higher than the fixed contract revenues. The authors have estimated
the fixed demand based on that the demand for refined alloys is increasing (Olsen et al., 2007).
The demand is given as a total demand per end-product for the production period. The cumulative
end-product demand is set greater than the total furnace capacity, as the authors assume that there
are enough contracts available in the market to maximise production. This assumption is valid, as
the furnaces always produce at maximum capacity in practice. The production is thus limited by
the mass and electrical power capacity of the furnaces. The initial inventory of end-products is set
to zero in the base instance. The choice of optional contracts to accept visualises which products
are the most profitable since these are produced after the fixed demand is met.
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Table 7.4: End-products with demands and revenues for fixed and optional contracts.
Demand is given in tonnes, revenue in USD/tonne.

End-product e Demand DF
e Revenue RF

e Demand DO
e Revenue RO

e

HC FeMn 13500 771 6000 810
MC FeMn 15000 899 6000 944
MC SiMn 10500 783 6000 822
LC SiMn 12000 853 6000 896

Each end-product is produced to satisfy certain content specifications. Explicit specifications are
only set for the contents of HC FeMn and MC SiMn, as these products are made in the furnaces
where the chemical composition is modelled. Correct content specifications of MC FeMn and
LC SiMn are given implicitly by predetermined parameters. The calculations to find these parame-
ters are given in Appendix B. MC FeMn and LC SiMn have lower carbon contents than HC FeMn
and MC SiMn, respectively. The weight percentage of every other constituent in MC FeMn and
LC SiMn changes proportionally to the reduction of carbon as a result of the altered composition.
The content specifications used in the base instance are listed in Table 7.5 and are obtained from
Olsen et al. (2007). Notice that each end-product composition sum up to 1.00.

Table 7.5: End-product compositions for metals exiting the furnace. Given as weight
fractions of the total element or oxide content. Notice that the composition sums to 1.00
to ensure correct mass balances.

Element or Oxide k

End-product e Parameter Mn Fe Si C

HC FeMn ΨFeMn
k

0.790 0.136 0.004 0.070
MC SiMn ΨSiMn

k
0.712 0.081 0.192 0.015

The mass output of slag is related to the total output of metal in an HC FeMn furnace. The max-
imum value is set to Λ = 1.0 and the minimum value Λ = 0.5. The slag exiting the HC FeMn
furnaces has set quality specification intervals for oxides with metal-bearing capabilities. The up-
per and lower bound on the slag quality are defined by the parameters Φk and Φk and are given in
Table 7.6 for the oxides k ∈ KS . These values can be varied to test how different interval-ranges
affect the solution and solution time. As stated in Section 2.4.2 of Chapter 2, the MnO content in
the slag can vary in the range 30 - 50% for the duplex production method. The remaining intervals
are set based on information provided by the industrial partner.

Table 7.6: Slag composition upper and lower bounds. Given in weight fractions of the total slag content.

Element or Oxide k

Product Parameter MnO FeO SiO2 Al2O3 MgO CaO

FeMn Slag Upper Φk 0.50 0.02 0.35 0.20 0.20 0.30
FeMn Slag Lower Φk 0.30 0.00 0.15 0.10 0.05 0.10
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At every stage of the production, except at the LC SiMn refining station, by-products are produced
as a fixed amount of the total feed to the process stage. The process stages, associated parameters,
and parameter values used in the base instance are listed in Table 7.7 for the respective by-products.
Values are based on those found in Olsen et al. (2007). Al2O3, MgO, and CaO completely exit the
MC SiMn furnace as slag dump.

Table 7.7: By-product yield from each process stage. Given as weight fractions of the total feed to the process.

Process stage Parameter By-product b Weight Fraction for Element or Oxide k

HC FeMn furnace ΨB
fbk HC FeMn dust 0.02

MC SiMn furnace ΨB
fbk MC SiMn dust 0.02

MC SiMn furnace ΨB
fbk MC SiMn slag 1.00 for {Al2O3,MgO, CaO}, 0.10 for others

MOR ΨMOR
b

MOR dust 0.08
Crushing ΨCRUSH

b
HC FeMn lumps 0.10

Crushing ΨCRUSH
b

MC FeMn lumps 0.10
Crushing ΨCRUSH

b
MC SiMn lumps 0.10

Crushing ΨCRUSH
b

LC SiMn lumps 0.10

7.2.3 Raw Materials and Refining Resources

A set of 19 raw materials is at disposal at each plant. These raw materials contain elements and
oxides of various concentrations. Oxygen, silicon waste, and MC FeMn and LC SiMn undersized
lumps, named refining resources for simplicity, are separated from the raw materials since these
feed other processes than the furnace process. The inventories are assumed to be large enough to
satisfy any demand, as the bottleneck of the production is the furnace mass and power capacity.

By industry practice, raw material content data is obtained through an ore content analysis which
output is the total percentage of each pure element in the raw material. The data is modified
in Microsoft Excel to obtain the correct weight fractions for all the elements and oxides in the
raw materials to be compatible with the input data the MAMP requires. The content in each raw
material is listed in Appendix D. Note that the data is perturbed.

7.2.4 Raw Material Costs, Discard Costs, and Slag Transportation Costs

Raw material procurement costs provided by the industrial partner are perturbed and can be found
in Table 7.8. Refining resource costs are listed in Table 7.9 and are set low in agreement with the
problem owner. There are also discard costs and revenues associated with the production of dis-
cardable and saleable by-products and transportation costs for transporting slag between furnaces.
Discard costs and revenues for the respective by-products are listed in Table 7.10. The authors have
been unsuccessful in obtaining accurate costs for discarding by-products, but have been informed
by the problem owner that these can be assumed to be low compared to the raw material costs.
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Table 7.8: Raw material procurement costs. Given in USD/tonne.

Raw material r Cost
Cr

Raw material r Cost
Cr

Raw material r Cost
Cr

Raw material r Cost
Cr

Ore 1 63.4 Ore 2 51.2 Ore 3 80.3 Ore 4 76.2
Ore 5 113.5 Ore 6 107.2 Ore 7 82.5 Ore 8 149.8
Ore 9 127.0 Ore 10 116.7 Coke 11 108.6 Coke 12 106.2
Coke 13 110.3 Flux 14 100.2 Flux 15 38.4 Flux 16 90.1
HC FeMn lumps 0.00 MC SiMn lumps 0.00 Quartz 19 61.6

Table 7.9: Refining resource costs. Given in USD/tonne.

Refining resource Parameter Cost Refining resource Parameter Cost

Oxygen CO 5 Silicon waste CSiW 5
MC FeMn lumps CMFeL 11 LC SiMn lumps CLSiL 15
Slag CS 150

Table 7.10: By-product revenues and costs.
Given in USD/tonne.

By-product b Revenue RB
b

MOR dust 50
HC FeMn dust -10
MC SiMn slag -10
MC SiMn dust -10

Estimated slag transportation costs between plants are listed in Table 7.11. The transportation
costs obtained from the industrial partner are from one of Eramet Norway’s plants to another. The
authors have been unable to obtain information about which plants the transportation cost applies.
It has, therefore, been used as the cost for the shortest transportation route. For convenience, the
transportation costs between other plants have been set proportional to the cost provided based on
distance in kilometres.

Table 7.11: Slag transportation costs between plants. Distance given in
kilometres, transportation costs in USD/tonne.

Plant p Plant g Distance Transportation cost CT
pg

1 Porsgrunn 2 Kvinesdal 300 8.4
1 Porsgrunn 3 Sauda 500 14.0
2 Kvinesdal 3 Sauda 150 4.2
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7.2.5 MDT Parameters

The MDT defines two parameters it is crucial to determine correctly, namely σpfgh and qpf . These
parameters greatly affect the run time and should be set as tight as possible. The parameters repre-
sent the upper bound on shipped and produced slag in an HC FeMn furnace. They are limited by the
total amount of alloy a furnace can produce per day and the slag-to-metal ratio’s lower and upper
bound. The parameters are easily scaled by multiplying by ∆T . For the HC FeMn furnace mass
and power capacities defined in B1-3Fe4Si, suitable values are found to be σpfgh = qpf = 500∆T ,
to not be a limiting factor. The MDT parameters σpfgh and qpf are set to zero as the HC FeMn
furnace possibly can produce zero output.

7.2.6 Multiple Time Periods

The end-product inventories are assumed to be sufficiently large to hold any volume of end-
products. Unit holding cost for all inventories is set to CH = 2 USD/tonne per time period. The
multi-period instances are defined in Table 7.12. The first period in each instance has demands
and revenues as defined in the base instance B1-3Fe4Si in Table 7.4. The decrease or increase in
end-product demand and revenues are then based on these values for the subsequent time periods.
All the other parameter settings remain as defined in the base instance.

Table 7.12: Increase in end-product demands and revenues for fixed and optional contracts for multiple time
periods. The first time period is defined as in B1-3Fe4Si and changes in the values for subsequent time periods
are given relative to the first.

Instance Time Periods Demand Increase DF
e and DO

e Revenue Increase RF
e and RO

e

M2-LOW 2 {0, -2%} {0, -2%}
M2-HIGH 2 {0, +2%} {0, +2%}
M3-LOW 3 {0, -2%, -2%} {0, -2%, -2%}
M3-HIGH 3 {0, +2%, +2%} {0, +2%, +2%}

7.3 Technical Study

A technical study of the MAMP is conducted and the parameter settings for the base instance B1-
3Fe4Si are used. Section 7.3.1 considers problem statistics, optimality gaps, and run times for
different instance sizes. In Section 7.3.2, both furnace merging and symmetry breaking constraints
are considered to decrease the computational time of the MAMP. In Section 7.3.3, changes to the
global optimality gap are studied for increasing run time. The solution stability of the MAMP
is studied in Section 7.3.4. The solution sensitivity for various slag compositions is presented in
Section 7.3.5. The effect of changing the acceptable LBP and UBP optimality gaps is considered
in Section 7.3.6. The effect of different MDT parameter settings is studied in Section 7.3.7. Lastly,
the multi-period MAMP formulation run statistics are evaluated in Section 7.3.8.
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The run time limits and optimality gaps for the LBP, UBP, and MAMP-main algorithm are set
according to Table 7.13. The maximum run times permitted for the LBP and UBP are given in
elapsed run time for each problem. Thus, should the LBP use 1 000 seconds to solve the {-2}
precision, 6 200 seconds remains for the next iteration if the desired global optimality gap ε is not
reached in the first iteration.

Table 7.13: Accepted optimality gaps and run times. The accepted run times are given in seconds.

Problem Optimality Gap Maximum Run Time

LBP 1% 7200
UBP 1% 7200
MAMP-main ε =1% NA

7.3.1 Solution Statistics

Instance testing of the MAMP starts with one plant and one HC FeMn furnace before expanding
the instance to include several plants and furnaces. Definitions of the furnace setups used in the test
instances are found in Table 7.14. The base instance furnace setup is included for readability. Orig-
inal problem statistics and Xpress presolve statistics for each test instance are given in Table 7.15.
The optimality gaps, run times, and solution precisions for the LBP and the UBP problems, as well
as the total run time and global optimality gap ε for the test instances, are listed in Table 7.16.

Table 7.14: Definition of furnace setups for instances used in the technical study. The set of plants is given
together with the furnace production setup at each plant. Each furnace has a unique number given in an
increasing manner.

Instance Set of Plants, P HC FeMn Furnaces at Plant p MC SiMn Furnaces at Plant p

P1-1Fe {1} {1} {}
P1-1Fe1Si {1} {1} {2}
P1-2Fe2Si {1} {1,2} {3,4}
P2-1Fe1Si {1,2} {1}, {} {}, {2}
P2-2Fe2Si {1,2} {1,2}, {} {}, {3,4}
B1-3Fe4Si {1,2,3} {1}, {}, {6,7} {2}, {3,4,5}, {}
P5-5Fe5Si {1,2,3,4,5} {1,2}, {3,4}, {5}, {}, {} {}, {}, {6}, {7,8}, {9,10}

Based on the results in Table 7.15, one can conclude that the number of furnaces is the dimension
of the problem that makes it difficult to solve. This result is intuitive, as adding a furnace adds a
new set of chemical balance and furnace constraints to the problem. Adding a plant and keeping
the number of furnaces constant increases the rows and columns of the original problem minorly,
but results in about the same number of rows and columns after the Xpress presolve.

It is worth noting the substantial reduction in the number of rows, columns, and elements from the
original problem statistics to the Xpress presolve statistics. An explanation for this is that many
of the chemical constraints in the MAMP formulation have linearly dependent rows. Also, there
are many redundant variables of the npfkcv variables, as all of these are explicitly defined in the
implementation, even though only a few are actively used in the chemical constraints.
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Table 7.15: LBP computational statistics for the test instances.

LBP Original Problem Statistics LBP Xpress Presolve Statistics Simplex

Instance Rows Columns Elements Rows Columns Elements Iterations

P1-1Fe 18066 1347 23018 214 412 1302 77
P1-1Fe1Si 35350 2164 44196 378 592 2074 170
P1-2Fe2Si 70394 4184 87815 661 867 3459 393
P2-1Fe1Si 35882 2182 44975 376 591 2020 152
P2-2Fe2Si 70929 4202 88594 654 863 3337 355
B1-3Fe4Si 125477 7985 158517 1545 1810 7028 835
P5-5Fe5Si 183102 13280 235612 2976 3343 12864 1924

The basic operations in Xpress fixate variables explicitly defined by the problem formulation, elim-
inates redundant rows, and removes linearly dependent rows, among other things. The main reduc-
tion of the number of rows, columns, and elements can, thus, mainly be traced back to the explicit
definition of the npfkcv variables.

Table 7.16: Optimality gaps and run times for the test instances. The run times are given in seconds. ∗ denotes
that the time limit was reached before the gap was closed. † denotes that the current precision was not finished
within the time limit. ? denotes that a valid upper bound, but no feasible solution was found for the current
precision.

LBP UBP MAMP Main

Instance Gap Time Precision Gap Time Precision Time ε

P1-1Fe 1.00% {<1,2} {-2,-3} 1.00% {1,13} {-2,-3} 16 1.14%
P1-1Fe1Si 0.65% {1,9} {-2,-3} 1.00% {2,17} {-2,-3} 29 1.07%
P1-2Fe2Si 1.00% {758,6440†} {-2,-3†?} 1.00% {763,6436†} {-2,-3†?} 14406 1.47%
P2-1Fe1Si 0.17% {<1,15} {-2,-3} 1.00% {2,43} {-2,-3} 61 1.05%
P2-2Fe2Si 1.00% {391,6808†} {-2,-3†} 1.00% {1019,6179†} {-2,-3†} 14409 1.50%
B1-3Fe4Si 1.36%∗ {7200†} {-2†} 2.18%∗ {7200†} {-2†} 14409 2.55%
P5-5Fe5Si 3.33%∗ {7200†} {-2†} 7.08%∗ {7200†} {-2†} 14405 7.86%

From Table 7.16 it can be observed that both the LBP and the UBP are solved to the set optimality
gaps for small instances with little computational effort. The resulting global optimality gap ε
is close to the predefined optimality gap of 1.00%. For larger instances than P2-2Fe2Si, the set
optimality gaps for the LBP and UBP are never reached within the time limits of two hours per
problem. Consequently, the global optimality gap ε deteriorates for larger problems. The base
instance B1-3Fe4Si is solved to a global optimality gap of 2.55% within the time limit. It is worth
noting that the MAMP can find acceptable, feasible solutions even for large instances such as P5-
5Fe5Si within a reasonable time.

Overall one can see that the solution time is most sensitive to the increase in the number of furnaces
while increasing the number of plants barely has any effect. The applied precision also has a
significant effect on the required computational time. For larger instances, the {-3} precision is
never completed or even started within the time limit of the program. Generally, the solution to
the LBP problem is better and located faster than for the UBP. This difference is due to that the
UBP is a continuous representation of the solution space, while the LBP is discrete, therefore, the
UBP requires a larger computational effort. Due to the relatively high computational time, different
measures to reduce it should be considered.
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7.3.2 Decreasing the Solution Time

The MAMP run duration is significant and different measures are considered to reduce the com-
putational effort. First, the effect of merging identical furnaces is investigated. Second, symmetry
breaking constraints are added to the formulation to see which one is the most effective, if any.

Merging Identical Furnaces

In the base instance, the MC SiMn furnaces at Plant 2 are identical and the HC FeMn furnaces at
Plant 3 are identical. Merging these furnaces into one larger furnace at each plant may reduce the
computational effort as it results in fewer pools to solve. Merging is acceptable for the base instance
as there are only one furnace end-product per furnace type. If the set of furnace end-products had
been larger, for instance by allowing multiple types of HC FeMn, furnace merging would not be
feasible as the furnaces could potentially produce different HC FeMn end-products. Merging the
furnaces may still remove too much of the solution space and, thus, cannot be applied to find
optimal solutions. This section investigates whether furnace merging is an acceptable approach.
Definitions of test instances with merged furnaces are given in Table 7.17. The base instance
B1-3Fe4Si setup is provided for reference. It is important to note that when the capacity of the
HC FeMn furnaces increases, the MDT parameters σpfgh and qpf have to be scaled accordingly to
account for the increased slag production capacity.

Table 7.17: Definition of test instances where identical furnaces from the base instance are merged. The
furnace mass capacity in tonnes is the first number in the brackets, the furnace power capacity in MW is the
second. The base instance B1-3Fe4Si setup is provided for reference.

Plant 1 Plant 2 Plant 3

Instance F1 F2 F3 F4 F5 F6 F7

I1-2Fe4Si {1000,40} {750,30} {750,30} {750,30} {750,30} {2000,80} Merged
I2-3Fe2Si {1000,40} {750,30} {2250,90} Merged Merged {1000,40} {1000,40}
I3-2Fe2Si {1000,40} {750,30} {2250,90} Merged Merged {2000,80} Merged
B1-3Fe4Si {1000,40} {750,30} {750,30} {750,30} {750,30} {1000,40} {1000,40}

Table 7.18: Furnace merging results. The run times are given in seconds. ∗ denotes that the time limit was
reached before the gap was closed. † denotes that the current precision was not finished within the time limit.
? denotes that a valid upper bound, but no feasible solution was found for the current precision.

LBP UBP MAMP Main

Instance Gap Time Precision Gap Time Precision Time ε

I1-2Fe4Si 1.00% {293,4772} {-2,-3} 1.00% {622,6578†} {-2,-3†} 12271 1.52%
I2-3Fe2Si 1.58%∗ {7200†} {-2†} 1.95%∗ {7200†} {-2†} 14410 2.53%
I3-2Fe2Si 1.00% {307,6893†} {-2,-3†} 1.34%∗ {881,6319†} {-2,-3†} 14625 1.41%

Based on the results from Table 7.18, merging HC FeMn furnaces improve the run time and op-
timality gaps compared to the base instance in Table 7.16. Merging MC SiMn furnaces does not
seem to affect the solution time nor improve the optimality gap. The objective values and best
bounds can be compared to the objective value and best bound of the base instance to get an indi-
cation of whether furnace merging reduces the solution space too much. This is done in Table 7.19.
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Table 7.19: Furnace merging LBP objective value and UBP best bound
for the base instance and instances with merged furnaces.

Instance LBP Objective Value UBP Best Bound

I1-2Fe4Si 35 414 595 35 952 989
I2-3Fe2Si 35 344 425 36 240 104
I3-2Fe2Si 35 397 570 35 897 540
B1-3Fe4Si 35 395 590 36 301 372

From Table 7.19 one can see that the objective values of the furnace merging instances are within
the same range as for the base instance. The results indicate that merging MC SiMn furnaces
lead to a poorer objective value. A tighter best bound is found in all the merged instances. The
results imply that merging identical HC FeMn furnaces when implementing large instances can be
an acceptable approach for removing problem symmetry and decreasing the computational effort.
Merging furnaces is similar to stating that the furnaces must produce the same amount of alloy and
slag with the same compositions. This approach is always feasible within the original problem, but
it may remove some flexibility in the production by restricting multiple furnaces to the same slag
volume and composition.

Merging furnaces reduces the problem size and, therefore, allows for a better solution to be found
within the same time limit as for the base instance. The approach can be acceptable for locating
good solutions in a short time. However, it does alter the original problem’s parameter settings. The
authors, therefore, choose to proceed with the original base instance B1-3Fe4Si without merged
furnaces in the remainder of the computational study.

Symmetry Breaking Constraints

Definitions of test instances including the symmetry breaking constraints (6.54) - (6.58) presented
in Chapter 6 are given in Table 7.20. The results of including the symmetry breaking constraints
are provided in Table 7.21.

Table 7.20: Definition of test instances including symmetry breaking constraints.

Instance Added Symmetry Breaking Constraints

S1-3Fe4Si φ3,6,MnO ≤ φ3,7,MnO

S2-3Fe4Si q3,6 ≤ q3,7
S3-3Fe4Si σ3,6,2,3 ≤ σ3,6,2,4 ≤ σ3,6,2,5
S4-3Fe4Si m2,3 ≤ m2,4 ≤ m2,5 and m3,6 ≤ m3,7
S5-3Fe4Si u2,3 ≤ u2,4 ≤ u2,5 and u3,6 ≤ u3,7

Comparing the results in Table 7.21 to those of the base instance in Table 7.16 show that none of
the implemented symmetry breaking constraints improve the computational time, nor the global
optimality gap. Thus, nothing is gained from adding the symmetry breaking constraints and they
are consequently not included further in the computational study.
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Table 7.21: Results of including symmetry breaking constraints. The run times are given in seconds. ∗ denotes
that the time limit was reached before the gap was closed. † denotes that the current precision was not finished
within the time limit.

LBP UBP MAMP Main

Instance Gap Time Precision Gap Time Precision Time ε

S1-3Fe4Si 1.37%∗ {7200†} {-2†} 2.21%∗ {7215†} {-2†} 14428 2.61%
S2-3Fe4Si 1.42%∗ {7200†} {-2†} 2.32%∗ {7200†} {-2†} 14412 2.85%
S3-3Fe4Si 1.49%∗ {7200†} {-2†} 2.42%∗ {7200†} {-2†} 14408 3.00%
S4-3Fe4Si 1.33%∗ {7200†} {-2†} 2.15%∗ {7200†} {-2†} 14410 2.56%
S5-3Fe4Si 1.46%∗ {7200†} {-2†} 2.24%∗ {7200†} {-2†} 14410 2.70%

7.3.3 Global Optimality Gap with Increasing Run Time

It can be interesting to observe how the global optimality gap ε changes with increasing run time.
This relation is shown in Figure 7.1. The allowed run time for the LBP and UBP are set to twelve
hours each. The base instance parameter settings are used.

Figure 7.1: Global optimality gap ε with increasing run time. The run time is given as the indi-
vidual LBP and UBP run times, thus, the run time of the MAMP main is twice the time of what is
shown on the axis.

From Figure 7.1 one can see that the global optimality gap ε is approximately 3.10% after one hour
of run time for both the LBP and the UBP. The decrease in the global optimality gap after one hour
is small, improving to 2.52% in four hours. After four hours, the decrease is diminishing until it
flattens out at approximately 2.30% after eight hours. At twelve hours, the MAMP main has run for
a total of 24 hours, ending at a global optimality gap of 2.28%. It can be concluded that allowing
run times of more than four hours for the LBP and UBP is of little value to the solution unless a
very high solution accuracy is desired and sufficient time is available. Run times shorter than four
hours allow for a good solution to be found within the time limit.
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Note that small variations in the optimality gaps may come from variations between individual
runs. In Table 7.16, the base instance is solved to an optimality gap of 2.55% in two hours, while
as in this run, the global optimality gap after two hours is 2.76%. Such variations can be eliminated
by running the model several times. Investigating the stability of the global optimality gap and
objective value is, thus, desirable.

7.3.4 Solution Stability

Due to the nonconvexities in the original problem, the MAMP may provide different optimal so-
lutions as the branch-and-bound tree can get stuck in a local optimum. The MDT should ensure
that the global optimum is found, thus running the MAMP multiple times should yield the same
optimal objective value, although the optimal solution may differ from run to run. To investigate
this, the base instance B1-3Fe4Si is run ten times where the stability of the global optimality gap
and the objective value of the runs are recorded and compared. The results of the runs are provided
in Table 7.22. The solutions of the runs are also compared, but not presented here for readability;
only the general findings are provided.

Table 7.22: Solution stability for ten different runs of B1-3Fe4Si. The solution
times are given in seconds and the objective values in USD.

Run Time ε Objective Value

1 14409 2.55% 35 395 590
2 14409 2.52% 35 406 342
3 14409 2.46% 35 534 028
4 14410 2.59% 35 377 497
5 14409 2.56% 35 368 170
6 14409 2.52% 35 400 270
7 14409 2.52% 35 400 270
8 14489 2.57% 35 368 170
9 14412 2.81% 35 380 737
10 14526 2.65% 35 395 590

Average 2.58% 35 402 666

Standard Deviation 0.09% 45 689

The average global optimality gap ε is found to be 2.58% for ten runs of the base instance, with
a standard deviation of 0.09%. The average objective value is 35 402 666 USD, with a standard
deviation of 45 689 USD. The standard deviation is small relative to the average objective value.
Further, there are no extreme outliers in the results that significantly deviate from the average.

It seems that due to the MDT linearisation, the applied software does not necessarily find the same
nodes to branch on in the branch-and-bound tree. The fact that the number of integer feasible
solutions found by the program varies between four and 22 solutions within the allotted run time
indicates that this is the case. The solutions from the runs are, although, quite similar, with only
minor differences in the volumes of raw materials consumed in the furnaces, slag compositions, and
the total end-products produced. One can conclude that the solution is sufficiently stable to accept
that the solution of one run is a good representation of the optimal solution. For the remainder of
the study, the solution from Run 1 of B1-3Fe4Si is used.
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7.3.5 Solution Sensitivity For Different Slag Composition Intervals

As mentioned, different parameter settings can affect the problem size significantly. The upper
and lower bounds on the slag composition are two such parameters. Allowing a wide interval may
give a better solution to the MAMP, but can make the problem unsolvable within a reasonable time.
Narrowing the interval can reduce the computational time significantly, but may limit how good and
practical the solution is. If the upper and lower bounds are equal, or the sum of the upper bounds
are 1.00, the bilinear terms vanish as only one slag composition is feasible. The slag composition
is thus predetermined, and the MDT solution method is redundant in this case.

It is of interest to investigate how large slag composition intervals the MAMP can solve for within
the allotted time. A trade-off between the interval size and the run time can then be established.
In practice, there are process specific considerations that limit this interval to a certain degree;
these values are as described in the base instance. Definitions of test instances with different slag
intervals are given in Table 7.23. The upper and lower bounds on the slag composition are allowed
to extend beyond the practical values to investigate the effects they have on the computational effort
required to solve the MAMP. Values for the base instance B1-3Fe4Si are provided for readability.

Table 7.23: Test instances with various upper and lower bounds on the slag composition.

Element or Oxide k

Instance Parameter MnO FeO SiO2 Al2O3 MgO CaO SUM

C1-LOW Φk 0.50 0.02 0.25 0.10 0.10 0.10 1.07
Φk 0.45 0.00 0.20 0.05 0.05 0.05 0.80

C2-MED Φk 0.50 0.05 0.25 0.20 0.15 0.15 1.30
Φk 0.40 0.00 0.15 0.10 0.05 0.05 0.75

B1-3Fe4Si Φk 0.50 0.02 0.35 0.20 0.20 0.30 1.57
Φk 0.30 0.00 0.15 0.10 0.05 0.10 0.70

C3-HIGH Φk 0.80 0.30 0.50 0.30 0.30 0.30 2.50
Φk 0.10 0.00 0.10 0.05 0.05 0.00 0.30

C4-MAX Φk 1.00 1.00 1.00 1.00 1.00 1.00 6.00
Φk 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The sum of the lower bounds on the slag compositions Φk from Table 7.23 means that this amount
of the slag composition is predetermined. In the base instance, 70% of the slag composition is
already determined. 30% is then left for the MAMP to solve. The greater the sum of the upper
bound on the slag compositions Φk, the greater the number of possible combinations of oxides
with which to fill the remaining 30% of the slag composition. The test instance results for various
slag intervals are given in Table 7.24.

Table 7.24 shows that the global optimality gap increases for increasing slag interval ranges. Solv-
ing C1-LOW results in that the {-2} precision is solved in a short time in contrast to not finishing for
the other instances. Allowing maximum composition range, as in the instance C4-MAX, makes the
problem harder to solve, thus the significantly worse global optimality gap ε. The conclusion is that
the size of the interval greatly affects the computational effort required to solve a pooling problem
like the MAMP, and that one should take great care in determining the slag interval parameters.
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Table 7.24: Results for instances with various slag composition intervals. The run times are given in seconds.
∗ denotes that the time limit was reached before the gap was closed. † denotes that the current precision was
not finished within the time limit.

LBP UBP MAMP Main

Instance Gap Time Precision Gap Time Precision Time ε

C1-LOW 1.00% {10, 3353} {-2,-3} 1.16%∗ {174,7026†} {-2,-3†} 10566 1.19%
C2-MED 1.32%∗ {7200†} {-2†} 1.76%∗ {7200†} {-2†} 14415 2.28%
C3-HIGH 5.06%∗ {7200†} {-2†} 6.33%∗ {7200†} {-2†} 14405 6.90%
C4-MAX 8.66%∗ {7200†} {-2†} 8.93%∗ {7200†} {-2†} 14407 11.34%

7.3.6 The Effect of Changes to the LBP and UBP Optimality Gaps

Using different optimality gaps in the LBP and UBP can greatly affect the run time and the global
optimality gap. One can investigate whether it is more effective to have a large optimality gap
and thus allow multiple precisions to be solved within the time limit, or if it is better to solve
one precision to a smaller optimality gap. The run time of the MAMP-main algorithm and the
global optimality gap are plotted for various LBP and UBP optimality gaps in Figures 7.2 and
7.3, respectively.

Figure 7.2: MAMP-main run time for increasing op-
timality gaps in the LBP and UBP.

Figure 7.3: Global Optimality gap ε for increasing
optimality gaps in the LBP and UBP.

Based on Figures 7.2 and 7.3 one can see that the run time decreases drastically for increasing LBP
and UBP optimality gaps, but at the expense of a poorer global optimality gap. For optimality gaps
in the range 4 - 10%, both precisions {−2,−3} are solved within the time limit to the accepted
optimality gaps. Here, the run time and global optimality gap ε fluctuate more based on whether
the MAMP can quickly locate a solution in the next iteration with increased precision.

In the optimality gap range of 1 - 3%, the {−2} precision is not completed within the time limit for
the UBP, or for both the LBP and UBP. However, the achieved global optimality gap has the best
values here at 2.70 - 3.50%. The conclusion is that it is best to set the optimality gaps of the LBP
and UBP as small as possible and solve one precision to obtain the best solution from the MAMP.
Thus, optimality gaps of 1% for the LBP and the UBP are continued to be used in the remainder of
the computational study.
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One should also take into consideration that there are uncertainties in the data provided by the
industrial partner due to perturbation, and in the data estimated by the authors. This uncertainty
may cumulatively be greater than the current global optimality gap found for the base instance,
thus solving the problem to smaller optimality gaps may be academically interesting, but of no
practical value.

7.3.7 MDT Parameter Setting Effects

Applying the MDT involves setting upper bounds on the parameterised variables. qpf and σpfgh
are big Ms in the linearisation and the selected upper bounds can have an impact on the computa-
tional results as it affects the qpf and σpfgh variables’ solution space. The results of the study are
presented in Figure 7.4.

Figure 7.4: Global optimality gap for various qpf and σpfgh settings.

Figure 7.4 shows that, in general, the tighter the upper bounds, the better optimality gaps in the
LBP and the UBP, and global optimality gap ε are. Consequently, tighter bounds on qpf and σpfgh
use less computational time to reach any optimality gap. The small improvement in optimality
gaps found in the interval 1000 ≥ qpf = σpfgh ≤ 1400 is likely due to the solver finding better
solutions faster for these runs than for qpf = σpfgh equal to 900 and 1000.

Note that setting the upper bounds lower than 300 tonnes can only be done if one already knows
that under the current production conditions, the slag-to-metal ratio is never optimal at 1.00. The
slag production with a 1.00 slag-to-metal ratio in the base instance B1-3Fe4Si is around 260 - 300
tonnes slag per day, thus setting qpf any lower results in a forced lower slag-to-metal ratio due to
the removal of parts of the solution space. Overall, a bound close to 300 tonnes/day seems to be
the optimal value for qpf and σpfgh, but for the continuity of the computational study, the original
value of 500 tonnes/day is kept as an upper bound.
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7.3.8 Multi-period MAMP Run Statistics

The time horizon is extended to include multiple time periods. It is of interest to identify how
the global optimality gap behaves for an increasing number of time periods. The plant and furnace
layouts of the base instance are also used here. The computational statistics are listed in Table 7.25.

Table 7.25: Optimality gaps and run times for the test instances. The run times are given in seconds. ∗ denotes
that the time limit was reached before the gap was closed. † denotes that the current precision was not finished
within the time limit. ? denotes that a valid upper bound, but no feasible solution was found for the current
precision.

LBP UBP MAMP Main

Instance Gap Time Precision Gap Time Precision Time ε

M2-LOW 3.32%∗ {7200†} {-2†} 6.91%∗ {7200†} {-2†} 14404 7.55%
M2-HIGH 3.22%∗ {7200†} {-2†} 6.56%∗ {7200†} {-2†} 14404 7.28%
M3-LOW 4.46%∗ {7200†} {-2†} NA? {7200†} {-2†?} 14405 8.90%
M3-HIGH 4.46%∗ {7200†} {-2†} NA? {7200†} {-2†?} 14405 9.66%

The table shows that increasing the number of time periods to two leads to a significantly worse
global optimality gap. The MAMP is still able to find feasible solutions, but they cannot be guaran-
teed to be good. Further increasing the number of time periods to three yields a global optimality
gap close to 10%. No larger instances are tested. Observe that it is the UBP that is most difficult
to solve and that for the case of three time periods a valid upper bound, but no integer feasible
solution is found. Thus, the linear solver does not yield an optimality gap for the UBP with three
time periods. Lotero et al. (2016) state that general purpose global optimisation solvers fail to find
a solution for even small multi-period instances, while our results indicate that using the MDT
enables linear solvers to find feasible solutions for such instances.

7.4 Economic Study

An economic study is conducted for two purposes; analysing and understanding how variations
in input parameters affect the production and evaluating the applicability of the model. The base
instance B1-3Fe4Si is used unless stated otherwise.

The value of increasing the run time of the LBP and UBP is studied in Section 7.4.1. In Sec-
tion 7.4.2 a comparison of the MAMP to single furnace optimisation is conducted, followed by a
study of the value of solving the pooling problem in Section 7.4.3. Changes to the slag production
as a function of increasing demand is investigated in Section 7.4.4. The procurement cost’s effect
on the optimal raw material feed composition is studied in Section 7.4.5. A comparison of the
MAMP to single furnace optimisation for a case with an optimal slag-to-metal ratio higher than
the lower bound is conducted in Section 7.4.6. An evaluation of the optimal furnace setup for
the base instance is performed in Section 7.4.7. A comparison of the multi-period MAMP to the
single-period MAMP is presented in Section 7.4.8.
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7.4.1 The Value of Increasing the Run Time

As seen previously, having the model run for a longer duration can give a lower global optimality
gap. However, if the potential economic gain from increasing the run time is low, it may be better
accept a shorter run time. This case occurs if no significantly better solutions are located with
increasing run time. The LBP solution and the UBP best bound for a run time of twelve hours per
problem is presented in Figure 7.5.

Figure 7.5: LBP objective value and UBP best bound for increasing the run times of
the LBP and UBP. Values in USD.

As can be seen from Figure 7.5, a good LBP objective value is found within the first hour. After
the first hour, no significantly better objective value is found. The best bound in the UBP decreases
rapidly within the first hour and is diminishing for the remainder of the run. Increasing the run time
ensures that the optimal objective value can be guaranteed with a better global optimality gap, but
only a minimal improvement in the LBP objective value is found after the first three hours. The
MAMP can thus provide a good feasible solution in a short time, but the model should be run for
several hours to guarantee a small global optimality gap.

7.4.2 Comparison of the MAMP to Single Furnace Optimisation

The current industry practice is to optimise the production for individual furnaces based on software
and expert judgement made by metallurgists. This practice is denoted single furnace optimisation
and is the practice of optimising the profit of each single furnace and, consequently, the alloy it
produces without regards to the overall production. This practice may be sub-optimal compared to
planning the production when considering the entire production. The MAMP expands the produc-
tion planning to cover all furnaces at all plants and is, therefore, a formulation that could potentially
solve the complexity of multi-plant production. This section aims to evaluate how the MAMP per-
forms against single furnace optimisation for the base instance B1-3Fe4Si. The results show if the
MAMP can contribute to better production planning.
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The following process is used to simulate single furnace optimisation. An instance only containing
one HC FeMn furnace and an instance only containing one MC SiMn furnace are created. The
authors assume that single furnace optimisation is done by satisfying the fixed contracts first, then
the optional contracts with the highest profit. In the first iteration, the HC FeMn instance is solved
with the total demand as input. The demand is then reduced with the production volumes obtained
in the first iteration, and the instance is then solved again. This procedure is done for three iterations
with the HC FeMn instance, followed by four iterations with the MC SiMn instance where the slag
produced by the HC FeMn furnaces is made available to the MC SiMn furnaces. The results from
the HC FeMn production iterations are shown in Table 7.26, together with the results from applying
the MAMP formulation.

Table 7.26: Comparison of the MAMP formulation to single furnace optimisation for the FeMn production.
Production values are given in tonnes. Objective values are given in thousand USD.

Single Furnace Optimisation MAMP Optimisation

Plant p, Furnace f 1, 1 3,6 3,7 Total 1, 1 3,6 3,7 Total

Furnace Type FeMn FeMn FeMn FeMn FeMn FeMn

upf , to crushing 0 8314 4175 12489 0 10688 3021 13709
mpf , to refining 10439 2599 6519 19557 10998 0 8559 19557
qpf , produced slag 5220 5456 5347 16023 5499 5344 5790 16633
xE

pe, HC FeMn 0 7482 3758 11240 0 9620 2719 12339
xE

pe, MC FeMn 9608 2392 6000 18000 10122 0 7878 18000
Obj. Val. FeMn 6668 5975 6741 19384 NA NA NA NA

Table 7.26 shows that the MAMP produces 610 tonnes more slag than single furnace optimisation.
The total demand of MC FeMn from fixed and optional contracts is satisfied for both production
methods, while not all of the optional contract demand for HC FeMn is satisfied. This result
indicates that MC FeMn is the most profitable FeMn end-product.

The slag-to-metal ratio is found to be optimal at the lower bound of 0.50 in both optimisation meth-
ods (can be verified by consulting qpf

upf +mpf
). Single furnace optimisation minimises the amount of

slag produced as the goal is to maximise the profit from FeMn alloys for the HC FeMn furnaces.
Thus, the slag-to-metal ratio is at the lower bound. The MAMP chooses the slag production values
based on the goal to optimise the entire production. In this case, it is more favourable to use the
capacity of the furnace for HC FeMn production than to produce extra quantities of slag.

The authors assume that the slag transportation between furnaces in the single furnace optimisa-
tion is based on minimising transportation costs to make the two production planning methods as
comparable as possible. This assumption implies that as much slag as possible is sent internally
at a plant if a plant has both HC FeMn and MC SiMn furnaces, as is the case at Plant 1. When
the internal capacity of slag is reached, slag is transported to the plant with MC SiMn furnaces
incurring the lowest transportation costs. The results from the single furnace optimisation method
and the MAMP for the SiMn production are given in Table 7.27.

One can observe from Table 7.27 that all of the produced slags are consumed in both production
planning methods and that the total LC SiMn demand is satisfied. The difference lies in the pro-
duced volume of MC SiMn, where an additional 673 tonnes of MC SiMn is produced by using the
MAMP due to different composition and allocation of the slag. One can argue that the slag could
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have been distributed differently for the single furnace optimisation planning. Another approach
for dividing the feed of slag between the remaining MC SiMn furnaces at Plant 2 could be to give
them the average of the remaining feed, this would, however, still be sub-optimal compared to the
allocation given by the MAMP. Having flexibility and decision support tools to help in the alloca-
tion of slag is an advantage. The authors are not aware if such tools exist or if the allocation of slag
is based on calculations made by experts or rules of thumb.

Table 7.27: Comparison of the MAMP formulation to single furnace optimisation for the SiMn production
and total profit. Production values are given in tonnes. Costs and objective values are given in thousand
USD. Transportation Costs are not included in the Cumulative Objective Value. Total profit is the Cumulative
Objective Value less the Transportation Costs.

Single Furnace Optimisation MAMP Optimisation

Plant p, Furnace f 1, 2 2,3 2,4 2,5 Total 1, 2 2,3 2,4 2,5 Total

Furnace Type SiMn SiMn SiMn SiMn SiMn SiMn SiMn SiMn

upf , to crushing 0 2786 5547 447 8780 2338 0 1381 5809 9528
mpf , to refining 5021 2175 42 4755 11993 2856 5246 3892 0 11994
σghpf , used slag 5220 5456 2674 2673 16023 5499 4095 3421 3618 16633
Leftover slag 0 0 0 0 0 0 0 0 0 0
xE

pe, MC SiMn 0 2508 4992 402 7902 2104 0 1243 5228 8575
xE

pe, LC SiMn 6280 2720 53 5947 15000 3571 6588 4841 0 15000
Obj. Val. SiMn 4418 3565 2929 4599 15511 NA NA NA NA NA

Cum. Obj. Val. 34895 35430
Transport. Costs 0 23 11 11 45 0 17 14 15 47
Discard Slag Cost 0 0

Total Profit 34850 35383

Table 7.27 summarises the cumulative objective values, transportation costs, and the total profits for
the two production planning methods. One can observe that the slag transportation costs are quite
similar in the two methods, although somewhat higher for the MAMP as it produces and sends
additional tonnes of slag. The profit from using the MAMP is 1.53% greater than using single
furnace optimisation in the case of the base instance B1-3Fe4Si. Two significant factors in making
the MAMP formulation superior to single furnace optimisation are the volume and the composition
of the slag produced. The average composition of the slag in the single furnace optimisation and
the MAMP optimisation are presented in Figures 7.6 and 7.7, respectively.

Figures 7.6 and 7.7 show a considerable difference in the average slag composition for the HC FeMn
furnaces between single furnace optimisation and the MAMP. The most notable differences are the
MnO, CaO, MgO, and Al2O3 concentrations. In single furnace optimisation, it is favourable to
keep the MnO concentration in the slag to a minimum, to maximise the HC FeMn output. Conse-
quently, the oxides CaO, MgO, and Al2O3 that are not part of HC FeMn alloy are maximised in the
slag output. In the MAMP, the slag compositions are changed to suit the overall production, and
one can observe that the content of MnO is at the upper bound of 50%.
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Figure 7.6: The average slag composition produced
by the HC FeMn furnaces using single furnace opti-
misation.

Figure 7.7: The average slag composition produced
by the HC FeMn furnaces using the MAMP.

It is important to note that the slag composition from single furnace optimisation is a result of
letting the optimisation software decide the optimal composition. This slag composition would
probably have been different had it been predetermined by a metallurgist. It could, therefore, be of
interest to solve the MAMP with predetermined slag compositions used in the industry today and
compare it to solving the MAMP as a pooling problem to see if there is any value in having slack
in the slag composition.

7.4.3 The Value of Solving the Pooling Problem

A large manganese alloy production company probably has a number of slag compositions they
know to be effective. Comparing the objective values resulting from using these slag composi-
tions to the MAMP objective value can give an indication of the value of solving the MAMP as
a pooling problem. Definitions of test instances with pre-determined slag compositions are found
in Table 7.28. The values are based on typical furnace production settings as described in Olsen
et al. (2007) but have been modified slightly to ensure that the sum of the fractions are 1.00. The
objective values for the predetermined slag composition instances are presented in Table 7.29.

Table 7.28: Definition of pre-determined slag composition instances. The values are slightly
modified from compositions found in Olsen et al. (2007) to make the fractions sum up to 1.00.

Element or Oxide k

Instance Parameter MnO FeO SiO2 Al2O3 MgO CaO

D1-3Fe4Si Φk = Φk 0.430 0.020 0.190 0.290 0.020 0.050
D2-3Fe4Si Φk = Φk 0.380 0.020 0.240 0.130 0.040 0.190
D3-3Fe4Si Φk = Φk 0.300 0.020 0.260 0.160 0.090 0.170
D4-3Fe4Si Φk = Φk 0.403 0.014 0.228 0.125 0.063 0.167
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Table 7.29: Objective values for the pre-determined slag composition in-
stances. %-change is given relative to base instance B1-3Fe4Si.

Instance LBP Objective Value %-Change From B1-3Fe4Si

B1-3Fe4Si 35 395 590 0%
D1-3Fe4Si 26 660 700 -24.68%
D2-3Fe4Si 34 744 200 -1.84%
D3-3Fe4Si 34 751 800 -1.82%
D4-3Fe4Si 34 918 700 -1.35%

From Table 7.29 one can see that some of the pre-determined solutions are satisfactory, considering
that they allow the MAMP to be solved in seconds. Although, from an economic perspective, even
the best of the tested instances results in 1.35% less revenue compared to solving the MAMP with
slack on the slag composition bounds. Also, note that fixating the slag composition yielded in-
feasible problems in many cases, thus, determining a good slag composition by using an educated
guess is difficult. Overall, the results indicate that solving manganese alloy production as an opti-
misation problem can provide valuable decision support in deciding the optimal slag composition.
One should keep in mind that the results are compared to the first run of the base instance, which
is solved to a global optimality gap of 2.55%, and that the best predetermined solution is 1.35%
worse than this. The potential gain from using the MAMP can, therefore, be even greater.

7.4.4 Slag Behaviour with Increasing Demand

In the comparison of the MAMP to single furnace optimisation, the slag-to-metal ratio is at the
lower bound of 0.50 in all HC FeMn furnaces. This ratio can be up to 1.00, meaning one tonne slag
is produced per tonne metal produced. It can, therefore, be of interest to investigate what conditions
that can make this ratio prone to change from its lower bound. These conditions can, for instance,
be variations in the demand volumes or sales prices of the end-products. The slag composition
may also change when the slag-to-metal ratio changes. For instance, the optimal weight fraction of
content in the slag, such as MnO and SiO2, can fluctuate based on the production volumes of the
most profitable end-products. It is, therefore, of interest to investigate how the slag-to-metal ratio
and slag composition behaves under different demand volumes.

Three fixed demand cases are studied: one where the demand is assumed to be evenly distributed
between all end-products, one where the demand is greater for FeMn alloys, and one where the
demand is greater for SiMn alloys. The fixed demand for the end-products is set as optional to
make the MAMP select the most profitable ones. Three solutions are computed for each demand
to remove some of the effect instability may have on the solution. The end-product production
volumes of the two first cases are also provided as these may help visualise the reason for the
alteration in the slag-to-metal ratio and slag composition.

End-product Production Volumes

The slag-to-metal ratio is dependent on the relationship between the volumes of end-products to be
produced. The produced volume of each end-product for increasing demand is shown in Figures 7.8
and 7.9 for evenly distributed demand and skewed demand towards FeMn alloys, respectively, to
illustrate this relationship better.
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Figure 7.8: End-product production volumes for in-
creasing demand when the demand is evenly dis-
tributed between FeMn and SiMn alloys.

Figure 7.9: End-product production volumes for in-
creasing demand when the demand is skewed towards
FeMn alloys.

Observe from Figure 7.8 that MC SiMn and HC FeMn are the first end-products in each production
to be reduced when reaching the total capacities of MC SiMn and HC FeMn furnaces of 12 000
tonnes and 16 000 tonnes, respectively. This graph behaviour occurs because an increasing part of
the furnace metal output is further refined into LC SiMn and MC FeMn, which are more profitable.
The same behaviour can be observed in Figure 7.9, but due to skewed demand towards FeMn
alloys, the capacities in the HC FeMn furnaces are maxed out faster.

Evenly Distributed End-product Demand

In this case, the end-product demand is equally distributed between FeMn and SiMn alloys. A plot
of the average slag-to-metal ratio in the HC FeMn furnaces as a function of demand is shown in
Figure 7.10, and the average slag composition as a function of demand is shown in Figure 7.11.

Figure 7.10: Average slag-to-metal ratio across all
HC FeMn furnaces for increasing demand. The de-
mand is evenly distributed between end-products.

Figure 7.11: Average slag composition across the
HC FeMn furnaces for increasing demand. The de-
mand is evenly distributed between end-products.
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The slag-to-metal ratio is in the range 0.68 - 0.71 for demands less than 12 000 tonnes. For greater
demands, the slag-to-metal ratio decreases to the lower bound of 0.50. Here, production of the least
profitable alloy MC SiMn cannot satisfy demand as the slag-to-metal ratio decreases to release
capacity in the FeMn furnaces to satisfy the increasing demand for FeMn alloys. This behaviour
can be seen from Figure 7.8. The trend continues for increasing demand until the lower bound
of the slag-to-metal ratio is reached. The slight increase in production volumes of HC FeMn
and MC SiMn before the constant decrease at the furnace capacities in Figure 7.8 are due to the
alteration of the slag composition. As the slag-to-metal ratio decreases, it becomes more favourable
to send slag with a greater MnO content and lowerSiO2 content. Thus, as the volume of produced
slag is reduced, the amount of MnO in the slag increases to carry more of the metal-bearing oxide
to the MC SiMn furnace.

End-product Demand Skewed Towards FeMn Alloys

In this case, the end-product demand is skewed towards FeMn alloys. The cumulative demand for
all end-products is the same as for the evenly distributed demand case. Of the total demand volume,
60% is demand for FeMn alloys and 40% is demand for SiMn alloys, divided equally between HC
and MC, and MC and LC grades, respectively. A plot of the average slag-to-metal ratio for the
HC FeMn furnaces as a function of demand is shown in Figure 7.12. A plot of the average slag
composition for the HC FeMn furnaces as a function of demand is shown in Figure 7.13.

One can observe from Figure 7.12 that the slag-to-metal ratio is 0.70 when the demand for the
end-products is low enough to maintain excess capacity in the furnaces. The excess capacity is
then used to produce extra slag, as this is cheaper than using more raw materials in the MC SiMn
furnaces. This observation seems to be valid for SiMn alloy demands less than 9 600 tonnes per
product. The slag composition is stable at 0.70, but changes as the slag-to-metal ratio decreases, as
can be seen in Figure 7.13.

Figure 7.12: Average slag-to-metal ratio across all
HC FeMn furnaces for increasing demand. The de-
mand is skewed towards FeMn alloys.

Figure 7.13: Average slag composition across all HC
FeMn furnaces for increasing demand. The demand
is skewed towards FeMn alloys.

When the end-product demand for SiMn alloys is 9 600 tonnes or greater, the slag-to-metal ratio
is at the lower bound of 0.50. The drastic change is caused by the furnaces reaching their power
capacity and then prioritise to produce more alloy instead of slag, as seen from Figure 7.9. At
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the same time, the MnO content in the slag is increased to the upper bound of 50%, and the SiO2
and Al2O3 decrease accordingly. At maximum furnace capacity, it is better to send slag that has
a higher metal bearing capability for the most important elements in the end-product than to send
larger volumes.

End-product Demand Skewed Towards SiMn Alloys

In this case, the end-product demand is skewed towards SiMn alloys. The cumulative demand for
all end-products is the same as for the evenly distributed demand case. Of the total demand volume,
60% is demand for SiMn alloys and 40% is demand for FeMn alloys, divided equally between MC
and LC, and HC and MC grades, respectively. A plot of the average slag-to-metal ratio for the
HC FeMn furnaces as a function of demand is shown in Figure 7.14. A plot of the average slag
composition for the HC FeMn furnaces as a function of demand is shown in Figure 7.15.

From Figure 7.14 one can observe that the slag-to-metal ratio is in the range 0.65 - 0.70 when the
demand for the end-products is low enough to maintain excess capacity in the HC FeMn furnaces.
From Figure 7.8 one can see that the HC FeMn furnace capacity is reached around 14 000 tonnes
demand per FeMn alloy. The excess capacity in the HC FeMn furnaces is up to this point used to
produce extra slag, as this is cheaper than using extra raw materials in the MC SiMn furnaces. As
the demand for SiMn alloys is significantly higher in this case, it is advantageous to send larger
volumes of slag and a higher MnO content in the slag as this lets the MC SiMn furnaces produce
more MC SiMn alloy.

Figure 7.14: Average slag-to-metal ratio across all
HC FeMn furnaces for increasing demand. The de-
mand is skewed towards SiMn alloys.

Figure 7.15: Average slag composition across all
HC FeMn furnaces for increasing demand. The de-
mand is skewed towards SiMn alloys.

Overall, one can notice that the slag-to-metal ratio is higher than the lower bound if the HC FeMn
furnaces have excess capacity or if SiMn end-products are more profitable. Different demand sce-
narios consequently promote different optimal production strategies concerning the slag-to-metal
ratio and slag composition. Locating the optimal operational strategy is not a trivial decision.
Thus, it can be even more advantageous to use the MAMP when the parameter settings promote a
slag-to-metal ratio greater than the lower bound.
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7.4.5 Sensitivity to Changes in Raw Material Procurement Costs

The raw materials used in the production are essential cost factors as they incur different procure-
ment and furnace electricity consumption costs due to their element and oxide content. Changes
in the raw material procurement prices can, thus, alter the optimal raw material composition and
volume used in the furnaces. Due to the many raw materials available to the production and no
knowledge of how essential each raw material is, it is assumed that the cost changes affect all of
the raw materials. Procurement cost increases in the range (-15)% - 15% have been studied, and the
results on the raw material feed composition are presented in Figures 7.16 and 7.17 for HC FeMn
furnaces and MC SiMn furnaces, respectively. Note that in the solution of the MAMP, the electric
power consumption approximation is within the real power consumption ranges of about 2650 -
3100 kWh/tonne alloy for HC FeMn furnaces, and 3500 - 4500 kWh/tonne alloy for MC SiMn
furnaces, as described in Chapter 2.

Figure 7.16: Cumulative HC FeMn furnace raw material consumption for changes in the raw material pro-
curement costs, compared to B1-3Fe4Si.

It can be seen from Figure 7.16 that Ore 2 and Ore 5 are the primary resources used in the HC FeMn
furnaces, accounting for about 70% of the feed, regardless of the change in raw material costs. The
distribution between the two ores is, however, trending towards a higher usage of Ore 5 as the costs
are reduced. The consumption of the other raw materials is stable with small fluctuations. Ore 7
and Quartz 19 seem to replace each other mostly, but with no apparent trend.
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Figure 7.17: Cumulative MC SiMn furnace raw material consumption for changes in the raw material pro-
curement costs, compared to B1-3Fe4Si.

Raw material costs have a much larger effect on the raw material feed composition in the MC SiMn
furnaces. Increasing the costs makes Ore 2 favourable to use over Ore 5, thus, entirely replacing it
in the feed. Consulting the raw material compositions in Table D.1 in Appendix D, it can be seen
that Ore 2 consists mainly of MnO2, while Ore 5 consists mainly of MnO. Ore 2 also contains a
significantly higher content of SiO2 than Ore 5, which explains the reduction in Quartz 19 usage for
raw material cost increases of 1% or more. Note that Ore 2 is a much cheaper ore than Ore 5, thus
the increase in procurement cost of ore 5 is greater. An increase in raw material costs thus offsets
the economic gain from using a more expensive ore containing a greater MnO content, with a
cheaper ore containing a greater MnO2 content. Also, observe that the feed of Flux 16 significantly
increases when increasing the raw material costs. This is to compensate for the reduction in iron
oxides fed to a furnace as a result of replacing Ore 5 with Ore 2 in the feed.

The changes in slag production, slag transportation, and slag composition were also studied for
changes in raw material costs. All the slag produced is transported and reused in the MC SiMn
furnaces for all instances tested, and there are no changes in the optimal slag compositions. This
result indicates that changes in the raw material costs do not affect the production of slag.

7.4.6 Comparison of the MAMP to Single Furnace Optimisation: High Slag-
to-Metal Ratio

The results from Table 7.27 are for an instance where the slag-to-metal ratio is at its lower bound
of 0.50. The authors suspect that the value of using the MAMP formulation is even greater in
situations where the optimal slag-to-metal ratio is above the lower bound. The base instance is
therefore updated with demands skewed towards SiMn alloys, as this results in an optimal slag-to-
metal ratio of 0.70, illustrated in Figure 7.14. The demand is set to 19 200 tonnes for each SiMn
alloy and 12 800 tonnes for each FeMn alloy, and a comparison of the MAMP formulation to the
single furnace optimisation practice is conducted. The results are listed in Tables 7.30 and 7.31 for
the FeMn and SiMn production, respectively.
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Table 7.30: Comparison of the MAMP formulation to single furnace optimisation for the FeMn production.
Low FeMn alloy demand, high SiMn alloy demand. Production values are given in tonnes. Objective values
are given in thousand USD.

Single Furnace Optimisation MAMP Optimisation

Plant p, Furnace f 1, 1 3,6 3,7 Total 1, 1 3,6 3,7 Total

Furnace Type FeMn FeMn FeMn FeMn FeMn FeMn

upf , to crushing 0 7387 6839 14226 9685 4538 0 14223
mpf , to refining 10439 3468 0 13907 0 4220 9687 13907
qpf , produced slag 5220 5428 3420 14068 6737 6104 6705 19546
xE

pe, HC FeMn 0 6645 6155 12800 8716 4084 0 12800
xE

pe, MC FeMn 9608 3192 0 12800 0 3884 8916 12800
Obj. Val. FeMn 6668 6052 3588 16308 NA NA NA NA

Table 7.31: Comparison of the MAMP formulation to single furnace optimisation for the SiMn production
and total profit. Low FeMn alloy demand, high SiMn alloy demand. The demand is set for each end-product.
Production values are given in tonnes. Costs and objective values are given in thousand USD. Transportation
Costs are not included in the Cumulative Objective Value. Total profit is the Cumulative Objective Value less
the Transportation Costs.

Single Furnace Optimisation MAMP Optimisation

Plant p, Furnace f 1, 2 2,3 2,4 2,5 Total 1, 2 2,3 2,4 2,5 Total

Furnace Type SiMn SiMn SiMn SiMn SiMn SiMn SiMn SiMn

upf , to crushing 0 0 0 5335 5335 5258 0 0 0 5258
mpf , to refining 5021 4996 5189 146 15352 548 5074 4805 4926 15353
σghpf , used slag 5220 5428 3420 0 14068 3651 0 9790 6105 19546
Leftover slag 0 0 0 0 0 0 0 0 0 0
xE

pe, MC SiMn 0 0 0 4802 4802 4732 0 0 0 4732
xE

pe, LC SiMn 6280 6248 6490 182 19200 686 6345 6009 6160 19200
Obj. Val. SiMn 4418 4400 4523 2960 16301 NA NA NA NA NA

Cum. Obj. Val. 32609 33298
Transport. Costs 0 23 14 0 37 0 0 53 26 79
Discard Slag Cost 0 0

Total Profit 32572 33219

Tables 7.30 and 7.31 show that single furnace optimisation minimises the slag-to-metal ratio, as
it optimises the profit for single furnaces and, consequently, produces as much metal as possible.
The MAMP, on the other hand, changes the slag-to-metal ratio according to what is optimal for
the overall profit. A larger volume of slag is therefore produced and allocated efficiently to the
MC SiMn furnaces. The decision to maximise metal output in single furnace optimisation could of
course also be changed to maximise slag output, but this is not a trivial decision to make simply by
consulting raw material costs and end-product revenues and demands.

More electricity is required to heat up the slag. Therefore, the furnace produces less MC SiMn in
the MAMP, but the savings in raw material costs are greater than the extra revenue generated from
selling more MC SiMn in the single furnace optimisation. The overall result is that the MAMP gen-
erates 1.99% more profit than single furnace optimisation under production conditions that favour
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a higher slag-to-metal ratio. It should also be noted that the MAMP, for this instance, is solved to
a global optimality gap of 1.60%, while single furnace optimisation is solved to optimality. This
difference means that it could potentially exist an MAMP solution with an objective value that is
even greater than the current objective value.

The results obtained so far are for a fixed furnace setup, however, the optimal furnace setup might
be different from the one currently in use. Considering the production conditions, a plant manager,
therefore, might want to identify the optimal furnace setup in advance of the production to achieve
the highest profit. Evaluating different furnace setups under the current production conditions is,
therefore, conducted next.

7.4.7 Switching Furnace Production Setups

As mentioned in Chapter 5, it is possible to switch the furnace setup between producing HC FeMn
and MC SiMn. The analyses conducted in the previous sections suggest that deciding the optimal
furnace setup is not a trivial decision to make based on the demand for the end-products. It may be
preferable to have a greater total SiMn production capacity than total FeMn production capacity,
at least to ensure the reuse of as much slag as possible from the HC FeMn furnaces. Reusing slag
may still be sub-optimal for the profit of the operation, as adding more ores can be better than using
slag in some of the procurement cost ranges studied. It may be preferable to have a greater total
FeMn production capacity if the profit of making FeMn alloys outweighs the cost of discarding
slag. Due to these options, it is of interest to investigate if switching the furnace setup can yield a
greater profit under the production conditions considered in base instance B1-3Fe4Si.

To consider if this possibility can be of value, the furnace setup in base instance B1-3Fe4Si is
updated, where the furnaces switch settings from either producing HC FeMn to MC SiMn or from
MC SiMn to HC FeMn. It is assumed that the furnace mass and power capacity remain at the
same level when changed, meaning a 40 MW HC FeMn furnace can become a 40 MW MC SiMn
furnace. Table 7.32 defines the test instances with alternative furnace setups. The base instance
B1-3Fe4Si setup is provided for readability. Every other parameter from the base instance remains
the same to make the instances comparable. Production volumes of the different end-products and
objective values from the respectable instances are given in Table 7.33.

Table 7.32: Test instances with alternative HC FeMn and MC SiMn furnace setups.
The instances are sorted by increasing total HC FeMn furnace capacity.

Instance HC FeMn furnaces at plant p MC SiMn furnaces at plant p

A1-2Fe5Si {1}, {}, {6} {2}, {3, 4, 5}, {7}
A2-3Fe4Si {1}, {3, 4}, {} {2}, {5}, {6, 7}
A3-3Fe4Si {1}, {3}, {6} {2}, {4, 5}, {7}
B1-3Fe4Si {1}, {}, {6, 7} {2}, {3, 4, 5}, {}
A4-4Fe3Si {1}, {3, 4, 5}, {} {2}, {}, {6, 7}
A5-4Fe3Si {1}, {3, 4}, {6} {2}, {5}, {7}
A6-4Fe3Si {1}, {3}, {6, 7} {2}, {4, 5}, {}
A7-5Fe2Si {1, 2}, {3, 4, 5},{} {}, {}, {6, 7}
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Table 7.33: End-product production volumes and objective values for alternative furnace production setups.
The instances are sorted according to increasing total HC FeMn furnace capacity. The furnace mass capacity
in tonnes is the first number in the brackets, while the furnace power capacity in MW is the second number.
The production volumes are given in tonnes, objective values are given in thousand USD. The percentage
change is given relative to the objective value of B1-3Fe4Si.

Total Furnace Capacity End-Product Volume

Instance HC FeMn MC SiMn HC FeMn MC FeMn MC SiMn LC SiMn Obj. Val. +/-%

A1-2Fe5Si {2000,80} {4000,160} Infeasible solution. Unable to satisfy fixed HC and MC FeMn demand.
A2-3Fe4Si {2500,100} {3750,140} 10 500 15 509 11 625 15 000 34 203 -3.37%
A3-3Fe4Si {2750,110} {3250,130} 10 500 17 838 9 814 15 000 35 015 -1.07%
B1-3Fe4Si {3000,120} {3000,120} 12 565 18 000 8 594 15 000 35 395 0.00%
A4-4Fe3Si {3250,130} {2750,110} 14 915 18 000 7 500 14 121 35 665 0.76%
A5-4Fe3Si {3500,140} {2500,100} 16 500 18 000 7 500 12 220 35 591 0.55%
A6-4Fe3Si {3750,150} {2250,90} 16 500 18 000 7 500 9 975 34 636 -2.14%
A7-5Fe2Si {4000,160} {2000,80} Infeasible solution. Unable to satisfy fixed MC and LC SiMn demand.

The results from Table 7.33 indicate that the furnace setup used by Eramet Norway today may
be sub-optimal under the base instance production conditions. The objective value increases with
196 000 - 270 000 USD for the instances A5-4Fe3Si and A4-4Fe3Si, respectively. This is an in-
crease in profit of 0.55 - 0.76%, respectively, for a production period of thirty days. The possible
gain of switching furnaces can be millions of dollars if one assume an equal production for the
remaining eleven months of the year. One should also remember that there is a furnace switching
cost that may be significant enough to undermine the possible profit of switching the furnace set-
tings, considering that three or more furnaces must be switched in these instances. The authors are
not aware of the actual costs of switching a furnace but assume that the costs are significant since
switching setup results in furnace downtime.

In the other instances, switching the furnace setup only reduces the objective value under the current
production conditions. Stray too far away from the base instance operational settings and the total
furnace capacity is not able to produce satisfactory volumes for the fixed contracts, as in instance
A1-2Fe5Si and A7-5Fe2Si. For these instances to be feasible, the fixed contracts must change.

Even if this study indicates that switching furnace setups can be more profitable, the results are
valid only for the parameter settings used in base instance B1-3Fe4Si, and there may be aspects of
the real production the MAMP is not able to capture. The optimal production is highly dependent
on the availability of raw materials, raw material prices, and end-product contracts and revenues.
Changes to these parameters may result in alternative setups being preferable. Having the flexibility
to change a furnace’s operational settings is, still, a great capability and a formulation like the
MAMP can help utilise this capability.

7.4.8 Multi-period Production Planning

The production of manganese alloys is a continuous production with orders for multiple months
into the future. Accounting for future deliveries and scheduling the production accordingly can
provide a plant manager with valuable information and possibly increase the profit of manganese
alloy production. A comparison is conducted to evaluate whether the multi-period model provides
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the user with a better production plan than running the single-period model for each time period.
The total run time for the multi-period instances is four hours. The time available for the single-
period model to solve each time period is then the total run time divided by the number of time
periods, to make the models comparable. The result of the comparison is summarised in Table 7.34.

Table 7.34: Comparison of the multi-period to the single-period MAMP formulation. The inventories indicate
the tonnage of end-product stored at the end of each period for the multi-period model. The first number in
the brackets is for the first period, then subsequent periods are given. The single-period model does not hold
inventories at the end of each period, thus, inventories are always zero.

Inventory Objective Value

Instance HC FeMn MC FeMn MC SiMn LC SiMn Multi-period Single-period

M2-LOW {0,0} {0,0} {0,0} {0,0} 69 601 823 69 758 646
M2-HIGH {1758,0} {0,0} {1042,0} {0,0} 71 658 877 71 755 168
M3-LOW {0,0,0} {0,0,0} {0,0,0} {0,0,0} 102 731 095 103 153 630
M3-HIGH {0,0,0} {1505,2515,0} {1010,1640,0} {0,0,0} 108 864 640 109 131 318

From Table 7.34 it can be observed that an inventory of end-products is only held in cases where
it is excess capacity to produce to optional contracts and the contract revenues for later periods
are greater. Reduction in sales prices in later periods, as in M2-LOW and M3-LOW, makes it
undesirable to hold inventory. In all cases, the single-period model outperforms the multi-period
model. This happens because the single-period model reaches significantly better global optimality
gaps than the multi-period model within the allotted run time of four hours. The single-period cases
were solved to within a global optimality gap of 2.80%, while the best global optimality gap found
for a multi-period case is 7.28%, as seen in Table 7.25. Overall, Table 7.34 shows that the multi-
period MAMP formulation does not provide any value in scheduling the production in its current
state. Efforts should be made to reduce the optimality gaps of the LBP and the UBP to obtain a
better global optimality gap to make the multi-period MAMP useful.
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Concluding Remarks

In this thesis, the manganese alloy multi-plant production problem is described and studied. The
problem is to decide the optimal production of end-products and slag, in addition to the alloca-
tion of the produced slag, that results in the highest profit, given specified operational and market
conditions. It is inspired by real production planning challenges faced by a manganese alloy manu-
facturer. The aim is to develop a decision support tool for multi-plant manganese alloy production
planning that can improve the current operational practice, denoted single furnace optimisation.
Single furnace optimisation is the practice of optimising the profit of each single furnace separately
and, consequently, the output it produces without considering the overall production. Similar prob-
lems of blending raw materials into end-products are found in other processing industries, such
as oil refining and wastewater treatment. These problems require extensive mixing of flows with
different quality attributes and are in the optimisation literature defined as pooling problems.

A general nonlinear mathematical formulation of the problem is developed for the problem. The
manganese alloy multi-plant production problem is unique in that the processes are different from
other problems addressed; complex chemical reactions exist in the furnace process, it includes
multiple layers of intermediate pools, and multi-plant production considerations. The formulation
is a hybrid between the standard and the generalised pooling problem, using a flow and quality
based formulation, called the P-formulation. Both a multi-period and a single-period formulation
is developed, where the single-period formulation is a special case of the multi-period with only
one time period. The model is formulated as generally as possible to ease implementation of future
extensions and to be flexible in implementation for manufacturers with different production setups.
It is important to note that the manganese alloy multi-plant production problem is formulated using
simplifications and assumptions that may limit how realistic it is in its current state.

The mathematical formulation contains bilinear terms in constraints relating the chemical reactions
in a furnace to the production of slag. These constraints are linearised using the multiparametric
disaggregation technique. This solution method enables the model to be solved using a linear solver
and to guarantee a global optimality gap. To our knowledge, this is the first optimisation model that
applies this linearisation method on real, large-scale instances. The computational study shows that
the multiparametric disaggregation technique scales well with problem sizes of up to ten pools.
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The base instance of three high-carbon ferromanganese and four medium-carbon silicomanganese
furnaces divided between three plants is solved to within a global optimality gap of 3% for a
run time of four hours. Four hours of allowed run time is recommended for this problem size,
as the improvement of the global optimality gap is marginally better for longer run times. The
optimisation software’s inability to always locate the same solutions within a given time can result
in small deviations in the solution and the objective value between program runs. The multi-
period version of the model yields poor global optimality gaps for instances of equal size as the
base instance and is in its current state outperformed by the single-period model when scheduling
production for multiple time periods.

The results from the computational study indicate that the number of furnaces is the dimension
of the problem that makes it hard to solve. The upper bound problem in the multiparametric
disaggregation technique algorithm proves to be the most difficult to solve due to its continuous
representation of the solution space. Further, six parameters are identified as important to solve
the model efficiently. These are: the accepted optimality gaps of the lower and upper bound prob-
lems, the upper bounds on the multiparametric disaggregation technique slag production and slag
transportation volume parameters, and the upper and lower bounds on the slag composition.

To compare our model to the current practice of single furnace optimisation, single furnace optimi-
sation is mimicked using a reduced version of our multi-plant formulation as the authors are unable
to obtain real performance data. A comparison of the two production planning methods shows that
our model is superior to single furnace optimisation. The two factors that make our model superior
are the produced volume of slag and its composition. Where single furnace optimisation minimises
slag production and selects the slag composition based on maximising alloy output from individual
furnaces, our model produces slag that is optimal for the overall production.

Our model achieves close to 1.5% greater profit than single furnace optimisation for a case with
evenly distributed demand between the end-products. For a case where the production conditions
favour a slag-to-metal ratio greater than the set lower bound, as in the case where the demand is
skewed towards silicomanganese alloys, our model achieves close to 2% greater profit. Alternative
furnace setups are studied and indicate that our model can be used to evaluate the optimal setup
of furnaces in advance of a production period. This flexibility allows for even better production
planning and greater profit. It should be noted that furnace switching costs are not included in
the formulation. Therefore, the increase in profit should be evaluated against the objective value
obtained using the current furnace setup with switching costs accounted for to find the actual profit.

The conclusion is that there may be a considerable value of using the formulation proposed in this
thesis to plan the production of manganese alloys, compared to continuing with the current practice
of single furnace optimisation. The formulation may be the first step in the design of a decision
support tool for multi-plant production planning of manganese alloys. However, assumptions have
been made developing the model, and there are still many aspects of the formulation that can be
extended to make the model more realistic.
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Future Research

This thesis formulates an extensive model for the Manganese Alloy Multi-plant Production prob-
lem (MAMP). The formulation includes simplifying assumptions, and the scope of the work has
been limited to make the problem size manageable. As a result, there are aspects of the problem
that can be improved upon to construct a more realistic and applicable formulation. This chap-
ter presents thoughts on possible future improvements and reasons why these improvements can
strengthen the formulation.

To better model the slag-to-metal ratio and account for the furnace temperature’s influence on
chemical reactions, it can be of value to the MAMP to include more complex thermodynamic
relations in the furnaces, thus, improving the MAMP’s realisticity. The MAMP models that each
plant only has one MOR and one LC SiMn refining station for simplicity. Having one MOR and
one LC SiMn refining station is sufficient for the production of only one refined product of FeMn
and SiMn. However, in reality, the product range spans more end-products than the four to which
the MAMP is currently limited. Extending the MAMP to account for more end-products would
make the formulation more realistic and useful.

Switching production setup can currently be evaluated by the MAMP by running the same produc-
tion scenario for different furnace setups. Including furnace setup switching as a decision variable
gives the best production setup immediately instead of having to iterate through different setups
manually. Including switching enables the MAMP to account for furnace switching costs and can
be used as a decision tool for the production setup in advance of the production. This feature can
be of interest to a company that is planning to build a new plant to evaluate the best starting fur-
nace setup or if a company suspects that the current operational setup is sub-optimal and wants to
change the setup configuration.

The MAMP is formulated as a deterministic problem where the production is assumed to be based
on contracts. Thus, the demand is given ahead of the planning period. In reality, much of the
production is, according to the problem owner, based on make-to-stock policies and the alloys are
sold on the open market based on current market prices and demands. These prices and demands,
as well as raw material, electricity, and transportation costs, are subject to uncertainty. Formulat-
ing the MAMP as a stochastic problem can widen its applicability by taking this uncertainty into
account and, thus, provide a more robust production schedule.
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In the MAMP formulation, it is assumed that the produced slag can be reused in the MC SiMn
furnaces within the same time period. The production and the transportation of slag are likely to
require a significant portion of the time period, such that the slag is not available to the MC SiMn
furnaces before the next production period. The MAMP multi-period model should, therefore,
be expanded to make the slag production consider the next production period. This extension
allows for the correct volumes and compositions of slag to be located at the plants when the next
production period starts.
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Appendix A
Chemical Constraints

The chemical reaction variables are defined as v ∈ {FED, RED, SLAG, RSRED, TOT} and αpfkc,
where the FED, RED, SLAG, and αpfkc are left side reactant variables, and RSRED is the right side
resultant variable, the TOT variable is dependent on the reaction. The main chemical constraints are
numbered according to the order of appearance of the chemical reactions (2.5) - (2.17) in Chapter 2.

A.1 Main Chemical Constraints

The main chemical constraints are defined as equality constraints. These are the constraints han-
dling the elements and oxides directly related to the output of alloy from the furnaces. The (a) con-
straints ensure the correct balance between the left and right side components. The (b) constraints
ensure the correct relationships between the left side components. The (c) constraints ensure the
correct relationships between the right side components.

Reaction (2.5), 2 MnO2(l) + CO(g) −−→ Mn2O3(l) + CO2(g), constraints:

npf,MnO2,1,FED + 2npf,CO,1,TOT

− 2npf,Mn2O3,1,RSRED − 2npf,CO2,1,RSRED = 0 p ∈ P, f ∈ Fp
(A.1a)

npf,MnO2,1,FED − 2npf,CO,1,TOT = 0 p ∈ P, f ∈ Fp (A.1b)

npf,Mn2O3,1,RSRED − npf,CO2,1,RSRED = 0 p ∈ P, f ∈ Fp (A.1c)

Reaction (2.6), 3 Mn2O3(l) + CO(g) −−→ 2 Mn3O4(l) + CO2(g), constraints:

2npf,Mn2O3,2,FED + 2npf,Mn2O3,2,RED + 6npf,CO,2,TOT

− 3npf,Mn3O4,2,RSRED − 6npf,CO2,2,RSRED = 0 p ∈ P, f ∈ Fp
(A.2a)

npf,Mn2O3,2,FED + npf,Mn2O3,2,RED − 3npf,CO,2,TOT = 0 p ∈ P, f ∈ Fp (A.2b)

npf,Mn3O4,2,RSRED − 2npf,CO2,2,RSRED = 0 p ∈ P, f ∈ Fp (A.2c)
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A.1 Main Chemical Constraints

Reaction (2.7), Mn3O4(l) + CO(g) −−→ 3 (MnO) + CO2(g), constraints:

3npf,Mn3O4,3,FED + 3npf,Mn3O4,3,RED + 3npf,CO,3,TOT

−npf,MnO,3,RSRED − 3npf,CO2,3,RSRED = 0 p ∈ P, f ∈ Fp
(A.3a)

npf,Mn3O4,3,FED + npf,Mn3O4,3,RED − npf,CO,3,TOT = 0 p ∈ P, f ∈ Fp (A.3b)

npf,MnO,3,RSRED − 3npf,CO2,3,RSRED = 0 p ∈ P, f ∈ Fp (A.3c)

Reaction (2.8), (MnO) + C(s) −−→ Mn + CO(g), constraints:

npf,MnO,4,FED + npf,MnO,4,RED

+ (1−
∑

b∈B
ΨB
fb,MnO)npf,MnO,4,SLAG − αpf,MnO,4

+ npf,C,4,FED − npf,Mn,4,RSRED − npf,CO,4,RSRED = 0 p ∈ P, f ∈ Fp

(A.4a)

npf,MnO,4,FED + npf,MnO,4,RED

+ (1−
∑

b∈B
ΨB
fb,MnO)npf,MnO,4,SLAG

− αpf,MnO,4 − npf,C,4,FED = 0 p ∈ P, f ∈ Fp

(A.4b)

npf,Mn,4,RSRED − npf,CO,4,RSRED = 0 p ∈ P, f ∈ Fp (A.4c)

Reaction (2.9), C(s) −−→ C, constraints:

npf,C,5,FED − npf,C,5,TOT = 0 p ∈ P, f ∈ Fp (A.5)

Reaction (2.10), 3 Fe2O3(l) + CO(g) −−→ 2 Fe3O4(l) + CO2(g), constraints:

2npf,Fe2O3,6,FED + 6npf,CO,6,TOT

− 3npf,Fe3O4,6,RSRED − 6npf,CO2,6,RSRED = 0 p ∈ P, f ∈ Fp
(A.6a)

npf,Fe2O3,6,FED − 3npf,CO,6,TOT = 0 p ∈ P, f ∈ Fp (A.6b)

npf,Fe3O4,6,RSRED − 2npf,CO2,6,RSRED = 0 p ∈ P, f ∈ Fp (A.6c)

Reaction (2.11), Fe3O4(l) + CO(g) −−→ 3 (FeO) + CO2(g), constraints:

3npf,Fe3O4,7,FED + 3npf,Fe3O4,7,RED + 3npf,CO,7,TOT

− npf,FeO,7,RSRED − 3npf,CO2,7,RSRED = 0 p ∈ P, f ∈ Fp
(A.7a)

npf,Fe3O4,7,FED + npf,Fe3O4,7,RED − npf,CO,7,TOT = 0 p ∈ P, f ∈ Fp (A.7b)

npf,FeO,7,RSRED − 3npf,CO2,7,RSRED = 0 p ∈ P, f ∈ Fp (A.7c)
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A.2 Critical Chemical Constraints

Reaction (2.12), (FeO) + C(s) −−→ Fe + CO(g), constraints:

npf,FeO,8,FED + npf,FeO,8,RED

+ (1−
∑

b∈B
ΨB
fb,FeO)npf,FeO,8,SLAG − αpf,FeO,8

+ npf,C,8,FED − npf,Fe,8,RSRED − npf,CO,8,RSRED = 0 p ∈ P, f ∈ Fp

(A.8a)

npf,FeO,8,FED + npf,FeO,8,RED

+ (1−
∑

b∈B
ΨB
fb,FeO)npf,FeO,8,SLAG

− αpf,FeO,8 − npf,C,8,FED = 0 p ∈ P, f ∈ Fp

(A.8b)

npf,Fe,8,RSRED − npf,CO,8,RSRED = 0 p ∈ P, f ∈ Fp (A.8c)

Reaction (2.13), (SiO2) + 2 C(s) −−→ Si + 2 CO(g), constraints:

2npf,SiO2,9,FED

+ (1−
∑

b∈B
ΨB
fb,SiO2

)2npf,SiO2,9,SLAG

− 2αpf,SiO2,9 + npf,C,9,FED

− 2npf,Si,9,RSRED − npf,CO,9,RSRED = 0 p ∈ P, f ∈ Fp

(A.9a)

2npf,SiO2,9,FED

+ (1−
∑

b∈B
ΨB
fb,SiO2

)2npf,SiO2,9,SLAG

− 2αpf,SiO2,9 − npf,C,9,FED = 0 p ∈ P, f ∈ Fp

(A.9b)

2npf,Si,9,RSRED − npf,CO,9,RSRED = 0 p ∈ P, f ∈ Fp (A.9c)

A.2 Critical Chemical Constraints

The critical chemical constraints sum the moles of reduced metals from the main chemical con-
straints defined in the previous section and pure metal originating directly from the ores. Con-
straints (A.5) are also included in the critical chemical constraints, as carbon is an essential part of
the output alloy.

npf,Mn,10,TOT = npf,Mn,4,RSRED + npf,Mn,10,FED p ∈ P, f ∈ Fp (A.10)

npf,Fe,11,TOT = npf,Fe,8,RSRED + npf,Fe,11,FED p ∈ P, f ∈ Fp (A.11)

npf,Si,12,TOT = npf,Si,9,RSRED + npf,Si,12,FED p ∈ P, f ∈ Fp (A.12)
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A.3 Reduction Relating Chemical Constraints

A.3 Reduction Relating Chemical Constraints

The reduction relating chemical constraints relates the right side reduction variable RSRED and
the left side reduction variable RED, which handles the feed of reduced oxides, for the respective
oxides in different chemical constraints.

npf,Mn2O3,2,RED = npf,Mn2O3,1,RSRED p ∈ P, f ∈ Fp (A.13)

npf,Mn3O4,3,RED = npf,Mn3O4,2,RSRED p ∈ P, f ∈ Fp (A.14)

npf,MnO,4,RED = npf,MnO,3,RSRED p ∈ P, f ∈ Fp (A.15)

npf,Fe3O4,7,RED = npf,Fe3O4,6,RSRED p ∈ P, f ∈ Fp (A.16)

npf,FeO,8,RED = npf,FeO,7,RSRED p ∈ P, f ∈ Fp (A.17)

A.4 The Boudouard Reaction Chemical Constraints

The Boudouard reaction is special in the form that CO2 resulting from the main chemical con-
straints (2.5) - (2.7) and (2.10) - (2.11) reacts with carbon feed and forms CO that supplies the
same main chemical reactions. Constraints (A.18a) describes the chemical reaction and (A.18b)
ensure correct relationships between the left side components of the reaction.

Reaction (2.14), C(s) + CO2(g) −−→ 2 CO(g), constraints:

npf,C,18,FED + npf,CO2,18,TOT − npf,CO,18,RSRED = 0 p ∈ P, f ∈ Fp (A.18a)

npf,C,18,FED − npf,CO2,18,TOT = 0 p ∈ P, f ∈ Fp (A.18b)

Constraints (A.19a) are defined as equality constraints, as the pre-reduction term (1 − Υ) defines
how much CO2 is being reused. The amount of CO fed to reactions (2.5) - (2.7) and (2.10) - (2.11)
is given by constraints (A.19b). They are formulated as inequality constraints since not all of the
CO resulting from the main chemical constraints and the Boudouard reaction is reused as reactants,
but released as off-gases to the atmosphere.

npf,CO2,18,TOT = (1−Υ)
∑

c∈C\{1,2}

npf,CO2,c,RSRED p ∈ P, f ∈ Fp (A.19a)

∑
c∈CO

npf,CO,c,TOT ≤ npf,CO,18,RSRED +
∑
c∈CS

npf,CO,c,RSRED p ∈ P, f ∈ Fp (A.19b)
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A.5 Slag Specific Oxide Constraints

A.5 Slag Specific Oxide Constraints

The slag specific oxide constraints describe the oxides that flow from the HC FeMn furnace to
the MC SiMn furnace through the slag. These oxides completely exit the MC SiMn furnace as
discardable slag.

Reaction (2.15), Al2O3(l) −−→ (Al2O3), constraints:

npf,Al2O3,20,FED = αpf,Al2O3,20 p ∈ P, f ∈ FFeMn
p (A.20)

Reaction (2.17), CaO(l) −−→ (CaO), constraints:

npf,CaO,21,FED = αpf,CaO,21 p ∈ P, f ∈ FFeMn
p (A.21)

Reaction (2.16), MgO(l) −−→ (MgO), constraints:

npf,MgO,22,FED = αpf,MgO,22 p ∈ P, f ∈ FFeMn
p (A.22)
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Appendix B
Weight Relationship Parameters

This appendix presents the calculations done to determine the values for the parameters ΩMOR and
ΩREF to omit the need to include the chemical reactions occurring in the MOR and the LC SiMn
refining station in the model formulation.

Defining the values for the carbon content in HC and MC alloys: CHC = 0.07 and CMC = 0.015
based on values from Olsen et al. (2007). Molar mass for the required elements to calculate the
parameters: carbon: MC = 12.0107 · 10−3 kg/mole, and oxygen: MO2 = 31.9988 · 10−3 kg/mole.

The value of the ΩMOR parameter can be found by consulting the relationship:

1
2 O2(g) + C(s) −−→ CO(g)

1
2 mole O2 is consumed per mole C in the alloy. ΩMOR is given as a weight fraction of the feed of
HC FeMn alloy to the MOR. ΩMOR times the mass of the HC FeMn alloy fed to the MOR gives
the amount of oxygen that must be added to the process to reduce the carbon content to the desired
specification. Define input mass of HC FeMn: mHC FeMn = 1 kg, where the weight of carbon is
mC = mHC FeMn · CHC = 0.07 kg. The ΩMOR is given by:

ΩMOR =
(CHC − CMC) · mC ·MC

1
2 ·MO2

mHC FeMn
=

(0.07− 0.015) · 0.07 kg · 12.0107 · 10−3 kg/mole
1
2 · 31.9988 · 10−3 kg/mole

1 kg

ΩMOR = 0.00289

According to Olsen et al. (2007), the silicon refining process consumes 250 kg FeSi per 950 kg
MC SiMn alloy entered into the process to achieve a carbon content of CLC = 0.005. ΩREF is given
as a weight fraction of the feed of MC SiMn to the LC SiMn refining station. ΩREF times the mass
of the MC SiMn alloy fed to the LC SiMn refining station gives the amount of silicon-waste that
must be added to the process to reduce the carbon content to the desired specification.

ΩREF = 250 kg
950 kg

= 0.2632
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Appendix C
Furnace Mass Balance

This appendix illustrates the flow of different components through the HC FeMn and MC SiMn
furnaces. The modelling of looping elements due to re-entering gas and the Boudouard reaction is
also illustrated. Figure C.1 shows the flow of the different components through an arbitrary furnace.

Figure C.1: Furnace mass balance overview.

As seen from Figure C.1, an amount of raw materials ypfr is fed to the furnace, where the mass of
the modelled elements and oxides enter the npfkcv variables. Slag originating from the HC FeMn
furnace is an entering component in the MC SiMn furnace.

In the furnace, large amounts of CO and CO2 gas is produced. A certain amount of these gases re-
enters the chemical process, while the remainder is released into the atmosphere. CO2 is consumed
by the Boudouard reaction according to the specified degree of pre-reduction Υ. Thus, the CO2
reacts with C and forms CO for use in the original chemical reactions. Consequently, when the
amount of CO produced from the Boudouard reaction is consumed, the mass of the O-atoms in CO2
is accounted for twice in the furnace mass balance. Therefore, to have a correct mass balance, the
weight of the O-atoms accounted for twice must be subtracted. The mass is found by multiplying
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the molar mass of O with the number of CO2 molecules npf,CO2,18,TOT consumed in the Boudouard
reaction, as the number of moles of O-atoms and re-entering CO2 molecules are equal.

Leaving the furnace are the produced amount of metal mpf and upf , as well as with discardable
by-products xB

pb. Produced slag qpf is leaving the HC FeMn furnace. Gases are not modelled to
leave the furnace, therefore, the remaining gas is left in the npfkcv variables for simplicity. This
mass can be considered as the volume of gases that is released into the atmosphere.
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Appendix D
Raw Material Compositions

Table D.1 gives the weight fractions of all relevant elements and oxides modelled by the chemical
constraints in the MAMP for all raw materials. The sum of the weight fractions is also given for
reference. When the sum is less than 1.00, it means there are other elements or contaminants in
the raw materials that are not modelled. When a raw material is added to the furnace operation,
it occupies 1 kg of the capacity regardless of the sum of the weight fractions, but only the sum of
the weight fraction enters as moles into the chemical reactions. An example is provided for Ore 8:
when 1 kg of the Ore 8 enters the furnace, only 0.7710722 kg is converted to moles and used in the
respectable chemical constraints (0.4381950 kg as Mn2O3, 0.0108540 kg as Mn3O4, and so forth
as described in Table D.1). This modelling choice ensures that the mass capacity of the furnace is
respected and that consumption of low-, medium- and high-grade ores can be modelled correctly.
Raw material contents are provided by the industry partner, and the data is perturbed.
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Table D.1: Composition of elements and oxides in all raw materials. Given as weight fractions.

Type MnO2 Mn2O3 Mn3O4 MnO Mn Fe2O3 Fe3O4 FeO

Ore 1 0.6843442 0.0961908 0.0000000 0.0000000 0.0000000 0.0313739 0.0023511 0.0000000
Ore 2 0.6816263 0.0639357 0.0000000 0.0000000 0.0000000 0.0362813 0.0018557 0.0000000
Ore 3 0.0000000 0.0453822 0.4585738 0.0000000 0.0000000 0.0732689 0.0014021 0.0000000
Ore 4 0.6104011 0.1044539 0.0000000 0.0000000 0.0000000 0.0338087 0.0010603 0.0000000
Ore 5 0.0000000 0.0000000 0.0000000 0.7662274 0.0000000 0.0000000 0.0018332 0.1134918
Ore 6 0.0000000 0.0000000 0.4476948 0.2252482 0.0000000 0.0000000 0.0129852 0.0224588
Ore 7 0.0141170 0.6655660 0.0000000 0.0000000 0.0000000 0.1441404 0.0035526 0.0000000
Ore 8 0.0000000 0.4381950 0.0108540 0.0000000 0.0758821 0.0159827 0.0007583 0.0000000
Ore 9 0.0000000 0.0000000 0.4537059 0.3296261 0.0000000 0.0301467 0.0106333 0.0000000
Ore 10 0.0000000 0.0000000 0.4295173 0.3501277 0.0000000 0.0000000 0.0003689 0.0363201
Coke 11 0.0000000 0.0000000 0.0001676 0.0002264 0.0000000 0.0529452 0.0011628 0.0000000
Coke 12 0.0001262 0.0001698 0.0000000 0.0000000 0.0000000 0.0066660 0.0020250 0.0000000
Coke 13 0.0001253 0.0001697 0.0000000 0.0000000 0.0000000 0.0080001 0.0012499 0.0000000
Flux 14 0.0000000 0.0000000 0.0000000 0.4435092 0.0000000 0.0662746 0.0011034 0.0000000
Flux 15 0.0000000 0.0000000 0.0005538 0.0058262 0.0000000 0.0000000 0.0001745 0.0011015
Flux 16 0.0015364 0.0000316 0.0000000 0.0000000 0.0000003 0.8753059 0.0633831 0.0000000
HCFe 17 0.0000000 0.0000000 0.0000000 0.0000000 0.7900000 0.0000000 0.0000000 0.0000000
MCSi 18 0.0000000 0.0000000 0.0000000 0.0000000 0.7120000 0.0000000 0.0000000 0.0000000
Quart 19 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Type Fe SiO2 Si C Al2O3 MgO CaO Sum

Ore 1 0.0000000 0.0420830 0.0000000 0.0000000 0.0560790 0.0000970 0.0003890 0.9129080
Ore 2 0.0000000 0.0558950 0.0000000 0.0000000 0.0651140 0.0017470 0.0010670 0.9075220
Ore 3 0.0000000 0.0648590 0.0000000 0.0000000 0.0043170 0.0393470 0.1346240 0.8217740
Ore 4 0.0000000 0.0488950 0.0000000 0.0000000 0.0799110 0.0000000 0.0014820 0.8800120
Ore 5 0.0000000 0.0066970 0.0000000 0.0000000 0.0019700 0.0019700 0.0003940 0.8925834
Ore 6 0.0000348 0.0847320 0.0009820 0.0083460 0.0500730 0.0046150 0.0765820 0.9337518
Ore 7 0.0000000 0.0405910 0.0000000 0.0000000 0.0049880 0.0049880 0.0724770 0.9504200
Ore 8 0.0008391 0.0842950 0.0009850 0.0014770 0.0530780 0.0217630 0.0669630 0.7710722
Ore 9 0.0000000 0.0690430 0.0000000 0.0008800 0.0603390 0.0000980 0.0017600 0.9562320
Ore 10 0.0000000 0.0694750 0.0000000 0.0011710 0.0588390 0.0000980 0.0021470 0.9480640
Coke 11 0.0000000 0.0644560 0.0000000 0.8041230 0.0308480 0.0020700 0.0068000 0.9627990
Coke 12 0.0000000 0.0445430 0.0000000 0.8660720 0.0312100 0.0022720 0.0042470 0.9573310
Coke 13 0.0000000 0.0431020 0.0000000 0.8786730 0.0286360 0.0019680 0.0033460 0.9652700
Flux 14 0.0000000 0.1613140 0.0000000 0.0982640 0.0855750 0.0476070 0.0711160 0.9747632
Flux 15 0.0000000 0.0090300 0.0000000 0.0000000 0.0027480 0.2051370 0.3003440 0.5249150
Flux 16 0.0000000 0.0195970 0.0000000 0.0000000 0.0023520 0.0051930 0.0051930 0.9725923
HCFe 17 0.1360000 0.0000000 0.0040000 0.0700000 0.0000000 0.0000000 0.0000000 1.0000000
MCSi 18 0.0810000 0.0000000 0.1920000 0.0150000 0.0000000 0.0000000 0.0000000 1.0000000
Quart 19 0.0000000 0.9700000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.9700000
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Appendix E
Thermodynamic Properties

The enthalpy values used to calculate the electrical power consumption in the furnaces are pre-
sented in this appendix. It is assumed that all of the raw materials enter the furnace at 25◦C and that
slag, by-products, and tapped metal leave the furnace at 1500◦C. The temperature of the gas leav-
ing the furnace is assumed to be 200◦C. These assumptions are in cohesion with the assumptions
done for a furnace energy consumption calculation performed in Olsen et al. (2007). Values for
the formation and sensible enthalpies are given in Table E.1. The values are either supplied by the
problem owner or calculated based on thermodynamic relations and tables found in Kubaschewski
et al. (1993). The values for H2O are also provided, as a each ore contain some moisture not ac-
counted for in the raw material composition. This moisture evaporates when exposed to the heat in
the furnace, thus consuming energy.

Table E.1: Formation enthalpyHF
k and sensible enthalpyHS

k for each element or oxide. HF
k given in (−10−3)

kJ/tonne, HS
k in 10−3 kJ/tonne.

Element or Oxide k

Parameter MnO2 Mn2O3 Mn3O4 MnO Mn Fe2O3 Fe3O4 FeO Fe

HF
k 5991.7 6068.8 6063.5 5425.9 0 5156.3 4789.0 3660.7 0

HS
k

1450.1 1560.5 1376.9 1236.9 1256.5 1349.9 1382.5 1278.2 1388.2

Parameter CO CO2 SiO2 Si C Al2O3 MgO CaO H2O

HF
k 3945.0 8941.3 15160.4 0 0 16434.7 14926.4 11321.9 44.0

HS
k

200.5 111.8 2714.3 1452.7 2957.9 1933.2 1996.0 1506.3 505.0
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Appendix F
Paper: Optimisation of Manganese
Alloy Production

A paper has been written by the authors in collaboration with the supervisors. It is to be submitted
to the journal Computers & Chemical Engineering for review during the summer of 2017. The
unreviewed and unpublished version of the paper is appended here. As the paper is based on this
thesis, there is overlapping content.
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Abstract

This paper studies the problem of multi-plant manganese alloy production. The problem is to find the optimal
combination of ores, fluxes, coke, and slag to feed the furnaces that yields output products which meet customer
specifications, and to optimally decide the volume, composition, and allocation of the slag. To solve the problem, a
pooling problem formulation is presented and the bilinear terms are linearised using the Multiparametric Disaggregation
Technique (MDT). This enables global optimisation by means of commercial software for mixed integer linear programs.
We demonstrate the model and solution approach through case studies of the Norwegian manganese alloy producer
Eramet Norway, using their plant layout consisting of three plants and seven furnaces. The computational study shows
that the optimisation model presented can solve problem sizes of up to ten furnaces to a reasonable global optimality
gap within the allotted run time, that the MDT is able to scale well with larger, real problem instances, and that our
model outperforms the current operational practice. It should be noted that the current operational practice is mimicked
by using instances of our model, and not actual practice results. Comparing the model to real production data remains
an objective, but the results indicate that using our model could be of considerable value to manganese alloy production.

Keywords: Pooling Problem, Manganese Alloy Production, Multiparametric Disaggregation Technique, Optimisation,
Multi-plant Production, Linear Programming

1. Introduction

Manganese is a hard, brittle, silvery metal that occurs in nature in the form of minerals, mainly as oxides. It is
an essential element in steel and aluminium alloys, commonly used in railway tracks and safes, and beverage cans
and kitchenware, respectively. The total production of manganese alloys has been approximately twenty million
tonnes annually in the recent years (d’Harambure, 2015). An average price of manganese alloys around 2 USD/kg
(InvestmentMine, 2017) makes the manganese alloy production a multi-billion dollar industry.

There is an increasing focus on environmental impacts caused by production industries (United Nations, 2016;
Olsen et al., 2007). Consequences of unsustainable production of manganese alloys are environmental degradation,
resource depletion, and CO2-emissions. Manganese alloy production also produces a significant amount of slag and
metallic dust that can have negative impacts on the environment if not handled properly. Producers of manganese are,
therefore, looking for new ways to utilise available resources better and to make the production more sustainable.

Manganese alloy production can be divided into two categories: extraction and smelting. Extraction constitutes
the processes of mining, hauling the ore to a processing plant, crushing, separation and beneficiation at the plant,
transportation to sinter plants, and sintering (Olsen et al., 2007). The smelting process constitutes the processes of
smelting ores, fluxes, quartz, and coke in furnaces, tapping and casting, refining, crushing, and transportation of
by-products back into processes or to disposal sites (International Manganese Institute and Hatch, 2015).
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The focus of this paper is on the smelting process of the supply chain. Figure 1 provides an overview of the
processes under consideration and the material flow between the processes. The raw material inventory supplies
the necessary resources to the high-carbon ferromanganese (HC FeMn) and the medium-carbon silicomanganese
(MC SiMn) furnaces. The output products from the HC FeMn furnace are HC FeMn alloy, reusable slag, and
nonprofitable dust. The output products from the MC SiMn furnace are MC SiMn alloy, discard slag, and nonprofitable
dust. The HC FeMn and MC SiMn alloys are either directly crushed into end-products or refined into medium-carbon
ferromanganese (MC FeMn) and low-carbon silicomanganese (LC SiMn), respectively. MC FeMn is produced by
adding oxygen to liquid HC FeMn in a Manganese Oxygen Refining (MOR) process, while LC SiMn can be produced
by adding silicon sources to liquid MC SiMn in the LC SiMn refining station. In addition to the MC FeMn alloy, the
MOR process also produces metal-oxide dust as a by-product that can be sold. After refining, the alloys are sent to
crushing to produce end-products of the correct size. End-product lumps of adequate size are stored at sales inventories,
while undersized lumps are kept at the respective undersized lumps inventories and reused in the associated processes.

Figure 1: Overview of the material flow in manganese alloy production using the duplex method. The figure is inspired by Olsen
et al. (2007). Green colour: raw materials. Red: wastes. Yellow: inventory of reusable/saleable materials. Blue: end-products.
Scales of grey: the furnace, refining, and crushing processes.

The slag produced by HC FeMn furnaces can either be discarded or reused to save raw material costs in the
MC SiMn furnaces, the latter being the common industry practice. This practice is called the duplex method (Olsen
et al., 2007) and couples the otherwise independent production paths. Both slag-to-metal ratio and slag composition can
be manipulated, through ore combinations and furnace temperatures, to potentially achieve a more efficient production
by blending different slags from different HC FeMn furnaces in the MC SiMn furnaces. As both furnace types are not
necessarily located at the same plant, slag must be transported between plants. Thus, the decision-making process is
complicated by the slag-to-metal-ratio, the slag composition, and the volume of slag to send to each MC SiMn furnace
from each HC FeMn furnace. The blending of various qualities of varying volumes in pools is known as the pooling
problem, originally introduced in Haverly (1978).

Current operational practice in manganese alloy production is largely based on the process operator’s experience
and process knowledge, and to optimise production in furnaces separately without considering the overall production.
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The slag produced in the HC FeMn furnaces is sent to the MC SiMn furnaces that incur the lowest transportation costs.
An optimisation model that considers the integrated production of FeMn and SiMn alloys across multiple plants could
improve on the current practice. The problem is to determine the optimal volumes of end-products and slag to produce
while satisfying given quality specifications by mixing raw materials. Multiple plants and furnaces are involved in
the production. In the remainder of the paper, the considered problem is denoted as the Manganese Alloy Multi-plant
Production problem (MAMP).

The MAMP can be formulated as a pooling problem with side constraints. The pooling problem, a generalisation of
the blending problem, is used to model systems that have intermediate mixing pools in the blending process (Audet et al.,
2004). Blending stream qualities result in nonlinear terms in the pooling problem formulation, yielding a nonlinear
program (NLP) (Audet et al., 2004; Alfaki, 2012). The objective of the pooling problem is according to Gounaris et al.
(2009) to find the most efficient combination of flows through the network that produces final products with the correct
quality properties. The pooling problem involves a network of source nodes, intermediate nodes, terminal nodes, and
arcs connecting the nodes. The source nodes represent the inventory of feeds, the intermediate nodes represent the
intermediate pools and other production processes, and the terminal nodes represent the end-products. The arcs are
the possible flows between processes. Intermediate pools are process stages where mixing of feeds into products of
specified quality occurs. Usually, the products mixed at an intermediate pool are sent to another intermediate pool for
further mixing, but the flow can also go straight to a terminal node.

The flow structure of the MAMP can be treated as a pooling problem since intermediate pools are present in
the form of furnaces, MORs, and LC SiMn refining stations. The raw material inventories are sources and end- and
by-product inventories are terminals. The MAMP is complicated by the coupling of the intermediate pools. Slag
flowing from the HC FeMn furnaces is of varying volume and quality and is sent to MC SiMn furnaces for further
blending.

Multiple optimisation formulations of the pooling problem are found in the literature. Formulating the standard
pooling problem in different ways have varying ramifications for the problem size and relaxation tightness, although
the formulations are mathematically equivalent (Misener and Floudas, 2009). The most common formulations for the
standard and generalised pooling problem are the P-formulation (Haverly, 1978), the Q-formulation (Ben-Tal et al.,
1994), and the PQ-formulation (Quesada and Grossmann, 1995; Sherali et al., 1998; Tawarmalani and Sahinidis,
2002).

Solution methods for the pooling problem can generally be classified into local and global optimisation methods
(Alfaki and Haugland, 2013). Guaranteeing global optimality is of major importance, as the objective function typically
is related to an economic metric (Teles et al., 2012). A summary of some of the different solution methods is found
in Misener and Floudas (2009), including Successive Linear Programming (SLP), Global Optimisation Algorithm
(GOP), Lagrangian approaches, convex envelopes, Reformulation Linearisation Technique (RLT), piecewise-affine
underestimators, and different branch-and-bound schemes.

A more recent solution method is the Multiparametric Disaggregation Technique (MDT) found in Teles et al.
(2012, 2013); Kolodziej et al. (2013a,b). The method relies on a concept based on the characteristics of the decimal
representation of real numbers. The NLP is transformed into a suitably reformulated problem containing new sets
of continuous and discrete variables. By disaggregating and parameterising the variables in the nonlinear terms, it is
shown how to approximate the original NLP formulation as a mixed integer linear program (MILP). The quality of the
solution is dependent on the number of significant digits used to represent the number (Teles et al., 2012).

Nonconvex NLPs yielding multiple local optima, such as the pooling problem, makes the application of local NLP
solvers ineffective, due to a sub-optimal solution or failure to even locate a feasible one (Teles et al., 2012; Wicaksono
and Karimi, 2008). Kolodziej et al. (2013a) show that the MDT relaxation applied to large problems compares well with
general global optimisation solvers. They also show that the solution from the upper and lower bounding formulations
converge towards the original nonlinear formulation in the limit of an infinite number of discretisation intervals.

Compared to spatial branch-and-bound involving a continuous relaxation, the MDT involves a discrete partition of
the feasible region. This partitioning means one can use standard MILP solvers to generate a near to optimal solution,
given that one exists for the selected accuracy settings. Further, the MDT does not require the specification of an initial
point (Teles et al., 2012). For these reasons, the MDT is selected to be the method for linearising the bilinear constraints
present in the MAMP.

The literature on manganese production optimisation is limited. To the authors’ knowledge, only one article exists
on the topic. Jipnang et al. (2013) present a single HC FeMn and MC SiMn furnace process optimisation model based
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on mass and energy balances. The model only focuses on the production specific aspects of the problem. It optimises
a target function such as total operating costs, energy consumption, Mn recovery, or the amount of slag. The model
relies on software, hiding the modelling choices. It is only capable of calculating the production for single HC FeMn
and MC SiMn furnaces and the paper states that connecting the two processes and adding possibilities for different
production strategies are considered future research (Jipnang et al., 2013).

The pooling problem has been applied in other industries, such as oil refining (Ben-Tal et al., 1994; Amos et al.,
1997), mining industry (Boland et al., 2015), and wastewater network problems (Meyer and Floudas, 2006; Jezowski,
2010), among others. These problems, classified as bilinear process networks, are generally difficult to solve to global
optimality since bilinear constraints are required to model the mixing of different streams (Kolodziej et al., 2013b).

Based on reviewed literature, little research has been done on formulating the production planning problem for
manganese alloy production. Developing better production planning tools can increase the profit for a manganese alloy
producer and contribute to a more sustainable industry by making production decisions based on the overall production.
Efficient resource consumption and blending of raw materials meeting the end-product specifications are consequently
important to address. An economically optimal production can result in a better utilisation of resources, less waste, and
less energy consumption in the furnaces per tonne alloy produced, thus, resulting in savings for both the manganese
alloy producer and the environment. The objective of this paper is thus to formulate a general model that can be used as
a decision support tool for multi-plant production planning of manganese alloys. The optimisation model is tested on a
case study based on the plant locations and furnace setup of Eramet Norway.

The contributions of this paper are:

• A clear description and definition of a multi-plant manganese alloy production problem previously not analysed.

• A general, nonlinear formulation of the problem in consideration, applicable to any alloy production with similar
processes as manganese alloy production.

• Linearisation of the nonlinear formulation using the MDT so that the MAMP can be solved using a linear solver.

• Showing that the MDT can be applied to solve a large-scale industrial pooling problem.

• Results indicating that multi-plant production planning is superior to the current practice of single furnace
optimisation.

The remainder of the paper is organised as follows. A brief introduction to the manganese alloy production problem
is given. Then, the mathematical model is presented and the bilinear constraints present in the pooling problem are
linearised using the MDT. Finally, a computational study is conducted based on a realistic case, followed by results,
concluding remarks, and considerations for future research.

2. Problem Description

A manganese alloy manufacturer has a set of furnaces located at plants to produce manganese alloys. The alloys
produced are given by customer specifications. The production is, therefore, based on contracts that must be satisfied.
Customer specifications include order volume and alloy composition, resulting in a wide range of possible order sizes
and end-products. To meet the end-product specifications set by the customers, a set of raw materials, including
ores, fluxes, and coke sources, containing different concentrations of various elements and oxides is available to the
production. The raw materials are blended in the furnaces and further processed to produce the desired end-products.
Any excess end-product produced can be sold on optional contracts in the spot market or held as an inventory. Producing
manganese alloys also yields various by-products, where some are valuable and may be sold.

The furnaces are used to smelt the raw materials. These can produce both HC FeMn and MC SiMn alloys, but only
one alloy type at a time. Each furnace has a mass and electrical power capacity that limits the raw material feed to
the furnace. The furnaces also have a limitation on the volume of undersized lumps from the crushing process it is
possible to feed, since feeding too much undersized lumps is problematic for the furnace operation. An MOR and an
LC SiMn refining station are required to produce MC FeMn and LC SiMn, respectively. These refining units have a
mass and electrical power capacity limiting the feed to each process. The crushing process is where all the alloy types
are crushed into lumps of adequate size.
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Each plant has inventories for storing resources and end-products. The inventories at each plant are divided into
raw material inventories, refining resource inventories, and end-product inventories. The raw material inventories store
all resources used in the furnaces and the refining inventories store all resources used in the refining processes. All
inventories have capacity limits.

The first step of the production is to blend raw materials together in a furnace to produce either HC FeMn or
MC SiMn. Besides the alloys, by-products in the form of slag and nonprofitable dust are also outputs from the furnaces.
The slag produced by the HC FeMn furnaces is in proportion to the metal produced, and this ratio can fluctuate between
a lower and upper bound dependent on furnace alloy and slag characteristics. It is possible to produce slag of varying
element and oxide content in each HC FeMn furnace. Further, the HC FeMn furnace slag can be reused in the MC SiMn
furnaces. The reuse of slag in MC SiMn furnaces is the only coupling between the FeMn and SiMn productions,
which otherwise would have been completely decoupled. Slag from the MC SiMn furnaces and the nonprofitable dust
produced by both furnace types is discarded.

The next step is to send the produced HC FeMn and MC SiMn alloys either to further refining in the MOR and
LC SiMn refining processes, or to the crushing process. In the MOR process, oxygen is added to the liquid HC FeMn
to get MC FeMn. The MOR process also produces a by-product in the form of a metallic-oxide dust which can be
sold. In the LC SiMn refining process, silicon waste is added to the liquid MC SiMn to get LC SiMn (Olsen et al.,
2007). In the crushing process, the alloys from the furnaces and the refining processes are crushed and then sent to
the end-product inventories. A given percentage of the crushed end-product is undersized and cannot be sold to the
customer and is, therefore, sent back to the respective process inventories for resmelting.

Revenues and costs are linked to various parts of the production. The resources used in the production, except
the undersized lumps, are associated with a procurement cost. Smelting the raw materials in the furnaces requires
energy in the form of electricity. Thus, the furnace process incurs electricity costs. Reusing slag produced by HC FeMn
furnaces in MC SiMn furnaces at other plants incurs a transportation cost per tonne slag transported. Slag from the HC
FeMn furnaces can also be discarded instead of reused, which incurs a discard cost. The other by-products that must be
discarded also incur a discard cost. The metallic-oxide dust from the MOR process is associated with a revenue since it
can be sold. Each end-product is associated with a revenue per tonne sold on fixed and optional contracts.

The purpose of the MAMP is to optimise the integrated production of FeMn and SiMn alloys across multiple plants
to maximise profit. The profit is determined by deciding the optimal volumes of end-products to produce by mixing
raw materials, while satisfying given quality specifications. Production costs are considerable, and the MAMP should,
therefore, ensure optimal use of raw materials to the furnaces and refining processes. The solution to the MAMP should
also describe the optimal slag volume and slag composition to be produced in the HC FeMn furnaces and the allocation
of slag to the MC SiMn furnaces.

The MAMP must account for mass balancing in the furnaces. Therefore, mass balance reactions for Mn, Fe, Si, C,
Al, Mg, Ca, and oxides of these elements must be included in the formulation. The main chemical reactions needed
to represent the mass balance of the elements and oxides are given by reactions (1) - (13), where parentheses denote
the slag phase and underlines the metal phase. We assume that all reactions happen at a steady state and that all of
the following chemical reactions are complete. Note that the given reactions are simplified descriptions of a highly
complex chemical process occurring over a wide range of temperatures.

2 MnO2(l) + CO(g) −−−→ Mn2O3(l) + CO2(g) (1)

3 Mn2O3(l) + CO(g) −−−→ 2 Mn3O4(l) + CO2(g) (2)

Mn3O4(l) + CO(g) −−−→ 3 (MnO) + CO2(g) (3)

(MnO) + C(s) −−−→ Mn + CO(g) (4)

C(s) −−−→ C (5)

3 Fe2O3(l) + CO(g) −−−→ 2 Fe3O4(l) + CO2(g) (6)

Fe3O4(l) + CO(g) −−−→ 3 (FeO) + CO2(g) (7)

(FeO) + C(s) −−−→ Fe + CO(g) (8)
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(SiO2) + 2 C(s) −−−→ Si + 2 CO(g) (9)

C(s) + CO2(g) −−−→ 2 CO(g) (10)

Al2O3(l) −−−→ (Al2O3) (11)

MgO(l) −−−→ (MgO) (12)

CaO(l) −−−→ (CaO) (13)

In contact with the CO-gas present in the furnace, the manganese oxides are reduced according to reactions (1) - (3).
The reduced MnO, and supplied MnO from the ores, then reacts with solid C in the coke bed of the furnace, resulting
in liquid manganese metal and CO-gas. This is shown in reaction (4).

The final alloy contains a certain amount of C. The C from the feed dissolute into the metal up to a saturation point
(Olsen et al., 2007). This is given by reaction (5). Similar to the reduction of manganese oxides, iron oxides and silicon
oxides are also reduced in the furnace. The chemical reactions are shown in reactions (6) - (9).

In the furnace, fed C reacts with CO2 resulting from the chemical reactions (1) - (3) and (6) - (7) and creates CO.
This is known as the Boudouard reaction (Olsen et al., 2007) and is given in reaction (10). The Boudouard reaction
is critical for the feeding of CO to the chemical reactions in reactions (1) - (3) and reactions (6) - (7), together with
the feed of CO resulting from the chemical reactions in reactions (4), (8), and (9). The amount of CO2 that enters the
Boudouard reaction from reactions (3) and (6) - (7) is defined as the degree of pre-reduction. 100% pre-reduction is
defined as when no CO2 from the given reactions react with C in the Boudouard reaction, while 0% pre-reduction is
defined as when all CO2 from the given reactions react with C in the Boudouard reaction. CO2 resulting from reactions
(1) - (2) is not expected to react according to the Boudouard reaction under normal furnace operation. The specified
degree of pre-reduction has a significant impact on consumed electrical power (Olsen et al., 2007).

The feed to the furnace also contains oxides that do not enter the final alloy. These are important constituents of the
slag, giving it different properties. The oxides enter the furnace as solids and dissolute into the slag. The reactions are
given in reactions (11) - (13). By using mass-to-mole conversion, and applying reactions (1) - (13), it is possible to find
the relation between the weight of each element in a raw material entered into a furnace and the weight and content of
each output product from the furnace.

The furnace power consumption is an essential cost driver in manganese alloy production and different oxides
require different amounts of energy for the chemical processes to occur. An approximation of the power consumption
in a furnace should, therefore, be included, as the power consumption greatly affects the choice of raw materials to
consume. The energy consumption in a furnace is determined by the net effect of exothermic and endothermic reactions
and the enthalpy of the materials entering and leaving the furnace (Olsen et al., 2007). The total enthalpy consists of
formation enthalpy and sensible enthalpy. An approximation of the power consumption is then given by equation (14),
where HF

out represents the formation enthalpy and HS
out the sensible enthalpy of the resultants at the exit temperature,

HF
in the formation enthalpy and HS

in the sensible enthalpy of the reactants at the entry temperature, Q the heat added to
the system, and W the work done on the system.

W = (HF
out + HS

out) − (HF
in + HS

in) − Q (14)

Gas emissions, both from CO, CO2, and vaporised H2O constitutes a significant part of the furnace power
consumption (Olsen et al., 2007). Consequently, minimising CO and CO2 emissions in the production planning is,
therefore, beneficial both from an economic and an environmental perspective.

3. Mathematical Formulation

Multi-plant production, blending, advanced chemistry, and the coupling of the FeMn and SiMn productions that
make up the MAMP add a high degree of complexity to the formulation of the problem. To reduce the scope of the
problem, model assumptions are made.

The MAMP is formulated in such a way that the model is solved once and the production plan given by the solution
can be used for the given planning period. The end-product demands are assumed to originate from fixed and optional
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contracts, where optional contracts are available in the spot market. Fixed contracts are known ahead of production
for the entire planning horizon, making a deterministic model appropriate. Optional contracts in the spot market are
assumed to be of any size, so the model provides the user with the quantity that should be sold in this market for each
end-product. The chemical compositions of the products are also specified in the fixed contracts, while it is assumed
that it is possible to sell any end-product quality in the spot market. Fixed contracts must be fulfilled while optional
contracts can be chosen as desired. This means that the capacity of the production is assumed to be greater than the
cumulative fixed contract demand and that it is possible to sell excess end-products on optional contracts or not produce
to optional contracts at all. The raw material procurement prices, electricity prices, and end- and by-product sales
prices are constant.

The production timeframe is accounted for in the furnace capacity parameter by setting it equivalent to the furnace
capacity available to the production for the period in consideration. This could, for instance, be the daily, weekly,
monthly, or yearly capacity. A potential limitation of the model is that it only describes how much it is possible to
produce within the given production period, but not when the production happens. All furnaces are assumed to run at
100% capacity at all times, resulting in an even production over the planning horizon. Switching furnace settings or
switching furnaces on and off are not included in the model.

There is an initial inventory of raw materials at each plant. A sustainable balance for the re-use of undersized
lumps should be found; the process should not consume more undersized lumps than it produces for the result to be
sustainable over time. The feed of undersized lumps is therefore bounded by the produced volume of undersized lumps,
in addition to an initial inventory.

A large set of chemical reactions is involved in the production of manganese alloys. The model aims to keep the
number of chemical reactions to a minimum, but still at a sufficient level to include the main reactions occurring in the
furnaces to ensure the correct weight fractions of elements in the final alloy. All chemical reactions are assumed to be
complete. The reactions (1) - (13), therefore, translate into linear equality constraints. All reactions in the furnaces
happen through mole balances as this often is the best way to model chemical relationships. Flows of raw materials to
furnaces, refining processes, and crushing are given in tonnes (1000 kg).

In practice, many complicated and incomplete chemical reactions happen in the furnace. These may constitute a
significant amount of the slag, in addition to the most important oxides. However, for simplicity, the slag is set to only
consist of the most important oxides in the model. These oxides are MnO, FeO, SiO2, Al2O3, MgO, and CaO. Process
metallurgists typically want to determine a range of slag compositions, given by the lime basicity (Olsen et al., 2007),
to ensure a suitable viscosity of the slag. This is, however, not included in the model.

In the crushing process, the amount of crushed product that ends up as undersized lumps vary, but is for modelling
purposes set as a fixed percentage of the total mass crushed of each end-product. In the furnaces, MOR, and LC SiMn
refining station, we assume that a percentage of each element or oxide in the total feed to the processes ends up as
by-products. The specific carbon content of a end-product is only considered within medium and high range for FeMn
and low and medium range for SiMn. Detailed classifications of product types by percentage carbon content within
these ranges are disregarded, yielding a reduced set of end-products.

The model is flow and quality based specifically developed for manganese alloy multi-plant production. To the
authors’ knowledge, it is the first detailed optimisation model for manganese alloy multi-plant production. Jipnang
et al. (2013) mention that future extensions of their model are to introduce couplings between the HC FeMn and MC
SiMn furnaces. The model presented in this paper includes this coupling. The P-formulation is used, as this is the most
common formulation used in the chemical processing industry and it provides an intuitive understanding of the process
flows and their qualities for this new problem.
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Table 1: Sets and Indices.

Set

P Set of plants, P : {1,...,|P|}, indexed by p, g
Fp Set of furnaces at plant p, Fp : {1,...,|Fp |}, indexed by f , t
E Set of end-products, E : {1,...,|E|}, indexed by e
B Set of by-products, B : {1,...,|B|}, indexed by b
R Set of raw materials, R : {1,...,|R|}, indexed by r, ρ
K Set of elements and oxides, K : {1,...,|K |}, indexed by k
C Set of chemical reactions, C : {1,...,|C|}, indexed by c
V Set of variables in the chemical reactions,V : {1,...,|V|}, indexed by v
F FeMn

p Subset of all HC FeMn furnaces at plant p, F FeMn
p ⊆ Fp

F SiMn
p Subset of all MC SiMnfurnaces at plant p, F SiMn

p ⊆ Fp

CO Subset of original chemical reactions, CO ⊂ C

CC Subset of critical chemical reactions, CC ⊂ C

CS Subset of slag chemical reactions, CS ⊂ C

KC Subset of critical elements and oxides, KC ⊂ K

KG Subset of gases, KG ⊂ K

KS Subset of elements and oxides in the slag, KS ⊂ K

Table 2: Parameters.

Parameter

A f kcv Constant for an element or oxide k inchemical reaction c for variable v in furnace f .
ALS

f kcv Constant for an element or oxide k inthe left side ratio equation for chemical reaction c for variable v in furnace f .
ARS

f kcv Constant for an element or oxide k inthe right side ratio equation for chemical reaction c for variable v in furnace f .
B f kc 1 if an element or oxide k exist in chemical equation c for furnace f , 0 otherwise.
Cr Procurement cost per tonne raw material r.
CE Electricity cost per kWh.
CLSiL Cost per tonne LC SiMn undersized lumps used.
CMFeL Cost per tonne MC FeMn undersized lumps used.
CO Cost per tonne oxygen used. This includes procurement and electricity cost.
CS Discard cost per tonne slag.
CSiW Cost per tonne silicon waste used. This includes procurement and electricity cost.
CT

pg Transportation cost per tonne slag from plant p to plant g.
DF

e Fixed contract demand for end-product e.
DO

e Optional contract demand for end-product e.
Ipr Initial inventory of raw material r at plant p in tonnes.
ILSiL

p Initial inventory of LC SiMn undersized lumps at plant p in tonnes.
IMFeL

p Initial inventory of MC FeMn undersized lumps at plant p in tonnes.
IO

p Initial inventory of oxygen at plant p in tonnes.
ISiW

p Initial inventory of silicon waste at plant p in tonnes.
HF

k Formation enthalpy for each element or oxide k, in kJ/tonne.
HS

k Sensible enthalpy for each element or oxide k, in kJ/tonne.
LH Furnace heat loss factor.
Mk Molar mass in moles per tonne for element or oxide k.
Pp f Net furnace power capacity per day for furnace f at plant p, in kWh.
QE Totalcapacity for end-product inventory across all plants.
QF

p f Capacity of furnace f at plant p in tonnes.
QMOR

p Total MOR capacity at plant p in tonnes.
QREF

p Total LC SiMn refining station capacity at plant p in tonnes.
RB

b Revenue or discard cost per tonne of by-product b.
RF

e Fixed contract revenue per tonne end-product e sold.
RO

e Optional contract revenue per tonne end-product e sold on optional contracts.
Tkcv 1 if element or oxide k exist in chemical equation c for variable v, 0 otherwise.
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∆T Time horizon for the production, given in days.
Λ Lower limit on the weight percentage for slag production in an HC FeMn furnace.
Λ Upper limit on the weight percentage for slag production in an HC FeMn furnace.
Υ Degree of pre-reduction in the HC FeMn furnaces.
Φk Lower limit on the weight percentage for element or oxide k in slag.
Φk Upper limit on the weight percentage for element or oxide k in slag.
ΨB

f bk Weight percentage of element or oxide k in by-product b from furnace f .
ΨCRUSH

b Weight percentage of by-product b from the crushing process.
ΨFeMn

k Weight percentage of element or oxide k in HC FeMn.
ΨLSiL Weight percentage LC SiMn undersized lumps allowed to feed LC SiMn refining station.
ΨMFeL Weight percentage MC FeMn undersized lumps allowed to feed MOR.
ΨMOR

b Weight percentage of by-product b from MOR.
ΨR

rk Weight percentage of element or oxide k in raw material r.
ΨSiMn

k Weight percentage of element or oxide k in MC SiMn.
ΨUL Weight percentage of undersized lumps allowed to feed a furnace.
ΩMOR Oxygen-HC FeMn weight relationship factor.
ΩREF Silicon-MC SiMn weight relationship factor.

Table 3: Variables.

Variable

ap Tonnage of LC SiMn undersized lumps used in the LC SiMn refining station at plant p.
cp Tonnage of MC FeMn undersized lumps used in MOR at plant p.
ep f Electric power consumed by furnace f at plant p, in kWh.
gF

e Sale of end-product e made on fixed contracts.
gO

e Sale of end-product e made on optional contracts.
hp Tonnage of LC SiMn produced at plant p sent to crushing.
mp f Tonnage of alloy produced in furnace f at plant p sent to refining processes.
np f kcv Moles of element or oxide k in furnace f at plant p in equation c for variable v.
op Tonnage oxygen fed to the MOR at plant p.
qp f Tonnage slag produced in furnace f at plant p.
sp Tonnage silicon fed to the LC SiMn refining at plant p.
up f Tonnage of alloy produced in furnace f at plant p sent to crushing.
vp Tonnage of MC FeMn produced at plant p sent to crushing.
xE

pe Tonnage of end-product e produced at plant p.
xB

pb Tonnage of by-product b produced at plant p.
yp f r Tonnage of raw material r fed to furnace f at plant p.
αp f kc Moles of element or oxide k in chemical equation c extracted as slag from furnace f at plant p.
σp f gt Tonnage slag sent from furnace f at plant p to furnace t at plant g.
φp f k Weight percentage of element or oxide k in the slag produced by furnace f at plant p.

Figure 2 illustrates the material flow within a plant and which processes the variables are describing, using a
simplified superstructure. As an example, the variables yp f r and np f kcv are related to the feeding of the furnaces from
the raw material inventory, while ap and sp are related to the feeding of the LC SiMn refining station from refining
resources. φp f k, ep f , gF

e , and gO
e are not included in the figure since these are quality variables and not flow variables.

Figure 2 illustrates only the flow within one plant, the MAMP is, however, defined for multiple plants. Slag can be
sent from an HC FeMn furnace at one plant to multiple MC SiMn furnaces, at the same plant or other plants. The flow
between plants is illustrated in Figure 3.
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Figure 2: The MAMP superstructure for one plant. The same colour coding is applied as in Figure 1. Green: raw materials. Red:
wastes. Yellow: inventory of reusable/saleable materials. Blue: final alloys.

Figure 3: Potential flow between furnaces within and between plants. The flows are denoted by σp f gt.

3.1. Model

max z =
∑
e∈E

(RF
e gF

e + RO
e gO

e ) (15a)

+
∑
p∈P

∑
b∈B

RB
b xB

pb (15b)

−
∑
p∈P

∑
f∈Fp

∑
r∈R

Cryp f r (15c)

−
∑
p∈P

∑
f∈Fp

CEep f (15d)
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−
∑
p∈P

(COop + CMFeLcp) (15e)

−
∑
p∈P

(CSiWsp + CLSiLap) (15f)

−
∑
p∈P

∑
f∈F FeMn

p

∑
g∈P

∑
t∈F SiMn

g

CT
pgσp f gt (15g)

−
∑
p∈P

∑
f∈F FeMn

p

CS(qp f −
∑
g∈P

∑
t∈F SiMn

g

σp f gt) (15h)

The objective function z maximises the total profit from selling end- and by-products from manganese alloy
production. Part (15a) is the total revenue generated by selling end-products. Part (15b) is the net revenue generated by
selling valuable by-products and discarding the non-profitable ones. Part (15c) is the total cost associated with the
volume of raw materials used in the production. Part (15d) is the total electricity cost from the energy consumption in
the furnaces. Part (15e) is the total cost associated with the amount of oxygen and MC FeMn undersized lumps added
to the MOR process. Part (15f) is the total cost associated with the amount of silicon waste and LC SiMn undersized
lumps added to the LC SiMn refining station process. Part (15g) is the total slag transportation cost between plants.
Part (15h) accounts for the cost of discarding the slag that is not re-used.

To enhance readability and the understanding of which constraints restrict each process stage, the constraints are
presented in different sections. The sections are presented in order of process stage according to Figure 2.

Resource inventory∑
f∈Fp

yp f r ≤ Ipr p ∈ P, r ∈ R (16)

op ≤ IO
p p ∈ P (17)

sp ≤ ISiW
p p ∈ P (18)

cp ≤ IMFeL
p p ∈ P (19)

ap ≤ ILSiL
p p ∈ P (20)

Constraints (16) - (20) are resource inventory constraints limiting the feed of particular resources to within the
initial inventories of the respective resources.

Furnace constraints∑
r∈R

yp f r +
∑
k∈KS

∑
c∈CS

Mknp f kcv ≤ QF
p f ∆T p ∈ P, f ∈ Fp, v ∈ {SLAG} (21)

yp f r ≤ ΨUL
∑
ρ∈R\r

yp fρ p ∈ P, f ∈ Fp, r ∈ {HC FeMn,MC SiMn} (22)

∑
r∈R

∑
k∈K

ΨR
rkyp f r +

∑
k∈KS

∑
c∈CS

Mknp f kc,SLAG +
∑
c∈CO

MOnp f ,CO2,c,TOT

+
∑
c∈CO

MCOnp f ,CO,c,TOT −
∑
b∈B

∑
k∈K

∑
r∈R

ΨB
f bkΨ

R
rkyp f r p ∈ P, f ∈ Fp (23)

−
∑
b∈B

∑
k∈KS

∑
c∈CS

ΨB
f bk Mknp f kc,SLAG −

∑
k∈KG

∑
c∈CO\{18}

Mknp f kc,RSRED − mp f − up f − qp f = 0
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xB
pb =

∑
f∈Fp

∑
r∈R

∑
k∈K

ΨB
f bkΨ

R
rkyp f r +

∑
f∈Fp

∑
k∈KS

∑
c∈CS

ΨB
f bk Mknp f kcv p ∈ P, b ∈ B, v ∈ {SLAG} (24)

Constraints (21) restrict the feed of raw materials and slag to a furnace to within the capacity of the furnace for the
time horizon. Constraints (22) handle the reuse of undersized lumps relative to the feed of other resources used in a
furnace.

Constraints (23) handle the mass balance in a furnace. The constraints include the mass of the modelled elements
and oxides fed to the furnace, the mass of the slag fed to the furnace, the mass of oxygen accounted for twice due
to the modelling of CO2 entering the Boudouard reaction, the mass of CO taking part in the prereduction in the
furnace, less the mass of the furnace by-products from the raw material feed and slag feed, the mass of CO and CO2
off-gas emissions, the metal output to either the MOR or LC SiMn refining and crushing processes and the mass of
produced slag. For HC FeMn furnaces, the slag terms np f kc,SLAG are zero as no slag is sent to an HC FeMn furnace.
For MC SiMn furnaces, the produced slag terms qp f are zero as the slag is assumed to be a discard slag. The term∑

k∈KG
∑

c∈CO\{18} Mknp f kc,RSRED excludes chemical reaction 18, which is the Boudouard reaction, because it uses the
same variable name, but it accounts for the off-gases leaving the furnace, not the re-entering gas.

Constraints (24) state the relationship between the total feed of raw materials and slag sent to the furnaces and
the amount of a discardable by-product produced by the furnaces at a plant. The constraints for electrical power
consumption follows the given thermodynamic relations. They have the same structure as (23) using coefficients for
formation and sensible enthalpies for the furnace temperature. The constraints are omitted for readability.

Furnace-Slag Connection Constraints

φp f kqp f = Mk

∑
c∈CS

B f kcαp f kc p ∈ P, f ∈ F FeMn
p , k ∈ KS (25)∑

g∈P

∑
t∈F SiMn

g

σp f gt ≤ qp f p ∈ P, f ∈ F FeMn
p (26)

∑
p∈P

∑
f∈F FeMn

p

φp f kσp f gt = Mk

∑
c∈CS

ngtkcv g ∈ P, t ∈ F SiMn
g , k ∈ KS, v ∈ {SLAG} (27)

φp f k ≥ Φk p ∈ P, f ∈ F FeMn
p , k ∈ KS (28)

φp f k ≤ Φk p ∈ P, f ∈ F FeMn
p , k ∈ KS (29)∑

k∈KS

φp f k = 1 p ∈ P, f ∈ F FeMn
p (30)

qp f ≥ Λ(mp f + up f ) p ∈ P, f ∈ F FeMn
p (31)

qp f ≤ Λ(mp f + up f ) p ∈ P, f ∈ F FeMn
p (32)

Constraints (25) couple the produced amount of slag qp f in an HC FeMn furnace and its constituent fractions φp f k,
to the mass of the constituents Mkαp f kc pulled from the chemical reactions occurring in the HC FeMn furnace. Thus,
the mass of element or oxide k in the slag extracted from an HC FeMn furnace equals the amount of mass of element or
oxide k removed from the redox reactions in the furnace. The left-hand side terms of the constraints are nonlinear and,
therefore, complicates the problem. The constraints are unique to this problem because there are no pooling problems
in the manganese alloy industry, to the authors’ knowledge, that extracts a proportion of a specific constituent from a
blending process. The closest similarities may be found in the separation processes in the crude oil industry.

Constraints (26) state that sending slag to MC SiMn furnaces from an HC FeMn furnace is optional, by allowing
less than the produced slag to be sent. This allows the slag to be discarded if it is unfavourable to feed it to MC SiMn
furnaces. The slag transportation and slag feed to an MC SiMn furnace are coupled by constraints (27). These are
nonlinear terms common to the pooling problem. Constraints (28) induce lower and constraints (29) upper bounds on
the slag compostition. Constraints (30) enforce that the sum of the weight percentages of all the slag constituents must
make up the total slag content. Constraints (31) ensure that it is always produced at least a minimum amount of slag in
a HC FeMn furnace relative to the metal produced. Constraints (32) set the upper bound on the slag production relative
to the metal production.
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MOR Constraints∑
f∈F FeMn

p

mp f + op + cp ≤ QMOR
p p ∈ P (33)

∑
f∈F FeMn

p

mp f + op + cp − vp − xB
pb = 0 p ∈ P, b ∈ {MOR dust} (34)

op = ΩMOR
∑

f∈F FeMn
p

mp f p ∈ P (35)

cp ≤ ΨMFeL
∑

f∈F FeMn
p

mp f p ∈ P (36)

xB
pb = ΨMOR

b

( ∑
f∈F FeMn

p

mp f + op

)
p ∈ P, b ∈ {MOR dust} (37)

Constraints (33) ensure that the feed of HC FeMn, oxygen, and undersized lumps added to the MOR do not surpass
the MOR capacity. Constraints (34) handle the mass balance in the MOR. Constraints (35) state that the oxygen used
in the MOR equals a fixed ratio of the added HC FeMn. By calculating this ratio, there is no need to include a chemical
reaction in the model. Constraints (36) set the upper bound on how much MC FeMn undersized lumps it is possible to
add to the MOR relative to the feed of metal. This is to prevent too low temperatures in the MOR. Constraints (37)
state that a certain percentage of the mass fed to the MOR ends up as saleable MOR dust.

LC SiMn Refining Station Constraints∑
f∈F SiMn

p

mp f + sp + ap ≤ QREF
p p ∈ P (38)

∑
f∈F SiMn

p

mp f + sp + ap − hp = 0 p ∈ P (39)

sp = ΩREF
∑

f∈F SiMn
p

mp f p ∈ P (40)

ap ≤ ΨLSiL
( ∑

f∈F SiMn
p

mp f + sp

)
p ∈ P (41)

Constraints (38) handle the capacity of an LC SiMn refining station. The mass balance in the LC SiMn refining
station is handled by constraints (39). Constraints (40) relate the total amount of silicon waste needed to add, relative to
the amount of MC SiMn, to alter the product composition. The constraints ensure that it is not possible to get LC SiMn
out from the refining process without mixing the correct amount of Si with the incoming feed of MC SiMn. The upper
limit on how much LC SiMn undersized lumps it is possible to add to the LC SiMn refining station process is given by
constraints (41).

Crushing Constraints

∑
f∈F FeMn

p

up f = xE
pe + xB

pb p ∈ P, e ∈ {HC FeMn}, b ∈ {HC FeMn} (42)

vp = xE
pe + xB

pb p ∈ P, e ∈ {MC FeMn}, b ∈ {MC FeMn} (43)

xB
pb = ΨCRUSH

b

∑
f∈F FeMn

p

up f p ∈ P, b ∈ {HC FeMn} (44)

xB
pb = ΨCRUSH

b vp p ∈ P, b ∈ {MC FeMn} (45)
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∑
f∈Fp

yp f r ≤ xB
pb p ∈ P, r ∈ {HC FeMn,MC SiMn}, b ∈ {HC FeMn,MC SiMn} (46)

cp ≤ xB
pb p ∈ P, b ∈ {MC FeMn} (47)

ap ≤ xB
pb p ∈ P, b ∈ {LC SiMn} (48)

Constraints (42) ensure that the total amount of HC FeMn alloy from a plant’s HC FeMn furnaces sent directly to
crushing equals the HC FeMn end-product and by-products produced at the plant. The same balance applies to the
crushing of MC FeMn alloy, restricted by constraints (43).

Constraints (44) - (45) ensure that a given percentage of the alloy that flows from the HC FeMn furnaces and the
MOR ends up as undersized lumps. Similar constraints exist for the SiMn production for constraints (42) - (45). To
have a sustainable consumption of undersized lumps, the volume of undersized lumps used in the process should be
less than or equal to the volume of undersized lumps exiting the crushing process. Constraints (46) - (48) ensure that
this condition is satisfied. Constraints (46) allow both HC FeMn and MC SiMn undersized lumps to be used in both
furnace types.

Final Inventory and Demand Constraints

gF
e = DF

e e ∈ E (49)

gO
e ≤ DO

e e ∈ E (50)

Constraints (49) handle the demand from fixed contracts while constraints (50) handle the demand from optional
contracts.

Chemical Balance Constraints

∑
c∈C

Tkcvnp f kcv =

1 −
∑

b∈B
ΨB

f bk

Mk

∑
r∈R

ΨR
rkyp f r p ∈ P, f ∈ Fp, k ∈ K , v ∈ {FED} (51)

∑
v∈V\{SLAG}

∑
k∈K

A f kcvnp f kcv +
∑
k∈KS

(1 −
∑
b∈B

ΨB
f bk)A f kc,SLAGnp f kc,SLAG

−
∑
k∈K

B f kcαp f kc = 0 p ∈ P, f ∈ Fp, c ∈ CO (52)∑
v∈V\{SLAG}

∑
k∈K

ALS
f kcvnp f kcv +

∑
k∈KS

(1 −
∑
b∈B

ΨB
f bk)ALS

f kc,SLAGnp f kc,SLAG

−
∑
k∈K

B f kcαp f kc = 0 p ∈ P, f ∈ Fp, c ∈ CO (53)

∑
v∈V

∑
k∈K

ARS
f kcvnp f kcv = 0 p ∈ P, f ∈ Fp, c ∈ CO (54)∑

v∈V

∑
k∈K

A f kcvnp f kcv = 0 p ∈ P, f ∈ Fp, c ∈ CC (55)

np f k,c+1,RED = np f kc,RSRED p ∈ P, f ∈ Fp, k ∈ {Mn2O3, Mn3O4, MnO,
Fe2O3, Fe3O4, FeO}, c ∈ {1,2,3,6,7} (56)

Constraints (51) connect the chemical processes in a furnace to the raw material feed. The left-hand side of the
constraints states that the total amount of moles of an element or oxide k used in the chemical reactions in each furnace
has to equal the feed of that element or oxide to the furnace. The parameters Tkcv ensure that np f kcv cannot take any
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other value than zero where element or oxide k ∈ K is not present in chemical reaction c for variable v ∈ {FED}. The
right-hand side of the constraints multiplies the weight percentage for each element or oxide k in raw material r with
the total weight of the raw material to find the weight of the element or oxide in the raw material. The sum is taken
over all raw materials so that the total feed of the respective element or oxide is found. It is then divided by molar mass
in mole per tonne to determine the amount of mole fed to the furnace for element or oxide k. The term (1 −

∑
b∈BΨB

f bk)
removes the amount of moles that ends up as discardable by-products from the feed since the chemical reactions do not
account for the production of these.

The general form of the chemical reactions is given by constraints (52) - (54). The constraints enforce that the
mole balances equal zero. Each chemical reaction is represented by three constraints to ensure the correct relationships
between reactants and resultants. Constraints (52) represent the complete chemical reaction, while constraints (53)
ensure correct ratios between the reactants, and constraints (54) the resultants.

The output of Mn, Fe, Si, and C from the redox reactions and the direct feed of the respective elements from ores
and undersized lumps are added together in constraints (55) to find the total mass of each element in the furnace output
alloy. The reactants in some of the chemical reactions originate from a resultant in the previous reaction, therefore the
np f k,c+1,RED variables in these chemical reactions equals the np f kc,RSRED in the previous reaction. This is handled by
constraints (56).

An example of the application of constraints (52) - (54) to model chemical reaction (2), 3 Mn2O3(s) + CO
(g) −−−→ 2 Mn3O4(s) + CO2(g), is provided in equations (57a) - (57c).

2np f ,Mn2O3,2,FED + 2np f ,Mn2O3,2,RED + 6np f ,CO,2,FED

− 3np f ,Mn3O4,2,RSRED − 6np f ,CO2,2,RSRED = 0 p ∈ P, f ∈ Fp (57a)
np f ,Mn2O3,2,FED + np f ,Mn2O3,2,RED − 3np f ,CO,2,FED = 0 p ∈ P, f ∈ Fp (57b)
np f ,Mn3O4,2,RSRED − 2np f ,CO2,2,RSRED = 0 p ∈ P, f ∈ Fp (57c)

Equation (57a) is the representation of reaction (2) with the correct mole ratios between the reactants and resultants.
Equation (57b) and equation (57c) balance the reactants and the resultants, respectively.

Boudouard Reaction Constraints

np f ,C,18,FED + np f ,CO2,18,TOT − np f ,CO,18,RSRED = 0 p ∈ P, f ∈ Fp (58a)
np f ,C,18,FED − np f ,CO2,18,TOT = 0 p ∈ P, f ∈ Fp (58b)

np f ,CO2,18,TOT = (1 − Υ)
∑

c∈C\{1,2}

np f ,CO2,c,RSRED p ∈ P, f ∈ Fp (58c)∑
c∈CO

np f ,CO,c,TOT ≤ np f ,CO,18,RSRED +
∑
c∈CS

np f ,CO,c,RSRED p ∈ P, f ∈ Fp (58d)

Constraints (58a) are the Boudouard reaction given in reaction (10). Constraints (58b) ensure correct ratio between
the left side reactants, no constraints are needed for the right side ratio as only one resultant exists. Constraints (58c)
handle the degree of pre-reduction in the furnace, i.e. how much CO2 that is consumed by the Boudouard reaction.
Following the given definition of pre-reduction, the term has to be formulated as (1 − Υ) to model the amount of CO2
re-entering the process correctly. The chemical reactions involving MnO2 and Mn2O3 are not normally involved in
prereduction and are therefore not included in the sum of the right side term. Constraints (58d) ensure that the total CO
fed to reactions (1) - (3) and (6) - (7) is less than or equal to the CO resulting from the Boudouard reaction and the
reactions (4), (8), and (9). The CO and CO2 that do not re-enter the process are released as off-gases.
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Chemical Content Constraints

Mk

∑
c∈CC

Tkcvnp f kcv = ΨFeMn
k (mp f + up f ) p ∈ P, f ∈ F FeMn

p , k ∈ KC, v ∈ {TOT} (59)

Mk

∑
c∈CC

Tkcvnp f kcv = ΨSiMn
k (mp f + up f ) p ∈ P, f ∈ F SiMn

p , k ∈ KC, v ∈ {TOT} (60)

Constraints (59) and (60) ensure that the required content of critical elements is satisfied in the HC FeMn and the
MC SiMn furnace, respectively.

Non-negativity Constraints

ap, cp, hp, op, sp, vp ≥ 0 p ∈ P (61)

gF
e , g

O
e ≥ 0 e ∈ E (62)

xB
pb ≥ 0 p ∈ P, b ∈ B (63)

xE
pe ≥ 0 p ∈ P, e ∈ E (64)

ep f ,mp f , qp f , up f ≥ 0 p ∈ P, f ∈ Fp (65)

φp f k ≥ 0 p ∈ P, f ∈ Fp, k ∈ KS (66)
yp f r ≥ 0 p ∈ P, f ∈ Fp, r ∈ R (67)
σp f gt ≥ 0 p ∈ P, f ∈ Fp, g ∈ P, t ∈ Fg (68)
αp f kc ≥ 0 p ∈ P, f ∈ Fp, k ∈ K , c ∈ C (69)
np f kcv ≥ 0 p ∈ P, f ∈ Fp, k ∈ K , c ∈ C, v ∈ V (70)

4. Solution by the Multiparametric Disaggregation Technique

The model has bilinear terms to correctly model mixing of the slag quality components and is, therefore, a
nonconvex NLP. The Multiparametric Disaggregation Technique (MDT) applied to linearise the bilinear terms in the
MAMP is based on the descriptions found in Teles et al. (2012, 2013); Kolodziej et al. (2013a,b). The problem can
then be solved by linear solvers. To be able to parameterise and discretise the bilinear constraints, new sets, indices,
parameters, and variables have to be defined. These are found in Tables 4 - 6, respectively.

Table 4: Definition of sets for the MDT.

Set

M Set of integers, indexed by m
L Set of integers, indexed by l
Z Set of all integers

Table 5: Definition of parameters for the MDT.

Parameter

j The last significant number’s position.
q

p f
Lower bound on the slag produced by furnace f at plant p.

qp f Upper bound on the slag produced by furnace f at plant p.
ε Optimality gap between the lower bound problem objective value and the best bound of the upper bound problem.
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Table 6: Definition of variables for the MDT.

Variable

q̂p f kml The disaggregated flow variables of the product qp f µp f kml.
µp f kml 1 if the decimal power l is active for integer m for element or oxide k in furnace f at plant p, 0 otherwise.
λp f kl Discretisation variable for use in reformulating φp f k .
∆φp f k Slack variable for the continuous representation of the discretised variable φp f k .

By applying the MDT, a lower bound problem (LBP) and an upper bound problem (UBP) for the MAMP can
be derived, such that the problems are in the form of MILPs. The LBP and UBP can then be solved with increasing
accuracy until the global optimality gap ε is satisfactory.

As described in Kolodziej et al. (2013a), the LBP solution yields a lower bound for the original problem, denoted
z ≤ z, where z is the solution to the LBP and z is the solution to the original problem. The UBP gives an upper bound
on the problem. The LBP and UBP converge such that z = z = z.

4.1. Lower Bound Problem
This section describes the linearisation of constraints (25) for the LBP formulation. Of the two variables appearing

in a bilinear term, one variable must be parameterised and the other disaggregated (Teles et al., 2012). A continuous
variable can be disaggregated into a set of non-negative continuous variables, which can only assume positive values up
to the upper bound of the original variable (Teles et al., 2013). The φp f k variables are chosen to be parameterised since
they are limited between zero and one, and a given decimal precision. This reduces the feasible region of the problem
compared to disaggregating φp f k and parameterising the variables qp f instead, which have a range between zero and
the maximum slag production possible in a furnace. Linearisation of constraints (25) is based on the MDT linearisation
found in Kolodziej et al. (2013a) and yields the following constraints:

φp f kqp f =
∑
l∈L

∑
m∈M

10lm · q̂p f kml p ∈ P, f ∈ F FeMn
p , k ∈ KS (71)

φp f k =
∑
l∈L

∑
m∈M

10lm · µp f kml p ∈ P, f ∈ F FeMn
p , k ∈ KS (72)

qp f k =
∑
m∈M

q̂p f kml p ∈ P, f ∈ F FeMn
p , k ∈ KS, l ∈ L (73)

q̂p f kml ≥ q
p f
µp f kml p ∈ P, f ∈ F FeMn

p , k ∈ KS, m ∈ M, l ∈ L (74)

q̂p f kml ≤ qp fµp f kml p ∈ P, f ∈ F FeMn
p , k ∈ KS, m ∈ M, l ∈ L (75)∑

m∈M

µp f kml = 1 p ∈ P, f ∈ F FeMn
p , k ∈ KS, l ∈ L (76)

µp f kml ∈ {0, 1} p ∈ P, f ∈ F FeMn
p , k ∈ KS, m ∈ M, l ∈ L (77)

Constraints (27) are linearised in the same manner. Implementing the linearisations of constraints (25) and (27) in
the MAMP formulation yields the LBP formulation.

4.2. Upper Bound Problem
This section describes the linearisation of constraints (25) for the UBP formulation. The same derivation as found

in Kolodziej et al. (2013a) is used, leading to a continuous representation of the discretised variables. The result is the
following constraints, which replaces constraints (25):

φp f kqp f =
∑
l∈L

∑
m∈M

10lm · q̂p f kml + ∆φp f kqp f p ∈ P, f ∈ F FeMn
p , k ∈ KS (78)
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φp f k =
∑
l∈L

∑
m∈M

10lm · µp f kml + ∆φp f k p ∈ P, f ∈ F FeMn
p , k ∈ KS (79)

qp f =
∑
m∈M

q̂p f kml p ∈ P, f ∈ F FeMn
p , k ∈ KS, l ∈ L (80)∑

m∈M

µp f kml = 1 p ∈ P, f ∈ F FeMn
p , k ∈ KS, l ∈ L (81)

µp f kml ∈ {0, 1} p ∈ P, f ∈ F FeMn
p , k ∈ KS, m ∈ M, l ∈ L (82)

q̂p f kml ≥ q
p f
µp f kml p ∈ P, f ∈ F FeMn

p , k ∈ KS, m ∈ M, l ∈ L (83)

q̂p f kml ≤ qp fµp f kml p ∈ P, f ∈ F FeMn
p , k ∈ KS, m ∈ M, l ∈ L (84)

∆φp f kqp f ≥ q
p f

∆φp f k p ∈ P, f ∈ F FeMn
p , k ∈ KS (85)

∆φp f kqp f ≤ qp f ∆φp f k p ∈ P, f ∈ F FeMn
p , k ∈ KS (86)

∆φp f kqp f ≥ (qp f − qp f )10 j + qp f ∆φp f k p ∈ P, f ∈ F FeMn
p , k ∈ KS (87)

∆φp f kqp f ≤ (qp f − q
p f

)10 j + q
p f

∆φp f k p ∈ P, f ∈ F FeMn
p , k ∈ KS (88)

∆φp f k ≥ 0 p ∈ P, f ∈ F FeMn
p , k ∈ KS (89)

∆φp f k ≤ 10 j p ∈ P, f ∈ F FeMn
p , k ∈ KS (90)

Constraints (27) are linearised in the same manner for the UBP. Implementing the linearisations of constraints (25)
and (27) in the MAMP formulation, yields the UBP formulation.

An algorithm is applied to verify that the global optimum is found and it is based on the description found in
Kolodziej et al. (2013a). The algorithm initiates with a coarse discretisation and solves both the LBP and UBP. If the
difference between the objective value of the LBP and the best bound of the UBP is less than a given ε, the program
ends, if not, the precision is increased and the problems are resolved.

There may be infeasibilities in the discretised problem even if the original problem is feasible. To avoid this, j
and |L| have to be chosen appropriately. There are some general guidelines to help ensure precision based feasibility.
The highest power of 10 (L) must be large enough to ensure that 10 j is of the same order of magnitude as the upper
bound on φp f k, given as L = blog10φp f kc. Also, j has to be sufficiently small to ensure that at least one discretisation
point is located between the upper and lower bounds for φp f k, meaning j ≤ |L| is the minimum requirement. Feasibility
is more likely as j decreases since this results in increased precision. The guidelines do not guarantee feasibility of
the LBP and UBP in all cases, but represent the minimum precision level required to have reasonable bounds on φp f k

(Kolodziej et al., 2013a).

5. Computational Study

We have evaluated the applicability and limitations of the MAMP through a computational study. A comparison to
actual production data would contribute to the validation of the model. However, it is not possible for us to evaluate the
performance of the model against real production configurations and operational results since this is restricted data the
authors have been unable to obtain from the industry partner. The computational study, therefore, consists of a model
performance evaluation and a study of the economic aspects of manganese alloy production based on a semi-realistic
instance.

The model is written in the algebraic modelling language Mosel and run in FICO R© Xpress Optimisation Suite
7.9 using an HP EliteDesk 800 G2 SFF computer with Intel R© Core

TM
i7-6700 3.40 GHz CPU and 32GB RAM. The

operating system in use is Windows 10 Education 64-bit. The MAMP is formulated in a manner that requires some
of the data provided by the industry partner to be pre-processed in Microsoft Excel before being imported to the
optimisation software.
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The MDT is implemented in the MAMP formulation to be able to solve the problem in the linear solver Xpress.
Optimality gaps and maximal run times for the LBP and UBP can be varied, and a global optimality gap ε can be
defined. The algorithm uses a precision in the range {0,−∞} to solve the pooling problem with the MDT. For all
practical purposes, values of {0, 1} are too course to accurately model the chemical compositions in the production
problem. Producing metal and slag with precision values of {−4,−∞} is not practically achievable. The algorithm is
thus left with a precision of {−2,−3}.

A base instance is created to perform the computational study. Data provided by Eramet Norway are perturbed for
confidentiality purposes. This may lead to inaccurate costs, revenues, and consumption of raw materials compared
to actual values. The intention of this computational study is not to accurately depict real production conditions as
closely as possible, but rather to evaluate economic aspects of manganese alloy production in relation to variations in
different parameters. Also, it is desirable to evaluate if the formulation of the MAMP can add value to manganese alloy
multi-plant production planning when used as a decision support tool.

The production period is set to ∆T = 30 days. The layout of Eramet Norway’s plants has been used as the setup for
the base instance. Seven furnaces are distributed over three plants, where three are HC FeMn furnaces and four are
MC SiMn furnaces. The base instance is denoted B1-3Fe4Si. Plant 1 has one HC FeMn furnace and one MC SiMn
furnace, Plant 2 has three MC SiMn furnaces, and Plant 3 has two HC FeMn furnaces. Estimated slag transportation
costs between plants are set to 8.4 USD/tonne between Plant 1 and Plant 2, 14.0 USD/tonne between Plant 1 and Plant
3 and, 4.2 USD/tonne between Plant 2 and Plant 3.

All furnaces are set to have 22% pre-reduction, as used in Olsen et al. (2007), thus Υ = 0.22. Each furnace lose
35% of the heat generated to the surroundings, thus LH = 1.35. The electricity price is set lower than the current
market price, as alloy companies often have lucrative price agreements. The electricity price is, therefore, set to
CE = 0.00118 USD/kWh.

The input mass and electrical power capacity of each furnace are set to 1000 tonnes/40 MW and 750 tonnes/30 MW
for HC FeMn and MC SiMn furnaces, respectively. In practice, it is usually the electrical power that limits furnace
capacity. The refining processes’ input capacities are set sufficiently high not to be limiting factors. The feed limit for
each type of undersized lump is given as a weight fraction of the raw material feed to the furnaces, or the liquid metal
feed to the MORs and LC SiMn refining stations. The feed limit fractions are set to 0.10.

The plants produce one or more of the end-products, with demands and revenues for fixed and optional contracts.
These values can be found in Table 7. The revenues and demands for fixed and optional contracts are fictitious for
confidentiality purposes. They do, however, reflect the increasing demand and prices seen for refined alloys (Olsen et al.,
2007). The demand is given for a 30 day period. The cumulative demand is set greater than the total furnace capacity,
as the authors assume there are enough contracts available in the market to maximise production. The production is
thus limited by the mass and electrical power capacity of the furnaces.

Table 7: End-products with demands and revenues for fixed and optional
contracts. Demand is given in tonnes, revenue is given in USD/tonne.

End-product e Demand DF
e Revenue RF

e Demand DO
e Revenue RO

e

HC FeMn 13500 771 6000 810
MC FeMn 15000 899 6000 944
MC SiMn 10500 783 6000 822
LC SiMn 12000 853 6000 896

Each end-product is produced to satisfy certain content specifications. Explicit specifications are only set for
the contents of HC FeMn and MC SiMn as these products are made in the furnaces where chemical composition is
modelled. The content specifications for HC FeMn are: 0.790 Mn, 0.136 Fe, 0.004 Si, and 0.070 C. The MC SiMn
specifications are 0.712, 0.081, 0.192, and 0.015 for the same elements, respectively. Notice that the composition of
each end-product sum up to one. Correct content specifications of MC FeMn and LC SiMn are given implicitly by
predetermined parameters for the refining stations. The weight percentage of every other constituent in MC FeMn and
LC SiMn changes proportionally to the reduction of carbon as a result of the altered composition.

The mass output of slag is in relation to the total output of metal in an HC FeMn furnace. The maximum slag-to-
metal ratio is set to Λ = 1.00 and the minimum value Λ = 0.50. The slag exiting the HC FeMn furnaces has set quality
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specification intervals for oxides with metal-bearing capabilities. The upper and lower bound on the slag quality are
defined by the parameters Φk and Φk, respectively. Φk is 0.50 for MnO, 0.02 for FeO, 0.35 for SiO2, 0.20 for Al2O3
and MgO, and 0.30 for CaO. Φk is 0.30, 0.00, 0.15, 0.10, 0.5, and 0.10 for the same oxides, respectively. The sum of
the lower bounds on the slag composition Φk means that this amount of the slag composition is predetermined. As in
the base instance, 70% of the slag composition is already determined. 30% of the slag composition is then left for
the MAMP to solve. The greater the sum of the upper bound on the slag composition Φk, the greater the number of
possible combinations of oxides with which to fill the remaining 30% of the slag composition.

At every stage of the production, except at the LC SiMn refining station, by-products are produced as a fixed amount
of the total feed to the process stage. These values are set to 0.02 for by-products produced in HC FeMn furnaces and
0.10 in the MC SiMn furnaces. The oxides Al2O3, ceMgO, and CaO completely exit the MC SiMn furnace as slag and
thus the associated by-product parameters are 1.00 for these. In the MOR, the by-product fraction is 0.08. Values are
based on Olsen et al. (2007).

A set of 19 raw materials is at disposal at each plant. These raw materials contain various elements and oxides of
different concentrations. Oxygen, silicon waste, MC FeMn undersized lumps, and LC SiMn undersized lumps, named
refining resources, are separated from the raw materials since these feed other processes than the furnace process. The
inventories are assumed to be large enough to satisfy any demand.

The MDT defines the parameters qp f . These parameters greatly affect the run time as they set the solution space
for the volume of slag produced for each furnace. qp f should therefore be set as tight as possible to avoid a too large
feasible region. The parameters are naturally limited by the total amount of slag a furnace can produce per day. They
are easily scaled by multiplying with ∆T . For the defined HC FeMn furnace capacities, a suitable mathematical upper
bound is set to qp f = 500∆T , to not be a limiting factor. The parameters qp f are set to zero as the HC FeMn furnace
possibly can produce zero output. A similar parameter is defined for constraints (27) through the MDT linearisation.

The run time limits and optimality gaps for the LBP, UBP, and main algorithm are set to 7200 seconds and 1% for
each problem. Extra instances are created to test the model. Instance testing starts with one plant, one HC FeMn, and
one MC SiMn furnace, denoted as P1-1Fe1Si, where P1 denotes one plant. Then, the instances are expanded to include
several plants and furnaces in P2-2Fe2Si and P5-5Fe5Si. The optimality gaps, run times, and solution precisions for the
LBP and the UBP problems, as well as the total run time and global optimality gap ε for the test instances, are listed in
Table 8.

Table 8: Optimality gaps and run times for the test instances. The run times are given in seconds. ∗ denotes
that the time limit was reached before the gap was closed. † denotes that the current precision vector was not
finished within the time limit.

LBP UBP MAMP Main

Instance Gap Time Precision Gap Time Precision Time ε

P1-1Fe1Si 0.65% {1,9} {-2,-3} 1.00% {2,17} {-2,-3} 29 1.07%
P2-2Fe2Si 1.00% {391,6808†} {-2,-3†} 1.00% {1019,6179†} {-2,-3†} 14409 1.50%
B1-3Fe4Si 1.36%∗ {7200†} {-2†} 2.18%∗ {7200†} {-2†} 14409 2.55%
P5-5Fe5Si 3.33%∗ {7200†} {-2†} 7.08%∗ {7200†} {-2†} 14405 7.86%

The number of furnaces limits the scalability of the problem. Adding a furnace adds a new set of chemical balance
constraints and furnace restrictions to the problem. Both the LBP and the UBP are solved to the accepted optimality
gaps for small instances with little computational effort. The resulting ε is close to the accepted global optimality gap
of 1.00%. For larger instances, the accepted optimality gaps for the LBP and UBP are never reached within the time
limit. Consequently, ε deteriorates for larger problems. The base instance B1-3Fe4Si is solved to an ε = 2.55% within
the time limit. It is worth noting that the MAMP can find acceptable, feasible solutions even for large instances such as
P5-5Fe5Si.

The applied precision has a significant effect on the required computational time. For larger instances, the {-3}
precision is never completed or even started within the run limit of the program. Generally, the solution to the LBP
problem is better and located faster than for the UBP. This is due to that the UBP is a continuous representation of the
solution space, while the LBP is discrete, thus requiring a larger computational effort.
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Different parameter settings can affect the problem size significantly. The upper and lower bounds on the slag
composition are two such parameters. Allowing a wide interval may give a better solution to the planning problem,
but can make the problem unsolvable within a reasonable time. Narrowing the interval can reduce the computational
time significantly, but may limit how useful the solution is. If the upper and lower bounds are equal, or the sum of the
upper bounds are 1.00, the bilinear terms vanish as only one slag composition is feasible. The slag composition is thus
predetermined and the MDT solution method is redundant in this case.

It is of interest to investigate how large intervals the MAMP can solve to a certain global optimality gap ε within
the allotted time. In practice, there are process specific considerations that limit this interval to a certain degree; these
values are as described in the base instance. The upper and lower bounds on the slag composition are allowed to extend
beyond the practical values to investigate the effects on the computational effort for different interval ranges. The run
results for the test instances are given in Table 9.

Table 9: Run results for various slag composition intervals. Run times given in seconds.

Instance Sum Φk Sum Φk LBP Gap UBP Gap Total Time MAMP ε

C1-LOW 0.80 1.07 1.00% 1.16% 10566 1.19%
C2-MED 0.75 1.30 1.32% 1.76% 14415 2.28%
C3-HIGH 0.30 2.50 5.06% 6.33% 14405 6.90%
C4-MAX 0.00 6.00 8.66% 8.93% 14407 11.34%

Table 9 shows that ε increases for increasing slag interval ranges. Solving C1-LOW results in that the {-2} precision
is solved in a short time in contrast to not finishing for the other instances. Allowing maximum composition range, as
in the instance C4-MAX, makes the problem harder to solve, thus the significantly worse ε. The conclusion is that the
size of the interval greatly affects the computational effort required to solve a pooling problem like the MAMP and that
one should take great care in determining these parameters.

Having the model run for a longer time can give a better optimality gap. However, if the potential economic gain
from increasing the run time is low, it may be better to have a shorter run time. The LBP objective value and UBP best
bound for an individual run time of twelve hours are shown in Figure 4.

Figure 4: LBP objective value and UBP best bound for increasing run time of the LBP and the UBP. Values in USD.

A good LBP objective value is found within the first hour. After the first hour, no significantly better objective
value is found. The best bound in the UBP decreases rapidly within the first hour and continues to decrease in a steady
manner for the remainder of the run. Increasing the run time ensures that the solution can be guaranteed with a better
ε. After four hours, the decrease in ε is diminishing until it flattens out at approximately 2.30% after eight hours. At
twelve hours, the MAMP has run for a total of 24 hours, ending at an ε of 2.28%. It can be concluded that allowing
run times of more than four hours for the LBP and UBP is of little value to the solution unless a very high solution
accuracy is desired and sufficient time is available.

The current industry practice is to optimise the production for individual furnaces based on software and expert
judgement made by metallurgists. This practice is denoted single furnace optimisation and is the practice of optimising
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the profit of each single furnace, and consequently the metal it produces, without regards to the overall production. This
may be sub-optimal compared with planning the production when taking the multi-plant production into consideration.
The MAMP expands the production planning to cover all furnaces at all plants and is, therefore, a formulation that
could potentially handle the complexity of multi-plant production. An evaluation on how the MAMP performs against
single furnace optimisation can show if the MAMP can contribute to better production planning.

To simulate single furnace optimisation, the following process is used. An instance only containing one HC FeMn
furnace and an instance only containing one MC SiMn furnace are created. The authors assume that the single furnace
optimisation process is done by satisfying the fixed contracts first, then the optional contracts with the highest profit. In
the first iteration, the HC FeMn instance is solved with the total demand as input. The demand is then reduced with the
production in the first iteration and the instance is solved again. This is done for three iterations with the HC FeMn
instance, followed by four iterations with the MC SiMn instance. The results from the HC FeMn production iterations
are shown in Table 10, together with the results from applying the MAMP formulation.

Table 10: Comparison of the MAMP formulation to single furnace optimisation for the FeMn
production. Production volumes are given in tonnes. Objective values are given in thousand USD.

Single Furnace Optimisation MAMP Optimisation

Plant p, Furnace f 1, 1 3,6 3,7 Total 1, 1 3,6 3,7 Total

Furnace Type FeMn FeMn FeMn FeMn FeMn FeMn

up f , to crushing 0 8314 4175 12489 0 10688 3021 13709
mp f , to refining 10439 2599 6519 19557 10998 0 8559 19557
qp f , produced slag 5220 5456 5347 16023 5499 5344 5790 16633
xE

pe, HC FeMn 0 7482 3758 11240 0 9620 2719 12339
xE

pe, MC FeMn 9608 2392 6000 18000 10122 0 7878 18000
Obj. Val. FeMn 6668 5975 6741 19384 NA NA NA NA

The MAMP produces in total 610 tonnes more slag than single furnace optimisation. The total demand of MC FeMn
from fixed and optional contracts are satisfied for both production methods, while not all of the optional contract
demand for HC FeMn is satisfied. This indicates that MC FeMn is the most profitable FeMn end-product. Note that
furnace 1 in single furnace optimisation is the result of the first iteration of the HC FeMn instance and furnace 6 and 7
are the second and third iteration, respectively.

The slag-to-metal ratio is optimal at the lower bound of 0.50 in both production methods (can be verified by
consulting qp f

up f +mp f
). As it is not advantageous to produce more slag than necessary, the MAMP yields the same ratio

as the single furnace optimisation approach although the reasoning behind the slag production in the two planning
methods are different. The single furnace optimisation practice always minimises the amount of slag produced as
the goal is to maximise the profit from FeMn metal for the HC FeMn furnaces. Thus, ending at the lower bound
slag-to-metal ratio. The MAMP chooses the slag production values based on the goal to optimise the entire production.
The MAMP also uses a slag-to-metal ratio of 0.50 since producing slag in the HC FeMn furnaces is unfavourable
compared to producing more HC FeMn for the given parameter settings. The produced slag is still used in MC SiMn
furnaces as this is a better option than discarding it.

We assume that the slag transportation between furnaces in the single furnace optimisation is based on minimising
transportation costs, to make the two production planning methods as comparable as possible. This implies that as
much slag as possible is sent internally at a plant if a plant has both HC FeMn and MC SiMn furnaces, as is the case at
Plant 1. When the internal capacity of slag is reached, slag is transported to the plant with MC SiMn furnaces incurring
the lowest transportation costs. The results from the single furnace optimisation method and the MAMP for the SiMn
production are given in Table 11.

All the produced slag is consumed in both production planning methods and all the LC SiMn demand is satisfied.
The difference lies in the produced volume of MC SiMn, where an additional 673 tonnes of MC SiMn is produced
by using the MAMP due to different composition and allocation of the slag. This is an 8.52% increase in production
of MC SiMn alloy. One can argue that the slag could have been distributed in another manner for the single furnace
optimisation planning. Another approach for dividing the feed of slag between the remaining MC SiMn furnaces at
Plant 2 would be to give them the average of the remaining feed; this would however still be sub-optimal compared to
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the allocation given by the MAMP. Having flexibility and decision support tools to help in the distribution of slag is
clearly an advantage.

Table 11: Comparison of the MAMP to single furnace optimisation for the SiMn production and total profit.
Production values are given in tonnes. Costs and objective values are given in thousand USD. Cumulative
Objective Value is excluded the Transportation Costs. Total profit is the Cumulative Objective Value less the
Transportation Costs.

Single Furnace Optimisation MAMP Optimisation

Plant p, Furnace f 1, 2 2,3 2,4 2,5 Total 1, 2 2,3 2,4 2,5 Total

Furnace Type SiMn SiMn SiMn SiMn SiMn SiMn SiMn SiMn

up f , to crushing 0 2786 5547 447 8780 2338 0 1381 5809 9528
mp f , to refining 5021 2175 42 4755 11993 2856 5246 3892 0 11994
σgtp f , used slag 5220 5456 2674 2673 16023 5499 4095 3421 3618 16633
Leftover slag 0 0 0 0 0 0 0 0 0 0
xE

pe, MC SiMn 0 2508 4992 402 7902 2104 0 1243 5228 8575
xE

pe, LC SiMn 6280 2720 53 5947 15000 3571 6588 4841 0 15000
Obj. Val. SiMn 4418 3565 2929 4599 15511 NA NA NA NA NA

Cum. Obj. Val. 34895 35430
Transport. Costs 0 23 11 11 45 0 17 14 15 47
Discard Slag Cost 0 0

Total Profit 34850 35383

The MAMP transports more slag than the single furnace optimisation, thus, transportation costs are greater. Using
the MAMP yields 1.53% higher profit compared to single furnace optimisation in the case of base instance B1-3Fe4Si.
Two significant factors in making the MAMP formulation superior to single furnace optimisation are the volume of
slag produced and the composition of the slag. The average composition of the slag in the single furnace optimisation
and the MAMP optimisation are presented in Figures 5 and 6, respectively.

Figures 5 and 6 show a considerable difference between the average slag compositions of single furnace optimi-
sation and MAMP optimisation. The most notable differences are the changes in the MnO, CaO, MgO, and Al2O3
concentrations. In optimising single furnaces, it is favourable to keep the MnO concentration in the slag to a minimum
to maximise the HC FeMn output. Consequently, the oxides that are not substances of HC FeMn metal are maximised
in the slag output. In MAMP optimisation, these concentrations are changed to suit the overall production.

Figure 5: The average slag composition produced by the three
HC FeMn furnaces using single furnace optimisation.

Figure 6: The average slag composition produced by the three
HC FeMn furnaces using the MAMP formulation.

The measure slag-to-metal ratio is widely used in the manganese alloy production industry. In the previous section,
it can be observed that the slag-to-metal ratio is at the lower bound of 0.50 in all furnaces. The ratio can be up to 1.00,
meaning one tonne slag is produced per tonne metal produced. It can, therefore, be of interest to investigate which

23



conditions can make this ratio prone to change from its lower bound. These conditions can be variations in the demand
volume of the end-products, which can affect the optimal slag-to-metal ratio. The composition of the slag may also
change when the slag-to-metal ratio changes.

One case is studied where the demand is assumed to be equal for all end-products. The end-product demand is
equally distributed between FeMn and SiMn alloys. The fixed demand for all end-products are set as optional to
make the MAMP select the most profitable ones. The end-product production volumes are also provided as it may
better visualise the changes occurring in the slag-to-metal ratio and slag composition. The volumes produced of each
end-product for increasing demand are illustrated in Figure 7.

Figure 7: End-product production volumes for increasing demand when
the demand is evenly distributed between FeMn and SiMn alloys.

Observe from Figure 7 that MC SiMn and HC FeMn are the first products in each production path to be reduced
when reaching furnace capacities at 12 000 tonnes and 16 000 tonnes, respectively. The slight increase in productions
before the steady decrease at the furnace capacities are due to the alteration of slag composition. A plot of the average
slag-to-metal ratio as a function of demand is shown in Figure 8. A plot of the average slag composition as a function
of demand is shown in Figure 9. Between 8 000 - 12 000 tonnes demand, a slight increase in slag-to-metal ratio can
be observed. This is to accommodate the lacking MC SiMn furnace capacity better. At 12 000 tonnes, the HC FeMn
furnace needs the capacity to produce more HC FeMn, and the slag-metal-ratio starts to decline. At 16 000 tonnes, it
reaches the lower limit of the ratio and starts sending more of the metal output to MC FeMn refining, which is more
profitable.

Figure 8: Average slag-to-metal ratio across all HC FeMn
furnaces for increasing demand. Equal demand for each end-
product.

Figure 9: Average slag composition across all HC FeMn fur-
naces for increasing demand. Equal demand for each end-
product.

The slag-to-metal ratio is 0.68 - 0.71 for demands less than 12 000 tonnes. For greater demands, the slag-to-metal
ratio decreases to the lower bound of 0.50. Here, production of the least profitable alloy MC SiMn cannot satisfy
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demand as the slag-to-metal ratio decreases to release capacity in the FeMn furnaces to satisfy the increasing demand
of FeMn alloys which are more profitable. At a demand of 12 000 tonnes, the FeMn production needs the capacity to
satisfy the FeMn alloy demand. Thus, less capacity is available to produce slag. This trend continues for increasing
demand until the lower bound of the slag-to-metal ratio is reached. As the slag-to-metal ratio decreases, it becomes
more favourable to send slag with a higher content of MnO and lower content of SiO2. Thus, as the volume of slag
goes down, the amount of MnO increases to make the slag carry more of the important oxides to form pure metals in
the MC SiMn furnace, as can be seen from Figure 9.

The results from Table 11 are for an instance where the slag-to-metal ratio is at its lower bound of 0.50. The authors
suspect that the value of using the MAMP formulation is even greater in situations where the optimal slag-to-metal
ratio is above the lower bound. The single furnace optimisation practice always minimises the slag-to-metal ratio, as it
optimises the profit for single furnaces, consequently produces as much metal as possible. The MAMP, on the other
hand, changes the metal-to-slag ratio according to what is optimal for the overall profit. A larger volume of slag is
therefore produced and allocated efficiently to the MC SiMn furnaces. The decision to maximise metal output in single
furnace optimisation could of course also be changed to maximise slag output, but this is not a trivial decision to make
simply by consulting raw material costs and end-product revenues.

The base instance is therefore updated with demands skewed towards SiMn alloys, as this results in an optimal
slag-to-metal ratio of 0.70. The demands are set to be 19 200 tonnes for each SiMn alloy, and 12 800 tonnes for
each FeMn alloy and an equal comparison of the MAMP formulation to the single furnace optimisation practice is
performed. The overall result is that the MAMP generates 1.99% more profit than single furnace optimisation. It should
be noted that the MAMP, for this instance, is solved to within 1.6% optimality gap while single furnace optimisation is
solved to optimality.

6. Concluding Remarks

In this paper, the previously not analysed manganese alloy multi-plant production problem is defined and charac-
terised. An optimisation model of the problem is presented and it is formulated as a pooling problem. The bilinear terms
present in this formulation is linearised using the multiparametric disaggregation technique (MDT). To the authors’
knowledge, it is the first model to implement the MDT to solve a large-scale pooling problem. A computational study
shows that the optimisation model presented can solve problem sizes of up to seven furnaces spread across three plants
to within a global optimality gap of 3% for a run time of four hours. The study also shows that the MDT is able to
scale well with larger, real problem instances. The model outperforms the current operational practice of single furnace
optimisation, which is based on process knowledge and expertise. The choice of optional contracts to accept visualise
which products are the most profitable since these are the products produced after the fixed demand is met. Comparing
the model to real production data can greatly improve the validation of the model presented in this paper. Overall, we
are confident that our model can work as a decision support tool for the industry. Further work on this problem could
include the following: allow an increased number of end-products to exit the furnaces and flow through the refining
and crushing processes. Include furnace setup switching to allow for the best furnace setup to be determined by the
model. Formulate the MAMP as a stochastic problem to account for uncertainty in market demand and raw material,
electricity, and transportation costs, providing a more robust production schedule.
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