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Abstract 

A theoretical overview of the stochastic dynamic analysis of a floating bridge structure is presented. 
Emphasis is on the wave-induced response and the waves on the sea surface are idealized as a zero 
mean stationary Gaussian process. The first-order wave load processes are derived using linear 
potential theory and the structural idealization is based on the Finite Element Method. A frequency 
response calculation is presented for a simplified floating bridge structure example emphasising the 
influence on von Mises stress in the pontoon from low- and high frequency waves and frequency 
dependence in hydrodynamic added mass and damping coefficients. 
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1 Introduction 

Floating bridges have been around for many 
thousands of years and throughout the years, they 
have been used as temporary supply lines or for 
military purposes. However, it is only during the 
last three decades or so that floating bridges are 
being developed to the degree of sophistication, so 
they can be applied as a critical part of modern 
infrastructure. Still, compared with land-based 
bridges, including cable-stayed bridges, limited 
information [1] is currently available on floating 
bridges and even less on submerged floating 
tunnels for transportation. This information is 
especially true regarding construction records, 
environmental conditions, durability, operations 
and performance of the structure. 

The limited amount of floating bridges currently in 
the world is a statement to this fact. Depending on 
the landscape in the proximity of the floating 

bridge and on the sea state conditions different 
types of floating bridges are used. Only three long 
span floating bridges are currently located in 
difficult sea state conditions and allows for cars to 
pass. These are: 

i. Hood Canal Bridge (1961) in USA a 2,398 
meter long pontoon bridge with a 1,988 
meter long anchored floating portion, it is 
the longest floating bridge in the world 
located in a saltwater tidal basin, and the 
third longest floating bridge overall. 

ii. Bergsøysund Bridge (1992) in Norway a 
931 meter long pontoon bridge with the 
longest span of 106 meters. 

iii. Nordhordland Bridge (1994) in Norway is a 
combination of a cable-stayed and 
pontoon bridge. It is the longest free 
floating bridge without anchorage. 
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As the rough overview indicates, the theoretical 
and practical development of floating bridges has 
been carried out mainly in the USA and in Norway 
with significant contributions from the industry. In 
Norway it is mainly the Norwegian University of 
Science and Technology (NTNU), SINTEF the 
research organisation and the Norwegian Public 
Roads Administration (NPRA).  

Pioneering studies on floating bridges was carried 
by Hartz in the 1970’s. Around the same time 
Holan, Sigbjörnsson and Langen carried out similar 
studies on stochastic dynamics of floating bridges 
[2] [3] [4] [5]. Later on in 1980 Sigbjörnsson and 
Langen exemplified the theory using a model of the 
Salhus floating bridge [6] [7]. In recent years 
NTNU/SINTEF have led the theoretical evolution 
within structural mechanics, fluid structure 
interaction and stochastic modelling of 
environmental loads applied to the offshore 
industry in Norway. Many of the same theories can 
be directly applied in stochastic dynamic analysis of 
floating bridges.  

Recently the NPRA has started several research 
projects regarding floating bridge structures as part 
of a ferry-free coastal route E39 between 
Kristiansand and Trondheim in Norway, where they 
aim to develop current methods of design.  

In the present text a dynamic analysis in frequency 
domain will be given and theory on stochastic 
dynamic modelling of a floating bridge is described, 
including challenges regarding frequency-
dependent hydrodynamic added mass and 
damping. Preliminary results will be given from a 
frequency domain analysis of the stresses on the 
pontoon.  

Although a lot of research has gone in to the topic 
of floating bridges, the focus point has mostly been 
on the structural response in terms of 
displacement, velocity and acceleration of 
structural points and as far as the author is aware, 
not much literature on local stress distributions for 
floating pontoon bridges is published. This paper 
aims to shed some light on general stochastic 
design as well as local stress distribution. 

2 System Modelling 

The linear stochastic dynamic response of a floating 
bridge structure can be described using the 
equation of motion to capture the dynamics of the 
structure, potential theory to find the 
hydrodynamic added mass and damping and the 
wave excitation force from the fluid-structure 
interaction and stochastic theory to implement the 
randomness of the wave excitation force. 

2.1 Equation of Motion 

The equation of motion describing the linear 
dynamic behaviour of the floating bridge is 
described in time domain as shown in (1) . 

[ ]{ ( )} [ ]{ ( )} [ ]{ ( )} { ( )}
s s s h

M u t C u t K u t q t    (1) 

Here, [ ]
s

M , [ ]
s

C  and [ ]
s

K are the frequency 

independent structural mass-, damping- and 
stiffness matrices. The vector notation { }u is the 

structural response and the dots above represents 
derivatives of time t . The vector { ( )}

h
q t  represents 

the hydrostatic and hydrodynamic load vector. 

2.1.1 Frequency Domain Representation 

For a single harmonic small amplitude wave, 
{ ( )}

h
q t  can be described as a harmonic wave 

proportional to i t
e

  as shown in (2).  

As an extra step in the equation, the derivatives of 
the structural response are derived and collected 
within the parenthesis. 

 
2

{ ( )} [ ( )] [ ( )] [ ]

{ ( )} { ( )}

h h h h

i t i t

u q

q t M i C K

Z e Z e
 

   

 

    

 

 (2) 

Here, [ ( )]
h

M   and [ ( )]
h

C   are the frequency 

dependent hydrodynamic added mass and 
damping and   is the angular frequency. [ ]

h
K  is 

the restoring stiffness assumed frequency 
independent for small amplitude motion. { ( )}

u
Z   

and { ( )}
q

Z   are the complex structural response 

amplitude and the complex wave excitation force 
amplitude, respectively, and i  is the imaginary 
unit. Substituting the expression for the 
hydrodynamic action given in (2) into the equation 
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of motion in (1) and rearranging the terms gives the 
frequency domain representation of the equation 
of motion. 

2
{ ( )} [ ( )] [ ( )] [ ]

{ ( )}

q

u

Z M i C K

Z

    



    
 



 (3) 

The inertia, damping and restoring matrices 
include the structural terms as well as the added 
hydrodynamic mass and damping. The combined 
system matrices are hence given as. 

[ ( )] [ ] [ ( )]
s h

M M M    (4) 

[ ( )] [ ] [ ( )]
s h

C C C    (5) 

[ ] [ ] [ ]
s h

K K K   (6) 

The response induced by a single harmonic wave is 
then obtained by rearranging the terms in (3) and 
introducing the frequency transfer function 
[ ( )]H  . 

{ ( )} [ ( )]{ ( )}
u q

Z H Z    (7) 

1
2

[ ( )] [ ( )] [ ( )] [ ]H M i C K    


    
 

 (8) 

By use of the principle of superposition, it is 
possible within the framework of linear theory to 
incorporate a generalized description of the 
excitation represented as the sum of a finite 
number of harmonic waves. In case of a random 
sea state the excitation in frequency domain can be 
obtain by Fourier transform of the excitation time 
series. 

2.1.2 Time Domain Representation 

Assuming frequency independent restoring and 
causality the wave excitation force can be 
described in the time domain as shown in (9) by use 
of the convolution integral. 

{ ( )} { ( )} [ ( )]{ ( )}

[ ( )]{ ( )} [ ]{ ( )}

h h

h h

q t q t m t u t d

c t u t d K u t

 

 









  

  





 (9) 

Here,   is time lag and [ ]
h

m  and [ ]
h

c  are the time 

domain representations of the hydrodynamic 
added mass and damping found from Fourier 
transform. 

1
[ (t)] [ ( )]

2

i t

h h
m M e d


 







   
 

(10) 

1
[ ( )] [ ( )]

2

i t

h h
c t C e d


 







   (11) 

Using the impulse response function, ( )h  , the 

response can be obtained in time domain as a finite 
sum of system responses from hydrodynamic 
action impulses at different time steps. 

{ ( )} [ ( )]{ ( )}
h

u t h t q d  




   (12) 

The impulse response function is found from 
Fourier transform of the frequency transfer 
function in (8). 

1
[ ( )] [ ( )]

2

i t
h t H e d


 







   (13) 

Several methods exist to solve (9) in time domain. 
Such approaches are useful if non-linear behaviour 
is of interest. 

2.2 Description of Sea Waves 

For engineering purpose, the wind-generated 
waves are approximated as a locally stationary and 
homogeneous random field and the sea surface 
elevation ({ } , )x t  becomes a function of time and 

the two-dimensional space vector for the 
horizontal surface at the mean water level. 

({ } { } )
({ } , ) ({ } , )

i x t
x t e d Z

 


  






   (14) 

Here, ({ } , )Z


   is the spectral process of the sea 

surface elevation and { } { , }
x y

    is the two-

dimensional wave number vector. 

The spectral process is, given the assumptions of 
stationarity and homogeneity, related to wave 

spectral density ({ } , )
r s

S
 

   as described in (15). 
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*
({ } , ) ({ } , )

({ } , )

r s

r s

T

x y

E d Z d Z

S d d d

 

 

   

    

 
 



 (15) 

Here, the subscripts r  and s  refer to points in time 
and space. The superscripts T  and *  refer to the 
mathematical operations transpose and complex 
conjugate, respectively. The operation [ ]E   is the 

expected value. 

The wave spectral density is divided into a cross-
spectral term with r s  and auto-spectral terms 
with r s . The auto-spectral density is denoted 

( , )S

  . 

The wave number vector can be described as a 
function of the wave direction   and the modulus 
 . 

c o s
{ }

s in


 



 
  
 

 (16) 

Furthermore, within the first-order Stokes theory 
  and   are related through the dispersion 
relationship given in (17). 

2
ta n h ( )g h    (17) 

Here, g  is the gravitational acceleration and h  is 

the water depth. In the special case of deep water 
waves the dispersion relationship can be 

approximated as 2
g  . As a result of this 

approximation the spectral density can be 
described as a function of wave direction and 
frequency. 

The auto-spectral density is generally a function of 
the frequency-dependent directional distribution 

( , )D    and the one-dimensional wave spectral 

density ( )S

 . For simplicity, the directional 

distribution is normally assumed to be frequency-
independent as given in (18). 

S ( , ) ( ) ( )S D
 
     (18) 

Due to the coherency, ( )
r s

C o h
 

  , between point 

r  and s  the expression for the cross-spectral 
density given in (19) is a bit more complicated and 
is formulated by assuming deep water waves. 

 
( )

c o s s in

( , ) ( ) ( )

( ) ( )

r s r s r s

r s

i x y
g

S S C o h

C o h D e d

     

  
 

 


   

  
   





 

 (19) 

Here, x  and y  are the horizontal distances 

between point r  and s . 

2.2.1 Directional distribution 

The directional distribution is commonly 
characterised by a bell shaped function centered 
around the mean wave direction. The simplest and 
one of the most commonly applied functional 
forms is the so-called cos-2s distribution, given in 
(20) for a specific mean wave direction. 

2 1 2

22 (s 1)
( ) c o s

( 2 1) 2

( )

s

s m

m

D
s

 




   


   

  
   

  

 (20) 

Here, s  is the spreading parameter, ( )   is the 

Gamma function and 
m

  is the mean wave 

direction. 

2.3 Fluid structure interaction 

The current analysis of floating bridges is based on 
the assumption of water being incompressible, 
non-viscous and irrotational. Then, within the 
framework of potential theory, the flow field is 
governed by Laplace’s equation, given in (21) for 
Cartesian coordinates [8]. 

2 2 2

2

2 2 2
0

x y z

     
     

  
  (21) 

Here,   is the velocity potential and x , y  and z  

are Cartesian coordinates. Hence, the basic 
problem at hand is to find the solution of the 
Laplace’s equation in terms of the velocity 
potential.  

Assuming no current and by virtue of the principle 
of superposition the velocity potential can be 
obtained from the linear problem given in (22). 



19th IABSE Congress Stockholm 2016 
Challenges in Design and Construction of an Innovative and Sustainable Built Environment 

5 

6

0 7

1

d iffra c tio n  p ro b le m ra d ia tio n  p ro b le m

i t i t

k k

k

e e u
 

  
 



      
(22) 

Here, 
0

  and 
7

  represents the velocity potential 

from the incident- and diffracted waves, 
respectively. 

k
  represents the velocity potential 

per unit velocity from radiated waves and 
k

u  

represents the time derivative of the complex 
motion of the body in the water and together they 
represent the velocity potential from radiated 
waves 

k k k
u   when the body is oscillating in the 

'thk  degree of freedom. 

From first-order Stokes theory the velocity 
potential for the incident wave is known. To obtain 
a physical legitimate solution for the other seven 
velocity potentials in (22) the Laplace’s equation in 
(21) must be satisfied together with the free-
surface boundary condition at the mean water 
level, the kinematic boundary conditions at the 
seabed and on the wetted body surface and the 
radiation condition. Using the indirect boundary 
integral formulation and applying Green’s second 
identity it is possible to obtain solutions for each of 
the seven velocity potentials and the pressure p  

can then be obtained through Bernoulli’s equation. 
Applying specific velocity potentials in Bernoulli’s 
equation and integrating the hydrodynamic 
pressure over the wetted body surface it is possible 
to obtain expressions for the wave excitation force 
and the hydrodynamic added mass and damping 
when comparing to the equation for steady-state 
harmonic rigid body motion is given in (23). 

 
6

1

( ) ( )
i t

j jk k jk k jk k

k

q e M u C u K u


 




    (23) 

Here, the index notations of (4), (5) and (6) is 
applied. 

2.3.1 Wave Excitation Load 

The diffraction problem describes the scenario of a 
fixed body in incident waves. By only including 

0
  

and 
7

  in Bernoulli’s equation it is possible to 

obtain the hydrodynamic action by integrating the 
hydrodynamic pressure over the wetted body 
surface 

0
S . 

 

0

0 7j k

S

q i n d S       (24) 

Here, 
k

n  represents the component of the surface 

normal vector in the direction of the 'thk  degree of 
freedom. Comparing the expression with (23) the 
force is identified as the wave excitation force. 

2.3.2 Hydrodynamic Added Mass and Damping 

The radiation problem describes the scenario of a 
body oscillating in calm sea. Using the same 
approach as described in section 2.3.1 the 
hydrodynamic action from a body oscillating in 
calm water can be found. 

0

0 0

, ,
( ) ( )

R e Im

h jk h jk

j j j k

S

j k j j k j

S S

M C

q i u n d S

n d S u n d S u

 

  

   

 

   

    
   
   



 
 (25) 

Comparing the expression with (23) the 
hydrodynamic added mass and damping can be 
identified. 

3 Solution Strategy 

It is commonly assumed, within the field of civil 
engineering structural dynamics, that structural 
damping is very small and hence can be neglected 
when calculating the natural frequencies and 
natural modes of a classically damped system. In 
the case of fluid structure interaction there is a 
significant contribution to the damping from the 

hydrodynamic damping [ ( )]
h

C   and so the system 

instead is categorised as a non-classically damped 
system. Procedures exists to calculate this higher 
order eigenvalue problem by use of the state-space 
approach [9]. The solution consists of complex 
eigenvalues and complex eigenvectors. 

In the context of this article, the dynamic response 
is calculated using the direct frequency response 
method with the structure subjected to a set of unit 
amplitude wave with periods ranging from 1 
second to 15 seconds. 
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3.1 Direct Frequency Response Method 

The frequency domain representation described in 
section 2.1.1 applies the complex frequency 
transfer function [ ( )]H   given in (8) to obtain 

solutions in the frequency domain. The response 

amplitude { ( )}
u

Z   is a complex quantity 

describing the amplitude and the phase angle of 
the dynamic response. 

By splitting the load into a real part 
, R e

{ ( )}
q

Z   and 

an imaginary part 
, Im

{ ( )}
q

Z   as described in [10] 

the solution can be as shown in (26). 

, R e

, Im

{ ( )} [ ( ) ]{ ( )}

[ ( ) ]{ ( )}

u q

q

Z H Z

i H Z

  

 




 (26) 

4 Case Study 

4.1 Description of Floating Bridge Model 

The model is a simplified floating pontoon bridge 
with pontoon dimensions equal to the pontoons 
used in the mid sections of the Bergsøysund Bridge 
(Norway).  

The model consists of two horizontal beams, one 
vertical beam and a pontoon. The dimensions of 
the bridge are illustrated in Figure 1 where the -x , 

-y  and -z axis corresponds to surge, sway and 

heave, respectfully. 

 

Figure 1. Bridge schematics 

The cross-sectional properties of the beam 
elements are given in Table 1. 

Table 1. Beam element properties 

 
 

L 
[m] 

Ixx 
[m4] 

Iyy 
[m4] 

Izz 
[m4] 

Bm1 400 1.07E-04 2.65E+00 9.21E-01 

Bm2 400 1.07E-04 2.65E+00 9.21E-01 

Bm3 8.02 1.17E+01 5.86E+00 5.86E+00 

The mass properties and dimensions of the 
pontoon are listed in Table 2 and Table 3, 
respectively. 

Table 2. Pontoon mass properties 

M 
[kg] 

rxx 
[m2] 

ryy 
[m2] 

rzz 
[m2] 

1.37E+06 1.01E+01 6..80E+00 1.15E+01 

The symbols 
j j

I  and 
j j

r  represents the second 

moment of area and the radius of gyration around 

the j ’th axis, respectively. 
x x

I  is the torsional 

moment of inertia.  

Table 3. Pontoon dimensions with final draft 

h 
[m] 

d 
[m] 

Aw 
[m2] 

6.98 3.61 594 

Supports are located at each end of the floating 
bridge model and modelled as fixed in all degrees 
of freedom. 

4.2 Numerical analysis 

Due to the hydrodynamic added mass and 
damping, it is crucial to know the correct pontoon 
draft before commencing the dynamic analysis. 
Therefore, a static analysis is first carried out. 

4.2.1 Static Equilibrium 

From equilibrium between the pontoon mass and 
buoyancy from the displaced water, the initial draft 
of the pontoon is found. The static analysis is then 
carried out by replacing the pontoon with a vertical 
spring stiffness from the waterplane area and the 
water density. Applying gravitational loads to the 
static model the vertical displacement is 
computed. The final draft d  is found by combining 
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the result from the static analysis with the initial 
draft. 

 

Figure 2. Static model with pontoon spring and 
gravitational load 

4.2.2 Environmental Load Modelling 

The hydrodynamic restoring, added mass and 
damping is calculated using a boundary element 
method software. A panel model of the pontoon 
surface as the one in Figure 3 is created and given 
as input to the software. The panel model used 
consists of 632 panel elements and is subjected to 
60 unit amplitude waves with periods 

{1 : 0 .25 :15}T   seconds each with a wave 

direction of 90 degrees from the global x -axis 
corresponding to sway.  The water depth is set 
equal to 1000 meters. 

 

Figure 3. Panel- and structural model of pontoon 

The mesh size of the panel model is roughly 2 
meters, which according to [11] requires a 
minimum wavelength of 16 meters or in this case 
an equivalent wave period of approximately 3.2 
seconds.  

 

Figure 4. Normalized hydrodynamic added mass 
and damping in y-direction (sway). Normalization 

factors are 2 .1 9 E + 0 6
m

f    and 6 .8 7 E + 0 5
c

f   for 

added mass and damping, respectively 

From the analysis, information of the 
hydrodynamic added mass and damping as a 
function of the period is illustrated in Figure 4. 

4.2.3 Applied Rayleigh Damping 

Assuming a damping ratio of 0 .0 2   the Rayleigh 

damping is calibrated using the first two horizontal 
undamped natural periods 

1
4 4 .5s

n
T   and 

2
1 3 .9s

n
T  found from solving the classical 

eigenvalue problem. From the sway response of 
the midpoint of the floating bridge, it can be 
checked whether or not appropriate structural 
damping is applied. It is important to have a 
sufficiently low mass proportional damping in 
order not to damp out the wave response. 

5 Results 

From the dynamic analysis carried out in the 
frequency domain it is possible to obtain some 
preliminary results of the stress distribution in the 
pontoon. The stress response from a set of 60 unit 
amplitude mono-chromatic beam sea waves have 
been analysed and specific characteristics of the 
frequency distribution of von Mises stress has been 
observed. At high frequency waves (period in the 
range of 1 second to 5 seconds) the largest stresses 
in the pontoon are located in the front part of the 
pontoon and on the corners connecting the front 
vertical concrete plates to the top- and bottom 
concrete plates, see Figure 5. Maximum values are 
in the range of 0.97 MPa. 

 

Figure 5. Von Mises stress on pontoon for 
monochromatic wave excitation force with 

2.25sT  . The unit is Pa 

At lower frequencies the largest von Mises stress is 
located exclusively around the connection point 
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between the pontoon and the vertical beam as 
illustrated in Figure 6. The stresses are in this case 
as high as 33.8 MPa. 

 

Figure 6. Von Mises stress on pontoon for 
monochromatic wave excitation force with 

8.50sT  . The unit is Pa 

The minimum stresses at the low frequency wave 
excitation is roughly the same order as the stresses 
from the high frequency wave excitation force. It is 
believed that the high stress is a result of the high 
wave loads on the pontoon under long waves. 

6 Conclusion and further work 

The paper has presented general theory on 
solutions of the equation of motion in both time- 
and frequency domain and has explained how to 
incorporate the randomness of the sea state into 
the design using stochastic theory. Also a brief 
discussion of how potential theory and boundary 
element methods can be used when dealing with a 
non-classically damped system such as a floating 
bridge structure. 

A case study of a simplified floating bridge 
structure has been presented and preliminary 
results of the stress distribution on the pontoon is 
shown. 

From the preliminary analysis in frequency domain 
it can be concluded from the results given in Figure 
5 and Figure 6 that the joint between the pontoon 
and the beam bridge structure is crucial in the 
design of the pontoon and, if not thoughtfully 
carried out, can generate high stresses in the 
pontoon surface elements. 

Although the simplified pontoon bridge is made to 
resemble a realistic floating bridge structure, 
many details are lost in the simplification, such as 

a proper connection between pontoon and bridge 
deck. Future work includes more pontoons and a 
stochastic dynamic analysis in frequency- and time 
domain. 
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