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Abstract: 

Further developments and applications of the 2D harmonic polynomial cell (HPC) method 

proposed by Shao and Faltinsen [22] are presented. First, a local potential flow solution coupled 

with the HPC method and based on the domain decomposition strategy is proposed to cope with 

singular potential flow characteristics at sharp corners fully submerged in a fluid. The results are 

verified by comparing them with the analytical added mass of a double-wedge in infinite fluid. 

The effect of the singular potential flow is not dominant for added mass and damping, but the 

error is non-negligible when calculating mean wave loads using direct pressure integration. Then, 

the double-layer nodes technique is used to simulate a thin free shear layer shed from lifting 

bodies, across which the velocity potential is discontinuous. The results are verified by 

comparing them with analytical results for steady and unsteady lifting problems of a flat plate in 

infinite fluid. The latter includes the Wagner problem and the Theodorsen functions. Satisfactory 

agreement with other numerical results is documented for steady linear flow past a foil and 

beneath the free surface. 
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1 Introduction 

Computational fluid dynamics (CFD) based on the Navier-Stokes (NS) equations and an 

incompressible fluid have played an increasingly important role in marine hydrodynamics. 

However, simulations of wave load effects in a stochastic sea are limited by the computational 

time associated with CFD. In contrast, a potential flow solver is more efficient than a typical NS 

solver. When the wave-induced responses of large-volume structures, such as ships and floating 

platforms, are considered, the viscous effect may only be significant near the body and typically 

affects resonance problems with small wave radiation damping. Thus, the domain 

decomposition strategy, which applies a NS solver in the region where the viscous effect 

dominates and solves the Laplace equation elsewhere, has been employed [12, 14]. 

Within the context of potential flow theory, the boundary element method (BEM) has been 

widely applied [8, 18]. Because the coefficient matrix for the unknowns is full, the computational 

time and memory required by the BEM increase strongly as the number of unknowns increases. 

Wu and Eatock Taylor [27] argue that a field-solver based on the finite element method (FEM) is 

faster than the BEM for solving the wave-making problem because a sparse matrix is involved in 

the solution. The conventional BEM involves quadratic memory usage, 𝑂(𝑁2), and requires 

𝑂(𝑁2) operations for an iterative solver or (𝑂(𝑁3)) operations if a direct method is used [28]. 

Here, 𝑁 is the number of unknowns; thus, large-scale storage and inefficient computation are 

considered bottleneck problems in the conventional BEM. Recent studies have shown that these 

difficulties can be overcome by using accelerating techniques, such as the fast multipole 

accelerated (FMA) method [21, 15] and the pre-corrected fast Fourier transform (p-FFT) 

technique [29]. Consequently, FMA and p-FFT accelerated BEMs require 𝑂(𝑁) and 𝑂(𝑁log𝑁) 

operations to solve the boundary integral equation, respectively. 

High-order methods have received increasing attention for obtaining high accuracy. Yan and 

Liu [29] developed the p-FFT high-order BEM to study nonlinear wave-body interaction 

problems. Bingham and Zhang [5] used a higher-order finite difference method (FDM) to model 

nonlinear water waves using potential flow theory. 

Shao and Faltinsen [22] proposed a potential flow solver, the 2D harmonic polynomial cell 

(HPC) method, with an order greater than third order. When using this method, the liquid 

domain is divided into cells and harmonic polynomials, which satisfy the Laplace equation and 

are used to represent the velocity potential in each cell. The resulting equation system involves 

a sparse matrix, implying computational efficiency. Shao and Faltinsen [22] compared the HPC 

method with four other 2D Laplace equation solvers and found that the HPC method is highly 

efficient and the most accurate among the considered solvers. In addition, Faltinsen and Timokha 

[11] used harmonic polynomials to analytically study the 2D frequency-domain sloshing 

problem. Fredriksen et al. [12] combined the HPC method and a Navier-Stokes equation solver 
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employing the finite volume method (FVM) to investigate the piston-mode resonance in 

moonpools with a low forward speed by using domain decomposition and a 2D flow assumption. 

Recently, Shao and Faltinsen [23] conducted a comprehensive study of the 3D HPC method. In 

addition, fully nonlinear free-surface problems involving a numerical wave tank and wave 

interactions with a vertical free-surface piercing circular cylinder standing on the sea floor were 

investigated. The observed satisfactory agreement with these experiments and other numerical 

results indicates that the HPC method is an efficient, accurate and promising method for solving 

potential flow problems. 

Although the HPC method has been used to solve a series of problems in marine 

hydrodynamics [22, 23], it is not ideal. The HPC method must be modified to handle singular 

flows and discontinuous problems within the framework of potential flow. One example is the 

corner flow problem of non-separated flow, in which the velocity components are singular at the 

apex when the interior angle is less than 180° [19]. A state-of-the-art BEM cannot account for 

flow singularities because piecewise polynomial representation of unknowns is assumed at 

boundaries. Another example is a thin free shear layer shed from a foil, where the velocity 

potential is discontinuous across the shear layer. To overcome these difficulties, several 

algorithms are proposed in this paper. The local potential flow solution coupled with the HPC 

method following the domain decomposition strategy is proposed to simulate the singularity at 

the apex of the corner, and a double-layer node technique is developed to model the shedding of 

a thin free shear layer from lifting bodies. 

This paper is organized as follows. In Section 2, we present the basic formulations of the 2D 

HPC method and describe the linear frequency-domain analysis of free-surface flow. In Section 

3, a domain decomposition strategy combining the local potential flow solution and the HPC 

method is proposed to address fluid-structure problems in the presence of sharp corners. 

Section 4 describes the double-layer nodes technique in the HPC method to model the effects of 

a thin free shear layer in which velocity potential jumps exist. In Section 5, extensive numerical 

examples are conducted, including an oscillating wedge in infinite fluid, the second-order mean 

vertical force on a heaving floating rectangular cylinder, steady and unsteady lifting problems in 

infinite fluid and the steady lifting problem for a NACA hydrofoil in the presence of a free surface. 

Finally, concluding remarks and future perspectives are presented in Section 6. 

 

2 Summary of the 2D HPC method 

2.1 Governing equation 

An incompressible and inviscid fluid with irrotational 2D flow is assumed. The resulting 

velocity potential 𝜙 satisfies the Laplace equation as follows: 

 
2 2

2 2
0,

x y

  
 

 
 (1) 
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in the Cartesian coordinate system 𝑂𝑥𝑦. 

 

2.2 2D HPC method 

The harmonic polynomials satisfy the Laplace equation and are based on the real and 

imaginary parts, 𝑢𝑛(𝑥, 𝑦) and 𝑣𝑛(𝑥, 𝑦), of the complex potential 

      i , i , ,
n

n nx y u x y v x y    (2) 

where i = √−1 is the imaginary unit and 𝑛 is an integer indicating the order of the harmonic 

polynomials. Table 1 depicts the harmonic polynomials for 𝑛 ≤ 4. 

 

Table 1. Two-dimensional harmonic polynomials up to fourth-order. 

 

𝑛 (𝑥 + i𝑦)𝑛 𝑢𝑛(𝑥, 𝑦) 𝑣𝑛(𝑥, 𝑦) 

0 (𝑥 + i𝑦)0 1 0 

1 (𝑥 + i𝑦)1 𝑥 𝑦 

2 (𝑥 + i𝑦)2 𝑥2 − 𝑦2 2𝑥𝑦 

3 (𝑥 + i𝑦)3 𝑥3 − 3𝑥𝑦2 3𝑥2𝑦 − 𝑦3 

4 (𝑥 + i𝑦)4 𝑥4 − 6𝑥2𝑦2 + 𝑦4  4𝑥3𝑦 − 4𝑥𝑦3 

 

When considering a 2D fluid domain, we discretize the computational domain into a number 

of quadrilateral elements, as shown in Fig. 1 (a). In the present 2D HPC method, each stencil cell 

is defined as the combination of four neighboring quadrilateral elements with nine grid points, 

as demonstrated in Fig. 1 (a). The local index of grid points over the cell is defined in Fig. 1 (b), 

with the first eight grid nodes as boundary nodes and the ninth node as the stencil center. The 

velocity potential at each node is represented by the harmonic polynomials. Hence, the velocity 

potential in each cell naturally satisfies the Laplace equation. 

According to [22], the velocity potential at any point within the cell can be approximated by 

a linear combination of the first eight harmonic polynomials, which takes the following form: 

    
8

1

, , ,j j

j

x y b f x y


  (3) 

with 

 
         

     

2 2
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3 2 2 3 4 2 2 4
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, 3 ; , 3 ; , 6 .

f x y f x y x f x y y f x y x y f x y xy

f x y x xy f x y x y y f x y x x y y

     

      
 (4) 

In Eq. (3), 𝜙 denotes the velocity potential in the cell and 𝑓𝑗  (𝑗 = 1, … ,8) represents the 

first eight nonzero harmonic polynomials defined in Table 1. In addition, 𝑏𝑗  are unknown 
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coefficients that must be determined. 

 

 
 (a) (b) 

Fig. 1 Global index and local index of the grid nodes in a cell. 

 

By setting 𝑥 = 𝑥𝑗 , 𝑦 = 𝑦𝑗  and 𝜙 = 𝜙𝑗  (𝑗 = 1, … ,8) in Eq. (3), we can obtain a linear 

equation system with the following form: 

      , A b   (5) 

where the elements in the coefficient matrix [𝐀] are 𝑎𝑖,𝑗 = 𝑓𝑗(𝑥𝑖 , 𝑦𝑖). Here 𝑖 and 𝑗 denote the 

row index and column index of the matrix [𝐀], respectively. Eq. (5) can be rewritten in a concise 

form as follows: 

  
8

,

1

, 1,...,8 ,i i j j

j

b c i


   (6) 

where 𝑐𝑖,𝑗  (𝑖 = 1, … ,8) is the inverse of the matrix [𝐀].  

Combining Eq. (3) and Eq. (6) yields the following: 

 

   

 

8 8

,

1 1

8 8

,

1 1

, ,

, .

i j j i

i j

j i j i

i j

x y c f x y

c f x y

 



 

 

 
  

 

 
  

 

 

 

 (7) 

Eq. (7) indicates that the velocity potential at any point in the cell can be interpolated by 

the velocity potentials at the surrounding boundary nodes of the cell. By setting 𝑥 = 𝑥9 = 0 and 

𝑦 = 𝑦9 = 0, the harmonic polynomials in Eq. (4) can be simplified to 𝑓𝑗(0,0) = 1 and 𝑓𝑗(0,0) =

y 

x 

1 2 3 

6 7 8 

4 
9 

5 

(i+1,j–1) 

(i+1,j) (i,j) (i–1,j) 

(i–1,j+1) (i,j+1) (i+1,j+1) 

(i–1,j–1) (i,j–1) 
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0, where 𝑗 = 2, … ,8. Thus, according to Eq. (7), the velocity potential at local grid point 9 

becomes: 

  
8

9 9 9 1,

1

0, 0 .i i

i

x x y y c  


       (8) 

With respect to the Neumann condition, the normal derivative can be obtained by calculating 

the derivative of the harmonic polynomials, which takes the following form: 

      
8 8

,

1 1

, , , ,j i j i

i j

x y c f x y x y
n




 

 
   

  
  n  (9) 

where 𝒏 denotes the normal vector, which is positive and points to the outside of the considered 

fluid domain. 

 

2.3 Linearized frequency-domain analysis 

For the wave diffraction/radiation problem without forward speed, the linear free-surface 

boundary condition in the frequency domain is expressed as follows: 

 0   on   0,


   


y
y


  (10) 

with 𝜅 = 𝜔2 𝑔⁄ , where 𝜔 is the frequency of oscillation.  

 

 
Fig. 2. Local index of the grid nodes in a cell attached to a free surface. 

 

Eq. (9) provides the normal velocity expression of the boundary. If we consider the 

linearized frequency-domain free-surface condition given by (10) imposed on the undisturbed 

free surface, as illustrated in Fig. 2, the boundary condition should be satisfied at local node 7; 

thus, the boundary condition can be expressed as follows: 

𝑥 

𝑦 

1 2 3 

6 7 8 

4 
9 

5 

Free surface 
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  
8 8

7 , 7 7

1 1

, 0   on   0.j i j i

i j

c f x y y
y

 
 

 
    

 
   (11) 

 

3 Corner solution coupled with the HPC method 

To demonstrate the singular characteristics of the corner flow within a potential flow, we 

consider the flow past a sharp corner with an included angle 𝛽 and a corresponding interior 

angle of 𝜓 = 2π − 𝛽, as shown in Fig. 3. The considered semi-infinite wedge is fixed, and the 

origin of the polar coordinate system 𝑂𝑟𝜃 coincides with the origin of the Cartesian coordinate 

𝑂𝑥𝑦 in Fig. 3, with 𝜃 = 0 corresponding to the 𝑂𝑥 −axis. The velocity potential 

 
π

π 2ππ π
cos cos

2π

j

j

j j

j j
A r A r   

 

   
    

   
 (12) 

satisfies the zero Neumann body boundary condition. Here, 𝐴𝑗 is a constant and 𝑗 can be zero 

or any negative or positive integer. We can exclude negative integers by requiring that the fluid 

velocity flux through a surface with radius 𝑎 enclosing the corner and extending from 𝜃 = 0 

to 𝛽 approaches zero as 𝑎 → 0. The velocity determined based on Eq. (12) is singular at the 

apex when 𝑗 = 1 and 𝜓 < π = 180∘. The latter relationship cannot be described by harmonic 

polynomials, which assume that the velocity potential is analytical. 

 

 
Fig. 3. Definitions and coordinate systems for the corner flow problem. 

 

A domain decomposition strategy is proposed to account for the fact that harmonic 

θ 

  

r 
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polynomials cannot describe the flow at sharp corners. Using this strategy, the liquid domain is 

divided into inner and outer subdomains by an artificial boundary. In the inner region, which 

includes a small area where the sharp corner is present, we use the local corner solution to model 

the singular property at the apex. In the outer region, the HPC method is applied as usual. Then, 

the matching conditions are imposed on the artificial boundary. 

We introduce artificial boundaries, Σ𝑚 , as matching surfaces, which are represented by 

dashed lines in Fig. 4. These boundaries divide the fluid domain into a small inner region 

enclosing the sharp corner and an outer domain with only planar walls. In the original HPC 

method [22], the liquid domain is first discretized into a finite number of quadrilateral elements, 

as shown in Fig. 4. However, in this analysis, no mesh is located in the small inner region around 

the sharp corner, as shown in Fig. 4. In the outer domain, the original HPC method is imposed as 

usual. On the matching boundaries of Σ𝑚 between the inner and outer domains, the velocity 

potential and its normal derivatives are matched with the outer domain, which are expressed as 

follows: 

 in out on ,m    (13) 

and 

 outin o .n



 

m
n n


 (14) 

 

 

Fig. 4. Schematic of matching boundaries between inner and outer regions. 

 

Eq. (13) and Eq. (14) indicate that the matching condition is met by requiring continuity 

in the velocity potential on each node and continuity in the normal velocity on matching surfaces, 

Velocity potential 

Normal velocity 

Matching surfaces 

Inner domain 
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as illustrated in Fig. 4. 

Next, we focus on the sharp corner fully submerged in the fluid, and a 2D transverse section 

in the 𝑂𝑥𝑦  plane is considered. Fig. 4 shows seven nodes on the matching boundaries 

surrounding the sharp corner. It is assumed that 𝑁 nodes exist over the fluid domain and only 

one sharp corner is present. Therefore, 𝑁 − 7 + 2 equations can be established that include the 

continuity equation in the fluid domain and the conditions at the boundaries (the body boundary 

condition is imposed at the intersection between the matching boundary and the body surface). 

Regarding the matching conditions enforced at the matching boundaries, continuity of the 

velocity potentials at the seven nodes distributed on the matching boundaries is required, as 

expressed in Eq. (13). Then, the continuity in the normal velocity component, which is described 

by Eq. (14), is satisfied at two nodes on the matching boundaries, as shown in Fig. 4. Therefore, 

𝑁 − 7 + 2 + 7 + 2 = 𝑁 + 4 equations and 𝑁 + 4 unknowns are needed. In addition to the 𝑁 

unknowns for each node, four unknowns are needed to determine the equation system. 

Therefore, four unknown coefficients should be included in the corner solution. Thus, in the 

inner region, where geometrical complications occur, we expand the velocity potential for small 

𝑟 up to the third order, which can be expressed as follows: 

  
3

in 0

1

cos ,


    jm

j j

j

Ux Vy c c r m   (15) 

where 𝑈  and 𝑉  denote the instantaneous horizontal and vertical translating velocity 

components of the body at the sharp corner, respectively. Furthermore, 𝑂𝑟𝜃 is a local polar 

coordinate system with its origin at the apex. In Eq. (15), the first two terms of the solution are 

used to address a non-homogenous body boundary condition, and the rest of the solution 

satisfies the Laplace equation and should satisfy the homogenous body surface condition. Thus, 

𝑚𝑗 is expressed as follows: 

 
π

.
2π




j

j
m


 (16) 

Until now the coefficients 𝑐0, 𝑐1 , 𝑐2 and 𝑐3 are unknown and should be determined by 

enforcing the matching conditions at the matching surface, as described in Eq. (13) and Eq. (14). 

Then, we can establish a linear equation system by coupling the HPC method applied in the outer 

domain and the local potential flow solution in the inner region. 

 

4 Double-layer nodes technique in HPC 

The lifting problem for a foil is important for airplanes and, for example, hydrofoil supported 

vessels. The shed vorticity from the trailing edge of the foil considered in our studies is assumed 

concentrated in a free shear layer with a thickness of zero. The fact that the pressure is 

continuous across the free shear layer provides a condition for expressing the rate of change of 
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the increasing velocity potential across the free shear layer with time. This condition indicates 

that the velocity potential is discontinuous across the free shear layer with a thickness of zero. 

Therefore, two velocity potentials exist on the node on the free shear layer. When using the 

original HPC method, the velocity potential is assumed continuous everywhere and the velocity 

potential on a node is single-valued, which prevents the jump condition from being implemented.  

Thus, the velocity potential jump is modeled using a double-layer nodes technique that 

involves the coincidence of two nodes with different velocity potentials. Fig. 5 and Fig. 6 are 

relevant for this study, in which the free shear layer condition is linearized and imposed on a 

straight line.  

 

 
Fig. 5. Schematic of the double-layer nodes. 

 

The zero-pressure jump solution at the free shear layer can alternatively be expressed in 

terms of Γ𝑊 as follows: 

 ,W      (17) 

where 𝜙+ and 𝜙− denote the velocity potentials on the upper and lower sides of the thin free 

shear layer, respectively, and Γ𝑊 is the circulation, as defined in Fig. 6. 

 

(i+1,j+1) (i,j+1) (i–1,j+1) 

(i–1,j+2) (i,j+2) (i+1,j+2) 

(i–1,j–1) (i,j–1) (i+1,j–1) 

(i+1,j) (i,j) (i–1,j) 
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Fig. 6. Schematic of a foil with a wake modeled by double-layer nodes and the definition of the 

circulation Γ𝑊 = 𝜙+ − 𝜙−. 

 

Two conditions are required because there are two nodes on one point of the wake. Apart 

from the first condition given by Eq. (17), the other condition states that the normal velocity 

across the free shear layer is continuous, which is expressed as follows: 

 0.  
 

 n n

 
 (18) 

On the trailing edge, the body boundary condition is satisfied on both sides of the foil. In 

addition, the Kutta condition requires that the flow leave the trailing edge of the foil smoothly at 

a finite velocity.  

If we consider a foil with zero thickness, the double-layer nodes technique is applied to the 

foil to represent the pressure difference and velocity potential jump, and the body boundary 

condition is satisfied on both sides of the foil. Furthermore, the flow at the leading edge is 

singular for a foil with zero thickness. Therefore, the local potential flow solution described in 

Section 3 is introduced in a small fluid domain enclosing the leading edge. 

 

5 Results and discussions 

In this section, we address several marine hydrodynamics problems by implementing the 2D 

HPC method coupled with the proposed algorithms. Throughout the study, free-surface-fitted 

and body-fitted grids are adopted. 

 

5.1 Sharp corner problem 

In this subsection, a domain decomposition strategy that combines a local non-analytical 

potential flow solution and the HPC method (see Section 3) is applied to investigate the 

hydrodynamic loads exerted on bodies with sharp corners. 

 

𝜙+ 

𝜙− 

Double-layer nodes 

Γ𝑊 
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5.1.1 A double-wedge oscillating in infinite fluid 

As a benchmark verification test, the heave added mass of a double-wedge in infinite fluid, 

as shown in Fig. 7 (a), is calculated first, and the result is compared with the following analytical 

solution [10]: 

 
   

   

2

33 2

2 0.5 tan 1.5 ππ
1 ,

tan sin 1.0 π 0.5 π

  
  

    

B
A

  

   
 (19) 

where 𝐵 and 𝜃 are the beam and deadrise angles of the double-wedge, as shown in Fig. 7 (a), 

and Γ(⋅) denotes the Gamma function [1]. 

In this problem, four corners exist when the deadrise angle is greater than zero and two 

sharp corners exist when the deadrise angle is zero. If the deadrise angle is not zero, local 

potential flow solutions are imposed on all four corners. When the deadrise angle is zero, the 

double-wedge becomes a flat plate with zero thickness. In this case, the double-layer nodes 

illustrated in Section 4 are used to model the pressure difference across the upper and lower 

surfaces of the plate. In addition, local corner solutions should be added on the two ends of the 

plate. 

 

 
 (a) (b) 

Fig. 7. A double-wedge oscillating in infinite fluid. (a) Main dimensions of the double wedge; (b) 

Non-dimensional heave added mass varying with the deadrise angle. 𝐴33 = heave added mass. 

Non-dimensional heave added mass = 8𝐴33 (𝜌π𝐵2)⁄ . 𝐵 = beam. 𝜃 = deadrise angle. 

 

Fig. 7 (b) compares the normalized heave added mass 𝐴33 (𝜌π𝐵2/8)⁄  that was calculated 

using the proposed method with the analytical results given by Eq. (19). In addition, the 

numerical results, excluding the singular velocity effect at the sharp corner, are considered in Fig. 

7 (b). In this case, 160 elements are uniformly distributed over each side of the double-wedge. 

When the deadrise angle is greater than 30∘ and less than 60∘, a grid system with grid lines 

paralleling the edge of the double-wedge is used. When the deadrise angle is smaller than 30∘, 
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a nearly orthogonal grid system is adopted. In addition, the HPC results accounting for the 

singularities at sharp corners agree with the analytical solution for all deadrise angles and the 

relative error is 𝑂(10−4). However, the numerical results without the singular effect are slightly 

higher than the analytical result if the same type of grid size is applied, and the corresponding 

difference reaches up to 1.0%. Therefore, the present HPC method coupled with the local corner 

solution can yield results that are more accurate. 

 

5.1.2 A floating heaving rectangular cylinder 

In this section, a linear frequency-domain analysis, which was introduced in Section 2.3, is 

conducted by considering a heaving rectangular cylinder on a free surface. The beam and draft 

of the rectangular cylinder are denoted as 𝐵 and 𝐷, respectively. The local solution has been 

added at the sharp corners. In this problem, the water depth is assumed infinite. However, 

because the present approach involves using a field solver, the water depth ℎ  is finite. To 

minimize the effects of the bottom, we set the water depth ℎ as the maximum value between 

twenty times the draft of the rectangle and twice the wavelength of the radiated waves. The 

wavelength is related to the heaving frequency, which means that lower frequencies correspond 

with larger wavelengths. When the heaving frequency is very low, the horizontal length of the 

computational domain is exceedingly large.  

To reduce the computational effort required, the symmetry property of the rectangular 

cylinder is used; thus, only half of a section is considered, as shown in Fig. 8. No horizontal 

velocity component exists on the symmetry plane; therefore, 𝜕𝜙/𝜕𝑥 = 0. In addition, we can use 

the domain decomposition strategy to reduce the number of unknowns in the horizontal 

direction. Inspired by Yeung [30], we can introduce an artificial matching boundary, Σ+ , as 

shown in Fig. 8. In this problem, we set the matching boundary Σ+ at twice the wavelength from 

the rectangular cylinder. In the inner region on the left side of the matching boundary, the 

velocity potential is described using the HPC method. In the outer domain on the right side of the 

matching boundary, the velocity potential 𝜙+  can be written in terms of eigen-function 

expansions that satisfy the governing equation, the linearized free-surface boundary condition 

in the frequency domain and the bottom condition. 

If the present problem is time-harmonic and at the steady state, we can separate the space 

and time variables in the velocity potential 𝜙+ as follows: 

       i, , , e    with   , i .    t

R Ix y t x y x y      (20) 
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Fig. 8. Schematic of a half rectangular section heaving on a free surface. 

 

Then, the governing equation and boundary conditions with respect to 𝜑(𝑥, 𝑦)  in the 

frequency domain are expressed as follows: 

 

2 2

2 2

2
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0 at 0,

0 at .

 
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
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y

y h
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 


 



 (21) 

Moreover, we should incorporate the radiation condition in which the radiated waves 

propagate outwards as follows: 

 i 0 when ,k x
x





  


 (22) 

where 𝑘 denotes the wave number, and 

 2 tanh ,kg kh   (23) 

is the dispersion relation. The eigen-function expansions can be expressed as follows [30]: 

    
 

     0

0 0 0

10

cosh
i exp i i exp cos ,

cosh 


      

EN
R I R I

j j j j

j

k y h
C C k x C C k x k y h

k h
  (24) 

where the eigenvalues 𝑘0 and i𝑘𝑗 are roots of the dispersion function described by Eq. (23). 

In Eq. (23), 𝑘  represents either 𝑘0  or i𝑘𝑗 , and 𝑁𝐸  denotes the number of the expansion 

terms. The coefficients 𝐶𝑗
𝑅 and 𝐶𝑗

𝐼 (𝑗 = 0,1, … ) are determined from the matching conditions 
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imposed on the matching boundary Σ+, as shown in Fig. 9. 

The matching condition enforced on Σ+ involves the continuity of the velocity potential and 

the normal velocity component on the matching boundary. In this problem, the continuity in the 

velocity potential is imposed on all grid points at the matching boundary Σ+, as demonstrated 

in Fig. 9. However, the continuity in the normal velocity component cannot be satisfied over the 

entire boundary to ensure that the equation system is determined. Hence, we select the grid 

points nearest the free surface to enforce the matching condition associated with the normal 

velocity component, as illustrated in Fig. 9. In addition, the number of expansion terms with 

respect to the evanescent modes 𝑁𝐸  should be less than the number of nodes at the vertical 

matching boundary 𝑁𝑦 . Therefore, a linear equation system can be established with fewer 

unknowns. 

 

 
Fig. 9. Schematic of matching conditions. 𝑁𝐸 = number of expansion terms with respect to 

evanescent modes. 𝑁𝑦 = number of nodes on the vertical matching surface. 

 

Because the corner solution given by Eq. (15) is only valid in a small region, grid points are 

non-uniformly distributed over the side of the rectangle and the cosine distribution is applied 

with fine grids distributed near the corner, as shown in Fig. 10. To avoid abrupt changes in the 

grid size, the cosine distribution in both horizontal and vertical directions is implemented when 

the distance from the rectangle is less than the length of the semi-breadth and draft. 
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Fig. 10 Schematic of the non-uniform distribution over the body. 

 

In Fig. 11, the convergence of eigen-function expansions is tested using a beam-to-draft ratio 

𝐵/𝐷 of 2.0 and a non-dimensional square of the oscillation frequency of 𝜔2𝐵/(2𝑔) = 1.0. The 

horizontal distance between the rectangular cylinder and the matching boundary is twice the 

wavelength of the radiated waves. The number of the expansion terms ranges from 𝑁𝐸 = 0 to 

60, which indicates that the number of expansion terms does not affect the added mass and 

damping associated with the linear wave force or the second-order mean vertical force. This 

result occurs because the distance from the rectangle to the vertical matching boundary is far 

enough to attenuate the evanescent modes. 

 

 
Fig. 11. The convergence behaviors of eigen-function expansions with a forcing frequency given 

by 𝜔2𝐵/(2𝑔) = 1.0. 𝐴33 = heave added mass. 𝐵33 = heave damping. 𝑆 = submerged cross-

sectional area. 𝜌 = mass density of liquid. 𝜔 = circular frequency. The normalized second-

order mean vertical force 𝐹𝑦0
(2)

= 𝐹𝑦
(2) (𝜌𝜔2𝜂3𝑎

2 𝐵)⁄ . 𝐹𝑦
(2)

= second-order mean vertical force. 
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𝐵 = beam. 𝜂3𝑎 = heave amplitude. 𝑁𝐸 = number of eigen-expansions. DPI = direct pressure 

integration. CFM = conservation of fluid momentum. 

 

 
Fig. 12. Convergence performance of the horizontal length of the computational domain with a 

forcing frequency given by 𝜔2𝐵/(2𝑔) = 1.0. 𝐴33 = heave added mass. 𝐵33 = heave damping. 

𝑆 = submerged cross-sectional area. 𝜌 = mass density of liquid. 𝜔 = circular frequency. The 

normalized second-order mean vertical force 𝐹𝑦0
(2)

= 𝐹𝑦
(2) (𝜌𝜔2𝜂3𝑎

2 𝐵)⁄ . 𝐹𝑦
(2)

=  second-order 

mean vertical force. 𝐵 =  beam. 𝜂3𝑎 =  heave amplitude. 𝐿𝑥 =  horizontal length from the 

rectangle to the matching boundary. 𝜆 = wavelength of radiated waves. DPI = direct pressure 

integration. CFM = conservation of fluid momentum. 

 

Fig. 12 demonstrates the convergence behaviors of the horizontal distance from the 

rectangle to the matching boundary. The beam-to-draft ratio (𝐵/𝐷) of the rectangle is equal to 

2.0, and the non-dimensional square of the oscillation frequency is given by 𝜔2𝐵/(2𝑔) = 1.0. 

The abscissa is the ratio of the horizontal distance 𝐿𝑥  to the wavelength 𝜆 of the radiated 

waves, and the ordinate includes the added mass, damping and second-order mean vertical force. 

In this example, the number of expansion terms with respect to the evanescent mode 𝑁𝐸  is 

equal to 50. Convergence can be achieved when the ratio of the horizontal distance 𝐿𝑥 to the 

wavelength 𝜆 is greater than 1.6. 

Therefore, in the following numerical examples, the number of expansion terms with respect 

to the evanescent modes in Eq. (23) is 𝑁𝐸 = 50, and the horizontal distance between the 

rectangle and the vertical matching boundary is twice the wavelength of the radiated waves. 
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 (a) (b) 

Fig. 13. Heave added mass and damping versus the frequency of a floating rectangular section 

with a beam-to-draft ratio (𝐵 𝐷⁄ ) of 2.0. (a) Added mass; (b) Damping. 𝐵 = beam. 𝐷 = draft. 

𝐴33 = heave added mass. 𝐵33 = heave damping. 𝑆 = submerged cross-sectional area. 𝜌 = 

mass density of liquid. 𝜔 = circular frequency. 

 

Fig. 13 presents the heave added mass and damping versus frequency of a rectangular 

section with a beam-to-draft ratio 𝐵/𝐷 of 2.0. In addition to the results accounting for the 

singularity at the sharp corner, the numerical results without the singular flow effect are also 

presented. These results were compared with the experimental results presented by Vugts [25] 

and the numerical potential flow calculations conducted by Nestegard and Sclavounos [20]. The 

calculation method reported in [20] is based on Ursell [24] and is performed by coupling the 

BEM and multipole expansions. However, the singularity at the sharp corner is not considered. 

Fig. 13 shows small differences in the results with and without the singular flow effect. In 

addition, the agreement of these results with the calculations conducted by Nestegard and 

Sclavounos [20] is rather satisfactory. The comparison with the experimental results reported 

by Vugts [25] is not satisfactory at low frequencies. When the forcing frequency is low 

𝜔2𝐵 (2𝑔)⁄ < 0.25, experimental inaccuracies will occur because a small absolute error in the 

measured force can result in large deviations in the added mass and damping coefficients in this 

range [25]. Furthermore, because flow separation from the sharp corner will occur, it is 

impossible to attain perfect agreement with the experiments. 

 

5.1.3 Second-order mean vertical force of a heaving floating rectangle 

Based on the foregoing analysis, the potential flow added mass and damping for a body with 

sharp corners involving the singular flow effect are not very different from those obtained for a 

body for which this effect is excluded. One reason for this similarity is that the velocity potential 

is finite at the sharp corner. In addition, the added mass and damping are determined by 

integrating the velocity potential times the relevant normal component over the mean wetted 
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body surface. However, if we focus on the hydrodynamic loads associated with the velocity 

components, such as the second-order hydrodynamic force due to the quadratic velocity term in 

Bernoulli’s equation, the singular flow effect at the sharp corner is expected to play a more 

important role. 

Therefore, we investigate the second-order mean vertical force experienced by a heaving 

rectangular cylinder, as shown in Fig. 8. The relevant problem in 3D has been studied by 

Mavrakos [17]. The second-order force can be calculated using direct pressure integration (DPI) 

or the conservation of fluid momentum (CFM) [9]. Zhao and Faltinsen [32], who did not account 

for the flow singularities, showed that the near-field approach based on DPI presents challenges 

when obtaining converged results if a sharp corner is present, whereas CFM is more robust and 

efficient. 

In principle, the second-order mean vertical force calculated by DPI should be consistent 

with that based on CFM. The pressure integration around the sharp corner associated with the 

quadratic terms of the velocities is difficult to evaluate due to the singular properties of the 

velocity components at the apex. However, the velocity potential and the corresponding velocity 

components are expressed in the form of a series in this analysis. Furthermore, the series is 

weakly singular and integrable. Therefore, we can still obtain accurate values by DPI. 

Before investigating the second-order mean vertical force, we first study the convergence 

properties of the original HPC method and the HPC method using singular corner solutions, as 

demonstrated in Fig. 14. In this numerical example, the non-dimensional square of the oscillation 

frequency is 𝜔2𝐵/(2𝑔) = 1.0, and the ratio between the draft and half-beam 𝐷/(𝐵/2) is 1.0. 

Due to the symmetry properties of the rectangle, only a half section is considered. The abscissa 

is the number of elements (NE) distributed over the half bottom of the rectangle, and the 

ordinate includes the added mass and damping, which are shown in Fig. 13, and the normalized 

second-order mean force in the vertical direction, which is defined as 𝐹𝑦0
(2)

= 𝐹𝑦
(2) (𝜌𝜔2𝜂3𝑎

2 𝐵)⁄ . 

On the vertical side of the rectangle, the grid size is the same as that distributed over the half 

bottom. The results of the added mass, damping and second-order force converge when more 

than 80 elements are used. In addition, the converged second-order mean vertical force 

calculated by DPI is consistent with that based on CFM if the singularity at the apex is considered. 

Nevertheless, differences are always observed if the singularity is excluded, even when more 

elements are used. 
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 (a) (b) 

Fig. 14. Convergence characteristics of the algorithm with and without the singular effect for a 

heaving floating rectangular section with forcing frequency given by 𝜔2𝐵/(2𝑔) = 1.0 . (a) 

Original HPC method; (b) HPC method coupled with singular solutions. 𝐴33 = heave added 

mass. 𝐵33 = heave damping. 𝑆 = submerged cross-sectional area. 𝜌 = mass density of liquid. 

𝜔 =  circular frequency. The normalized second-order mean vertical force 𝐹𝑦0
(2)

=

𝐹𝑦
(2) (𝜌𝜔2𝜂3𝑎

2 𝐵)⁄ . 𝐹𝑦
(2)

=  second-order mean vertical force. 𝐵 =  beam. 𝜂3𝑎 =  heave 

amplitude. 𝑁𝐸 = number of elements on half bottom of the rectangle. DPI = direct pressure 

integration. CFM = conservation of fluid momentum. 

 

Fig. 15 shows the frequency dependence of the normalized second-order mean vertical force. 

In Fig. 15 (a), the singularity at the sharp corner is accounted for by adding the local corner 

solution but is excluded in Fig. 15 (b). In both subfigures, the grid size is the same, and 100 

elements are distributed over one side of the rectangular cylinder. In addition, 600 grid points 

are distributed over the free surface, 𝑆𝐹 , and 500 points are distributed over the vertical 

symmetry plane, 𝑆𝑊. If we consider the singularity at the sharp corner, as shown in Fig. 15 (a), 

the results obtained from DPI are consistent with those obtained from CFM. When the singular 

flow effect is not considered, Fig. 15 (b) shows that the DPI results clearly differ from the CFM 

results. Therefore, the inclusion of the local singular corner flow enables us to accurately 

calculate the second-order force associated with the quadratic terms of the velocity components 

using DPI within potential flow theory. However, the CFM results obtained by neglecting 

singularities are similar to the CFM results obtained by including the singularities. The latter 

method is encouraging for the state-of-the-art BEM, which does not account for flow singularities 

[7, 16]. 
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 (a) (b) 

Fig. 15. Normalized second-order mean vertical force of a heaving floating rectangle. (a) 

Singularity is accounted for; (b) Singularity is excluded. The normalized second-order mean 

vertical force 𝐹𝑦0
(2)

= 𝐹𝑦
(2) (𝜌𝜔2𝜂3𝑎

2 𝐵)⁄ . 𝐹𝑦
(2)

=  second-order mean vertical force. 𝜌 =  mass 

density of liquid. 𝜔 = circular frequency. 𝐵 = beam. 𝜂3𝑎 = heave amplitude.  

 

5.2 Lifting problem 

This subsection presents the numerical results of the lifting problem for a foil based on the 

double-layer nodes algorithm proposed in Section 4. In numerical examples of a foil in steady 

and unsteady motions in infinite fluid, the vertical size of the computational domain is 16 times 

the chord length with the foil located in the middle. The horizontal distance from the upstream 

boundary to the leading edge of the foil is 8 times the foil’s chord length. The distance between 

the end of the wake to the downstream side is greater than 5 times the chord length.  

 

5.2.1 Steady lifting problem for a flat plate in infinite fluid 

To illustrate the merits of the local corner solution presented in Section 3 and validate the 

double-layer nodes algorithm described in Section 4, we begin by studying the lifting problem 

for a flat plate in steady flow and infinite fluid. The chord length of the flat plate is denoted as 𝑐, 

and the angle of attack, denoted as 𝛼, is 2.0°. The body boundary condition is linearized (see 

[19]). In this case, the analytical solution of the vortex strength distribution, which is defined as 

𝛾(𝑥) = 𝜕𝜙+ 𝜕𝑥⁄ − 𝜕𝜙− 𝜕𝑥⁄ , exists [19]; thus, we can use this analytical solution to verify the 

present numerical algorithm. In this problem, 2321 × 442 grid points are used to discretize the 

computational domain, and 101 nodes are distributed over each side of the flat plate with cosine 

distributions near the edges. 

First, we employ the usual HPC method that neglects the singularity at the leading edge to 

study this problem. The corresponding results are demonstrated by the dashed and dotted line 

shown in Fig. 16. In Fig. 16, the vortex strength is normalized by the ambient flow velocity 𝑈. 
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The numerical results neglecting the singularity at the leading edge clearly deviate from the 

analytical solution. At the leading edge, the analytical solution goes to infinity. However, the 

calculated result without the local potential flow solution is finite because the singularity at the 

leading edge is not well simulated. Next, we consider the singularity at the leading edge, adopt 

the same type of grid size, and use the local potential flow solution to represent the velocity 

potential near the leading edge. In the small region enclosing the leading edge, the velocity 

potential can be expressed analytically; thus, we can determine the vortex strength at any point 

in this small region. The corresponding results are represented by the dashed line in Fig. 16, and 

no discrepancy relative to the analytical solution is observed. Therefore, we can estimate the 

errors of the vortex strength, excluding the cell enclosing the leading edge. When the singularity 

at the leading edge is accounted for, the mean squared error of the vortex strength distributed 

over the nodes on the foil relative to the analytical solution is 𝑂(10−3). However, when the 

singularity is excluded, the mean squared error is as large as 𝑂(10−2). Therefore, the double-

layer nodes technique can be used to model the discontinuity in the velocity potential that is 

associated with circulation around the foil, and the local corner solution can adequately 

represent the singularity. 

 

 
Fig. 16. Normalized vortex strength 𝛾(𝑥) 𝑈⁄  distribution over a flat plate. 𝛾(𝑥) =  vortex 

strength distribution. 𝑈 = ambient flow velocity. 𝑐 = chord length of the foil. 𝑥 𝑐⁄ = −0.5 is 

the leading edge and 𝑥 𝑐⁄ = 0.5 is the trailing edge. The angle of attack 𝛼 is 2∘. The present 

results accounting for the singularity at the leading edge are compared with those obtained by 

excluding the singularity and the analytical solution. 

 

5.2.2 Unsteady lifting problem for a flat plate in infinite fluid: Transient problem 

In this section, the linear transient problem for a flat plate in infinite fluid with a thickness 

of zero and a nonzero angle of attack starting instantaneously from rest and to a constant velocity 

is studied (see [19]). The resulting lift force divided by the steady force is the Wagner function, 

which depends on the non-dimensional time 𝑠 = 𝑈𝑡/𝑐, where 𝑈 is the ambient flow velocity 
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and 𝑡 represents time. The Wagner function is analytically expressed as follows [6]: 
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where the Hankel function H𝑛
(2)(𝑘) is a combination of the first and second types of Bessel 

functions, i.e., [1] 

 
       2

H J iY . n n nk k k  (27) 

The method used to efficiently and accurately compute the improper integral with the 

oscillatory integrand given by Eq. (25) can be found in Appendix A. For numerical 

implementation, the double-layer nodes technique is applied to the linearized position of the 

free shear layer with a thickness of zero and the linearized position of the foil with a thickness of 

zero, except at the leading edge. In the region enclosing the leading edge, the local potential flow 

solution is imposed. Because the pressure jump across the free shear layer is zero, the following 

relationship is obtained: 
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 (28) 

where, according to the linearized Bernoulli’s equation, 𝑝+ and 𝑝− denote the pressure on the 

upper and lower double-layer nodes on the thin free shear layer, respectively. In addition, Γ𝑊 =

𝜙+ − 𝜙− is the circulation around a curve enclosing the wake downstream of the investigated 

double-layer nodes, as illustrated in Fig. 6. The general solution of Eq. (28) is expressed as 

follows: 

    , ,W Wx t x Ut    (29) 

which indicates that the circulation Γ𝑊 is advected downstream with an ambient flow velocity 

of 𝑈 and remains constant. Therefore, the horizontal length of the grid downstream should be 

uniform, and the grid length should be 𝑈Δ𝑡 , where Δ𝑡  represents the time step and the 

circulation Γ𝑊 = 𝜙+ − 𝜙− is advected by the length of the grid downstream. To be consistent 

with the transient theory of the lifting problem in infinite fluid [6], the strength of the starting 
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vortex is zero. At the trailing edge, the body boundary condition is satisfied on both sides of the 

foil. In addition, the Kutta condition given by Eq. (17) is imposed. Using this method, we can 

calculate the time history of the lift coefficient and the resulting lift coefficient normalized by the 

steady-state results 𝐶𝐿/𝐶𝐿(𝑡 = ∞). Fig. 17 compares the present numerical results and the 

analytical solution given by Eq. (25), which agree with a relative difference is 𝑂(10−3). During 

the numerical implementation, a grid size of 1451 × 442 with cosine distributions near the 

edges is used to model this problem. As described for the steady problem in Section 5.2.1, the foil 

is divided into 100 portions. 

 

 
Fig. 17. Ratio 𝐶𝐿/𝐶𝐿(𝑡 = ∞) between instantaneous lift and steady lift for a 2D flat plate with 

small angle of attack versus non-dimensional time 𝑈𝑡 𝑐⁄  based on linear theory. 𝐶𝐿 = 

instantaneous lift coefficient. 𝐶𝐿(𝑡 = ∞) = steady lift coefficient. 𝑈 = ambient flow velocity. 

𝑐 = chord length. A comparison with the calculated analytical solution expressed by the Wagner 

function is made. 

 

5.2.3 Harmonic oscillations of a flat plate in infinite fluid 

As a continuation of the analysis of the transient lifting problem in infinite fluid, unsteady 

linearized lifting problems for a flat plate with harmonic heave and pitch motions are considered 

herein (see [19]). Here, pitch motions with a circular frequency of 𝜔 are denoted as follows: 

        i i

0 0e and e ,t th t h t     (30) 

where ℎ(𝑡) and 𝛼(𝑡) are the instantaneous displacement and attack angle of the foil and ℎ0 

and 𝛼0  represent the amplitudes of the heave and pitch motions, respectively. For this 

oscillatory time dependence problem with an assumed chord length of 2.0, the analytical 

expression of the lift force at steady-state is expressed as follows [19]: 

    2 i
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where 𝑘𝑟 = 𝜔𝑐 (2𝑈)⁄  represents the reduced frequency and 𝐶(𝑘𝑟) denotes the Theodorsen 

function [6], which is expressed as 

  
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2

1

2 2

1 0

H
.
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

r

r

r r

k
C k

k k
 (32) 

In Fig. 18, the time history of the lift coefficient 𝐶𝐿  is presented for different reduced 

frequencies, and the present numerical results and the analytical solution are compared. In 

addition, the non-dimensional heave and pitch motion amplitudes are ℎ0 𝑐⁄ = 0.05 and 𝛼0 =

−1.0∘, respectively. The grid resolution is the same as the numerical example present in Section 

5.2.2. In the present numerical study, the transient portion is involved because the foil begins at 

rest and suddenly reaches a constant velocity. However, the analytical solution assumes steady-

state conditions. When nearly steady-state conditions are reached, the agreement with the 

analytical solution is good. 

 

 
(a) 

 

 
(b) 

Fig. 18. The instantaneous lift coefficient of a foil during heave and pitch motions versus non-

dimensional time calculated in the time domain using the HPC method and the steady-state 

analytical results of Theodorsen. (a) 𝑘𝑟 = 2; (b) 𝑘𝑟 = 4. 𝐶𝐿 = 𝐿 0.5𝜌𝑈2𝑐⁄ . 𝐶𝐿 = lift coefficient. 

𝐿 = lift force. 𝜌 = mass density of liquid. 𝑈 = ambient flow velocity. 𝑐 = chord length. 𝑘𝑟 =
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𝜔𝑐 (2𝑈)⁄ . 𝑘𝑟 = reduced frequency. 𝜔 = circular frequency.  

 

5.2.4 Hydrodynamic behavior of a steadily translating hydrofoil 

The flow about a NACA-4412 hydrofoil that steadily operates beneath a free surface is 

considered, as shown in Fig. 19. The submergence depth, water depth and angle of attack are 

denoted as ℎ, 𝑑 and 𝛼, respectively. Here, the submergence depth is the distance between the 

trailing edge of the hydrofoil and the mean free surface. An inertial Cartesian coordinate system, 

𝑂𝑥𝑦, translated with the hydrofoil at a speed of – 𝑈 with respect to the Earth-fixed coordinate 

system is established using the 𝑂𝑥 −axis that coincides with the undisturbed free surface. The 

𝑂𝑦 −axis is positively oriented upwards. The free-surface boundary condition is linearized, but 

the body boundary condition is satisfied exactly. For a NACA hydrofoil with nonzero thickness at 

the trailing edge, we extend the upper and lower surfaces at the trailing edge until intersection 

and obtain a hydrofoil with a trailing edge thickness of zero (see Fig. 20). The wake, which is 

attached to the new trailing edge with zero thickness, is linearized and imposed on a straight line. 

We use the modified hydrofoil to investigate the lifting problem. When calculating the 

hydrodynamic force on the hydrofoil, we only integrate the pressure over the original hydrofoil 

surface. 

 

 
Fig. 19. Schematic of a hydrofoil operating under a free surface and the main dimensions. 
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Fig. 20. Schematic of a NACA hydrofoil with nonzero thickness at the trailing edge and a modified 

hydrofoil with a trailing edge thickness of zero. 

 

To reduce the number of grid points, a domain decomposition strategy is adopted. Following 

the study by Yeung and Bouger [31], we introduce two vertical artificial boundaries, Σ− and Σ+, 

as shown in Fig. 19. The two boundaries separate the inner domain in which all geometrical 

complications occur from two outer domains on the upstream and downstream sides, 

respectively. Waves only occur in the downstream domain. The velocity potential can be 

expressed as eigen-function expansions that satisfy the governing equation, linearized free-

surface condition and bottom condition, which are expressed as follows: 
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 (33) 

where 𝜙+ and 𝜙− denote the velocity potentials in the outer regions on the downstream and 

upstream sides, respectively. Then, the eigen-function expansions satisfying the radiation 

condition are expressed as follows [31]: 
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where 𝐹𝑟ℎ  is the depth Froude number 𝐹𝑟ℎ = 𝑈/√𝑔ℎ , and 𝐻(𝑥)  denotes the Heaviside 

function, which is equal to 1 when 𝑥 ≥ 0 and 0 when 𝑥 < 0. Furthermore, Eq. (34) on the 

downstream side is only valid downstream of the vortex sheet. The eigen-values 𝑘0 and i𝑘𝑗 are 

roots of the dispersion function  

Original trailing edge 

New trailing edge 

Linearized wake 
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 tanh ,k kh  (35) 

where 𝑘 represents either 𝑘0  or i𝑘𝑗 ; 𝑁 denotes the number of expansion terms; and 𝜈 =

𝑔 𝑈2⁄ . Here, we set 𝑁𝐸 = 50, and a grid size of 1260 × 242 is used. The coefficients 𝐶𝑐 , 𝐶𝑠 and 

𝐶𝑗
±  (𝑗 = 0,1, … ) are determined from the matching conditions that require continuity of the 

velocity potential and normal velocity imposed on the matching boundaries Σ− and Σ+. The 

continuity in the velocity potential is imposed on all grid points on the matching boundaries, and 

the continuity in the normal velocity component is only enforced on the selected grid points near 

the free surface. In contrast with the harmonic oscillation problem described in Section 5.1.2, the 

free-surface boundary condition for the present steady translation problem involves a second-

order derivative with respect to the velocity potential 𝜙, as depicted in Eq. (33). In addition, the 

free-surface boundary condition is not enforced at the intersection point between the free 

surface and the matching boundary according to [31]. Therefore, the continuity of the second-

order derivative 𝜕2𝜙/𝜕𝑥2 should be imposed on the intersection node between the matching 

boundary and the free surface [31]. 

Furthermore, due to the abrupt disappearance of the wake, a free-surface disturbance is 

present, which can be represented by a steadily translating point vortex attached to the end of 

the wake under a free surface with the location of the end of the wake defined by (𝑥𝑉 , 𝑦𝑉). Then, 

the velocity potential at a field point (𝑥, 𝑦) induced by a point vortex located at (𝑥𝑉 , 𝑦𝑉) with 

strength Γ is [26]: 
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 (36) 

When imposing the matching conditions on the boundary Σ+ , the effects from the point 

vortex should also be accounted for. Here, the strength of the point vortex Γ is equal to −Γ𝑊, 

and no additional variables are introduced. The algorithm for evaluating the principle value 

integral in Eq. (36) is presented in Appendix B. 
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 (a) (b) 

Fig. 21. Lift and drag versus the Froude number of a 2D NACA-4412 hydrofoil steadily operating 

beneath a free surface at ℎ/𝑐 = 1.0 , 𝑑/𝑐 = 4.0  and 𝛼 = 5∘ . (a) Lift coefficient; (b) Drag 

coefficient. 𝐶𝐿 = 𝐿 0.5𝜌𝑈2𝑐⁄ . 𝐶𝐿 =  lift coefficient. 𝐿 =  lift force. 𝐶𝐷 = 𝐷 0.5𝜌𝑈2𝑐⁄ . 𝐶𝐷 = 

drag coefficient. 𝐷 = drag force. 𝜌 = mass density of liquid. 𝑈 = ambient flow velocity. 𝑐 = 

chord length. 𝐹𝑟 = 𝑈/√𝑔𝑐 . 𝐹𝑟 =  Froude number. 𝑔 =  gravitational acceleration. ℎ = 

submergence depth of the hydrofoil. 𝑑 = water depth. 𝛼 = angle of attack. 

 

Fig. 21 presents the lift and drag coefficients for a 2D NACA-4412 hydrofoil as a function of 

the Froude number 𝐹𝑟 = 𝑈 √𝑔𝑐⁄ . The horizontal length of the computational domain is 21 times 

the chord length, with the leading edge of the hydrofoil 5𝑐 from the upstream side. In addition, 

the length of the wake is 10 times the hydrofoil’s chord length. The validity of the present study 

is examined against the numerical results obtained by Yeung and Bouger [31]. Here, 60 elements 

are distributed over each side of the hydrofoil. To be consistent with the work by Yeung and 

Bouger [31], the angle of attack is 𝛼 = 5∘, the ratio between the submergence depth and the 

chord length is ℎ/𝑐 = 1.0, and the water depth-to-chord length ratio is 𝑑/𝑐 = 4.0. We use both 

direct pressure integration (DPI) and conservation of fluid momentum (CFM) to calculate the 

hydrodynamic force, and the results obtained from both methods agree with one another. As 

illustrated in Fig. 21 (a), the lift coefficient varies strongly when the Froude number is greater 

than 0.4 but smaller than 1.0, which is observed as an initial increase followed by a decrease. 

Moreover, a peak value exists when the Froude number is equal to approximately 0.6. As depicted 

in Fig. 21 (b), when the Froude number is greater than 0.4, the drag coefficient increases 

considerably and reaches its maximum value when the Froude number is approximately 0.9. 

Then, the drag coefficient decreases with the Froude number. The agreement with the results by 

Yeung and Bouger [31] is reasonably satisfactory. 

Then, the free-surface elevation induced by the steadily translating NACA-4412 hydrofoil is 

investigated at ℎ/𝑐 = 1.0, 𝑑/𝑐 = 4.0 and 𝛼 = 5∘ for various Froude numbers in Fig. 22. The 

position of the hydrofoil is within the interval [−0.5, 0.5] . Satisfactory agreement with the 

results calculated by Yeung and Bouger [31] is obtained.  
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(a) 

 

 

(b) 

Fig. 22. Free-surface elevation generated by the NACA-4412 hydrofoil at ℎ/𝑐 = 1.0, 𝑑/𝑐 = 4.0 

and 𝛼 = 5∘ compared with the numerical results by Yeung and Bouger [31]. (a) 𝐹𝑟 = 0.7; (b) 

𝐹𝑟 = 0.9 . 𝐹𝑟 = 𝑈/√𝑔𝑐 . 𝜁 =  Free-surface elevation. 𝑥 =  horizontal position. 𝑐 =  chord 

length. 𝑥 𝑐⁄ = −0.5  is the leading edge and 𝑥 𝑐⁄ = 0.5  is the trailing edge. 𝐹𝑟 =  Froude 

number. 𝑔 = gravitational acceleration. ℎ = submergence depth of the hydrofoil. 𝑑 = water 

depth. 𝛼 = angle of attack. 

 

Finally, the calculated pressure coefficient, 𝐶𝑃 = (𝑝 − 𝑝𝑎)/(0.5𝜌𝑈2) , with 𝑝𝑎  as the 

ambient pressure, is presented in Fig. 23 with the surface of the NACA-4412 hydrofoil at 𝛼 = 5∘ 

and 𝐹𝑟 = 1.03 for two submergence depths. In addition, the present results are verified and 

validated by comparing them with the numerical results reported by Giesing and Smith [13] and 

the experimental data reported by Ausman [3]. Furthermore, Giesing and Smith [13] assume a 

2D linearized potential flow and apply a BEM. This study is more consistent with the numerical 

results reported by Giesing and Smith [13] than with the experimental results. In addition, the 

disagreement mainly occurs with respect to the suction side of the hydrofoil.  

 

-4 -2 0 2 4 6 8 10
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 

 

ζ/
c

x/c

 Yeung and Bouger

 Present results

-4 -2 0 2 4 6 8 10
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 

 

ζ/
c

x/c

 Yeung and Bouger

 Present results



31 

 

 
 (a) (b) 

Fig. 23. Pressure distribution over a NACA-4412 hydrofoil at 𝛼 = 5∘  and 𝐹𝑟 = 1.03  for 

different submergences. (a) ℎ/𝑐 = 0.6 ; (b) ℎ/𝑐 = 0.94 . 𝐶𝑃 = (𝑝 − 𝑝𝑎)/(0.5𝜌𝑈2) . 𝐶𝑃 = 

pressure coefficient. 𝑝 =  pressure on the hydrofoil. 𝑝𝑎 =  ambient pressure. 𝜌 =  mass 

density of liquid. 𝑈 =  ambient flow velocity. 𝐹𝑟 = 𝑈/√𝑔𝑐 . 𝐹𝑟 =  Froude number. 𝑔 = 

gravitational acceleration. 𝑐 = chord length. ℎ = submergence depth. 𝛼 = attack angle. 

 

6 Conclusions and future studies 

In this paper, two algorithms are proposed within the framework of the 2D HPC method [22] 

to treat singular flows and lifting problems in marine hydrodynamics. To reduce the required 

computational effort, the domain decomposition strategy is applied by representing far-field 

waves using eigen-function expansions [30, 31]. 

First, a domain decomposition strategy coupling the local solution in the inner region 

enclosing a sharp corner and the HPC method in the outer domain is proposed to investigate 

fluid-structure interaction problems in the presence of sharp corners and potential flow. For the 

added mass and damping associated with the linear hydrodynamic force, the results accounting 

for the singularity at the sharp corner do not differ much from those obtained using the 

conventional approach because the linear hydrodynamic force is only related to the velocity 

potential over the mean wetted surface of the body. At the sharp corner, the velocity potential is 

finite but the velocity components are singular. Thus, we study the second-order mean vertical 

force of a heaving rectangular cylinder, which is partly associated with the quadratic terms of the 

velocities in Bernoulli’s equation. If the singularity at the sharp corner is accounted for, the 

results obtained from direct pressure integration (DPI) are consistent with those obtained from 

conservation of fluid momentum (CFM). Otherwise, a clear difference between the results from 

DPI and CFM is observed. However, neglecting the effect of the velocity singularity and using CFM 

produces results similar to those obtained by accounting for the flow singularity at sharp corners. 

Then, the double-layer nodes algorithm is developed to model the velocity potential jump 

across a thin free shear layer shed from lifting bodies and the pressure difference across a flat 
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plate with a thickness of zero. By studying the steady lifting problem involving a flat plate with 

zero thickness, we concluded that the local solution can model the singularity at the leading edge 

and that the conventional HPC method can only yield a finite value at the leading edge. In addition, 

the transient unsteady and steady state lifting problem for a flat foil in infinite fluid and the 

steady lifting problem for a hydrofoil in the presence of a free surface were analyzed. The present 

numerical results obtained from the HPC method using the double-layer nodes technique are 

consistent with the analytical solutions and numerical results presented in the literature. 

In summary, two novel algorithms within the framework of the 2D HPC method are 

developed to investigate singular flows and discontinuous problems in marine potential flow 

hydrodynamics. It has been verified that the proposed methods are valid and robust. 

In future studies, the present algorithms will be extended to 3D problems. Furthermore, for 

fluid-structure interaction problems with sharp corners, the flow separation associated with the 

viscous effect will be examined. Therefore, the HPC method should be combined with a Navier-

Stokes solver by solving the Navier-Stokes equations in the region where the viscous effect is 

predominant. 
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Appendix A. Computation of the integral in Eq. (25) 

In Eq. (25), the integrand is oscillatory due to the presence of the trigonometric and Hankel 

functions. During the numerical integration, we first identify the truncation value of 𝑘. When 𝑘 

is large, we use the approximate asymptotic expression of the Hankel function, which is 

expressed as follows [1]: 
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Thus, the corresponding function 𝐹(𝑘) is simplified as follows: 
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which indicates that 𝐹(𝑘) is constant as 𝑘 becomes infinitely large. Therefore, the upper limit 

of the integral 𝑘𝑈 can be selected as the value at which 𝐹(𝑘) is near 0.5. Here, we set 𝑘𝑈 =

1000.0, and the corresponding value of 𝐹(𝑘𝑈) is 0.5000000625, with a relative difference of 
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𝑂(10−7). When 𝑘 is greater than 𝑘𝑈 , we assume that 𝐹(𝑘) remains unchanged. Next, we find 

the zeroes of the integrand and numerically integrate between the adjacent zeroes. When 𝑘𝑠 is 

less than 0.1, we can use a Taylor expansion for the sine function, to obtain the following integral:  
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Otherwise, the interval between the adjacent zeroes is divided into a number of subintervals, 

and the quadratic polynomial 𝑎0 + 𝑎1𝑘 + 𝑎2𝑘2  is used to approximate the function 𝐹(𝑘) in 

each subinterval. Therefore, the elementary integral over each subinterval can be expressed as 

follows: 
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where 𝑘1 and 𝑘2 are the minimum and maximum values of the subinterval and Si(⋅) denotes 

the sine integral function [1]. 

Finally, the integral from the truncated value 𝑘𝑈 to infinity is 
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Appendix B. Numerical calculation of the principle value integral in Eq. (36) 

Herein, we demonstrate how to evaluate the principle value integral in Eq. (36), which takes 

the following form: 
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Converting Eq. (B.1) to the complex plane results in 
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By expanding the hyperbolic sine and cosine functions in Eq. (B.2), we obtain 
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Eq. (B.3) can be decomposed into four parts, each of which can be expressed as 
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where 𝑌 is always greater than zero. Following the study conducted by An and Faltinsen [2], we 

introduce the two following functions: 
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Then, we generate the Taylor expansion of 𝑄(𝑘) at 𝑘0 as follows: 

        0 0 0 ...,Q k Q k Q k k k      (B.6) 

with 𝑄(𝑘0) = 0. When considering Eq. (B.5) and Eq. (B.6), Eq. (B.4) can be rewritten as follows: 
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In Eq. (B.7), the first integral is not singular but the second one is. Thus, our efforts are 

devoted to evaluating the second integral in Eq. (B.7). For the integration path demonstrated in 

Fig. B1, the second integral occurs along path 𝐿. 𝐶 denotes the integration along the circular 

arc with radius 𝜌𝐶 , and it can be verified that the integration along 𝐶 vanishes as 𝜌𝐶  tends 

towards infinity. In the complex 𝑘 −plane, it is possible to find an argument Λ such that the 

exponential function is purely real; thus, the argument Λ can be expressed as follows: 

 arctan .Vx x

Y

 
   
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 (B.8) 

Because 𝑌  is greater than zero, the sign of the argument Λ  depends on 𝑥 − 𝑥𝑉 . The 

integration along path 𝐿±, where the exponential function is purely real, can be expressed as the 

exponential integral function as follows [1]: 
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For Λ values greater than zero, the integration path is as shown in the left panel of Fig. B1 

and  
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Fig. B1. Integration path in the complex 𝑘 −plane. 

 

When Λ is less than zero, the integration path is as shown in the right panel of Fig. B1 and 

the integration path is 
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with 
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Therefore, the second integral in Eq. (B.7) is simplified as follows: 
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Finally, the principle integral in Eq. (B.1) can be evaluated accurately and efficiently. 
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