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Abstract

Power grids are the most prominent infrastructure due to the fact that the
daily life of modern society is directly or indirectly integrated to electric
power consumption. And when it is exposed to failures due to human or
natural factors, detecting and repairing failed component of the system can
initiate another failures. Hence, modelling and analysing failure could help
understanding of characteristics of blackout distribution on the network and
predict the impact of the failure on interconnected systems.

The theoretical and statistical analysis of the empirical power blackouts
using scaled window variance and rescaled range methods shows that size
of failure distribution can be elegantly described by power law. The statisti-
cal results obtained by applying both methods are consistent. Because there
is a long range time correlation between the successive time series of the
blackout events measured by the Hurst coefficient which are greater than
half but smaller than one. However, for the North American case, scaled
window variance result for Hurst coefficient is approximately one means
the time series of blackout events is deterministic.

The results of the square lattice model showed that for a relatively
smaller lattice size(L < 80), the probability density function of the conduc-
tance change follows Gaussian distribution independent of the tolerance of
the conducting lines. However, for lattice sizes below 180 but greater or
equal to 80, the probability density function of the conductance change fol-
lows power law depending on both tolerance and lattice size. It reveals that
when lattice size increase in the given range, the scaling exponent also in-
crease under constant tolerance. But for fixed lattice size, we found that the
conductance change depends on tolerance only up to certain value α = 3.0.

The cumulative probability distribution of the empirical blackouts from
the Norwegian, North American and Ethiopian power grids also show power
law. In all the three cases the distribution described by power law falling of
faster for larger value of power loss change(∆P ).
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Chapter 1
Introduction

It is known that power utility is prominent entity for the world to accom-
plish day to day activities ranging from cooking foods up to running huge
and complex industries. Though it was replaced by petroleum from mid-
dle of 20th century, coal was the dominant energy supply from late 18th to
middle of 20th century through out the world[3]. Due to oil crises since
late 20th century, the world turn to ponder on other sources of power.
These sources are environmental friendly and cost effective that is renew-
able source of energy like generating electricity from hydro-power[4].

Human being had some observations of sort of shocks on electric fish[5,
6] dated back from the ancient civilization until it has realized the concept
of electric charge or electricity after a careful study has been conducted in
17th century[7]. Following this the science of Electricity and Magnetism
becomes a fascinating field of study and inspired researcher for more scien-
tific study. Michael Faraday and later James Clerk Maxwell laid the foun-
dation for the contemporary Science of Electromagnetism for their con-
tribution in discovering electromagnetic induction and its modification[8].
The careful study and realization of physics of Electromagnetism helped to
tame from one form of energy to other forms of energy to utilize it for daily
life of the world.

Earlier generation distribution systems that are invented in 19th century
were inefficient because the power plants or generators had to be placed
near the power or load consumer[9](example Edison’s early Generator).
This invention opened a door for the rapid growth of Ac transmission sys-
tems(for example the 11kv Ac line developed by George Westinghouse)
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Chapter 1. Introduction

which transmit power over long distance[9].

Figure 1.1: Basic structure of Electric System[1]

Today’s transmission system is growing into sophisticated and inter-
connected networks and power plants which operate at different limiting
voltages. Fig.1.1 shows the prototype of topology and features of today’s
transmission lines. The transmission and distribution of electricity from the
power plant or generators to the end user is the aggregate interconnection
of lines of networks that deliver about 230v to an ordinary or residential
consumers and an intermediate around 12,000v or more to industries or
companies[1]. This means the distribution system includes all components
from the generation site up to the software operations in the control dis-
patch. Since the network is sophisticated, it is difficult to analogize and
mitigate dynamical and physical phenomena universally when any of these
components are exposed to failure. Beside to this, though it is governed by
the law of physics, the flow of electricity in the power grid is in all paths
available and it is not easily controllable except using control devices(which
are more expensive). This together with the fact that electricity flows with
very fast speed so that generation and consumption must be simultaneous
processes makes failure analysis to be more harder[1].

Despite to it’s complexity, researches have been doing exhaustively to
investigate mathematical models that better describe the global and dy-
namical aspects of power grids for optimization purposes. Self-Organized
Criticality[10], Cascading model[11], random fuse model[12] and the like
are among the models developed and describe that the blackout event ex-
posed in power system exhibits power law. Statistical analysis of the char-
acteristics of dynamical phenomena such as blackout is an input for further
study in mitigating, improving and enhancing the components of the power
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system.
The main objective of this study is to address the characteristic be-

haviour of blackout events in Norwegian, North American and Ethiopian
power grids. Beside we will discuss squared lattice network model.

The study will provide an overview of the characteristics of the blackout
distribution in the three different power systems . The statistical character-
istics of the failure distribution which describes the size of the failure will
not include quantities such as, energy unversed and restoration time. We
will only quantify the size of the failure with power loss during failure.
Similarly, the same limitation will be applied to the artificial square lat-
tice. Beside to this, the blackout study in the square lattice model is limited
to small lattices size because the processor speed of the computer used to
generate data was slow.

The report is warmed up by discussing the introductory part of the the
study followed by the literature review to relate previous researches con-
ducted around the area of the study. The third chapter is discussing the
theoretical and statistical analysis of blackout for three systems. Follow-
ing the Bakke and Hansen model, the square lattice model is introduced in
chapter five to explain the statistical analysis of the blackout event gener-
ated artificially. The last part of the report will include the conclusion of
the study and the reference along with the appendix.
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Chapter 2
Literature Review

It is not recent history from when human being started to tame natural re-
sources and facilitate their daily life dependently on sophisticated technolo-
gies such as electricity, telecommunication, huge industry, digital electron-
ics, computer networks and others. This is because advanced technologies
and well functioning infrastructure systems plays extreme importance for
every day life, economic prosperity, national security and the like. But
unfortunately, components of these technologies can not last longer due to
abrupt and inherent(example ageing) factors. Thus, it is inevitable for some
failures and disruptions to happen though so many improvements have been
doing up to date to minimize the risk or damage due to failure. We can al-
most certainly agree that the harnessing of electricity can be taken as the
most vital technological advances of the contemporary world for prosper-
ity of a nation from the simple as cooking foods to the most complicated
use in security bases. Though electric power transmission systems are key
infrastructure to a nation, failures followed by blackouts have major conse-
quences for the economy and national security of that nation[13].

The main causes for failures in power transmission could be natural
disasters, adverse winds, human or technical failures, labour conflicts, ter-
rorism, acts of war and others[14, 15]. Beside, major power outages can
also be caused by combinations of electrical, computer, and human fail-
ures and developed in to cascading blackout which affect the customer[14].
Failures or disturbances have starting or initiating event which materialize
the disturbance. This event eventually leads to malfunctioning in a power
system which may further lead to greater power systems failure and loss of
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power access to the subscriber. The technical conditions that may lead to
power system failure include: overloads, voltage or frequency outside lim-
its, instability, disconnection of substation or generating plant[14]. In the
study of power transmission networks, the structural complexity and the
high dependence between components of a power transmission network
complicate the study of its behaviour. This interdependence is the main
reason of the vulnerability of power transmission network and is translated
to the risk of large blackouts.

Vulnerability1 of the system explains the system’s sensitivity to threats
or hazards[14]. It is apparent that because of this interdependence, local
overloads of lines or local failures of components can generate cascades of
current breaks which extremely can cause failure of the whole or part of
the network terminologically called blackout. The blackouts can be caused
by inefficiency of the power transmission network or by excessive elec-
tric current demand from the loads that exceeds the network capacity. It
has been shown that there are three main approaches to study the black-
out dynamics in the technical and scientific literature studies[16]. The first
approach describes the network and between their components interaction
in time where the components interaction exhibits equality and inequal-
ity constrained algebraic systems of non-linear differential equations. The
second approach considers the behaviour of the network at steady state by
introducing random fluctuation in the load demand and the third approach
considers the power transmission network as an example of complex sys-
tem whose behaviour depends deeply on its topological properties.

Many researches have been conducted around power transmission net-
works and the failures arising during the transmission. Power transmission
network or power grid consists of generators,transformers, power lines and
power stations[2]. The failure in this system means when a disturbance
occurs on atleast one of these components or the failure inside a particu-
lar component. The failure in the system component can lead to a serious
blackout which result huge crises in the society. But most commonly large
blackout event or avalanches are not abrupt. Cascading failure is the main
mechanism by which large blackouts are likely to happen in such a way that
an initial failure in a particular link of the power grid triggers and slack the

1The collection of properties of infrastructure system that may weaken or limit its
ability to maintain its intended function, or provide its intended services when exposed to
threats that originate both within and outside of the boundaries of the system.
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real functioning of the rest of the neighbouring links[11, 16–18]. Davide
L.Pepnye, in his two folded findings of his work on Topology and cascading
outages[18], it has shown that; 1) a failure induced by cascading line outage
with high entropy in the interconnection is less likely to happen in irregu-
lar grid topology than in regular topology 2)once a cascade line outage is
initiated, grids with more entropy or irregular grids are highly fragile lead-
ing to breaking apart in to disconnected sub-connections after fewer line
failure than regular topologies. Moreover, it was found that in the scenario
of cascading failure there could be two types of causes namely determin-
istic cause and probabilistic cause[19]. Deterministic cause are events in
the process of cascading failure that will certainly occur as a result of a
single or series of events occur such as overload on certain line due to se-
ries outage of components. Probabilistic cause are defined to be the factors
directly related to the actual system risk. The probabilistic or stochastic na-
ture of the system behaviour. The component failures, for example Baldick
et al.[20] stated that failure of protective relays on its neighbouring lines of
the failed one which may cause more lines to trip.

Cascading failure is defined as a sequence of dependent failures of indi-
vidual components that successively weakens the power system. These fail-
ure comprises the physical components, software, procedure, people plus
organizations that design,operate and regulate the power system[20]. Cas-
cading outages can be influenced by the details of the system state, such as
components out for maintenance and the patterns of power transfer, and the
automatic and manual system procedures[17]. Due to complication com-
plete enumeration of all possibilities of cascading is impossible.

An exclusive focus on the causes of the blackout may disregard the
global dynamics of complex system in which repeated major disruptions
from wide variety of sources is a virtual certainty[21]. The analysis of
15-year time series of North American electric power transmission system
blackouts suggested that Self-Organized Criticality(SOC) can govern the
complex dynamics of the blackouts[21]. The statistical result of long time
correlation and probability density function(PDF) for blackouts size in the
North American power grid[1984-1998] was described by SOC. This is
consistent with long range time dependencies and PDF for avalanche sizes
in running sand pile which is known to be SOC[21].

SOC system is one in which the non-linear dynamics in the presence of
perturbations organize the overall average state near, but not at, the state that
is marginal to the major disruptions[21, 22]. If the dynamics of the black-
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outs are confirmed to have some characteristics of SOC, this would open up
possibilities for monitoring statistical precursors of large blackouts or con-
trolling the power system to modify the expected distribution of blackout
sizes[22]. The power law tail of outage of transmission lines, as a scale of
blackout, has been proved to arise from a process of Self-Organization and
cascading failures within the power systems[15]. Conventionally, it was
believed that the probability distribution of the blackout to drop exponen-
tially with increasing size of the blackout which resulted in insignificance of
large sized blackout. But unlike to the conventional systems, SOC systems
which are characterized by spectrum of spatial and temporal scale disrup-
tions, the probability of occurrence of large disruptive events decrease as
a power function of the event size[20]. Blackout size is mainly attributed
by power shed, energy unserved, customers disconnected, restoration time
and number of lines tripped[20].

To understand what measures should be taken in planning management
and operation of power systems to avoid disturbances, it is vital to know
how often and to what extent disturbances occur[14]. In a reformed elec-
tricity market with competition between the utilities, outage analysis is be-
coming more important. Systems for reporting incidents and disturbances
can give increased knowledge on how disturbances arise and how distur-
bances can be avoided. There are different ways for a failure to smear out
through the rest of the network during the blackout event. For example, a
transmission line tripping can cause a transient, overloading of other lines,
operation or misoperation of relays can contribute to system instabilities.
But for the risk of cascading failure, these interactions becomes more se-
vere when the overall system loading increases. And the cascading failure
becomes more likely at the critical loading in which the probability of large
blackouts and the mean blackout size start to rise quickly. The probability
distribution of these blackout sizes has power law dependences [2, 14, 16–
18, 21, 23–26].

According to many researches carried such as in Norwegian and North
American power grid[21], Swedish[14], Norwegian[2], New Zealand[27]
and Chinese[23], the analysis of the failure shows that the size distribu-
tion of the event follows power law which implies blackout of all sizes
can occur. Example according to J.O.H.Bakke and Kertesz[2], the prob-
ability density of the blackout event is proportional to the commutative
probability distribution (∆P−1.65) for the Norwegian power grid and for
the North American power grid(∆P−2.05). The significance of power law
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in the probability distribution of blackout adds the substantial risk of large
blackout near the critical loading[11]. If the blackout cost is proportional to
blackout size, the blackout risk( which is the product of blackout size and
blackout probability remains constant and resulted in comparable large and
small blackout risks[11].

As explained above the probability of occurrence of large disruptive
events of SOC-systems decrease as a power function of the event size. But
it is not easy task to identify whether a system exhibits SOC type dynam-
ics or not. Nevertheless, the existence of correlations of events over long
time scale can be explored to indicate if the system has non-trivial complex
dynamics and non-Gaussian properties[25].

Here we will investigate the mechanisms of blackouts statistics in the
Norwegian, North American and Ethiopian power grid blackouts. We will
emphasise mainly on Scaled window variance(SWV) and rescaled range(RSR)
statistics. The cumulative probability distribution for the three power grid
systems will also be discussed. Likewise, a squared lattice model will be
developed to analyse the statistical and dynamical properties of the black-
out event.
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Chapter 3
The theoretical analysis of blackout

3.1 Autocorrelation

3.1.1 Scaled Window Variance(SWV) Method
To demonstrate the power loss properties of the practical blackout data
for the North American power grid[2] , Norwegian power grid[2] and the
Ethiopian power grid[Ethiopian dispatch control center], we will apply the
scaled window variance as follows[28]. Each set of data have been con-
sidered as a group of time series Xt and the detailed theoretical statistical
derivation is referred from[23].

X = {Xt, t = 1, 2, 3, ..., n} (3.1)

The Brownian motion can be constructed from eq.(3.1) as

Y = {Yt, t = 1, 2, 3, ..., n} (3.2)

Where Yt is the original time integrated Xt and is given by

Yt =
t∑
i=1

Xi (3.3)

A new series Y (m) is then generated for the series Y and m = 1, 2, 3, ..., n.
That is,

Y (m) = {Y m
u , u = 1, 2, 3, ..., n/m} (3.4)

11
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The elements of this series are blocks containing m elements of the initial
series Y . Which means

Y (m)
u = {Ymu−m+1, ..., Yum} (3.5)

The standard deviation σ(u)
m within each of the n/m blocks and contain-

ing m elements is determined as

σ(u)
m =

√√√√√ n∑
m=1

n/m∑
u=1

(
(Yum−m+1, ..., Yum)− µ(u)

m

)2
m

(3.6)

Where µ(u)
m is the mean of the Brownian motion series of n/m blocks and

m elements. After all the average value of the standard deviation σ(u)
m over

the n/m blocks is calculated as

σm =

∑n/m
u=1 σ

(u)
m

n/m
(3.7)

Thus, the time seriesX with defined autocorrelation function can be shown
that the function σm has algebraic tail and scales as power law. That is
σm ∝ mH where H is the Hurst exponent defined earlier. Or

log(σm) = Hlog(m) (3.8)

According to [16], for 0.5 < H < 1, the series Xt has long range time de-
pendent or correlation. And for 0 < H < 0.5 the series has long time anti-
correlations. If H = 1.0, the series Xt is deterministic or the output is pre-
dictable while it is uncorrelated if H = 0.5. Table3.1 shows the autocorre-
lation analysis of the blackouts of Norway power grid from 1995-2005[2],
North America power grid from 1984-2002[2] and Ethiopian power grid
from 2005-2012(collected from the Ethiopian dispatch control center), by
using SWV method.
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3.1 Autocorrelation

Table 3.1: Hurst exponent of blackouts by SWV method

Time series H

Power lost(MW) of Norwegian 0.93
Power lost(MW) of N.American 1.00
Power lost (MW) of Ethiopian 0.75

The detailed calculation of this table is shown in fig3.1, 3.2 and 3.3 us-
ing SWV method. For the North American cases, the result shows H ≈
1.00 which roughly shows that there is strong correlations or predictable
dependence between successive blackouts. Moreover, the other results in-
dicates that there is still proximity to the long range correlation in the Nor-
wegian as well as the Ethiopian blackouts.

10
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10
0.6

10
0.7
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0.8

10
0.9
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σ
(m

)

 

 

power lost

Figure 3.1: Analysis of Norwegian blackout by using SWV method

Figure3.1 shows the log-log plot of the scaled window variance analysis

13



Chapter 3. The theoretical analysis of blackout

of the power lost in the Norwegian power grid. The plot represents the
standard deviation versus the time delay for the successive time series of
blackout events. We found that the standard deviation can be scaled as
power law σm ∝ m0.93, wherem represents the time delay of the successive
time series of the blackout event. The number = 0.93 is the approximate
value of H as already tabulated in table3.1. And since H is less than one
but greater than half, it means that there is long range time correlation or
dependence between the time series of the blackout events.

10
0

10
1

m=Time lag(in days)

σ
(m

)

 

 

power lost

Figure 3.2: Analysis of North American blackout by using SWV method

The above log-log plot in fig3.2 also shows the analysis of power loss
for North American power grid in scaled window variance mechanism.
Similar to the Norwegian system, the North American system also exhib-
ited power law given by σm ∝ m1.00 and the scaling exponent 1.00 is an
approximate value for H . However, unlike to the Norwegian case, here
H ≈ 1.00 shows that the time series of blackout is deterministic or the
causes of the antecedent events in the time series of the blackout events is
sufficiently inevitable.
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Figure 3.3: Analysis of Ethiopian blackout by using SWV method

Furthermore, fig3.3 shows log-log plot of the scaled window variance
analysis of the Ethiopian blackout. The standard deviation is found to be
described as σm ∝ m0.75 with H ≈ 0.75. The linear fit for the plot or the
slop of this plot represents H and it’s value is approximately 0.75. This re-
sult is between one and half which signifies the time series of the Ethiopian
blackout is also characterized by long-range time correlation.

3.1.2 Rescaled range(RSR) methods

The analysis of the blackout can be alternatively attacked using the rescaled
range approach. Similar to the above method a group of time series of the
blackout is considered. The blackout is considered as successive time series
Xt and Yt is the Brownian series for it. The statistical analysis is illustrated
as follows[23].

X = {Xt; t = 1, 2, 3, ..., n} (3.9)
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We can define the average value series of the data as follows with different
number of series(τ ).

〈X〉τ =
1

τ

τ∑
t=1

Xt, where1 ≤ τ ≤ n (3.10)

Then the cumulative deviation of the series is given by

Y (t, τ) =
t∑

n=1

{X(n)− 〈X〉τ}, where1 ≤ t ≤ τ (3.11)

And the range of the data is

R(τ) = max1≤t≤τY (t, τ)−min1≤t≤τY (t, τ) (3.12)

And the standard deviation is determined as

S(τ) =
{1

τ

τ∑
t=1

(X(t)− 〈X〉τ )2
} 1

2 (3.13)

The the time series of the blackout event can be scaled as a power law
defined

R/S ∼ (ατ)H (3.14)

This can be rewritten as

log(R/S) ∼ Hlog(τ) +Hlog(α) (3.15)

The detailed calculation of the rescaled range analysis for the three electric
power systems can be summarized in the following table.

Table 3.2: Hurst exponent of blackouts by RSR method.

Time series H

Power lost(MW) of Norwegian 0.65
Power lost(MW) of N.American 0.52

Power lost(MW) of Ethiopian 0.70
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As we can see in table3.2, the results for H are all larger than half
but less than one. This reveals that the results of RSR method is in good
agreement with SWV method. They shows similar characteristic properties
of the time series of the events in relation to time correlation. The detailed
calculation can be graphically shown as in fig3.4, 3.5 and 3.6.

It is worth mentioning that though power generation was started in the
late 19th century, yet, the documentation of blackout data in Ethiopia is
an old fashion. It is impossible to find well documented and long time
recorded data. This is because there is no advanced digital or electronic
recording technology to register and keep data long so that further study
and amendment on the power system is undertaken. Beside, there is also
lack of skilled human power to develop such technology. So, the above
analysis of blackout data for Ethiopia is based on limited information. It is
clear that a data that is manually recorded and kept in hard file form could
result lost and spoils of information. Thus, the results in the statistical
analysis of Ethiopian blackout is far from perfection.
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Figure 3.4: Analysis of Norwegian blackout by using RSR method.

Figure3.4 shows log-log plot of the rescaled range method of analysing
the blackout. We can see from the plot that the power lost is plotted by
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Chapter 3. The theoretical analysis of blackout

taking time delay between successive time series blackout along the ab-
scissa and the ratio of the range of the time series to the standard deviation
of the time series blackout along the ordinate. The linear fit to the plot
is implemented to to find power law scaled like R/S ∝ (ατ)0.65 where
R, S, α and τ are range, standard deviation, scaling constant and average
value series(eq.3.10) respectively. The scaling exponent(0.65) is an approx-
imate value for H . Thus, since the value of H in this case is less than one
but greater than half, the result is consistent with scaled window variance
method. It is found that there is long-range time correlation between suc-
cessive events of the time series of the Norwegian blackout.
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Figure 3.5: Analysis of North American blackout by using RSR method.

This figure3.5 also shows the log-log plot of the rescaled range anal-
ysis of the North American blackout. It is found that the the power loss
can be possibly scaled by power law described as R/S ∝ (ατ)0.52. There
is long time range correlation as the value of H is still greater than half
though the value in the case of scaled window variance method is approx-
imately 1.00 which showed the dependence on successive events is rela-
tively strong. The reason for the deviation of the numerical result can be
the inclusion of large scaled failures caused by hurricanes and ice-storms
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3.1 Autocorrelation

in North American data[2] compared to Norwegian and Ethiopian data.
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Figure 3.6: Analysis of Ethiopian blackout by using RSR method

Likewise, we can present the rescaled range analysis of the Ethiopian
data as shown in figure3.6. The power loss is plotted using log-log mech-
anism by taking time delay along the abscissa and R/S along the ordi-
nate and it is found that the power loss can be scaled by the power law as
R/S ∝ (ατ)0.70. This result is similar with the SWV method of analysis for
the Ethiopian grid system which shows that there is long time correlation
between the blackout events. Thus, it is good to generalize that the power
loss could be possibly scaled as power law using both the scaled window
variance and rescaled range methods.
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Chapter 4
Discussion of Bakke, Hansen and
Kertesz model

This model was developed to study the size distribution of blackouts for the
Norwegian and North American power grids. The result revealed that the
size distribution in both systems follows power law. In addition, the model
compares the size distribution in artificial(regular and irregular networks)
and real networks.

Statistical analysis of failure in power grid is contingent in energy un-
served or power lost. However, though both of these physical quantities
leads to power law, in this paper power lost was used to characterize the
statistical property of the failure. Because it is believed that this is better
quantity compared to energy unserved which can depend on the technical
repairing of the failed line by human.The primary goal in this task was to
compare the model introduced in this paper with the power loss distribu-
tion for the Norwegian, North American[? ]. It was focused on avalanches
triggered by removal of a single node.

The model described the cascade or avalanche effects by considering
regular and irregular networks each having the same electrical conductors
of the same conductance. First, a current is injected at a random node with
another node different from the injection point acting as a current drain.
The potential difference that is created between the two nodes helps the
determination of each current in the link using kirchhoffs equations[29].
Having the currents i at hand, a breakdown threshold t is assigned to each
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Chapter 4. Discussion of Bakke, Hansen and Kertesz model

link that satisfies linear relationship with the corresponding current.

t = (1 + α)i (4.1)

where α is a positive number and it represents that each transmission line
has been constructed with fixed tolerance α.

Now following similar procedure to random fuse model[30], a link is
selected randomly and remove it to initiate the triggering of failure in the
network. The currents are then recalculated again. This gives global rear-
rangement of the network unlike to self-organized criticality[10]. Follow-
ing this some links will carry currents above the threshold limit. These links
are also removed and currents are calculated again. The process of remov-
ing will continue as far as there are links in the network which have current
values above the boundary or threshold. This removal process models the
avalanche effect in the entire network.

To proceed let Gi be the conductance between the source and the sink
before the initial random removal of a link and Gf be the conductance at
the end of the avalanche process. The difference between these conduc-
tance values gives the magnitude of the avalanche size generated during the
removal process.

∆G = Gi −Gf (4.2)

Assuming the voltage V between the source and the sink nodes to be fixed
during the blackout event, the change in conductance ∆G will be propor-
tional to the power loss.

∆P = Pi − Pf = V 2∆G (4.3)

Where we redefine ∆G for normalization process as

∆G =
(Gi −Gf )

Gi

(4.4)

The ultimate result found in this study was based on generated en-
sembles of networks where for each network systematically chosen every
link as initiator of the blackout.Two classes of networks have been stud-
ied. 1) The Random networks: with exponential degree distribution of
P (k) ∝ e−0.5k which is the same as for the Norwegian and North Ameri-
can networks. 2) Small-world networks[31] with mean degree 2.67. Mean
degree is defined as the average number of edges or links incident to the
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Figure 4.1: Probability density function for the conductance lose[2]

vertexes or nodes[32]. Both classes have mean characteristic length l that
scales logarithmically with system size. We can see from the left side of
fig4.1 that there are four different plots each of which follows power law.
The data for the regular network(triangular and square lattice), moved two
orders of magnitude to separate from the irregular lattice(exponential and
small-world networks). The right side of the plot indicates the implementa-
tion of the model on the Norwegian(1220 nodes) and North American(4941
nodes) power grids. The straight lines shown are the linear fit for the data
points and it represents the power law property of the probability density
function for the conductance loss.

The simulations have been done with the artificially generated data for
network sizes up to 5041 nodes for four different artificial networks apply-
ing the conjugate gradient algorithm to solve the kirchhoffs equations[29].
And as it was mentioned above, it has been found from the plot that the
probability density of the conductance change for the irregular(random ex-
ponential and small-world) and regular lattice follows power law with two
different exponents. The one with smaller exponent or small event regime
is independent of the network and lattice type, and is approximated by the
power function

p(∆G) ∼ ∆G−0.5 (4.5)

But the large exponent or large event regime is likely to be dependent on the
network type. It is represented by two power law with different exponents.
The irregular networks follow power law with exponent of −1.5 ± 0.05
while the regular network is characterized with an exponent of−2.0±0.07.
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Chapter 4. Discussion of Bakke, Hansen and Kertesz model

The simulation has been done for α = 3.0. For small values of α, large
number of breakdowns resulted in breaking of the system completely with
∆G = 1.0 and the power law tail is destroyed for large ∆G. However,
large values of α never change the tail of the distribution. For real power
blackout data the largest events recorded affected 5% of the total capac-
ity of the system which reveals that the use α that can’t break the system
completely(∆G < 1). In addition to this it has been found that the initial
current as well as threshold distribution follows power law in both random
and small-world networks.

The mean-field estimation of current distribution for the random and
exponential network has been found to be

P (i) ∼ 1

i
(4.6)

The idea here is that when current is injected in to the network at the ori-
gin, the cumulative current distribution P (i) is proportional to the average
number of links n(r) at a distance r from the origin where n(r) is inversely
proportional to i(r). The qualitative analysis of the relation between n(r)
and r as well as between P (i) and i is given in the fig4.2

Figure 4.2: a)n(r) versus r for exponential and small-world network. b) P (i)
versus i. The inset shows ∆G versus i for α = 3.0. The solid line in the inset is
i2. [2]

The left side of fig4.2 represents the average number of neighbours n(r)
versus r for the exponential and random networks, and it shows that n(r)
is increasing function of r. The straight line represents the increasing slope
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of n(r). Moreover, it is worth mentioning that due to finite size for the
network, n(r) fall for large value of r. For general cases, n(r) is monoton-
ically increasing function of r if the network considered has infinite size.
Similarly the right side of figure4.2 shows the characteristics of cumulative
current distribution versus current for 5041 nodes. The distribution func-
tion satisfies the relation P (i) ∼ i−1 which is consistent with the previously
theoretically derived result.

The mean-field argument also gives P (i) ∼ i−2, where n(r) ∼ 1r for
the square and triangular lattice . The derivation of the relation between
the conductance loss to the system when a certain bond is removed and the
current through that bound is given by

∆Gk ∼ i2k (4.7)

where k is the removed bond. From equations (4.6) and (4.7) we could
expect the distribution function in terms of conductance loss p(∆G) ∼
∆G−1.5 and p(∆G) ∼ ∆G−2.0 for exponential and random networks, and
regular networks respectively which are consistent with the result elab-
orated in fig4.1. In the end, the results from the simulation have been
compared with the analysis of blackouts data from Norwegian main power
grid[∆P > 0.1MW ) and the data from the largest blackouts in the North
American power grid( with ∆P > 10MW )[2].

Figure 4.3: a)cumulative distribution P (∆P ) for power loss in the Norwe-
gian(373 events) and North American(390 events) power grid. b) P (∆P )∆P 0.65

for blackout events ∆P for the Norwegian and North American power grid.[2]

In fig4.3, we can see that the cumulative probability reflects the prob-
ability to find blackout event larger than or equal to ∆P . This function
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Chapter 4. Discussion of Bakke, Hansen and Kertesz model

was exploited from the real data by ordering in ascending order and plotted
event k along the abscissa with k

(N+1)
along the ordinate. N is total num-

ber of blackout event recorded[2]. Meanwhile, the cumulative probability
in the right side of fig4.3 is multiplied by ∆P 0.65 after shifting the North
American data from the left side of fig4.3 for the sake of simplifying com-
parison. The ensuing flat plateau in the Norwegian data verifies that the
probability density follows power law of the form p(∆P ) ∼ ∆P−1.65 and
it falls faster for larger ∆P . But the North American data did not show
such plateau rather it gives consistent result with the power law regime cor-
responding to p(∆P ) ∼ ∆P−1.9. The inset shows P (∆P )∆P 1.05 which
indicates the probability density to be of the form p(∆) ∼ ∆P−2.05 for
the North American data which is in agreement with −2 exponent for this
blackout distribution without cut-off for large ∆P .

In fig4.1, the fitted power laws to the distribution with exponents−1.65
and−1.9 shows the execution of the model on Norwegian and North Amer-
ican power grids[2]. We possibly observe that the artificial data produced
by the model are in agreement with real data observed in the Norwegian
power grid, however, the observed data for North America are not found to
be convincing. Moreover, it can be interestingly observed that the power
law for moderately sized blackout data lie in between the results of the
model implemented on the irregular networks(exponent −1.5) and regu-
lar lattices(exponent −2). But the model doesn’t reproduce large-scale
blackout distributions for the Norwegian power grid which falls faster than
∆P−1.65 though it is possible to see small-scale regime as observed in fig4.1
of the artificial networks. So, it is possible to infer that the model intro-
duced here is capable of producing some features of the observed blackout
distribution quantitatively with reasonable precision.

It can be noted that the inclusion of large events such as snowstorms
and hurricanes in the North American data, is the reason for the difference
of the distribution for large value of ∆P while the Norwegian data doesn’t
include these events. The cause of cut-off in the Norwegian data is due to
the difference in nature of widespread events like hurricane compared to
the power line fault. In addition to this, the reason why the power law or
exponent for the Norwegian power grid is close to the irregular networks
where this is based on breaking of single link.

Nonetheless, the cause of the difference in the conductance loss distri-
bution from the simulated result of Norwegian and North American power
grid is not clear. But looking at more than the degree distribution, it shows
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that there are two differences in n(r). The first difference is that for small
values of r, n(r) for Norwegian network is closer to the exponential net-
work than North American network. The second is n(r) for Norwegian
network is has pronounced peak where as, the North American network
is more of plateau compared to Norwegian network. This could elaborate
the difference in conductance loss distribution(p(∆G)) observed from the
simulation of the networks.
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Chapter 5
Square lattice model

Mathematical models developed to describe statistical dynamics in com-
plex systems(example power outages in power grid )are not universally ac-
cepted theory but able to reflect some interesting characteristic phenomena.
The practically used models are therefore capable of compromising the de-
gree of complication and the expected accuracy of the modelling[33].

Dynamics in complex networks particularly power grid has been mod-
elled using different mechanisms such as cascading model[16, 24], im-
proved OPA model[34], self-organized criticality[10] and so forth which
characterizes the power law distribution.

This study will mainly stress on modelling of the transport properties of
networks featured by conductance typically the electric power grid. Power
grid also called electric power distribution system constitute components
like generators, transformers, distribution substations (can be collectively
considered as nodes) and the transmission lines. Connectivity in the ran-
dom networks are statistically homogeneous and the probability of finding
highly connected nodes falls exponentially p(k) ∝ e−k for k > the mean
degree 〈k〉 , where degree k describes the number of links connecting a
given node to another node[35, 36]. On the other hand, degree distribu-
tion in scale-free(SF) networks follows power law as p(k) ∼ k−γ where
γ represents the scaling exponent[24]. It can be noticed that it is unlikely
to have high degree probability in the random network. In other words,
for the same number of nodes and edges, the probability of high degree
nodes is less in random networks than scale free networks[35]. According
to Watts and Strogatz (1998), regular networks such as power grid is char-
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Chapter 5. Square lattice model

acterized by small world property locally with high degree of clustering
and globally small characteristic length[35]. Clustering coefficient is de-
fined as the magnitude of the connectivity extent to which neighbours of a
certain node connected to it are also connected to each other. characteristic
length is also defined as the number of edges in the shortest possible path
connecting two nodes averaged over all the nodes of the network. Sparsely
distributed power grids have less mean degree such as Norway compared
to North America’s power grid which is densely scattered[35]. So, it is
not difficult to guess that Ethiopian power grids have very small mean de-
gree(not researched) because the available power supply in the country is
very limited.

The failure distribution for Norwegian and North American has already
been studied and showed that the size of the failure distribution follows
power law[2]. This study of size distribution was based on power loss on
the Norwegian and North American power grid. The statistics of failures
can possibly depend not only on power loss but also on energy unserved.
However, energy unserved is not preferable quantity to characterize the size
of failure as it depends on human(technicians) time taken to restore the
transmission line from malfunctioning.

We will now present a model which is similar to the model in chapter
four to describe the cascading effects quantified by power loss. We will
consider L × L squared lattice(see fig5.1) where each nodes situated at
the lattice are connected by transmission lines of fixed tolerance[5]. Bi-
periodic boundary condition is imposed to incorporate large bonds of the
system for simulation. Following the same procedure as the the previous
model in chapter four, we first injected a current randomly to a selected
node with another node different from the first node considered as current
drain. The network is assumed to have electrical conductors of the same
conductance. The potential difference created between the two nodes can
be solved by kirchhoffs equation to find the current in each link using conju-
gate gradient method[29]. Steepest descent method[37] is the simplest and
efficient method in conjugate gradient technique to handle particular sys-
tems of linear equations(kirchhoffs equation in our case) which is the same
as successive one dimensional minimization of the function constructed by
a series of voltage vectors along the direction of local gradient[29]. Follow-
ing the determination of the currents in each link, a breakdown threshold t
given by eq(4.1), is assigned to each link.

The network can now be perturbed by systematically choosing a link
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Figure 5.1: Square lattice network

and removing it so that current redistribution through out the intact lattice
will occur. Then the new current in each link is recalculated and found that
the current is globally redistributed unlike to self-organized criticality[10]
which prohibits local rearrangement for certain type of failure. This time
more or less there is contingency in the transmission lines since they are
forced to carry an extra or deficit of the load due to the removal of the
link. Therefore, some links will carry a current larger than their threshold
capacity and then these links are removed from the system. The currents
in the still intact part of the network are again calculated. The process of
removing links with current higher than the limiting amount continue until
all links will have a current less than the boundary.

The difference of the conductance between source and sink before ini-
tial random removal(Gi) and the conductance after the avalanche is finished(Gf )
measures the size of the avalanche generated during the removal process(
eq(4.2)). Then the power loss due to this avalanche is determined by eq(4.5).
Now we will plot the conductance change versus probability density func-
tion using the data generated by our model. It is good to note that we use
log-log mechanism to plot the following figures.
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Figure 5.2: a) Illustration of 180×180 probability density function of conductance
loss for α = 1.0 and α = 3.0. b) Illustration of 180 × 180 probability density
function of conductance loss for different value of α = 3.0 and α = 6.0

Fig5.2 shows the probability density of conductance change ∆G for
180 × 180 square lattice. As shown in fig.5.2a), we observe that the con-
ductance change follows power law characterized by p(∆G) ∝ ∆G−0.56

for α = 1.0 and p(∆G) ∝ ∆G−0.60 for α = 3.0. We also found that
the probability density of the conductance change follows power law de-
scribed as p(∆G) ∝ ∆G−0.58 for α = 6.0(fig.5.2b). The scaling exponent
of the conductance change or head of the power law distribution decrease
from −0.56 to −0.60 when the value of alpha increases from α = 1.0 to
α = 3.0. But when α increase from 3.0 to 6.0, the scaling exponent falls
from −0.60 to −0.58 without significant change on the tail of the power
law distribution. This tells us the robustness of transmission lines towards
failure increases with its tolerance capacity up to specific value of α(which
is approximately 3.0 for this case study) and head of the density distribu-
tion remains almost constant above this value. On the contrary, the tail of
the power law for the conductance change disappears for smaller value of
α(α < 3.0). This is because when the tolerance value for the electrical con-
ductor is small, they are easily exposed to breakdown which leads to large
sized blackout events as we have already observed in our simulation. So,
for small value of α, the tail of the probability density does not behave like
power law distribution.
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Figure 5.3: a) Illustration of 160×160 probability density function of conductance
loss for α = 1.0 and α = 3.0. b) Illustration of 160 × 160 probability density
function of conductance loss for different α = 3.0(blue data points) and α = 6.0

In fig5.3, we are able to see similar properties as in fig.5.2. The prob-
ability density function of the conductance loss follows power law given
by p(∆G) ∝ ∆G−0.58 and p(∆G) ∝ ∆G−0.60 respectively for α = 1.0
and α = 3.0 as shown in fig.5.3a. The probability density function of the
conductance loss also follows power law expressed as p(∆G) ∝ ∆G−0.60

for α = 6.0(fig.5.3b). In the same argument as before, the scaling expo-
nent of the power law for the conductance change decrease from −0.58(for
α = 1.0) to −0.60(for α = 3.0). But unlike to 180 × 180 lattice size, in-
creasing α further never changed the exponent of the conductance change
as shown in fig.5.3b. We can infer from this that for 160× 160 lattice size,
the scaling exponent of the conductance change depends on α up to certain
value which is 3.0 and remains constant for larger value of α. On the other
hand, comparing the scaling exponent of conductance change in fig.5.2a
and fig.5.3a for case α = 1.0 as well as in fig.5.2b and fig.5.3b for case
α = 6.0, it reveals that the exponent decreases from −0.56 to −0.58 and
from −0.58 to −0.60 respectively when the lattice size decreases from 180
to 160. But the exponent remains constant for α = 3.0 which is −0.60.
Thus, the scaling of the power law for conductance change also depends on
lattice size when α 6= 3.0. But for α = 3.0, it is constant for lattice size 180
and 160.
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Figure 5.4: a) Illustration of 140×140 probability density function of conductance
loss for α = 1.0 and α = 3.0. b) Illustration of 140 × 140 probability density
function of conductance loss for different values of α = 3.0 and α = 6.0

Fig5.4 is also the probability density function for the squared lattice
with 140 × 140. We found that the exponent of the conductance change
specially its head is the same for α = 3.0 and α = 6.0 which is given by
the relation p(∆G) ∝ ∆G−0.62 (see fig.5.4b). But as shown in fig.5.4a, the
probability density drops from p(∆G) ∝ ∆G−0.59 to p(∆G) ∝ ∆G−0.62

when α increased from 1.0 to 3.0 while it remains constant when α in-
creased to 6.0. This also concludes that for a square lattice of size L = 140,
the robustness of the electrical conducting lines depends on the tolerance
up to specific value which is numerically 3.0. Beside to this, for a fixed
value of α( 0 < α < 3.0), fig.5.3a and fig.5.4a shows the exponent of the
power law for conductance change decreases from −0.58 to −0.59, and in
fig.5.3b and fig.5.4b, the exponent drops from −0.60 to −0.62 for α ≥ 3.0.
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Figure 5.5: a) Illustration of 120×120 probability density function of conductance
loss for α = 1.0 and α = 3.0. b) Illustration of 120 × 120 probability density
function of conductance loss for different values of α = 3.0 and α = 6.0

The same characteristics of the power law is observed for the square
lattice 120× 120 of fig.5.5. The relation p(∆G) ∝ ∆G−0.64 and p(∆G) ∝
∆G−0.60 describes the probability density of the conductance change for
α = 3.0 and α = 1.0 respectively(fig.5.5a). And the probability density
of the conductance change for α = 6.0 is found to be p(∆G) ∝ ∆G−0.63.
We can see from the probability density expressions that still the conduc-
tance change depends on the value of α for α < 3.0 though there is slight
deviation for α > 3.0. Furthermore, comparing to fig.5.4, the power of
conductance change decreases from −0.59 to −0.60 for α = 1.0 and from
−0.62 to−0.64 for α = 3.0(see fig.5.4a and 5.5a). So, for fixed α, again we
see that the strength of the conductance change dependence on the lattice
size decreases when the lattice size is decreased from L = 140 to L = 120.
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Figure 5.6: a) Illustration of 100×100 probability density function of conductance
loss for α = 1.0 and α = 3.0. b) Illustration of 100 × 100 probability density
function of conductance loss for different values of α = 3.0 and α = 6.0

Fig.5.6 shows the probability density function of conductance change
for different values of α. In fig.5.6a, we see that the probability density of
the conductance change is described by p(∆G) ∝ ∆G−0.63 for α = 1.0 and
p(∆G) ∝ ∆G−0.67 for α = 3.0. Moreover, p(∆G) ∝ ∆G−0.67 describes
the probability density for α = 6.0(see fig.5.6b). From the plots we can
deduce that L = 100 also display the same properties as the earlier lattice
sizes. Beside, the exponent of the conductance change has also dropped
compared to the conductance change for lattice size L = 120.
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Figure 5.7: a) Illustration of 80× 80 probability density function of conductance
loss for α = 1.0 and α = 3.0. b) Illustration of 80×80 probability density function
of conductance loss for different values of α = 3.0 and α = 6.0

Figures 5.7a and b, represents the probability density described by p(∆G) ∝
∆G−0.67 and p(∆G) ∝ ∆G−0.71 respectively for α = 1.0 and α = 3.0/α =
6.0. The result shows the exponent of the probability density of the conduc-
tance change decreases from−0.67 to−0.71 when α increased from 1.0 to
3.0 and remained constant when α increased to 6.0. Thus, for fixed value
of lattice size L = 80, the conductance change depends on tolerance up
to specific value(i.e α = 3.0] but the scaling exponent for the conductance
change remains the same when α increased further. And when we look
at the dependence of conductance change on lattice size under constant α
of fig.5.7 relative to fig.5.6, the scaling exponent declined from −0.63 to
−0.67 for α = 1.0(see fig.5.6a and 5.7a), and from −0.67 to −0.71 for
α = 3.0, 6.0(see fig.5.6b and 5.7b).
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Figure 5.8: a) Illustration of 60× 60 probability density function of conductance
loss for α = 1.0 and α = 3.0. b) Illustration of 60×60 probability density function
of conductance loss for different values of α = 3.0 and α = 6.0

Fig.5.8 shows the probability density of the conductance change for the
squared lattice sized 60 × 60. Unlike the previous properties, the proba-
bility density of the conductance change follows Gaussian distribution of

the form p(∆G) ∝ e
−(log(∆G)−µ)2

2σ2 , where µ = −11.0 is the mean of the
distribution and σ2 ≈ 2.80 is the variance of the distribution. It is worth
mentioning that the negative value of mean indicates the conductance value
between the source and the drain of the system of the conducting lines be-
fore an initial removal of the link is less than the conductance value after
the end of the avalanche. We also found that the probability density of
conductance change is similar for all all values of α.
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Figure 5.9: a) Illustration of 40× 40 probability density function of conductance
loss for α = 1.0 and α = 3.0. b) Illustration of 40×40 probability density function
of conductance loss for different values of α = 3.0 and α = 6.0

For small values of the lattice size(40 × 40) or for the squared lat-
tice containing small number of nodes the probability density function of
the conductance change follows Gaussian distribution given by p(∆G) ∝
e

−(log(∆G)−µ)2

2σ2 , with a negative mean value(µ ≈ −10.0) and variance(σ2 ≈
3.0). The negative value of mean tells us that the conductance change be-
tween the source and the sink of the network before the initial removal of
the link is less than the conductance change after the avalanche is finished.
From fig.5.9, we can see that the probability density is similar for all values
of α which implies that the for small value of lattice size, probability den-
sity of the conductance change behaves like Gaussian and is independent
of the tolerance value.
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Figure 5.10: a) Illustration of 20×20 probability density function of conductance
loss for α = 1.0 and α = 3.0. b) Illustration of 20×20 probability density function
of conductance loss for different values of α = 3.0 and α = 6.0

Referring to this figure5.10, the probability density of the conductance
change fallows Gaussian distribution like for the lattice sizes L = 60 and
L = 40. The plot shows that for all values of α > 1.0, the probability den-
sity describing the conductance change is similar and defined by the relation

p(∆G) ∝ e
−(log(∆G)−µ)2

2σ2 , where µ is the mean with a value of approximately
−8.0 and variance σ2 ≈ 3.2. The negative value of the mean signifies the
same argument as earlier Gaussian distributions. The only difference ob-
served is that the right tail of the previous Gaussian distributions(fig.5.8 and
5.9) is short while for L = 20 or fig.5.10, the right and left tails are almost
similar and relatively fatter. The cause of shorter tails in fig.5.8 and 5.9 can
be be argued that for relatively small lattice sizes(L < 80), at the beginning
of the removal process of modelling the avalanche effects, the removal of
the links in the first few iterations can’t lead to blackout event. On the con-
trary at the end of the removal process due to threshold, produces relatively
successive blackout events which resulted longer right tail in the Gaussian
distribution.

Now we will see the qualitative properties of the practical blackout
data’s for the North American power grid, Norwegian power grid and Ethiopian
(collected from the Ethiopian dispatch control center of the power distribu-
tion). As it was mentioned in chapter three, the Ethiopian data are mainly
from 2005-2012 but all the events that happened between this period was
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not recorded and that it is not inclusive. So, the data is small enough due
to the fact that EEPCO(Ethiopian Electric Power Corporation) has no mod-
ern technology to record data rather they were using the traditional way
of recording blackout data which could result loss of important data used
for further study purpose. Due to this reason, it was difficult to find long
time recorded data for studying the over all properties of blackout event
in Ethiopia. However, we tried to investigate the statistical analysis with
the data at hand though it is far from perfection. As per the technician’s
description, the main reasons for Ethiopian power failures are human op-
eration, earth fault, heavy raining and lightning. Thus, only small scale
blackouts occur while the North American power grid also incorporate fail-
ures due to hurricanes, and snowstorms that makes loss of power in large
scale. Moreover, power service in Ethiopia is very limited because power
infrastructure in Ethiopia is very limited as it is developing country. There-
fore, limitation of the power coverage has its own impact in statistical study
of the blackout event. This is because, the data collected is not large enough
to make concluding analytical or statistical results describing the real power
system dynamical property.
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Figure 5.11: Cummulative distribution P (∆P ) for blackout events in the Ameri-
can(232events), Norwegian(373 events) and Ethiopian(28 events)

Figure5.11 shows the cumulative probability P (∆P ) giving the proba-
bility to find an event larger or equal to the change in power lost(∆P ). This
function(∆P ) is extracted from the corresponding data by ordering them in
descending order and then plotting using log-log mechanism with the event
β(which represent ∆P ) along the abscissa and β

(N+1)
(representing P (∆P ))

along the ordinate. N represents the total number of events in the corre-
sponding country. The result showed that all the data follows power law,
and with the available data, it shows that Norwegian data has larger scaling
exponent than North American as well as the Ethiopian data while North
American data has slightly larger exponent and in a short range regime falls
below Ethiopian data.
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Figure 5.12: Cummulative distribution P (∆P ) for blackout events in the Ameri-
can(232events), Norwegian(373 events) and Ethiopian(28 events)

Figure5.12 represents the cumulative probability of finding an event
larger or equal to power lost(∆P ). But unlike to the above, here the func-
tion (∆P ) is extracted from the data by ordering them in ascending order
and plotting using log-log approach with the event β along the abscissa and
1− β

(N+1)
along the ordinate. As we can see from the plot, we found similar

properties as the preceding figure.
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Chapter 6
Conclusion

Blackout is considered as unexpected phenomena in electrical power grids
because it happens without warning which makes effect analysis and mod-
elling to be relatively complicated. The prominent objective of this paper
is to study the characteristics of the size distribution of failures in the Nor-
wegian, North American and Ethiopian power grids. Moreover, blackout
event is modelled by the squared lattice network. The numerical analysis
of squared lattice network is conducted to show the statistical properties of
failures prone in a specified network.

The theoretical statistical analysis of the blackout events occurred in
the Norwegian, North American and Ethiopian power grids is examined
by mechanisms of SWV and RSR. The correlation or dependence between
successive events of the blackout is determined using the above two meth-
ods. On the other hand, the model developed here is to understand the
probability distribution of the blackout event in a squared lattice network.
The avalanche in this network is triggered by systematic removal of a single
node from the link, where the links are constructed from conducting lines
of the same conductance.

The SWV and RSR analysis of time series of blackout events recorded
from the Norwegian, North American and Ethiopian power grid shows that
the event can be scaled by power law and the scaling exponent gives the
Hurst coefficient of the time series of blackouts. The Hurst coefficient quan-
tifies the degree of correlation between time series of successive events. We
found that in both cases(SWV and RSR), the value of Hurst coefficient for
the Norwegian data is 0.50 < H < 1.00. This indicates that in the Nor-
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wegian power grid, there is long range time dependence between blackout
events which means high value of the blackout event in the time series will
be probably followed by another high event and its converse. The North
American data also showed that the value of the Hurst exponent is between
0.50 and 1.00 and hence long-range time correlation between the events.
The SWV and RSR analysis for Ethiopian data are also in good agreement
giving the Hurst exponent to be 0.75 and 0.70 which is in the range for long
range time dependence between the blackout events. But it is hard to be-
lieve the analysis in the case of Ethiopian power grid because the empirical
data given is too small. Thus, further study is recommended to widen the
coverage of multiple blackout events for sake of perfection.

The statistical analysis of computer generated data in the squared lattice
model is also presented. we found that the probability density function for
the conductance change follows power law and the scaling exponent of the
power law represents the dependence of the conductance change or power
loss on the tolerance of the conducting line or the size of the lattice. For a
fixed lattice size(180 ≤ L ≤ 80), we show similar characteristics. The scal-
ing exponent for the conductance change decrease when α increased from
1.0 to 3.0 but increasing α to 6.0 does not change the tail of the power law
though there is slight deviation on the head of the distribution. Similarly,
for fixed α(1.0 ≤ α ≤ 3.0 and 3.0 ≤ α ≤ 6.0), the scaling exponent in-
creases when the lattice size increased from L = 80 to L = 180. However,
the probability density function for the conductance change behaves Gaus-
sian distribution for the lattice size less than 80. Close to L = 80, the left
tail of the distribution is shorter compared the right which is also slightly
fatter where as, for L = 20, the tails of the distribution are equivalent.

We also analysed the probability distribution or cumulative distribution
for the empirical data of blackout event for the Norwegian, North American
and Ethiopian power grids. The distribution follows power law for all the
data and it shows that all the distribution function(P (∆P )) falls faster for
large value of ∆P .

46



Bibliography

[1] U.S. Canada Power System Outage Task Force. Final Report on the
August 14, 2003 Blackout in the United States and Canada. U.S Sec-
retary of Energy and Minister of Natural Resources Canada, 2004.

[2] A. Hansen J.O.H.Bakke and Kertesz. Failures and avalanches in com-
plex networks. Journal of Europhysics. Lett, 76(4), 2006.

[3] Cutler J.cleveland. Encyclopedia of Energy. Elsevier Academic Press,
2004.

[4] G. N. Tiwari and R. K. Mishra. Advanced Renewable Energy Sources.
RSC, 2012.

[5] J. A. Alves-Gomes. The evolution of electroreception and bioelec-
trogenesis in teleost fish: a phylogenetic perspectiv. Journal of Fish
Biology, 2001.

[6] Moller Peter and Bernd Kramer. Electrocomunication in teleost
fishes: Behavior and experiment. American Institute of Biological
Science, 41(11):794–6[794], 1991.

[7] Gordon Keith Chalmers. The lodestone and the understanding of mat-
ter in seventeeth century england. The University of Chicago Press, 4
(1):75–95, 1937.

[8] Hubregt J. Visser. Array and Phased Array Antenna Basics. John
Wiley and Sons, Ltd, 2005.

47



[9] Matthew H. Brown and Richard P. Sedano. Electricity Transmission:
A Primer. NCSLS, 2004.

[10] Xingyong Zhao, Xiubin Zhang, and Bin He. Study on self orga-
nized criticality of china power grid blackouts. Energy Conversion
and Management, 50(3), 2009.

[11] Dusko P. Nedic, Ian Dobson, Daniel S. Kirschen, Benjamin A. Car-
reras, and Vickie E. Lynch. Criticality in a cascading failure blackout
model. International Journal of Electrical Power and Energy Systems,
28(9), 2006.

[12] de Arcangelis, L., Redner, S., and Herrmann, H.J. A random fuse
model for breaking processes. J. Physique Lett., 46(13), 1985.

[13] D.E. Newman, B.A. Carreras, V.E. Lynch, and I. Dobson. Exploring
complex systems aspects of blackout risk and mitigation. 60(1), 2011.

[14] . Holmgren and S. Molin. Using disturbance data to assess vulnera-
bility of electric power delivery systems. 12(4), 2006.

[15] Duan Xianzhong and Su Sheng. Self-organized criticality in time se-
ries of power systems fault, its mechanism, and potential application.
Power Systems, IEEE Transactions on, 25(4), 2010.

[16] A. Farina, A. Graziano, F. Mariani, and F. Zirilli. Probabilistic anal-
ysis of failures in power transmission networks and phase transitions:
Study case of a high-voltage power transmission network. Journal of
Optimization Theory and Applications, 139(1), 2008.

[17] M. Vaiman, K. Bell, Y. Chen, B. Chowdhury, I. Dobson, P. Hines,
M. Papic, S. Miller, and P. Zhang. Risk assessment of cascading out-
ages: Methodologies and challenges. Power Systems, IEEE Transac-
tions on, 27(2), 2012.

[18] DavidL. Pepyne. Topology and cascading line outages in power grids.
Journal of Systems Science and Systems Engineering, 16(2), 2007.

[19] Bei Gou and Weibiao Wu. Is the prediction of power system blackouts
possible? In Power and Energy Society General Meeting - Conversion
and Delivery of Electrical Energy in the 21st Century, 2008 IEEE,
2008.

48



[20] R. Baldick, B. Chowdhury, I. Dobson, Zhaoyang Dong, Bei Gou,
D. Hawkins, H. Huang, Manho Joung, D. Kirschen, Fangxing Li,
Juan Li, Zuyi Li, Chen-Ching Liu, L. Mili, S. Miller, R. Podmore,
K. Schneider, Kai Sun, D. Wang, Zhigang Wu, Pei Zhang, Wenjie
Zhang, and Xiaoping Zhang. Initial review of methods for cascading
failure analysis in electric power transmission systems ieee pes cams
task force on understanding, prediction, mitigation and restoration of
cascading failures. In Power and Energy Society General Meeting
- Conversion and Delivery of Electrical Energy in the 21st Century,
2008 IEEE, pages 1–8, 2008.

[21] B.A. Carreras, D.E. Newman, I. Dobson, and A.B. Poole. Evidence
for self-organized criticality in a time series of electric power system
blackouts. Circuits and Systems I: Regular Papers, IEEE Transactions
on, 51(9), 2004.

[22] B.A. Carreras, V.E. Lynch, D.E. Newman, and I. Dobson. Black-
out mitigation assessment in power transmission systems. In System
Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on, pages 10 pp.–, 2003.

[23] Xiaofeng Weng, Yiguang Hong, Ancheng Xue, and Shengwei Mei.
Failure analysis on china power grid based on power law. Journal of
Control Theory and Applications, 4(3), 2006.

[24] Rong LiLi Wang Jian-wei. Effect attack on scale-free networks due
to cascading failures. Chines Physics Lett, 25(10), 2008.

[25] B.A. Carreras, D.E. Newman, I. Dobson, and A. B. Poole. Initial evi-
dence for self-organized criticality in electric power system blackouts.
In System Sciences, 2000. Proceedings of the 33rd Annual Hawaii In-
ternational Conference on, pages 6 pp.–, 2000.

[26] Benjamin A Carreras, Vickie E Lynch, ML Sachtjen, Ian Dobson, and
David E Newman. Modeling blackout dynamics in power transmis-
sion networks with simple structure. 2001.

[27] Graeme Ancell, Conrad Edwards, and Vladimir Krichtal. Is a large
scale blackout of the new zealand power system inevitable. In Elec-
tricity Engineers Association 2005 Conference Implementing New
Zealands Energy Options, Aukland, New Zealand, 2005.

49



[28] Michael J. Cannon, Donald B. Percival, David C. Caccia, Gary M.
Raymond, and James B. Bassingthwaighte. Evaluating scaled win-
dowed variance methods for estimating the hurst coefficient of time
series. Physica A: Statistical Mechanics and its Applications, 241
(34), 1997.

[29] Ghassan George Batrouni and Alex Hansen. Fourier acceleration of it-
erative processes in disordered systems. Journal of Statistical Physics,
52(3-4), 1988.

[30] Paolo Crucitti, Vito Latora, and Massimo Marchiori. A topological
analysis of the italian electric power grid. Physica A: Statistical Me-
chanics and its Applications, 338(12), 2004.

[31] M.E.J. Newman and D.J. Watts. Renormalization group analysis of
the small-world network model. Physics Letters A, 263(46), 1999.

[32] M. Rosas-Casals. Power grids as complex networks: Topology and
fragility. In Complexity in Engineering, 2010. COMPENG ’10., pages
21–26, 2010.

[33] Janusz W. Bialek Jan Machowski and James R. Bumby. Power System
Dynamics. John Wiley and Sons, Ltd, 2008.

[34] Shengyu Wu Shengwei Mei F. H., Xuemin Zhang and Gang Wang.
An improved opa model and blackout risk assessment. IEEE TRANS-
ACTION ON POWER SYSTEMS, 24(2), 2009.

[35] Reka Albert, Istvan Albert, and Gary L. Nakarado. Structural vulner-
ability of the north american power grid. Phys. Rev. E, 69, 2004.

[36] Strogatez Steven H Watts, Duncan J. Collective daynamics of small-
world networks. letters to Nature, 393, 1998.

[37] Gene H. Golub. Charles F. Van Loan. Matrix Computations. The
Johns Hopkins University Press, 1983.

50



Appendix

The following are the empirical data obtained from the three different power
grid systems.
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Event no. P.loss(MW) Event no. P.loss(MW) Event no. P.loss(MW) Event no. P.loss(MW)

1 4.000147 47 67 93 3 139 3.89625

2 4.000154 48 18 94 10.94118 140 0.6

3 6.7 49 9.975 95 10.37778 141 120

4 13.4 50 96 96 26.02597 142 123.0769

5 16.4 51 28 97 6.8 143 4.191

6 4.026316 52 46.90909 98 37.6 144 4.448

7 98.67568 53 27.6 99 60 145 9.886479

8 48.92308 54 0 100 13.8 146 12.03246

9 31.5 55 25.2 101 21.2 147 15.345

10 4.2 56 38.29091 102 9.6 148 84.135

11 4.2 57 18 103 21.21951 149 41.6702

12 2.4 58 40.90909 104 55.55556 150 7.47

13 9.12 59 0 105 60 151 47.1

14 0 60 17.72727 106 16.089 152 40.592

15 7 61 0 107 3.002264 153 21.33

16 12 62 35.58621 108 3.20151 154 68.075

17 21.81818 63 7.5 109 10.58333 155 74.06217

18 0 64 10.38462 110 10.72571 156 1.816957

19 0 65 10.28571 111 9.6225 157 5.811818

20 23.07692 66 13.38462 112 10.58824 158 6.06359

21 24 67 56.30769 113 35.05667 159 27.99

22 27.6 68 61.15385 114 47.08333 160 14.1

23 19.2 69 15.92308 115 10.90941 161 1.638571

24 17.53846 70 5.15625 116 4.502264 162 77.21825

25 20.90909 71 7.4 117 26.07488 163 19.3045

26 7.090909 72 2.142857 118 17.53412 164 30.33575

27 2.64 73 5.46 119 9.05 165 101.1193

28 12 74 1.976471 120 11.91632 166 57.91375

29 3.6 75 0.6 121 7.410353 167 25.73925

30 9.6 76 17.62222 122 22.73455 168 74.4605

31 9.6 77 4.08 123 13.75 169 1.160727

32 9 78 4.1 124 10.58824 170 2.89443

33 6 79 4.0995 125 460 171 5.88507

34 3.169811 80 22.5 126 4.379486 172 3.163448

35 6 81 22.5 127 2.314118 173 8.394

36 1.2 82 22.5 128 3.643548 174 64.99964

37 8 83 4.05 129 1.383636 175 23.21167

38 1.111111 84 4.05 130 21 176 4.352727

39 3.846154 85 2 131 26.58 177 21.024

40 6.666667 86 12.6 132 78 178 10

41 5.5 87 12.6 133 33.06 179 20

42 8.571429 88 12.6 134 0.506941 180 6

43 15.56962 89 7.004348 135 4.04465 181 8.468571

44 0 90 5.7 136 0.12 182 2.8

45 19.43662 91 5.7 137 13.30955 183 18.1813

46 1.44 92 5.7 138 6.510067 184 11.892

The Norwegian  blackout data(power  loss in megawatt)  from 1995-2005 



The Norwegian  blackout data(power  loss in megawatt)  from 1995-2005 

Event no. P.loss(MW) Event no. P.loss(MW) Event no. P.loss(MW) Event no. P.loss(MW)

185 2.649231 231 66.24 277 12.77419 323 4.545

186 2.748 232 12 278 1.25 324 4.7

187 3.9 233 3.603604 279 10.16949 325 5.04

188 5.079474 234 2.2965 280 7.5 326 4.911667

189 8.02 235 3.636363 281 4.956522 327 5.331475

190 6.356 236 3.6 282 17.5 328 190

191 66.66 237 10.4745 283 2.93617 329 8.571429

192 15.016 238 7.044 284 57.3913 330 10.06

193 51.3624 239 0 285 16.98113 331 4.873594

194 8.744 240 170 286 8.25 332 75.86441

195 1.7175 241 3.5 287 0 333 7.8

196 14.52727 242 87 288 2 334 2.74

197 28.86 243 10.54545 289 9.086118 335 150

198 10.276 244 10.8 290 2.553191 336 7.5

199 5.07 245 10.23529 291 6 337 19.73684

200 6.726486 246 9 292 50 338 3.306122

201 3.524 247 156 293 2.769231 339 3.333333

202 8.568 248 1.615385 294 317.5714 340 10

203 1.8 249 2.307692 295 307.5556 341 10.02

204 5.664706 250 1.25 296 81 342 62.34375

205 0.846207 251 15.5 297 20 343 62.34375

206 274.464 252 42 298 0.0375 344 10

207 176.1525 253 18.4 299 4.35 345 32.12927

208 92.72727 254 6.521739 300 12 346 117.6

209 8.625 255 84.54545 301 25.5 347 59.01639

210 25 256 403.6364 302 307.7143 348 7.121739

211 6.580645 257 2.25 303 0.917143 349 4.2

212 16.95882 258 3.625 304 0 350 4.071429

213 98.19512 259 7.267606 305 6 351 5.4

214 2.198473 260 4.178571 306 30 352 16.57895

215 17.805 261 6.428571 307 30 353 21.315

216 23.7 262 3.333333 308 250 354 12.015

217 43.4625 263 7.272727 309 36.92308 355 4.285714

218 120 264 5.207547 310 18 356 0.889362

219 10.8 265 16.28 311 21.66667 357 53.55

220 154.6154 266 66.10169 312 544.8 358 16.2

221 94.2 267 53.57143 313 288.7619 359 120

222 67.2973 268 15 314 348.6774 360 10.56

223 0.48 269 2.142857 315 167 361 16.851

224 170 270 6.163636 316 48 362 7.963636

225 120 271 45.24 317 4 363 12

226 19.475 272 7.8 318 30 364 14.07158

227 18.82154 273 16.5 319 39.89189 365 8.688889

228 14.38364 274 8.790698 320 73.33333 366 4.909091

229 12.265 275 13.375 321 95.45455 367 0

230 20.675 276 45.76271 322 42 368 11.15143



The Norwegian  blackout data(power  loss in megawatt)  from 1995-2005 

Event no. P.loss(MW)

369 4.77333333

370 2

371 290

372 93.75

373 0.6



North American Blackout data(power loss in megawatt) from 1984-2002

Event no. P.loss(MW) Event no. P.loss(MW) Event no. P.loss(MW) Event no. P.loss(MW)

1 335 45 4500 89 3525 133 850

2 383 46 20 90 280 134 900

3 75 47 300 91 28 135 90

4 550 48 34 92 30 136 640

5 586 49 170 93 110 137 60

6 380 50 1600 94 250 138 300

7 85 51 25 95 145 139 1400

8 200 52 162 96 1170 140 150

9 739 53 1477 97 1816 141 300

10 850 54 30 98 1000 142 900

11 350 55 1048 99 150 143 125

12 530 56 520 100 400 144 1700

13 514 57 637 101 545 145 2000

14 1200 58 3440 102 618 146 110

15 60 59 1116 103 450 147 425

16 230 60 290 104 750 148 470

17 730 61 2070 105 138 149 698

18 75 62 450 106 480 150 1000

19 300 63 819 107 972 151 130

20 300 64 280 108 500 152 44

21 1000 65 520 109 155 153 960

22 11 66 2500 110 218 154 100

23 713 67 1200 111 950 155 300

24 1400 68 258 112 130 156 40

25 713 69 240 113 750 157 1525

26 677 70 60 114 500 158 46

27 30 71 118 115 350 159 143

28 205 72 168 116 200 160 200

29 4235 73 150 117 350 161 500

30 2800 74 88 118 500 162 50

31 400 75 480 119 200 163 130

32 300 76 325 120 26 164 294

33 200 77 300 121 110 165 138

34 300 78 550 122 350 166 175

35 530 79 564 123 400 167 35

36 132 80 100 124 750 168 325

37 10 81 150 125 10280 169 190

38 400 82 3 126 2300 170 450

39 133 83 373 127 260 171 130

40 350 84 3 128 450 172 13

41 350 85 350 129 1500 173 160

42 1000 86 800 130 150 174 1775

43 5000 87 257 131 600 175 1300

44 121 88 2000 132 2000 176 530



North American Blackout data(power loss in megawatt) from 1984-2002

Event no. P.loss(MW) Event no. P.loss(MW)

177 460 221 51

178 450 222 1060

179 500 223 270

180 430 224 67.6

181 2700 225 1060

182 116 226 400

183 1340 227 212

184 340 228 250

185 1250 229 7200

186 750 230 2400

187 600 231 63

188 350 232 950

189 350

190 620

191 100

192 500

193 390

194 1050

195 185

196 134

197 144

198 49

199 168

200 263

201 1200

202 340

203 190

204 196

205 274

206 39

207 2100

208 213

209 334

210 1450

211 210

212 32.8

213 48

214 83

215 278

216 15

217 240

218 100

219 848

220 1071



Event no. p.loss(MW)

1 26999.141

2 23555.789

3 921

4 896.83002

5 868

6 818.40002

7 809.85999

8 771

9 765

10 738

11 726.40002

12 675

13 625.40002

14 608

15 601.20001

16 586.40002

17 585.90002

18 585.5

19 576

20 571.59998

21 558

22 553.20001

23 494.10001

24 417

25 245.5

26 230

27 156

28 24

Ethiopian blackout data(power loss in megawat  from 2005-2012  
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