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Abstract

The longitudinal motions and vertical accelerations of a floating torus as well as wave mo-
tion inside the torus are studied by model tests in regular deep-water waves. Comparisons
are made with linear and partly with second-order potential-flow theory for the smallest
examined experimental wave height-to-wave length ratio 1/120. Reasonable agreement is
obtained, in particular for the linear problem. The importance of 3D flow, hydroelasticity
and strong hydrodynamic frequency dependency is documented. Experimental precision
errors and bias errors, for instance, due to tank-wall interference are discussed. Numerical
errors due to viscous effects are found to be secondary. Experiments show that the third and
fourth harmonic accelerations of the torus matter and cannot be explained by a perturbation
method with the wave steepness as a small parameter.

Keywords: Model tests, Boundary Element Method, Waves, Torus, Nonlinear response,
Error analysis

1. Introduction

Wave-induced loads on a fish farm with a circular plastic collar motivate our studies. The
interaction with other parts of the fish farm, such as the netting structure, bottom rings,
chains, ropes and a realistic mooring system, are important but are not investigated. Both
wave and current loads matter but current is neglected. Dynamic behavior of a fish farm in
real conditions is a complex scenario (see Figure 1), which for the floater can involve large
relative vertical motion compared to the cross-sectional dimensions, large local accelerations,
hydroelastic effects and violent wave structure interaction with local wave overtopping and
out of water phenomena.

Dedicated model tests and numerical simulations by Kristiansen and Faltinsen (2015)
investigated the mooring loads through a detailed and broad numerical study and assessed
the physical effects which are relevant for the prediction of the mooring loads. Amongst
them, a rigid floater significantly alters the mooring loads if compared with a realistic elastic
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Figure 1: Illustrations of overtopping and out of water on the floater of a fish farm without
net in a storm. (Photo: Marius Dahle Olsen)

floater. He et al. (2015) demonstrated by model tests with live fish occupying a representative
volume 2.5% of the net cage that fish could have a non-negligible influence on the mooring
loads in waves and current.

The considered floater is a torus even though it is more common in practice to operate
with two adjacent tori. Wavelengths of practical interest are of the order of the torus
diameter but long relative to the cross-sectional diameter. Engineering tools for net cages
often estimate the wave-induced floater loads using strip theory with linear potential flow and
drag-force corrections from Morison equation, which disregard important 3D flow, frequency
dependency and nonlinear effects.

Newman (1977) analyzed a rigid floating torus by linear potential flow. Li and Faltinsen
(2012) derived a long wavelength slender-body theory for the vertical added mass, damping
and wave excitation loads on an elastic semi-submerged torus by matching a near-field and
far-field solution. Here long wavelength means that the wavelength is long relative to the
cross-sectional torus diameter. A Haskind-type expression for the wave excitation loads
was presented. 3D frequency-dependent hydrodynamic interaction on the scale of the torus
diameter was significant and resulted, for instance, in frequencies with zero wave-radiation
damping. A beam model described the elasticity effect of the torus and a representative
bending stiffness for the floater of a fish farm was applied. Hydroelasticity played a major
role in the studied cases. The results were verified by complete 3D linear frequency-domain
potential-flow calculations.

Li et al. (2014) reported numerical simulations and experiments of an elastic circular
collar of a floating fish farm. The floater model without netting structure and moored with
nearly horizontal moorings were tested in regular deep-water waves of different steepness and
periods without current. Local overtopping of waves were observed in steep waves. The focus
was on the vertical accelerations along the floater in different conditions. The experiments
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showed that higher-order harmonics of the accelerations are significant. A 3D weak-scatter
model with partly nonlinear effects due to Froude-Kriloff and unsteady hydrostatic pressure
loads as well as a 3D linear frequency-domain method based on potential flow were used.
From their comparison against the measurements, strong 3D and frequency dependency
effects as well as flexible floater motions matter. The weak-scatter model can only partly
explain the nonlinearities present in the measured accelerations.

The present experimental investigation is a continuation of the experimental work by
Li et al. (2014) by considering a nearly rigid circular floater. In that way, state-of-the-art
second-order potential flow solvers for rigid bodies is used to explain some of the nonlinear
experimental results. In the next section the model tests are outlined, then the adopted
numerical solvers and the applied elastic curved-beam theory are briefly described and the
physical investigation is discussed. Emphasis is given on the discussion of experimental and
theoretical error sources. Main conclusions and further steps are drawn in the last section.

2. Experimental set-up

The Marine Cybernetics Laboratory at the Marine Technology Centre in Trondheim
was used for the experiments. The wave tank is 40m long, 6.45m wide and 1.5m deep. It
is equipped with a towing carriage, a hinged flap-type wave maker and a damping beach
covered by a porous mat to increase its energy dissipation ability. The wave maker is
digitally controlled by using linear wave maker theory to estimate the necessary stroke of
the paddle for generating waves with a given height and period. A scale factor 1 : 25 with
Froude scaling was in mind for the floater model. In order to get a cross-sectional diameter
similar to the one used for the elastic model in Li et al. (2014), i.e. 36mm, a 32mm nearly
rigid standard water pipe for houses was covered by a transparent elastic tube of thickness
1.5mm and a waterproof adhesive electrical tape. The water pipe is made of a high-density
polyethylene (HDPE) type plastic with Young’s modulus of elasticity E = 0.8× 109N/m2.
The second moment of area of the pipe in bending is I = π (D4

2 −D4
1) /64, where the

inner and outer diameter are D1 = 26mm and D2 = 32mm, respectively. This means a
bending stiffness EI = 23.23Nm2. The combined bending stiffness of the HDPE plastic
tube, transparent elastic tube and the adhesive electrical tape was found by static tests in
the linear elastic regime. An arc of the torus was clamped to one end and kept free on the
other and an increasing load, whose range was comparable with the one recorded during the
tests in waves, has been applied on the free end and the corresponding displacement has been
measured. The static tests confirmed the linear behaviour of the material and enabled the
calculation of the bending stiffness EI = 23.74Nm2, that is, about 200 times the bending
stiffness used in the experiments by Li et al. (2014). The yield stress (23◦C, 50mm/min) of
the pipe is 22MPa. The largest moment in the torus due to the dominant elastic mode is
about 10.3Nm. So, the largest stress in the cross-section is 6.2MPa, which is much smaller
than the yield stress.

The experimental set-up is illustrated in Figure 2. The Earth-fixed Cartesian coordinate
system Oxyz is also defined in Figure 2 with the mean free surface at z = 0. The z-axis
is the torus axis and upwards. The diameter of the torus-shaped floater measured to the
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Figure 2: Experimental set-up. Upper: top view; lower: side view. The damping beach is
out of scale. Definition of Earth-fixed coordinate system Oxyz and angle β.

center of the torus cross-section is D = 2c = 1.5m. The cross-sectional torus diameter and
mass of the floater are 2a = 0.036m and 2.86kg, respectively. The draft of the floater is
0.0214m. The floater was attached to the stationary carriage in the middle of the tank by
means of four identical nearly horizontal mooring lines, at front, aft, left and right. Springs
with stiffness ks = 17N/m were used to connect the floater to the carriage. This corresponds
to almost half of the full scale spring stiffness (27kN/m) by Froude scaling. The pre-tension
was Tp = 5N . The high pre-tension was needed to avoid slack due to large horizontal motion
when testing large wave steepness and long wave periods.

Finally two cameras were used to record the global behaviour of the floater and the
accuracy of overtopping and out-of-water phenomena. One camera is underwater with a
frame rate of 25fps and a resolution of 768 × 576 pixel. The second, in air and almost
perpendicular to the free surface plane has a frame rate of 25fps and a resolution of 1920×
1080 pixel.

No experimental free-decay tests were done to identify wet natural periods and damping.
Such tests are difficult to perform because the strong frequency dependency of added mass
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causes several natural frequencies for the dominant modes, i.e. heave, pitch and the lowest
vertical elastic mode. The theoretical nine lowest undamped natural frequency for uncoupled
heave, pitch and the lowest vertical elastic mode are presented in Table 1. They are higher
than the experimental frequency range of the linear incident regular waves. The theoretical
undamped natural frequency in uncoupled surge due to the mooring system is 2.17rad/s,
which is clearly smaller than the experimental frequency range.

Heave 22.63 23.49 24.35 25.17 25.97 26.37 26.89 27.65 28.39
Pitch 23.07 23.93 24.75 25.57 26.34 26.51 27.27 28.01 28.75

The lowest purely
vertical elastic mode

33.08 33.70 34.30 34.89 35.47 36.05 36.61 37.17 37.73

Table 1: The nine lowest numerically predicted undamped natural frequencies in rad/s for
the dominant vertical modes.
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Figure 3: Top view of experimental set-up for wave measurements without the torus present.

2.1. Check of the wave generation

To estimate the error in the generation of the incident regular wave system with respect to
the nominal values, tests without the torus in the tank have been carried out. Incident waves
with prescribed wave height-to-wave length ratios H/λ = 1/120, 1/60, 1/30 and 1/15 prop-
agating along the x-axis were tested. The wave period T = 2π/ω varied within [0.6, 1.6] s
with a step of 0.05s. Here ω is the circular frequency. Five resistance wave probes with wire
diameter 3mm were positioned as illustrated in Figure 3. The waiting time between each
test was 4 − 5 minutes. Each test was repeated 2 − 3 times showing good repeatability. A
zoomed view of the ratio between the measured first harmonic component and the nominal
wave amplitude is shown in Figure 4 for the different prescribed wave steepness as function
of the non-dimensional wave number νa where ν = ω2/g with g meaning acceleration of
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gravity. The mean values and the corresponding standard deviations, estimated through
the time histories of the five wave probes, are reported. Possible reasons to the disagree-
ment between measured and nominal wave amplitude are wave reflections from the beach,
meniscus effect on the wave probe wire, calibration linearity error and nonlinear effects in
the wave propagation.
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Figure 4: Zoomed view of ratio between measured and prescribed wave amplitude versus non-
dimensional wave number νa without the torus present. ζam is the mean wave amplitude of
the five measurement positions in Figure 3. ζa is the prescribed wave amplitude. The height
of the experimental error bars is two times the estimated standard deviation. The numbers
1/120, 1/60, 1/30 and 1/15 on the top of each graph is the prescribed wave steepness.

2.2. Torus acceleration measurements

Accelerations were measured along the body-fixed z-axis, which coincides with the ver-
tical z-axis when the torus is at rest. Five positions along the torus corresponding to the
angles β = 0, π/4, π/2, 3π/4, π as defined in Figure 2 were used. They are referred to as aft,
aft left, left, front left and front positions, respectively. The used accelerometers were Model
3032−050 by Measurement Specialists, with a sensitivity of 1.318mV/g. All test cases were
repeated 2 − 3 times, in order to check their repeatability: a maximum repeatability error
of about 1.0% was assessed. A waiting time of 3 minutes between two consecutive tests was
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chosen to get almost calm water conditions. The time recording started 20 seconds earlier
than the wave maker to ensure the acquisition of the longitudinal seiching mode effect, as
well as of the residual waves generated in the previous test. In particular, when a small
difference in the period between the previous and the actual incident waves exists, weak
beating effect arises in the actual time history of the torus motions. Possible drift in the
accelerometers was detected before the wave maker started and used to correct the signal in
the subsequent run.

In general, nearly steady-state oscillations are reached after 10 wave periods. The steady-
state time window were band-pass filtered in order to remove noise out of the prescribed
frequency range. The lower and upper cut-off frequencies are 0.95/T and 1.05/T , 1.95/T
and 2.05/T , 2.95/T and 3.05/T , 3.95/T and 4.05/T in order to get first, second, third and
fourth-order harmonics of acceleration, respectively. The sampling frequency was 100Hz.
The steady-state time window contained about 70 − 130 wave periods. A sliding Discrete
Fourier Transform (DFT) technique is used to determine the time variation of each harmonic
contribution. A time window corresponding to 20 wave periods is analyzed through DFT;
then the time window is slid one wave period and the DFT analysis is repeated for the new
time interval. The procedure is repeated until the end of the steady-state region, enabling
the evaluation of the mean value and standard deviation of each harmonic component. A
second method was used to calculate mean values and standard deviation. It is based on
the envelope curve of the absolute values of the acceleration extrema (maxima and minima)
in the same steady-state time window. The corresponding mean and standard deviation
values are used as the measurements of the mean value and error estimation. Mean values
obtained by the two methods are very close, however differences on the standard deviations
are significant.

Large relative vertical motions with waves overtopping the floater locally and local out-
of-water effect of the floater were observed in the model scale experiments (see Figure 5
and attached movie). Similar phenomena are demonstrated in Figure 1 for the floater of a
fish farm without netting in a storm. Overtopping occurs for all wave periods with wave
height-to-wavelength ratio 1/15 and for wave periods larger than T = 1.05s with wave
height-to-wavelength ratio 1/30 (see Figure 5). There is no overtopping occurring for wave
height-to-wavelength ratio 1/60 and 1/120. To properly examine the nonlinear features of
the phenomena, first, second, third and fourth-order harmonics of the measured acceleration
signals were estimated. Harmonics higher than fourth-order were small.

2.3. Longitudinal and transverse motion measurements

The longitudinal motions of the torus were determined by using the mooring load registra-
tions at the front and aft positions of floater together with the known stiffness (ks = 17N/m)
of the springs. The transverse motions were similarly estimated by using the mooring load
registrations at the left and right floater positions. The time series were analyzed as de-
scribed above for the vertical accelerations by considering only the first harmonic part.
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Figure 5: Illustrations of overtopping and out of water of parts of the torus in model tests
(see also movie). Left: Side view from underwater camera; Right: Top view from the camera
in air.

3. Theoretical methods

Ideally, we need a fully nonlinear 3D CFD method that accounts for hydroelasticity
to compare with the experiments. We say 3D because the linear hydroelastic calculations
of vertical accelerations of a torus in regular waves by Li and Faltinsen (2012) showed
significant 3D hydrodynamic effects. We say fully nonlinear because the experiments show
that even fourth order harmonics of the measured floater accelerations mattered in steeper
waves and that perturbation methods are only practical for linear (first-order) and second-
order problems, which determine only the first and second-harmonics as well as a constant
of the floater acceleration in regular waves. Furthermore, Navier-Stokes equation is needed
because flow separation may matter for steeper waves. Kristiansen and Faltinsen (2009)
demonstrated the latter fact by 2D fully nonlinear CFD simulations of a semi-submerged
circular floater in regular waves of relevance for fish farms. Laminar flow was assumed, which
is appropriate in model test conditions at least for the boundary layer flow. The numerical
method combined the Finite Difference Method and Chorin’s projection method with the
Constrained Interpolation Profile (CIP) method in the advection step. Furthermore, color
functions were applied to capture the free surface. The numerical calculations agreed well
with the presented experimental results. The fully nonlinear 3D CFD method for our case
will need very long CPU time with state-of-the-art computational resources. Our choice
was to investigate to what degree we can use state-of-the-art potential flow codes used in
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engineering calculations.
Both the numerical methods used are based on potential flow theory for incompressible

liquid and a perturbation scheme with the wave steepness as a small parameter, which is
most relevant for the smallest experimental wave steepness. Surface tension is not included.
Surface tension may affect the contact line between water and the floater. However, the
difference appears as a thin layer of water rising up, but it does not affect the loading. In
order for surface tension to matter, the wave length should be of the order of 1cm and
smaller. These dimensions are clearly out of the range for incident waves and important
nonlinear waves generated by the floater. One solver is HydroStar, which is a low-order
Boundary Element Method solving the linear and second-order frequency-domain potential-
flow problem in bichromatic incident waves in a consistent way. Deep-water conditions with
monochromatic waves were assumed. The effect of mooring lines was included in the linear
problem, but proved to be small. The commercial version of HydroStar accounts for tank wall
interference in the linear problem but does not account for hydroelasticity, which matters
in the experiments. The numerical results without tank wall interference were verified by
convergence studies and we ensured that, the wave excitation force and moment by Haskind
relationship and direct pressure integration agreed. Newman (1962) relationship between
excitation force and moment amplitudes and corresponding wave radiation damping for an
axisymmetric vertical body was satisfied. The second used solver is WAMIT which uses a
higher-order Boundary Element Method. WAMIT provides linear generalized forces due to
elastic vibration modes. It was combined with the following curved beam equation

m
∂2w

∂t2
+ ρgbww + EI

∂4w

∂s4
+
EI

c2
∂2w

∂s2
= f3 (s)added mass+damping + f3 (s)wave excit (1)

to describe the vertical motion w of the floater by using a modal approach. Here the
differentiation ∂/∂s is along the torus, t is the time variable, m is the floater mass per unit

length and EI is the bending stiffness. The bending stiffness term
EI

c2
∂2w

∂s2
is due to curvature

effect of the torus (Love (2013)). Together with EI
∂4w

∂s4
it describes a rigid floater when

EI → ∞ and was erroneously not included by Li and Faltinsen (2012). f added mass+damping
3

is the vertical added mass and damping force per unit length of the floater and fwave excit
3

is the vertical wave excitation force on the floater per unit length of the floater. Both the
hydrodynamic terms depend on the longitudinal coordinate ’s’ along the floater as denoted
in Equation 1. Li and Faltinsen (2012) explicitly derived these 2D hydrodynamic terms by
accounting for 3D flow. The term ρgbww is caused by the change of the buoyancy force
due to the motion w. Here ρ is the mass density of water and bw is 2a. The hydroelastic
model neglects mooring forces and coupling with longitudinal motions. Separate numerical
studies with a rigid model showed small effects of mooring loads and coupling between surge
and pitch. We do not know the structural damping, which is of concern for the resonance
oscillations of elastic modes in case of small hydrodynamic damping. However, the numerical
studies by Li et al. (2014) for a similar problem as ours indicate that structural damping
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within realistic limits have a small effect.
We assume regular deep-water waves propagating along the positive x-axis. The vertical

motion of the floater is expressed as the following Fourier series:

w = a0 (t) +
∞∑
n=1

an (t) cosnβ (2)

Here the angle β is defined in Figure 2. The x- and y- coordinates of the torus axis is given
by x = c cos β, y = c sin β where c is the torus radius. a0 and a1 cos β describe heave at
the torus axis and pitch, respectively. The other terms in Equation 2 are elastic modes.
The two-dimensional added mass a

(n)
33 and damping coefficient b

(n)
33 due to vertical motion

an cosnβ gives the following vertical force per unit length:

f added mass+damping
3 = −a(n)33 än cosnβ − b(n)33 ȧn cosnβ (3)

We substitute w given by Equation 2 into Equation 1. The resulting equation are then
multiplied successively by cosnβ, n = 0, 1, .. and integrated from β = 0 to 2π. The resulting
generalized added mass, damping and wave excitation loads are calculated by WAMIT.

Due to the different theoretical features of the solvers, 4 different numerical models are
used in the following studies and are listed in Table 2.

Rigid Elastic Tank wall Linear Second order
HydroStar (model A) YES NO NO YES NO
HydroStar (model B) YES NO YES YES NO
HydroStar (model C) YES NO NO NO YES
WAMIT (model D) NO YES NO YES NO

Table 2: Numerical models used in this paper to consider a rigid or an elastic torus, tank
wall interference, linear and second order hydrodynamic effects.

4. Experimental and numerical results

The numerical (model A) and experimental longitudinal motions and vertical accelera-
tions were compared for the smallest tested wave height-to-wave length ratio H/λ = 1/120
when we can expect that a perturbation method is most appropriate.

4.1. Linear frequency-domain horizontal torus motion

Figure 6 presents comparisons between experimental measurements and linear numerical
(model A) predictions of longitudinal motion response-amplitude-operators (RAO). The fact
that experimental RAOs obtained by measuring the mooring lines forces in front and aft
differ means that hydroelasticity matter, but without being so clear as we will see for the
vertical accelerations in the next section. Hydroelasticity effects were also observed in the
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Figure 6: Theoretical and experimental linear frequency-domain results of longitudinal mo-
tions versus non-dimensional wave number νa. RAO = longitudinal motion amplitude divid-
ed by prescribed incident wave amplitude ζa. The height of the experimental error bars is two
times the estimated standard deviation. The wave height-to-wave length ratio H/λ = 1/120.

Figure 7: Floater deformation in calm conditions. Red line: prescribed torus; yellow colour:
actual torus.

forces of the two transverse mooring lines along with small transverse rigid-body motions.
An error source is that the presented torus is slightly deformed (see Figure 7). A satisfactory
agreement between theory and experiments is shown in Figure 6. However, the theoretical
cancellation effect at certain frequencies is not so pronounced in the experiments as in the
numerical calculations. Figure 8 shows the experimental values for transverse motions. The
frequency of the peak at νa = 0.1132 is close to the natural frequency of a transverse sloshing
mode of the tank with a node at the centre plane of the tank. Since roll and transverse
motions are coupled, the results in Figure 8 imply non-zero roll.
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Figure 8: Experimental linear frequency-domain results of transverse motions versus non-
dimensional wave number νa. RAO = transverse motion amplitude divided by prescribed
incident wave amplitude ζa. The height of the experimental error bars is two times the
estimated standard deviation. The wave height-to-wave length ratio H/λ = 1/120. Right is
defined along positive y-axis in Figure 2.

4.2. Linear frequency-domain vertical torus accelerations

Figure 9 shows the numerical predictions of the non-dimensional linear frequency-domain
vertical acceleration amplitude along five positions of the floater. Linear numerical results
from HydroStar (with and without tank wall interference, i.e. model B and A, respectively,
see Table 2) and WAMIT (with hydroelastic model, i.e. model D in Table 2) are reported
as a function of the non-dimensional wave number νa, and compared with the correspond-
ing experimental data. The experimental results are given with an error bar whose height
is two times the standard deviation, which expresses that the oscillations are not steady
state. The reason why the experimental results are not steady state can be wave reflections
from the wave beach and the wave maker, build-up of transverse sloshing due to tank wall
interference as well as beating effects induced by residual waves from the previous run with
different period. The elastic modes cos 2β, cos 3β and cos 4β influence the numerical hy-
droelastic results with the cos 2β-mode giving the dominant contribution. The latter mode
does not contribute at the front left and aft left positions with the consequence that the
rigid and elastic results are closest there. Bending stiffness matters and causes the theo-
retical results coming closer to the experiments except at front left position. The peaks
in the numerical results with tank wall interference (model B) correspond to the natural
frequencies νa = 0.0349, 0.0526, 0.0701, 0.0877, 0.1052, 0.1227, 0.1403, 0.1578, 0.1753, 0.1929
associated with 2D transverse sloshing modes that are symmetric with respect to the longi-
tudinal center-plane of the tank. The fact that the response is not infinite at the resonance
frequencies as a 2D linear frequency domain theory predicts is a consequence of 3D flow.
However, the calculations with tank wall interference do not improve the agreement be-
tween theory and experiments. For instance, the experimental results at νa = 0.1715, which
is close to the 2D natural sloshing frequency νa = 0.1753, do not seem to be influenced
by the clear theoretical resonance demonstrated for the rigid torus. However, the experi-
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Figure 9: Comparison of linear frequency-domain results of vertical acceleration amplitude
ẅ

(ω)
a along the floater by means of HydroStar and WAMIT with experiments versus non-

dimensional wave number νa. WAMIT results are combined with hydroelastic curved-beam
theory. The height of the experimental error bars is two times the estimated standard
deviation. The wave height-to-wave length ratio H/λ = 1/120.

mental time-domain results show a beating effect associated with the difference frequency
between the forcing frequency and the sloshing frequency νa = 0.1715, which indicates that
a build-up of resonance occurs.

Amplitudes äna and phase angles αn of the different acceleration modes defined by
än = äna cos (ωt+ αn) with the incident wave elevation given by ζ = ζa sin (ωt− νx) were
experimentally and theoretically (model D) identified. Experimentally we determined am-
plitudes and phases for n = 0, 1, 2, 3, 4 by satisfying:
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ẅ = ä0 (t) + ä1 (t) cos β + ä2 (t) cos 2β + ä3 (t) cos 3β + ä4 (t) cos 4β (4)

at the five measurement points. The procedure was to consider the time instant when
the experimental vertical acceleration at the front point had a maximum value close to
the experimental mean amplitude. In more details, it means that we first expressed the
experimental values of the different acceleration modes as äna cos (ωt′ + γn) with t′ = 0
corresponding to when the front vertical acceleration had the considered maximum. By
selecting also the time instant ωt′ = π/2 we have sufficient equations to determine the
amplitudes äna and the phase angles γn. Sensitivity to selecting different time instants was
small. Since we did not measure the incident waves, we used the theoretical values of the
vertical acceleration at the front point as a reference to determine the experimental phases
relative to the theoretical incident wave elevation. It means that we write t = t′ − δ in the
theoretical vertical acceleration at the front point with five modes, i.e.

ẅ|β=0 =

(
4∑

n=0

äna cosαn

)
cos (ωt′ − ωδ) −

(
4∑

n=0

äna sinαn

)
sin (ωt′ − ωδ)

=

[(
4∑

n=0

äna cosαn

)
cosωδ +

(
4∑

n=0

äna sinαn

)
sinωδ

]
cosωt′

+

[(
4∑

n=0

äna cosαn

)
sinωδ −

(
4∑

n=0

äna sinαn

)
cosωδ

]
sinωt′

(5)

By requiring the theoretical vertical acceleration at the front point to behave asA cosωt′, A >
0 we get the following requirements:(

4∑
n=0

äna cosαn

)
sinωδ −

(
4∑

n=0

äna sinαn

)
cosωδ = 0(

4∑
n=0

äna cosαn

)
cosωδ +

(
4∑

n=0

äna sinαn

)
sinωδ > 0

(6)

This determines δ. By substituting t′ = t + δ into äna cos (ωt′ + γn) we determine experi-
mental phase angles αn. The comparison between theory (model D) and experiments are
presented in Figure 10 and Figure 11 for n = 0, 1, 2, i.e. for heave, pitch and the lowest
elastic mode. The amplitudes for n = 3, 4 are small relative to the values for n = 0, 1, 2 and
are therefore not shown. The fact that the heave motion should follow the incident wave
elevation at x = 0 and pitch with a positive value in an Oxyz coordinate system as defined
in Faltinsen (1990) should be 180◦ out of phase with the incident wave slope at x = 0 when
νa → 0 is confirmed. General good agreement is obtained, in particular for pitch accelera-
tion amplitudes. Differences between theoretical (model D) and experimental accelerations
of heave and lowest elastic mode amplitude are noted for νa = 0.1715 and are the reasons
for the differences noted at this frequency in Figure 9. The difference is largest for heave
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Theory ä0a (D)
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Figure 10: Comparison of experimental and theoretical linear frequency-domain results of
vertical acceleration amplitudes äna of heave (n = 0), pitch (n = 1) and lowest elastic mode
(n = 2) versus non-dimensional wave number νa. The wave height-to-wave length ratio
H/λ = 1/120.
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Figure 11: Comparison of experimental and theoretical linear frequency-domain results of
vertical acceleration phase angles αn of heave (n = 0), pitch (n = 1) and lowest elastic mode
(n = 2) versus non-dimensional wave number νa. The wave height-to-wave length ratio
H/λ = 1/120.

accelerations.
We investigated in more detail possible tank-wall interference effects by analyzing the

wave amplitude due to torus motions at the tank walls along a wave-propagation direction
perpendicular to the tank walls by using theory without tank wall effects. The analysis
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is done by relating the far-field wave amplitudes due to forced oscillations of the different
modes to the generalized damping coefficients for the different modes by using conservation
of kinetic and potential energy in the water.

The far-field expression of the velocity potential for a given mode can be obtained by a
line distribution of sources along the centerline of the torus (Li and Faltinsen (2012)). A
frequency-domain analysis in infinite water depth and infinite horizontal water extent was
considered. The sources satisfy the classical linearized free-surface condition and radiation
condition. The far-field waves are expressed in terms of Hankel functions. The analysis
by Li and Faltinsen (2012) shows that the source density associated with mode n varies as
cosnβ. It follows by combining the latter fact with properties of Bessel functions that the
far-field velocity potential associated with mode n can be approximated as:

ϕn =
g

ω

An cosnθ√
νr

exp (νz) cos (ωt− νr + δn) (7)

Here (r, θ, z) are polar coordinates with the angle θ having the same definition as the angle
β in Figure 2. Energy considerations based on a general formula within potential flow of an
incompressible liquid (see, for instance, Newman (1977)) imply that:

dE

dt
=

∫
SB

(p− pa)Unds − ρ

∫
S∞

∂ϕn
∂t

∂ϕn
∂n

ds (8)

Here SB is the mean wetted body surface and S∞ is a vertical circular cylindrical control
surface at large r = R extending from z = 0 to z = −∞. E is the sum of the kinetic and
potential energy in the water domain Ω between SB and S∞. The positive direction of the
normal coordinate n is into the water domain Ω. p is the pressure with subscript a indicating
atmospheric pressure. Un means the normal velocity of SB. We integrate Equation 8 over
the oscillation period T with the consequence that the term on the left hand side does not
contribute due to periodicity of E. The first term on the right hand side leads to

ω2T

2
B

(n)
33 a

2
na, B

(n)
33 =

∫ 2π

0

b
(n)
33 cos2 nβcdβ (9)

The second term on the right hand side is

− ρg2A2
n

ω2ν

T

2
In (10)

where I0 = 2π, In = π when n = 1, 2, .... This means(
An
ana

)2

=
2B

(n)
33 ν

3

ρωIn
(11)

We consider now the wave propagation direction perpendicular to the tank wall, i.e. θ =
±π/2. Equation 7 shows no contribution from pitch at θ = ±π/2. The effect of heave and
the lowest elastic mode will be considered. The corresponding wave amplitudes at the tank
walls normalized by the incident wave amplitude can be expressed as:
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Figure 12: Wave amplitude at the tank walls along a wave-propagation direction perpendic-
ular to the tank due to torus motions in heave and lowest elastic mode (model D) normalized
by incident wave amplitude walls versus non-dimensional wave number νa. Note that the
effect of the tank wall is not included in model D.

An

ζa
√
νbtank/2

= 2ν
ana
ζa

√
B

(n)
33

ρωInbtank
(12)

Here btank is the tank breadth. The results are shown in Figure 12 and should be inter-
preted as an excitation of tank wall interference. The amplitudes are small relative to the
incident wave amplitude and show a strong frequency dependency with zeroes and peaks.
For instance, there is a peak at νa = 0.1792, which is close to the 2D sloshing frequency
νa = 0.1753.

Even though the agreement between linear theory (model A, B and D) and experiments
presented in Figure 9, Figure 10 and Figure 11 is generally satisfactory we investigated error
sources. It has already been mentioned that coupling between longitudinal and vertical
motions is present and is neglected in the hydroelastic analysis. Another error source is
that the measured incident wave amplitude differed from the intended wave amplitude as
illustrated in Figure 4. Since small-amplitude sway occurred in the experiments, small-
amplitude roll must be present due to coupling and cause a vertical motion.

Viscous effects matter when significant viscous flow separation occurs. A measure of flow
separation for ambient oscillatory planar 2D flow with flow velocity amplitude Ua and period
T past a stationary circular cylinder of diameter 2a in infinite fluid is the Keulegan-Carpenter
number KC = UaT/ (2a). When KC < 2 − 3, flow separation does not occur (Faltinsen
(1990)). We can generalize these findings to our case with a rigid torus and define the vertical
and radial Keulegan-Carpenter numbers KCvert. = πηrel.ver./a and KCrad. = urel.rad.T/ (2a).
Here ηrel.vert. is the amplitude of the relative vertical motion between the floater and the
incident waves. urel.rad. means the amplitude of the relative velocity component in the radial
direction between the floater and the incident waves. Since the torus follows the waves when
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νa → 0, ηrel.vert./ζa and urel.rad.T/ζa go to zero when νa → 0. Calculated values of KCvert.
and KCrad. by HydroStar (model A) are presented in Figure 13 versus the non-dimensional
wave number for five positions along the floater. Because the wave height for a given wave
steepness goes to infinity when νa → 0, KCrad. does not tend to zero when νa → 0. The
results indicate that flow separation is insignificant for our considered small wave steepness
and that we have an attached boundary layer flow.
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Figure 13: Calculated vertical and radial Keulegan-Carpenter numbers versus non-
dimensional wave number νa for five positions along the floater. The wave height-to-wave
length ratio H/λ = 1/120.

The attached viscous boundary-layer flow along the torus has been analyzed by assuming
laminar boundary-layer flow and ambient longitudinal flow velocity Ua cosωt together with
a rigid free-surface condition. The latter fact avoids the necessity to consider all the details
of the frequency-dependent pressure distribution. The torus is assumed semi-submerged.
We apply the cross-flow principle together with strip theory and well-established 2D results
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based on Stokes second problem (Faltinsen (1990)), which gives:

F visc
1 = Ua

√
ωµ

ρ
cos (ωt + π/4) 2acπ2 (13)

as the longitudinal viscous force on the semi-submerged torus. Here µ is the dynamic vis-
cosity coefficient. We consider the viscous force in phase with the acceleration and compare
it with the measure ρπ2a22cωUa sinωt of the sum of the mass and added mass acceleration
force on the torus. Here we have not accounted for the fact that the added mass in surge is
frequency dependent. The ratio of the viscous force amplitude and the measure of the mass
and added mass force can be expressed as:

Fv
Fmass

=

√
µ

2ωρa2
(14)

The results are presented in Figure 14 as a function of νa in our considered frequency

range. Since the maximum value of
Fv

Fmass
is about 0.02, we confirm that viscous effects are

not dominant.
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Figure 14: The ratio Fv/Fmass of the amplitudes of viscous force in phase with surge accel-
eration and a measure of the mass and added mass force in surge on the torus as a function
of non-dimensional wave number νa.

Nonlinear effects may cause oscillations with frequency ω. For instance, if we apply a
third-order theory with steady-state oscillations in regular waves, there are oscillations with
frequencies ω and 3ω. The corresponding amplitudes are expected to be of the same order of
magnitude. Our arguments for saying this is that a third-order analysis, for instance involves

terms cos3 ωt =
1

4
cos 3ωt +

3

4
cosωt. Therefore, we present in Figure 15 the experimental

ratio ẅ
(3ω)
a /ẅ

(ω)
a versus non-dimensional wave number νa for the five considered positions
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along the floater. Here ẅ
(3ω)
a and ẅ

(ω)
a are the vertical acceleration amplitudes of the oscil-

lations with frequencies 3ω and ω, respectively. The mean values obtained from the DFT
analysis are the basis for the estimates, i.e. we do not involve an error band associated with
the standard deviation. The results indicate that third order effects cannot be neglected in
estimating the experimental accelerations oscillating with frequency ω for νa / 0.1. One
contributing factor to the larger relative influence for small νa is that the incident wave
amplitude-to-cross-sectional radius ratio ζa/a = (π/120) /νa increases with decreasing νa.

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

νa

ẅ
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ẅ

(ω
)

a

Front Left

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

νa

ẅ
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ẅ

(ω
)

a

Aft Left

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

νa

ẅ
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Figure 15: Experimental ratio ẅ
(3ω)
a /ẅ

(ω)
a versus non-dimensional wave number νa for five

positions along the floater. Here ẅ
(3ω)
a and ẅ

(ω)
a are the vertical acceleration amplitudes of

the oscillations with frequencies 3ω and ω, respectively. The wave height-to-wave length
ratio H/λ = 1/120.

4.3. Sum-frequency vertical torus accelerations

Since the measurements are relative to a body-fixed coordinate system Oxyz, which
coincides with the Oxyz-system at rest and the calculations by HydroStar (model C) are in
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an inertial coordinate system, we have to add the sum-frequency part of η̈1η5 +
1

2
gη25 to the

sum-frequency calculations of vertical accelerations. Here η̈1 and η5 are the surge acceleration
and pitch angle, respectively. The influence of the correction term was negligible.

Figure 16 and Figure 17 show numerically predicted second-order sum-frequency non-
dimensional acceleration amplitude ẅ

(2ω)
a c2/ (gζ2a) along the z-axis for five positions of the

floater by HydroStar (model C) together with experimental results versus non-dimensional
wave number νa. The large differences in vertical scale of the two figures should be noted.
The agreement is not perfect but we should have in mind the error sources discussed in
the section on linear frequency-domain results, which implicitly have consequences for the
second-order solution. Additional tank-wall interference effects occur for the second-order
problem since the second-order potential involves contributions from the non-homogenous
free-surface conditions over an infinite domain of the mean free surface, which is in conflic-
t with the tank walls. We documented for the linear problem the fact that there was in
the experiments non-negligible oscillations with frequency 3ω meant that there were con-
tributing oscillations with ω from a third-order theory. In theory, we may say that there
are contributions with frequencies 2ω and 4ω from a fourth-order theory. However, since
the measured 4ω-component was small, we anticipate that the corresponding 2ω-component
can be neglected. The numerical results show clear peaks at the higher frequencies, but
there are no experimental values at those peak frequencies. The peaks are associated with
peaks in the excitation loads. There are no resonance effects caused by 2ω being equal to
an undamped natural frequency.

4.4. Wave elevation inside floater

The wave elevation inside the floater was investigated experimentally and theoretically.
The linear potential flow theory predicts, for instance, zero heave and pitch wave radiation
damping at certain frequencies, which differ for heave and pitch. The latter fact suggests
that wave resonances inside are possible. Figure 18 shows the results. Linear potential flow
theory for the rigid torus without tank wall interference (model A) has been applied. The
upper graph is for the centre of the inside of the floater. There is no evidence of resonance
neither in experiments nor theory. However, since linear resonant waves would have a node
at that point, we have numerically also studied the wave elevation at the front and aft of
the inside of the floater versus non-dimensional wave number (see Figure 18). Still we do
not see any clear evidence of resonance.

5. Experimental higher-harmonic torus accelerations in waves of different steep-
ness

Figure 19 presents steady-state amplitudes of experimental non-dimensional harmonic
acceleration ẅ

(ω)
a , second-harmonic acceleration ẅ

(2ω)
a , third-harmonic acceleration ẅ

(3ω)
a and

fourth-harmonic acceleration ẅ
(4ω)
a along body-fixed z-axis versus non-dimensional wave

number νa for wave height-to-wavelength ratios 1/120, 1/60, 1/30 and 1/15 for floater front
position (β = π) and left position (β = π/2) in incident regular waves with frequency ω
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Figure 16: Second-order sum-frequency non-dimensional vertical acceleration amplitude
ẅ

(2ω)
a c2/ (gζ2a) along the z-axis for five positions of the floater by HydroStar (model C)

together with experimental results versus non-dimensional wave number νa in the range of
[0.023, 0.176]. The height of the experimental error bars is two times the estimated standard
deviation. The wave height-to-wave length ratio H/λ = 1/120.
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ẅ
(2
ω
)

a
c2
/
g
ζ
2 a

Acceleration Front Left

 

 

Experiment 1/120
HydroStar (C)

0.16 0.18 0.2 0.22
0

50

100

150

200

250

300

350

νa

ẅ
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Figure 17: Second-order sum-frequency non-dimensional vertical acceleration amplitude
ẅ

(2ω)
a c2/ (gζ2a) along the z-axis for five positions of the floater by HydroStar (model C)

together with experimental results versus non-dimensional wave number νa in the range of
[0.16, 0.22]. The height of the experimental error bars is two times the estimated standard
deviation. The wave height-to-wave length ratio H/λ = 1/120.
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Figure 18: Left drawing: Measured and numerically predicted wave amplitude ηa in the
centre of the inside of the floater. Right drawing: Numerically predicted wave amplitude in
the front and aft of the inside of the floater. Linear potential flow theory for the rigid torus
without tank wall interference (model A) is used. The height of the experimental error bars is
two times the estimated standard deviation. Experiments are for wave height-to-wavelength
ratios 1/120, 1/60, 1/30 and 1/15.

and amplitude ζa. We decided to make the harmonic terms non-dimensional in the same
manner in order to compare the magnitudes of the different harmonic terms. The results
show significant contributions from all the presented harmonic terms, in particular for higher
wave height-to-wavelength ratios. The contributions from higher than fourth-order terms
were not significant and are not presented.

Since ẅ
(ω)
a , ẅ

(2ω)
a , ẅ

(3ω)
a and ẅ

(4ω)
a are according to a perturbation method mainly propor-

tional to respectively ζa, ζ
2
a , ζ3a and ζ4a , we have presented in Figure 20 ẅ

(2ω)
a /ζ2a , ẅ

(3ω)
a /ζ3a ,

ẅ
(4ω)
a /ζ4a along body-fixed z-axis versus wave number νa for different wave steepness for

floater front position (β = π) and left position (β = π/2). We start by examining ẅ
(ω)
a /ζa

in Figure 19, which shows that ẅ
(ω)
a is mainly proportional to ζa for the different wave s-

teepness 1/120, 1/60, 1/30 and 1/15. However, there ought to be a dependence on ζ3a as

earlier argued. When it comes to ẅ
(2ω)
a /ζ2a and we disregard the results for the highest wave

steepness 1/15, ẅ
(2ω)
a is mainly proportional to ζ2a for the wave steepness 1/120, 1/60 and

1/30 at the front of the floater (see Figure 20). However, there ought to be a dependence on

ζ4a as earlier argued. When it comes to ẅ
(3ω)
a and ẅ

(4ω)
a , we cannot say that they are mainly

proportional to ζ3a and ζ4a , respectively. It means that we cannot explain the behavior of

ẅ
(3ω)
a and ẅ

(4ω)
a by a perturbation method with the wave steepness as a small parameter.

The torus shape above the mean free surface becomes a factor. Actually, ζa/a ought to be
considered as a small parameter. However, wave overtopping was observed during the exper-
iments (see Figure 5). An estimate of occurrence of wave overtopping can be made by means
of the vertical Keulegan-Carpenter number KCvert. = πηrel.vert./a presented in Figure 13 for
different frequencies and torus positions and wave steepness H/λ = 1/120. We consider as
an example πηrel.vert./a = 1.5 from Figure 13, which means that wave overtopping occurs
for H/λ > 1.4/120. However, the latter estimate does not account for nonlinearities and
local free-surface effects at the torus. An attempt was made to follow a common engineering
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Figure 19: Steady-state amplitudes of experimental non-dimensional harmonic accelera-
tion ẅ

(ω)
a , second-harmonic acceleration ẅ

(2ω)
a , third-harmonic acceleration ẅ

(3ω)
a and fourth-

harmonic acceleration ẅ
(4ω)
a along body-fixed z-axis versus non-dimensional wave number

νa for wave height-to-wavelength ratios 1/120, 1/60, 1/30 and 1/15 for floater front position
(β = π) and left position (β = π/2) in incident regular waves with frequency ω and am-
plitude ζa. The height of the experimental error bars is two times the estimated standard
deviation.
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Figure 20: Steady-state amplitudes of experimental non-dimensional second-harmonic ac-
celeration ẅ

(2ω)
a /ζ2a , third-harmonic acceleration ẅ

(3ω)
a /ζ3a and fourth-harmonic acceleration

ẅ
(4ω)
a /ζ4a along body-fixed z-axis versus non-dimensional wave number νa for wave height-

to-wavelength ratios 1/120, 1/60, 1/30 and 1/15 for floater front position (β = π) and left
position (β = π/2) in incident regular waves with frequency ω and amplitude ζa. The height
of the experimental error bars is two times the estimated standard deviation.
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approach in seakeeping analysis of ships by calculating correctly nonlinear Froude-Kriloff
forces and unsteady hydrostatic forces in nonlinear incident waves together with linear hy-
drodynamic forces. However, we could not explain the experimental results by following
such an approach. The fact that part of the torus may go out of the water in cases with
overtopping is also illustrated in Figure 5 together with a photo from a floater of a full scale
fish farm without net in a storm illustrating that the same phenomena occur in real life
(see Figure 1).

6. Conclusions and future studies

Longitudinal motions and vertical accelerations of a nearly rigid floating torus in regular
waves are studied by model tests. The results for the smallest wave height-to-wave length
ratios 1/120 are compared with HydroStar, which solves numerically the frequency-domain
potential-flow problem correctly to second order in incident wave amplitude for a rigid
floater. Reasonable agreement is shown. Experimental and numerical errors are discussed.
Differences in the first and second harmonics response are partly explained to be due to
hydroelasticity associated with bending stiffness of the floater by using a curved beam theory
for the linear problem. Higher order wave-body interaction effects cannot be disregarded. It
is documented that viscous effects are secondary. However, tank wall interference matters
at the tank’s transverse natural sloshing frequencies.

The experimental results for wave steepness 1/120, 1/60, 1/30 and 1/15 show that first,
second, third and fourth harmonics vertical acceleration of the floater matter in steady-state
conditions. We cannot explain the third and fourth harmonics response by a perturbation
method with the wave steepness as a small parameter. The torus shape above the mean free
surface is likely to matter. Actually, the ratio between the incident wave amplitude and the
cross-sectional torus radius ought to be considered as a small parameter.

The experimental and numerical results show that resonant wave motion does not occur
inside the torus.

Ideally, we need a fully nonlinear 3D CFD method that accounts for hydroelasticity to
compare with the experiments. We say fully nonlinear because the experiments show that
even fourth-order harmonics of the measured floater accelerations mattered in steeper waves
and that perturbation methods are only practical for linear (first-order) and second-order
problems, which accounts only for first and second order harmonics as well as a constant of
the floater acceleration in regular waves. In addition, a perturbation method for the third
and fourth-order problem becomes questionable as stated above. Difficulties may also arise
because of singularities at the contact line between the mean free surface and the torus
(Faltinsen and Timokha (2010)). Furthermore, Navier-Stokes equation is needed because
flow separation is likely to matter for steeper waves. Use of a fully nonlinear 3D CFD method
that accounts for hydroelasticity requires future studies.
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