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Abstract 12 

Large datasets containing many spectra commonly associated with in situ or operando 13 

experiments call for new data treatment strategies as conventional scan by scan data 14 

analysis methods have become a time-consuming bottleneck. Several convenient 15 

automated data processing procedures like least square fitting of reference spectra 16 

exist but are based on assumptions. Here we present the application of multivariate 17 

curve resolution (MCR) as a blind-source separation method to efficiently process a 18 

large data set of an in situ X-ray absorption spectroscopy experiment where the sample 19 

undergoes a periodic concentration perturbation. MCR was applied to data from a 20 

reversible reduction-oxidation reaction of a rhenium promoted cobalt Fischer-Tropsch 21 

synthesis catalyst. The MCR algorithm was capable of extracting in a highly 22 

automated manner the component spectra with a different kinetic evolution together 23 

with their respective concentration profiles without the use of reference spectra. The 24 

modulative nature of our experiments allows for averaging of a number of identical 25 
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periods and hence an increase in the signal to noise ratio (S/N) which is efficiently 26 

exploited by MCR. The practical and added value of the approach in extracting 27 

information from large and complex datasets, typical for in situ and operando studies, 28 

is highlighted. 29 

 30 
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 33 

1. Introduction 34 

During the last two decades many synchrotron beamlines specialized in X-ray 35 

absorption spectroscopy (XAS) have increased their instrumental performance 36 

enormously. While recording a single spectrum used to take several tens of minutes, 37 

now it can be recorded in less than 10 seconds or even in the order of milliseconds 1. 38 

This has opened up the way to perform in situ and operando XAS experiments with 39 

the ambitious aim to shed light on transient structures. In such experiments XAS data 40 

are collected as a function of time while changing a variable of the experimental 41 

condition such as temperature, concentration, or pressure. It has become routine to 42 

collect hundreds of spectra on a single sample. These large datasets have to be treated 43 

and the conventional scan by scan data analysis methods have become a time 44 

consuming bottleneck. Automated data processing procedures like least square fitting 45 

of data with a linear combination (LC) of reference spectra and Principle Component 46 

Analysis (PCA) are powerful tools yet have limitations. More precisely LC requires 47 

standards and PCA often provides mixed components that are hard to interpret. Here 48 

we present the application of multivariate curve resolution (MCR) as a blind-source 49 

separation method 2, 3 to process a large data set of an in situ XAS experiment where a 50 



sample is under periodic concentration perturbation with simultaneous effluent gas 51 

analysis. The advantage of MCR extracted components is that they can be treated as 52 

conventional XAS spectra. 53 

In a XAS experiment the X-ray energy is scanned over and beyond the absorption 54 

edge and the intensity before and after the sample is recorded. The photo-electrons are 55 

ejected from the absorbing atom and interfere with the direct surroundings following 56 

many different scattering paths. These paths give rise to an oscillatory, wiggling 57 

behavior of the extended X-ray absorption fine structure (EXAFS) signal. By the very 58 

nature, the EXAFS spectral response is hence the sum of many overlapping 59 

contributions that have to be untangled. When performing in situ experiments under 60 

chemical and/or structural transformations, the EXAFS signal often consists of 61 

contributions from at least two or more species. Due to the aforementioned wiggling 62 

nature of EXAFS region in the XAS data, the challenge is to untangle overlapping 63 

peaks unequivocally. The difficulty in the separation of heavily overlapping peaks can 64 

be mitigated by increasing measurement resolution such as ultrahigh resolution 65 

fluorescence analyzer systems 4 which are available only on highly specialized 66 

beamlines. Modulation excitation spectroscopy (MES) is a method for transient 67 

studies and monitors sensitively and selectively the species or the physical states of 68 

interests 5. MES has been combined with EXAFS to boost the detection sensitivity 1, 6, 69 

7. By using the mathematical engine of MES, commonly referred to as phase sensitive 70 

detection (PSD), great sensitivity enhancement has indeed been demonstrated. 71 

However, the wiggling and overlapping nature of EXAFS spectra is not well suited for 72 

conventional MES analysis using PSD. The PSD method has difficulty in 73 

differentiating heavily overlapping peaks with distinct kinetics. More recently, the 74 

spectra after PSD were analyzed by a fitting procedure using reference spectra to 75 



quantitatively understand small spectral changes observed 8. This is one way of solving 76 

the overlap problem of the different components; unfortunately it requires a priori 77 

knowledge or assumptions on the changes in the samples and uses reference spectra. 78 

Multivariate curve resolution (MCR) analysis on X-ray absorption near edge 79 

spectroscopy (XANES) data is slowly getting established and has been applied for 80 

battery research 9, for studying substitution reactions in layered hydroxides 10 and the 81 

determination of an activation pathway in a copper alumina catalyst 11. In this paper 82 

we present the application of MCR to an in situ catalytic EXAFS study with a periodic 83 

gas concentration modulation. In the present work MCR - alternating least squares 84 

(ALS) was used for the blind separation of the spectral components. With blind we 85 

mean without any standards or any other input information except the data (i.e. 86 

spectra) matrix itself. The blind source is a great advantage of the MCR because only 87 

experimental data are needed and no prior assumptions have to be made for the 88 

analysis. 89 

 90 

2. Material and methods 91 

2.1. MCR applied to XAS data 92 

In this work the MCR methodology has been directly applied to the time-resolved 93 

XAS data: D is the data matrix of m×n in size, where m is the number of recorded 94 

spectra and n is the number of the data points in energy scale in XAS. The information 95 

about the spectra of individual components and their concentrations or populations can 96 

be extracted by solving the component resolution problem 12. In order to do so the 97 

matrix of raw spectra D has to be decomposed into bilinear contributions of the pure 98 

components, i.e. concentration profiles, and spectra 13. Equation (1) shows that in 99 

MCR data matrix D is expressed by three matrices C, S, and E. C(m×k) is the matrix 100 



where its columns contain the concentration variations or kinetic profiles of k pure 101 

components during the transformation. S(n×k) contains the columns of the respective 102 

spectra of the pure components. The main goal of MCR is to determine the C and S 103 

matrices only by analyzing the data matrix 14. It is also important to note that the term 104 

‘pure components’ denotes a group of features that varies with a unique pattern, 105 

compared to other responses coming from the sample. It does not necessarily have to 106 

be a chemically pure component but could e.g. represent a mixture of chemically pure 107 

components as long as they behave together (kinetically) in the same manner. The 108 

third term E(m×n) is a matrix with leftover unexplained signal after the multiplication 109 

of the concentration C and component ST matrices. Ideally the E matrix would contain 110 

the experimental uncertainties. 111 

D=CST + E (1) 

Equation 1 is solved iteratively by finding the optimal combination of the C and S 112 

matrices using least squares optimization on the E variance matrix. This technique has 113 

been successfully applied in a great deal of analytical problems15-18. Typical MCR-114 

ALS steps have been reported elsewhere13. In order to increase the MCR performance, 115 

physically logical constraints can be employed in the decomposition procedure14, 19. 116 

For instance positive values for concentrations as well as spectral profiles are used as 117 

constraints for common spectral analyses. This is one of the advantages of MCR over 118 

PCA because the latter uses statistical criteria during component extraction resulting in 119 

components more difficult to interpret.  120 

It should be underlined that we employed the MCR-ALS on XAS data as a blind 121 

source separation tool to extract pure component spectra and their respective 122 

concentration profiles. However, other blind source separation algorithms do exist 123 

with imposed component independence criteria, and the origin of the criteria differs in 124 



MCR-ALS. MCR-ALS should hence not be taken as a general or sole solution for 125 

blind source separation, although it did perform well in this application compared to 126 

independent component analysis (ICA), such as SNICA 2, in this particular case.  127 

The MCR algorithm has been developed, described and discussed in detail by Tauler 128 

et al. 19-23. Multivariate resolution methods also assume that the experimental data 129 

follows Lambert-Beer’s law. This assumed linearity between recorded spectral data 130 

and component concentrations is widely accepted for XAS data 24, 25. Hence our aim is 131 

to extract the concentration C and spectra S matrices from only the experimental data 132 

matrix D without using any reference spectra. Before extracting the C and S matrices 133 

the number of pure components present in the system needs to be defined. Then initial 134 

estimations of matrices C and S have to be obtained from the techniques based on the 135 

evolving factor analysis 14, 19, 20, 22, 23, 26, 27. Later, the iteration mechanism comes into 136 

play. A new estimation of the matrices C and S is obtained after each iteration 137 

(equations 2 and 3). 138 

C+D*=C+CST=ST (2) 

D*(ST)+=C(ST)(ST)+=C (3) 

Matrix D* is the data matrix produced by principal component analysis (PCA) 27 for 139 

the selected number of components. Matrix C+ is the pseudo-inverse (as matrix C is 140 

not necessarily square) of matrix C and (ST)+ is the pseudo-inverse of the matrix ST. 141 

Iterative optimization is performed until convergence is achieved or a specified 142 

number of iterations is reached. 143 

2.2. Sample preparation 144 

A Fischer-Tropsch synthesis catalyst, cobalt-rhenium supported on high surface area 145 

γ-Al2O3, was chosen as our model system 28. The catalysts were prepared by a co-146 

impregnation technique. Cobalt nitrate hexahydrate and perrhenic acid were dissolved 147 



in de-ionized water and the solution was impregnated on γ-Al2O3. The catalysts were 148 

dried in air for 3 hours at 393 K followed by calcination in air for 16 hours at 573 K. 149 

The average cobalt particle size was ca. 8-10 nm with 20 wt% of cobalt. Sieved 150 

catalyst fractions of 53-90 µm were used for the experiments.   151 

2.3. XAS measurements 152 

XAS experiments were performed on BM01B at the Swiss-Norwegian Beamlines 153 

(SNBL) of the European Synchrotron Radiation Facility (ESRF), France. XAS spectra 154 

were recorded at the cobalt K-edge (7709 eV) with a double crystal Si(111) 155 

monochromator. A cobalt foil was used for energy calibration. The first inflection 156 

point was calibrated to the Co K-edge energy. All measurements were performed in 157 

transmission mode. Gas filled ion chambers before and after the sample were used to 158 

measure the XAS signal. 159 

XAS spectra were recorded near the Co K-edge (7709 eV) with 1 eV energy step in 160 

continuous scanning mode. One spectrum was recorded in about 31 seconds. 6 161 

oxidation-reduction cycles were taken in total. Each cycle consists of 30 spectra (15 162 

spectra under H2 flow and subsequent 15 spectra in the flow of the O2 in He). 163 

2.4. Reaction and setup description 164 

A reversible oxidation-reduction reaction of the Co component of the Fischer-Tropsch 165 

synthesis catalyst was used to test the MCR methodology. The experimental setup is 166 

shown in Fig. 1. 167 

Gas flows were controlled by mass flow controllers. One of the key elements of the 168 

setup is the switching valve. The switching valve allowed rapid switching (< 200 ms) 169 

between two gas lines containing either 2.5 mL/min of H2 (99.999 %) or O2 in He 170 

(2.2mL/min He + 0.3 mL/min O2). The pressure in both lines (sample and blank) was 171 

adjusted to ambient pressure by back pressure controllers. Equalizing the pressure in 172 



both lines is very important as it enables a sharp and clean switching front between the 173 

gases. A quartz capillary (OD: 1 mm, wall thickness 20 μm) 28 was used as the in situ 174 

reactor cell. The temperature was set to 488 K. The concentrations of gaseous 175 

components after the reactor cell were monitored by a mass spectrometer (Pfeiffer 176 

Vacuum, OmniStar) in order to verify whether the envisaged reaction actually took 177 

place throughout the whole experiment. 178 

2.5. Data analysis 179 

2.5.1. Pre-treatment 180 

In a time resolved experiment one always needs to make a trade-off between time 181 

resolution and S/N. Increasing time resolution leads to a decrease in S/N and vice 182 

versa. As the oxidation-reduction reaction induced by switching between oxygen and 183 

hydrogen atmospheres is a reversible process, one can repeatedly scan the changes 184 

upon gas switching while recording the spectra with a required time resolution to 185 

capture the spectral evolution of interest in spite of possibly insufficient S/N of each 186 

scan for proper spectral analysis. The obtained multi-cycle data can be averaged into 187 

one cycle to improve S/N and the degree of the improvement, according to Gaussian 188 

statistics, is proportional to the number of cycles which is an experimental parameter. 189 

This post-averaging scheme can be very practical in reducing the data size for further 190 

analysis like MCR-ALS in the light of availability of modern detectors with high 191 

spectral resolution and fast scan capability. A detailed analysis of the S/N 192 

improvement is given in the Supplementary Material. 193 

Prior to the averaging procedure the studied system should be allowed to reach a quasi 194 

steady-state 5. In Fig. 2a, the first three cycles of the experimental data during O2-H2 195 

switching are shown. It becomes immediately clear that the spectral response in the 196 

first cycle is different from that of the second and third cycles. Before the initial cycle 197 



which starts from the oxygen atmosphere, the sample was freshly reduced. The state of 198 

the catalyst and/or the degree of Co reduction is different after exposing to O2 flow. 199 

From the second cycle onwards the temporal response of the spectra at each cycle was 200 

identical (Fig. 2b), thus a quasi steady-state was reached after the first cycle. This is 201 

also confirmed by the MS response (see Supplementary Material). Hence the spectra 202 

of the 5 cycles, from the 2nd until the 6th cycle, were averaged into one cycle. All data 203 

pre-treatment procedures were performed using MATLAB software. As a result, one 204 

averaged cycle is produced with significantly improved S/N (Fig. 2c). The averaged 205 

EXAFS data were used for data processing by MCR. 206 

2.5.2. Conventional versus MCR data processing 207 

Conventional EXAFS data processing includes several initial steps such as 208 

normalization, background subtraction and edge position correction. Fig. 3 shows the 209 

Fourier transforms of the averaged EXAFS spectra (i.e. one cycle) after the pre-210 

processing steps (details given in Supplementary Material).  211 

All the transformed spectra are apparently different from each other, meaning that all 212 

30 spectra must be processed and analyzed separately. This is a time-consuming 213 

procedure and becomes impractical for large datasets. Note that this is still a relatively 214 

small dataset compared to the experimental capabilities of state of the art XAS stations. 215 

MCR works differently; here the entire system is represented by the various 216 

components present in the system and their concentrations. Fig. 4 graphically 217 

represents the result of the MCR method applied to our XAS data. The commercially 218 

available Unscrambler X 10.2 software was used for the MCR data analysis. We have 219 

constrained the MCR analysis to non-negativity for spectra and concentration profiles. 220 

Here the data matrix D is expressed by the matrices of “MCR pure component” 221 

spectra S and their concentrations C varying with time and the associated residual 222 



error E matrix (shown in Supplementary Material). In this particular example only two 223 

components and their concentration profiles were, at the first glance, sufficient to 224 

represent the data with very little residual error. Therefore compared to conventional 225 

EXAFS data treatment, only 2 spectra need to be interpreted instead of 30. In 226 

conventional EXAFS data analysis each of the 30 datasets would be compared or 227 

fitted with parameters from a proposed structural model. Alternatively, the spectra can 228 

be fitted by a linear combination of chemically pure standard spectra (typical for 229 

XANES analysis). By doing so a model is forced into the interpretation such that 230 

variations have to occur by going directly from one to another chemically pure 231 

component. With the MCR-ALS methodology the varying components are extracted 232 

based on kinetic correlations in the data without any assumptions on chemical 233 

pureness. If a system would respond from one chemically pure bulk component to 234 

another, both traditional and MCR methods would give the same result. MCR analysis 235 

would still come with the speed of data-analysis advantage. However, if bulk 236 

references do not describe the transient structures in the data properly MCR would be 237 

able to show this effectively where reference based methods would fail. In other terms, 238 

MCR-ALS would be able to identify species and components in samples for which 239 

references are not available.  240 

Quantification with MCR is possible but care has to be taken because the 241 

multiplication of a component spectrum and its concentration yields the actual 242 

intensity of the decomposed spectra. Therefore the concentrations obtained by MCR 243 

should be scaled by the intensity of the component spectrum of a reference with 244 

known concentration. 245 

Furthermore, it has to be mentioned that the averaged dataset, absorption coefficient 246 

(mu) as a function of X-ray energy and time, is processed by the MCR-ALS algorithm. 247 



The physically more meaningful interpretation is done only after standard EXAFS 248 

analysis, in brief Fourier transform, on the MCR-ALS extracted component spectra. 249 

2.5.3 Number of pure components  250 

The MCR implementation in Unscrambler performs PCA before MCR processing to 251 

define the number of components. For this particular example Unscrambler yielded 252 

two data sets: one with 2 and the other with 3 pure components, with a suggestion for 253 

the former based on a statistical criterion (see Supplementary Material). The question 254 

is: Can the 2 components be regarded as the solution? Indeed, the explained variance 255 

with 2 components is already above 99.9 % and the two component model can 256 

reasonably explain the spectral shape and evolution as one can see in the results and 257 

discussion section. However, it should be noted that a variety of statistical stopping 258 

rules for defining the number of components exist 29. Looking in great detail at the 259 

individual PCA loadings  (Supplementary Material), one can clearly observe the high 260 

S/N spectral structure in the 1st, 2nd, and also 3rd component, whereas the 4th and above 261 

components are dominated by noise. The statistical analysis in the Supplementary 262 

Material reports the quality of fit in terms of total residues for the 2- and 3-component 263 

analysis. It is worth mentioning that the identical conclusions can be drawn without 264 

averaging the data and processing either the last 5 cycles or all 6 cycles 265 

(Supplementary Material). The number of components selected for the determination 266 

of the pure component spectra is of primary importance for the final interpretation of 267 

the data and here we find it valuable and useful to examine the S/N and spectral 268 

structure using PCA to determine the number of pure components to be included in the 269 

MCR analysis. From the statistical analysis and the data interpretation it is evident that 270 

all low-noise components need to be examined for meaningful chemical interpretation. 271 



In this work, we present both cases as an illustration of both 2- and 3-component cases 272 

and potential pitfalls in using MCR for blind source spectral separation. 273 

 274 

3. Results and discussion 275 

The MCR procedure delivers individual component spectra that can be processed as 276 

conventional EXAFS spectra. To illustrate this, we first perform the EXAFS analysis 277 

on a simple example, namely the 2 component MCR decomposition, suggested as the 278 

likely solution based on the statistical criteria. By showing the incomplete 2 279 

component example (Section 2.5.3) we also intend to sensitize potential users of the 280 

method about the extreme importance of careful number component selection.  281 

In Fig. 4 typical profiles of X-ray absorption spectra after MCR decomposition are 282 

shown. The part of the components spectra which can be processed for detailed 283 

EXAFS analysis (ca. 50 eV above the edge) has the typical oscillating nature. Fig. 5 284 

shows raw and normalized Fourier transformed spectra of the 2 components without 285 

phase-correction obtained after the MCR treatment.  286 

Component 1 has a magnitude approximately 15 times higher than component 2. The 287 

large difference between FT magnitudes of the two components is due to the 288 

difference in the intensities of the oscillating parts of the components spectra S (Fig. 289 

4). It should be reminded that the actual signal intensity of the component spectra can 290 

be retrieved by its multiplication with the corresponding concentration. This means 291 

that the actual difference in their intensities is not as large as shown in Fig. 5a because 292 

component 2 has lower intensity with higher concentration throughout the O2-H2 293 

cycle. It is interesting to note that the concentration of component 2 changes but 294 

remains high, while that of component 1 diminishes completely at around the 10th 295 

spectrum (C in Fig. 4). For the sake of clear comparison between the two components, 296 



FT curves were normalized to the highest peak. Fig. 5b shows that there is a 297 

significant difference between the components, implying that the two components 298 

belong to the substances with different chemical and structural nature. For a better 299 

understanding of the chemical meaning of the components, the FT curves of the two 300 

components and of the cobalt containing standards are compared (Fig. 6). 301 

The most intense peak of component 1 clearly resembles the main peak of cobalt 302 

metal. Hence we can conclude that component 1 has mainly metallic nature. On the 303 

other hand, the assignment of component 2 is more ambiguous and it apparently 304 

consists of a mixture of Co3O4 and CoO. No peak of metallic cobalt was detected 305 

comparing the spectra of the component 2 and of metallic cobalt. Therefore MCR can 306 

clearly separate the metallic component of the studied sample from the component 307 

containing oxidized cobalt. This suggests that the components represent features with 308 

a clear chemical meaning. In Fig. 4 the concentration matrix C is presented as a 309 

concentration plot. As mentioned earlier, the concentration of component 1 drops 310 

close to zero after the 10th scan in O2 flow but it increases again after a while when 311 

switching to H2 flow. The concentration profile of component 2 behaves in an opposite 312 

manner to that of component 1 albeit at a higher concentration level as mentioned 313 

earlier. The concentration profiles are also chemically reasonable because components 314 

1 and 2 correspond to metallic Co and Co oxides, respectively, according to Fig. 6. By 315 

visual inspection of the XAS edge profiles in Fig. 3 the close to zero concentration of 316 

metallic Co and the rather high concentration variations indicates that the majority of 317 

the cobalt in the catalyst alternates between metallic cobalt (in H2) and cobalt oxides 318 

(in O2) throughout the cycle. 319 

As explained in Section 2.5.3 and in the Supplementary Material, the presence of 3 320 

components can be concluded based on the structure of scores and S/N of loadings in 321 



PCA. Also when we increase the number of components to three, the sum of all 322 

differences in matrix E is reduced by a factor of 40 (Supplementary Material), but 323 

does the increase in the number of components make better chemical sense and does 324 

MCR hence provide more detailed information? 325 

The next example uses the same XAS data set but separated into 3 components by 326 

MCR. In Fig. 7 the component spectra and the corresponding concentration profiles 327 

after decomposition into 3 components are presented.  328 

The component concentration profiles look similar to those obtained after 329 

decomposition into 2 components (Fig. 4) except for the presence of the additional 330 

profile of component 2.  331 

Note that the number of components used in the extraction is an important parameter 332 

to be precisely determined, as it could also have a large effect on the shape of 333 

extracted components. Again, for better understanding of chemical transitions, 334 

analysis of the Fourier transforms of the extracted components was performed first. 335 

Conventional data processing including the background subtraction, edge shift and 336 

normalization was done prior to Fourier transformation. A comparison is shown in 337 

Fig. 8. Component 1 mainly represents the metallic part of the system (a) while 338 

components 2 and 3 show the presence of cobalt oxides. Component 3 resembles pure 339 

Co3O4 (b) whereas component 2 represents the structure of an intermediate between 340 

CoO and Co3O4 when comparing the positions and intensities. According to the 341 

component concentration profiles, the oxidation-reduction process for the cobalt can 342 

be explained in the following way: After introduction of oxygen, the surface cobalt 343 

atoms are oxidized with the initial formation of CoO. Co3O4 is formed at the expense 344 

of CoO (Fig. 7b, 8-10th scan number). After switching to hydrogen flow Co3O4 is 345 

partially reduced to CoO (Fig. 7b, 17-20th scan number). The concentration of the 346 



metallic component is increased gradually after the introduction of hydrogen together 347 

with a simultaneous decrease in the concentrations of both CoO and Co3O4. 348 

The MCR analysis shows that oxidation of cobalt is a two-step process with the Co3O4 349 

as the resulting oxide and CoO as an intermediate component. This shows that the 350 

oxidation of cobalt follows the same mechanism as observed for the reduction of 351 

Co3O4 crystallites in traditional XANES analysis in previous studies 30. An additional 352 

validation of the blind source separation method was performed by comparing results 353 

of EXAFS and XANES MCR analysis with and without an initial guess on the pure 354 

components using references spectra of bulk Co, CoO and Co3O4. The results of these 355 

extractions are given in the Supplementary Material. It can be seen that all 356 

concentration profiles show the same trends, confirming the validity of MCR as the 357 

blind source separation method. 358 

Does the information extracted by MCR-ALS go beyond the traditional methods? It is 359 

clear from Fig. 8 that the extracted components do not fully match with the EXAFS 360 

reference spectra. This shows that the MCR-extracted components do not necessarily 361 

represent bulk chemical phases, which could be explained as follows: The changes in 362 

the cobalt particles during oxidation-reduction cycles are of transient character and the 363 

system is highly dynamic. The mixed character of CoO and Co3O4 observed for 364 

component 2 may be caused by the transient nature of the oxide phases and that 365 

nanoparticles were used in this study (ca. 8-10 nm in size). The surface fraction of Co 366 

atoms gives a significant contribution to the overall signal. Hence it becomes clear that 367 

the cobalt species in our study are not well described by the bulk reference 368 

compounds. This also demonstrates the obvious limitations of traditional LC analysis 369 

of XANES spectra using such reference compounds. Better time resolution, providing 370 

finer sampling, might increase the accuracy of the MCR analysis. Further work is 371 



needed to study the influences of sampling rates on the quality of MCR-ALS 372 

extractions and to provide clear experimental guidelines to optimize such experiments. 373 

It is also worth noting that, thanks to the modulative nature of our experiments, the 374 

detection limits as well as the data size can be pushed down by averaging many cycles. 375 

The latter data size reduction advantage can be very practical considering the 376 

increasing availability of modern high resolution, fast detectors. Especially in catalysis 377 

research, where the active species often represents only a minute (surface) fraction of 378 

the overall catalytic body, the presented modulation -> averaging -> MCR-ALS 379 

approach might be able to provide new experimental insights. The represented data 380 

already shows the power of the methodology in efficient and insightful EXAFS data 381 

analysis for catalysis research. 382 

4. Conclusions  383 

The application of MCR to X-ray absorption spectroscopy data has been demonstrated 384 

on a modulated oxidation-reduction treatment of cobalt-based Fischer-Tropsch 385 

synthesis catalysts. The complex hardware needed for such experiments has been 386 

described in detail. MCR was capable of extracting in a highly automated manner 387 

component spectra with distinct kinetic evolution together with their respective 388 

concentration profiles without the use of reference spectra. Great care has to be 389 

taken in the selection of the number of pure components. Comparisons between blind 390 

source component extractions and extractions including an initial guess of the 391 

components show very similar results providing confidence in the method. The blind 392 

extracted components can also be treated with standard software for EXAFS spectral 393 

analysis. When comparing the MCR extracted components with bulk references they 394 

are somewhat different. This is likely due to the dynamic nature of the system and the 395 

nanoparticles used illustrating that bulk references are not representative for the 396 



changes occurring in highly dispersed systems. Furthermore it is demonstrated that the 397 

components extracted with MCR have a clear chemical meaning and, together with 398 

their concentration profile, explain the transformation mechanism of the redox 399 

reaction in detail. Hence MCR is capable of automatically extracting unbiased 400 

chemically meaningful component spectra together with their concentration profiles 401 

from large in situ XAS datasets. 402 
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Figures  462 
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 464 

 465 

Figure 1. Scheme of the experimental setup used in the experiments. 466 

 467 

  468 



 469 

Figure 2. Data pre-treatment steps: a) detection of the quasi steady-state; b) chosen 470 

cycles for averaging; c) averaged cycle. The first half of the cycle is under O2-flow 471 

whereas the second half is under H2-flow. 472 
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 474 

Figure 3. Fourier transforms of the averaged EXAFS spectra. 475 

  476 



  477 

Figure 4. Graphical representation of eq. (1) using the collected and averaged XAS 478 

data. 479 
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 481 

Figure 5. a) Raw and b) normalized Fourier transformed component spectra obtained 482 

after MCR. 483 
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 485 

Figure 6. Comparison between components and standards: a) component 1 and 486 

metallic cobalt; b) component 2 and Co3O4; c) component 2 and CoO. 487 
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 489 

Figure 7. XAS spectra (a) and concentration profiles (b) obtained by MCR where the 490 

averaged data (Fig. 2c) was decomposed into 3 components. 491 

  492 



 493 

Figure 8. Comparison between components and standards: a) component 1 and 494 

metallic cobalt; b) component 3 and Co3O4; c) component 2 and CoO; d) component 2 495 

and Co3O4. 496 
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