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ABSTRACT
Numerical simulations and experiments of an elastic circu-

lar collar of a floating fish farm are reported. The floater model
without netting structure is moored with nearly horizontal moor-
ings and tested in regular deep-water waves of different steep-
nesses and periods without current. Local overtopping of waves
were observed in steep waves. The focus here is on the vertical
accelerations along the floater in the different conditions. The ex-
periments show that higher-order harmonics of the accelerations
matter. A 3D weak-scatter model with partly nonlinear effects as
well as a 3D linear frequency-domain method based on potential
flow are used. From their comparison against the measurements,
strong 3D and frequency dependency effects as well as flexible
floater motions matter. The weak-scatter model can only partly
explain the nonlinearities present in the measured accelerations.

INTRODUCTION
Fishery aquaculture in the open seas plays an increasingly

important role, and it is believed to be a very efficient farming
technique for the future. However, fish escape is a major problem
for the industry. One reason is structural failure. An example is
that contact between the net and chains connecting the floater
and a bottom ring can cause rupture of the net. The fact that the

net is considerably deformed in strong current matters. Further,
a not properly designed bottom ring may considerably deform in
severe weather conditions and damage the net.

High flexibility of netting, floating collar and sinker tube and
their structural interaction are important effects. Bardestani and
Faltinsen [1] discussed wave and current loads on the floater, net-
ting and sinker tube of a section of a floating fish farm. Large
snap loads due to the elastic behaviour of the net structure and
the relative motion between the floater and the net are observed
experimentally and predicted numerically.

Present investigation aims to provide further contribution
in addressing critical conditions for fish-farms by focusing on
the wave induced accelerations on the floater. Our experimen-
tal studies are related to a fish farm with a circular plastic collar
made of high-density polyethylene (HDPE) pipes. The floater
is a torus moored with a simplified horizontal mooring system.
In reality, it is more common to use two concentric tori. The
interaction with other parts of the fish farm, such as the netting
structure, bottom rings, chains, ropes and a realistic mooring sys-
tem, are important but are not studied. Both waves and current
loads matter but current is neglected. For the examined prob-
lem, hydroelasticity matters due to the relatively small flexural
rigidity of the floater and resonances are possible due to high-
order wave load excitation. Engineering tools usually estimate
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the floater response based on strip theory with linear potential
flow and drag-force corrections from Morison equation, which
disregards important 3D flow, frequency dependency, as well as
nonlinear effects in steep waves. For example, Morisons equa-
tion is used in the analytical method proposed by Dong et al. [2]
to estimate the elastic deformations of a semi-submerged torus
in waves. Here the relevance of these parameters is examined
through a synergic experimental and numerical analysis. In the
next section the model tests are outlined, then the two adopted
numerical solvers are described and the physical investigation is
carried out. Main conclusions and further steps are drawn in the
last section.

EXPERIMENTS
Model tests were performed in the Marine Cybernetics Lab-

oratory at NTNU of Trondheim in January 2013. An objective
was to measure the vertical accelerations along the floater. Since
gravity waves are involved in the experiments, Froude scaling
must be applied. Reynolds number scaling associated with vis-

cous effects can, therefore, not be satisfied. When flow sepa-
ration does not happen, viscous effects are associated with the
boundary layer flow and negligible relative to potential-flow ef-
fects. Moreover, since the Keulegan-Carpenter number is always
small in our studies, the wave force amplitude will be dominated
by potential-flow effects. However, we cannot outrule that vis-
cous damping matters in case of flow separation.The latter may
occur in steep waves with overtopping, as demonstrated in 2D
numerical studies of a semi-submerged circular cylinder in waves
by Kristiansen and Faltinsen [3].

The experimental set-up is illustrated in Fig. 1 and other
parameters are shown in Table 1. The wave tank is 40m long,
6.45m wide, and 1.5m deep. It is equipped with a towing car-
riage, a flap piston wave maker and a damping beach covered by
a rough, porous mat to increase its energy dissipation ability. The
wave maker is controlled by software, which applies linear wave
maker theory to estimate the necessary stroke of the piston for
generating waves with a given height and period. A model test
scale is 1 : 25 was used for the floater. Special attention was paid
to the structural bending stiffness. The parameters were chosen
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FIGURE 1: EXPERIMENTAL SET-UP. UPPER: TOP VIEW; LOWER: SIDE VIEW.
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TABLE 1: DIMENSIONS USED IN THE EXPERIMENTS. MODEL SCALE 1 : 25.

Description Parameter Model scale Full scale

Floater diameter D = 2c 1.5m 37.5m

Cross-sectional diameter of floater 2a 38mm 0.95m

Floater bending stiffness EI 0.464Nm2 4.53×106Nm2

Spring stiffness ks 17N/m 10.63kN/m

from typical values for existing collars. EI was estimated by us-
ing the static deflection equation W = FL3/3EI of a cantilever
beam of length L and with a fixed end support at one end and
load F applied at the other end of the beam. EI follows then from
measuring the deflection W . A typical HDPE type plastic has a
Young’s modulus of elasticity E ≈ 1000MPa. This model scale
gave a realistic bending stiffness for the model. The floater was
attached to the stationary carriage in the middle of the tank by
means of four identical nearly horizontal mooring lines, at front,
aft and laterally. They were connected to the floater through 12
attachment points with an equal interval of 30 deg. Springs with
stiffness ks = 17N/m were used to connect the floater and the car-
riage. This corresponds to almost half of full scale spring stiff-
ness (27kN/m) by Froude scaling. The pre-tension was Tp = 5N.
The high pre-tension was needed to avoid slack due to large hor-
izontal motion when testing large wave steepnesses and long
wave periods. The elastic floater model was made from a cor-
rugated tube used to cover electric cables in houses. Constant
cross-section of the floater was obtained by covering the corru-
gation with waterproof adhesive electrical tape. The floater was
semi-submerged in calm conditions. The vertical accelerations
were measured by accelerometers at five points with an equal in-
terval of π/4, starting from the front of the floater. Four wave
gauges were used to measure the wave elevation.

Incident waves with wave height-to-wave length ratios
H/λ = 1/120,1/60,1/30 and 1/15 were tested. The wave pe-
riod T = 2π/ω varied within [0.6,1.6]s with a step of 0.05s.
Here ω is the circular frequency. All test cases were repeated
three to four times. A waiting time of 3 minutes between each
test was chosen to damp out waves. In general, nearly steady-
state conditions are reached after 10 wave periods. The time-
series results in a selected window were band-passed filtered be-
tween lower and upper cut-off frequencies in order to remove
high-frequency noise. The Hilbert transform was used for cal-
culating instantaneous attributes of the resulting time series, e.g.
the amplitude and frequency to describe the envelope curve of
filtered measurements [4–6]. Eventually, the mean values, rep-
resenting the amplitude of the measurements, and the standard
deviations of the envelope curves were obtained.

Large vertical and horizontal motions with significant flex-
ible effects, as well as waves over-topping the floater, were ob-

served in several tests so, to properly examine the nonlinear fea-
tures of the phenomena, first, second, third and fourth order har-
monics of the measured acceleration signals were estimated.

NUMERICAL SOLVERS
Two theoretical potential-flow methods are applied. One

method generalizes the weak-scatter model (Greco and Lugni
[7]) with original theory due to Pawlowski [8]. Nonlinear effects
are partly considered. The other method considers only linear
frequency-domain effects. Elastic torus motions are accounted
for in both methods. Empirical viscous drag loads may be added
in the weak-scatter model. As in the model tests, both methods
assume no current.

We discuss first the rigid-motion analysis of the floater in the
weak-scatter model. A body-fixed Cartesian coordinate system
OxByBzB with origin in the center of gravity (COG) of the torus
and an inertial Cartesian coordinate system Oxyz are introduced.
When the floater is at rest, the xB, yB and zB-axes are parallel
with the x, y and z-axes, respectively. Further, the COG at rest is
right above or below the origin of the Oxyz system. The z-axis
coincides with the torus axis and is vertical with positive direc-
tion upwards. The mean free surface is at z = 0. The incident
regular waves propagate along the x-axis and are described by
a second-order Stokes theory in deep water. When the torus is
at rest in calm water, the torus is semi-submerged. The transla-
tory rigid body-velocity components of the COG along the xB, yB
and zB-axes are U1, 0 and U3, respectively. The angular velocity
component along the yB-axis is q. The equations of rigid-body
motions of the torus following from Newtons second law are ex-
pressed as [9]:

M
(
U̇1 + qU3

)
= F1 + MgsinΘ,

M
(
U̇3 − qU1

)
= F3 −MgcosΘ,

I55q̇ = F5

(1)

Here M, I55, g and Θ are the structural mass, pitch moment of
inertia, acceleration of gravity and pitch angle, respectively. Fur-
ther, F1 and F3 are external force components along the xB and
zB-axes, respectively. F5 is external moment about the yB-axis.
The external loads are due to the mooring, nonlinear hydrostatic
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and Froude-Kriloff loads as well as hydrodynamic loads associ-
ated with flow caused by the torus velocity and scattering of the
incident waves. The hydrodynamic loads are consistent within
linear theory but include nonlinear effects due to satisfaction of
the body-boundary conditions. We denote the surge and heave
displacements of the torus along the x and z-axes as η1 and η3,
respectively. The following differential equations link rigid-body
velocity components, angular velocity, displacements and pitch
angle [9]:

dη1

dt
= U1 cosΘ + U3 sinΘ,

dη3

dt
= −U1 sinΘ + U3 cosΘ,

dΘ

dt
= q.

(2)

The flexible vertical (w) and lateral (radial, vr) torus mo-
tions are described by the following modified beam equations
with tension and radius of curvature effects:

m
∂ 2w
∂ t2 + EI

∂ 4w
∂ s4 −

∂

∂ s

(
Tas

∂w
∂ s

)
= f FK+hydrostatic

3 + f hydrodynamic
3 + f str.+mooring

3

(3)

m
∂ 2vr

∂ t2 + EI
(

∂ 4vr

∂ s4 +
1
c2

∂ 2vr

∂ s2

)
− ∂

∂ s

(
Tas

∂vr

∂ s

)
= f FK+hydrostatic

r + f hydrodynamic
r + f str.+mooring

r

(4)

Here the differentiation ∂/∂ s = c−1∂/∂β is along the torus
where β is defined in Fig. 1. m is the floater mass per unit
length and EI is the bending stiffness and Tas is the axial stiff-
ness following from a static analysis of the moored floater. Fur-
ther, f FK+hydrostatic

3 and f FK+hydrostatic
r are the vertical and radial

nonlinear hydrostatic and Froude-Kriloff forces per unit length
and f hydrodynamic

3 and f hydrodynamic
r are the vertical and radial hy-

drodynamic forces per unit length due to the floater velocity
and scattering of the incident waves. Finally, f str.+mooring

3 and
f str.+mooring
r describe the effect of structural damping and moor-

ing. The flexible vertical and radial motions are expressed as:

w =
∞

∑
n=2

an (t)cos(nβ )

vr =
∞

∑
n=2

bn (t)cos(nβ )

(5)

The nonlinear hydrostatic and Froude-Kriloff loads involve
pressure integration on the instantaneous wetted surface. The
latter is found by approximating the free-surface elevation at the
floater as the incident wave elevation. The effect of rigid-body
and elastic floater motions is considered. Both over-topping and
dry cross-sections may occur due to large relative vertical floater

motion. The difference between the water pressure and the at-
mospheric pressure on the instantaneous position of the floater
is −ρgz+ p1 with p1 = −ρ∂ϕ0/∂ t−ρ | 5ϕ0 |2 /2 when z ≤ 0
and p1 = −ρ∂ϕ0/∂ t when z > 0. Here ϕ0 is the incident wave
potential.

The hydrodynamic loads are represented in terms of con-
volution integrals with retardation functions in a similar man-
ner as Cummins [10] described for linear rigid-body velocities.
A modification is that scattering is included. The free-surface
condition for the velocity potential ϕ is ∂ 2ϕ/∂ t2 +g∂ϕ/∂ z = 0
on z = 0. The fact that the body boundary condition ∂ϕ/∂n =
(Vfloater−Vwave) ·n is applied on the instantaneous floater posi-
tion leads to nonlinear effects. Here Vwave is the incoming-wave
velocity, Vfloater is the floater velocity and n is the body normal
vector. The frequency-domain added mass and damping coeffi-
cients needed in calculating the retardation functions follow by
satisfying the body-boundary conditions on the mean oscillatory
position and properly integrating linear hydrodynamic pressure.
The linear potential-flow frequency-domain panel code WAMIT
was used for both flexible and rigid-body modes.

The effect of mooring on f str.+mooring
3 is small and neglected.

Since we do not know the structural damping associated with the
different flexible modes, the following strategy is tried out. A
damping of the form [p1 +4p · ( j−1)]Bcr, j, is assumed for each
vertical and radial flexible mode j, with Bcr, j the corresponding
critical damping, p1 = 0.05 and4p = 0.01. With this formula a
structural damping equal to the 5% of the critical damping is used
for the first flexible vertical (radial) mode and increased with a
step of 1% with the number of mode. This arbitrary choice is
qualitatively reasonable since it is expected a greater effect of the
structural damping in limiting the higher modes. The comparison
with a similar formula using p1 = 0.01 gave very close results
for the longer incident-wave cases while indicated higher-mode
amplitudes much larger than observed in the physical case. The
surge equation also includes a quadratic viscous drag term, which
is found from free-decay tests in the present study.

The other method is a frequency-domain linear theory. Only
vertical motions are analysed and f str.+mooring

3 is set equal to
zero. Eqn. (3) is written as:

m
∂ 2w
∂ t2 + ρg2aw + EI

∂ 4w
∂ s4 −

∂

∂ s

(
Tas

∂w
∂ s

)
= f added mass+damping

3 + f wave excit
3

(6)

Since rigid-body heave and pitch are included, we write:

w =
∞

∑
n=0

an (t)cos(nβ ) (7)

Here ρ is the mass density of water and g is the accelera-
tion of gravity. f added mass+damping is the vertical added mass
and damping force per unit length of the floater that includes
frequency-dependent added mass a(n)33 and damping coefficients
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b(n)33 associated with the different modes n. They are found
by studying forced harmonic velocity ȧn cos(nβ ), multiply-
ing the cross-sectional vertical linear hydrodynamic force with
ccos(2β ) and integrating with respect to β from 0 to 2π . The
corresponding added mass and damping coefficients for the
floater are A(n)

33 = 2πca(n)33 , B(n)
33 = 2πcb(n)33 . Further, f wave excit

3 =

∑
∞
n=0 f wave excit

3,n cos(nβ ) is the vertical wave excitation force on
the floater per unit length that includes both the Froude-Kriloff
force and the force due to scattering of the incident waves.
Li and Faltinsen (2012) [11] used WAMIT and two smallfre-
quency slender-body theories to evaluate f added mass+damping

3 and
f wave excit
3 . The slender-body theories assume small νc and

νa = O(1) with ν = ω2/g. Matched asymptotic expansion with
near-field and far-field descriptions was applied. The slender-
body theories differed in the way to calculate the scattering force:
one method was based on a relative velocity concept; the other
method generalized the Haskind relation. The different methods
give quite similar predictions in our considered frequency range
and show very strong 3D and frequency dependence implying
that strip theory fails. The slender-body theories are clearly more
computationally efficient than WAMIT.

The solution procedure of Eqns. (3), (4) and (6)is as fol-
lows. Tas is assumed constant and equal to T (i)

as between each
mooring line. The values of T (i)

as used in the presented case stud-
ies are

[
T (1,3,5,7)

as ,T (2,4,6,8)
as

]
= [0.4108,0.7071]×Tp, where Tp is

the pre-tension of the mooring lines.
Within the linear method, Eqn. (7) is substituted into

Eqn. (6), which is multiplied by cos(mβ ) and integrated from
0 to 2π . Then, the equations of motion become:(

m + a(m)
33

)
äm + b(m)

33 ȧm +

(
ρg2a +

EI
c4 m4

)
am

+
1

αmπc2

∞

∑
n=0

8

∑
i=1

n2T (i)
as

∫
βi+1

βi

cos(nβ )cos(mβ )dβan

= f wave excit
3,m

(8)

for the unknown amplitudes am. Here α0 = 2, and αm = 1, m≥ 1.
Further, βi and βi+1 are the end angles β for a torus segment be-
tween two successive mooring lines attached to the floater. There
are eight of such segments. Since äm =−ω2am and ȧm =−iωam
with time dependence exp(−iωt), Eqn. (8) are not true differen-
tial equations. The Eqn. (8) show that the axial tension provides
coupling between the different modes.

The weak-scatter model follows a similar procedure in re-
expressing the vertical and radial modified beam equations for
the flexible modes by multiplying them with cos(mβ ) and inte-
grating from 0 to 2π . This leads to an equation system for the
unknowns am and bm. The weak-scatter equations are solved nu-
merically in time using a fourth-order Runge-Kutta scheme.

The resulting weak-scatter solver is quite efficient if com-
pared with more general fully-nonlinear potential-flow methods

since it requires in time only the discretization of the instanta-
neous wetted body surface, the estimation of nonlinear Froude-
Kriloff and hydostatic loads and the satisfaction of the nonlinear
body-boundary condition in the hydrodynamic problem. Fur-
ther, if plunging breakers occur, a fully-nonlinear potential-flow
method has limitations. The geometry of the floater and its elas-
tic behaviour lead however to challenges in terms of numeri-
cal efficiency and accuracy. Some important reasons are: 1)
the geometry involves two quite different spatial scales, with
the cross-sectional radius a typically much smaller than the
global radius c of the floater; 2) the elastic behaviour leads to
the need of a larger number of degrees-of-freedom to be ac-
counted for; 3) the floater is associated with long-time memory
effects, which mean that the convolution integrals must be esti-
mated for a time interval typically large. Fig. 2 presents retar-
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FIGURE 2: NON-DIMENSIONAL RETARDATION FUNC-
TIONS FOR HEAVE, PITCH, FIRST ELASTIC VER-
TICAL AND RADIAL MODES AS A FUNCTION OF
TIME. THE ENLARGED VIEW SHOWS THE DETAIL
OF THE BEHAVIOUR AT SMALL TIMES INTERVAL.
K′33 = K33/(ρgac), K′55 = K55/

(
ρgac3

)
, K′w1w1 = Kw1w1/(ρga),

K′r1r1 = Kr1r1/(ρga). ρ , g, a, c ARE DEFINED IN TABLE 1
AND TEXT.

dation functions in heave (K33) and pitch (K55) and retardation
functions associated with the lowest vertical (Kw1w1) and radial
(Kr1r1) flexible modes. Here K j j (t) = 2

π

∫
∞

0 B j j (ω)cos(ωt)dω

with B33 (ω) and B55 (ω) as frequency-domain damping coef-
ficients in heave and pitch of the floater. Further, Kw1w1 (t) =
2
π

∫
∞

0 B(2)
33 (ω)cos(ωt)dω , Kr1r1 (t) = 2

π

∫
∞

0 B(2)
rr (ω)cos(ωt)dω

where B(2)
33 (ω) has been previously defined and B(2)

rr (ω) is
associated with studying forced radial flexible mode veloc-
ity ḃ2 (t)cos(2β ), multiplying the linear hydrodynamic cross-
sectional radial force with ccos(2β ) and integrating with respect
to β from 0 to 2π . The retardation functions, both for rigid
and elastic modes, become negligible for times larger than about
400
√

c/g, corresponding to nearly 75 periods of the longest
waves investigated here.

Actually, looking more closely at the behaviour for small
times (see enlarged view in the figure), the retardation functions
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for heave and pitch have the most important contributions for
t < 2

√
c/g. This suggests that, if these rigid motions dominate

the floater response, steady-state conditions would be reached
quickly in time. Things are different for the first vertical and ra-
dial elastic modes. In this case the memory effects are of similar
importance along the time axis, suggesting that steady-state con-
ditions require longer time to be reached when these modes are
important for the floater response. This behaviour of the retar-
dation functions is very special and probably connected with the
ring shape of the elastic body and the very complicated frequency
dependency for added-mass and damping coefficients with sev-
eral peaks and troughs, and occurrence of negative added mass
and almost zero damping. It has been verified that using the re-
tardation functions to calculate added mass and damping coef-
ficients is consistent with added mass and damping coefficients
calculated by WAMIT.

PHYSICAL INVESTIGATIONS
Convergence of the weak-scatter results has been checked

in terms of spatial body discretization, time step and number of
modes. It was found that 24 panels along the cross-sectional di-
ameter and 988 panels along the global diameter of the floater
were suitable to have nearly converged results. ∆t = 0.0025T ,
with T the incident wave period, was confirmed to be a suitable
time step. Ten vertical and ten radial flexible modes have been
considered. Since the experiments are performed with horizontal
mooring lines, a restoring is caused for the surge, sway and radial
elastic modes. Using free-decay tests in surge with only the two
mooring lines in x-direction, the restoring and damping for surge
and sway (due to the symmetry of the body and of the mooring
lines set-up) were obtained. In this way viscous-damping correc-
tions were included in the simulations.

The method was applied to the cases with smallest, interme-
diate and largest incident-wave periods, i.e. T = 0.6s, 1.05s and
1.6s. For longer incident waves rigid motions tend to dominate
the floater response, so we can expect that steady-state conditions
are reached sooner than for shorter waves. The numerics indi-
cates that they are reached after 20T for the longest wave while
the experiments show important variation between the measure-
ments done after 20T and those made after 50T . For T = 1.05s,
steady-state conditions are nearly reached numerically and ex-
perimentally after 50T , while both of them indicate a difficulty
in reaching steady-state conditions for the shortest wave even af-
ter 100T . This is consistent with the fact that in this case rigid
motions are comparable with the elastic motions and can inter-
act with them, so memory effects need longer times to die out.
Globally the numerics tends to underestimate the physical verti-
cal motions. This does not seem to be connected with the use of
a too large structural damping for the elastic modes. The numer-
ical results with two different structural damping strategies are
identical for the two longer waves, as expected since the floater
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FIGURE 3: NON-DIMENSIONAL AMPLITUDES OF FIRST-
HARMONICS FOR EXPERIMENTAL AND NUMERICAL
VERTICAL ACCELERATION ẅ(ω)

a AT FRONT, LEFT AND
AFT POSITIONS ON THE FLOATER FOR DIFFERENT
WAVE STEEPNESSES AND FREQUENCIES.

response in this case is dominated by the rigid motions; moreover
the reduction of the damping does not ameliorate the agreement
with the experiments for the shortest wave.

Fig. 3 compares amplitudes of experimental and linear theo-
retical predictions of the first harmonics of vertical accelerations
at the front, side and aft of the floater as a function of nondi-
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TABLE 2: EXPERIMENTAL, WEAK-SCATTER AND LINEAR THEORY VALUES OF ẅ(ω)
a c/gζa. ẅ(ω)

a IS THE AMPLITUDE OF
THE FIRST HARMONICS OF VERTICAL ACCELERATIONS. c,g AND ζa ARE DEFINED IN TABLE 1 AND TEXT.

νa H/λ

Front Left Aft

Exp. Exp. Weak
Linear

Exp. Exp. Weak
Linear

Exp. Exp. Weak
Linear

µ σ Scatter µ σ Scatter µ σ Scatter

0.0299

1/120 1.254 0.020 1.238

1.206

0.990 0.038 1.100

1.109

1.244 0.027 1.232

1.203
1/60 1.308 0.036 1.224 1.114 0.015 1.089 1.185 0.027 1.218

1/30 1.257 0.026 1.194 1.016 0.029 1.062 1.340 0.033 1.186

1/15 1.298 0.033 1.148 1.097 0.030 0.903 1.157 0.038 1.094

0.0694

1/120 2.874 0.085 2.846

2.958

1.668 0.061 1.735

1.834

2.939 0.066 2.905

2.849
1/60 3.144 0.085 2.838 1.794 0.054 1.722 2.925 0.055 2.902

1/30 3.023 0.039 2.781 1.753 0.034 1.683 3.023 0.050 2.851

1/15 2.694 0.072 2.588 1.570 0.023 1.114 2.945 0.060 2.833

0.2125

1/120 7.185 0.229 6.716

7.262

0.772 0.153 0.323

0.191

6.196 0.197 7.328

6.690
1/60 8.261 0.194 6.713 0.838 0.147 0.327 7.298 0.182 7.325

1/30 8.266 0.177 6.686 0.809 0.219 0.338 7.757 0.150 7.293

1/15 6.722 0.611 6.663 0.508 0.229 0.502 7.223 0.678 7.281

mensional squared frequency νa and wave steepness. The low-
frequency slender-body theory uses the relative velocity to cal-
culate the scattering effect. Twenty-two modes are used. In-
creasing number of modes has a negligible effect. The low-
frequency slender-body theory agrees, in general, satisfactorily
with experiments. An exception is for the left part of the floater
at νa = 0.181. Weak-scatter results of the amplitude of the first
harmonics of vertical accelerations at the front, side and aft of the
floater are compared in Table 2 with experiments and the low-
frequency slender-body theory for νa = 0.0299, 0.0694, 0.2125
and different wave steepnesses. The table provides also infor-
mation about the experimental mean value µ and standard devi-
ation σ =

(
σ2

ea +σ2
re
)0.5, where σea is the standard deviation of

each case due to the time-dependent amplitude variation and σre
is the standard deviation due to repeating the tests three or four
times for each wave condition. The relative error is defined as
σ/µ · 100%, where µ is the experimental mean value and σ is
the total experimental standard deviation. Relative error caused
by repetition was less than 1.0%. Thus, the obtained time series
showed good repeatability.

The time series of the experimental accelerations obtained
by filtering out higher harmonics than ω is shown in Fig. 4 for
one test case with H/λ = 1/15 and νa = 0.0299. The red enve-
lope curve of the acceleration amplitude has been used to calcu-
late µ and σea. The physical reason to σea is not fully known.
The maximum relative error is respectively 9.1%, 45.1% and

20 40 60 80 100 120 140 160
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0.5
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ẅ
(ω

)
a

FIGURE 4: TIME SERIES OF THE FIRST HARMONICS OF
EXPERIMENTAL VERTICAL ACCELERATIONS AT THE
FRONT OF THE FLOATER WITH H/λ = 1/15 AND T = 1.6s.

9.4% at front, left and aft positions on the floater. However,
there is in general a small relative error. Another error source
is that the accelerometer is body-fixed and can only measure the
acceleration in normal direction while the theories predict verti-
cal accelerations. However, theoretical estimates of the latter ef-
fect showed a negligible error. The weak-scatter method agrees
well with the experiments except for the left part of the floater
when νa = 0.2125. However, the acceleration level is small rel-
ative to values in the front and aft part of the floater. Both the
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FIGURE 5: NON-DIMENSIONAL AMPLITUDES OF
HIGHER-ORDER HARMONICS FOR EXPERIMENTAL
VERTICAL ACCELERATION AT THE FRONT OF THE
FLOATER FOR DIFFERENT WAVE STEEPNESSES AND
FREQUENCIES. ẅ(2ω)

a , ẅ(3ω)
a AND ẅ(4ω)

a ARE THE AM-
PLITUDES OF THE SECOND, THIRD AND FOURTH
HARMONICS OF VERTICAL ACCELERATIONS.

weak-scatter method and the experiments show a small nonlin-
ear dependence on the incident wave amplitude.

The amplitudes of the second, third and fourth harmonics of
measured vertical accelerations of model tests at the front of the

TABLE 3: PREDICTED UNDAMPED NATURAL FREQUEN-
CIES IN rad/s FOR VERTICAL MODES.

22.61 23.11 23.49 23.99 24.33 25.15 25.67

25.83 26.11 26.73 26.97 27.49 28.21 28.61

28.93 29.37 29.63 30.11 30.31 30.83 30.99

31.32 31.75 32.17 32.29 32.61 32.81 33.01

33.11 33.45 33.54 33.73 34.07 34.33 34.67

34.76 34.93 35.16 35.27 35.35 35.53 35.85

35.95 36.11 36.41 36.53 36.67 36.88 36.97

37.09 37.23 37.42 37.53 37.65 37.79 38.03

38.21 38.33 38.51 38.61 38.75 38.87 39.04

39.15 39.28 39.39 39.57 39.67 39.80 39.92

40.08 40.18 40.32 40.43 40.59 40.64 40.94

41.10 41.20 41.34 41.44 41.59 41.70 41.83

42.08 42.21 42.32 42.57 42.66 42.81 43.05
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FIGURE 6: FREQUENCIES ω , 2ω , 3ω AND 4ω IN rad/s AS
A FUNCTION OF νa = ω2a/g. THE LOWER BOND FOR
THE NATURAL FREQUENCIES OF VERTICAL MODES IS
INDICATED WITH THE HORIZONTAL PINK LINE.

floater are presented in Fig. 5 as a function of nondimensional
squared frequency νa and wave steepness. The values are by no
means negligible relative to the first harmonic part presented in
Fig. 3 except, in general, for the smallest wave steepness. One
reason may be over-topping of waves which was evident in the
front and aft parts for wave steepnesses 1/30 and 1/15. An-
other reason may be that higher-harmonic wave loads have ex-
cited resonant oscillations. Table 3 lists predicted undamped nat-
ural frequencies for different vertical modes. It increases from
left to right in each row and up to the largest value of 4ω in
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TABLE 4: EXPERIMENTAL AND WEAK-SCATTER VALUES OF ẅ(2ω)
a c/gζa. ẅ(2ω)

a IS THE AMPLITUDE OF THE SECOND
HARMONICS OF VERTICAL ACCELERATIONS.

νa H/λ

Front Left Aft

Experiment Experiment Weak Experiment Experiment Weak Experiment Experiment Weak

µ σ Scatter µ σ Scatter µ σ Scatter

0.0299

1/120 0.126 0.051 0.070 0.090 0.027 0.013 0.157 0.054 0.065

1/60 0.224 0.084 0.130 0.096 0.044 0.044 0.210 0.081 0.124

1/30 0.774 0.057 0.220 0.097 0.037 0.093 0.449 0.066 0.237

1/15 0.865 0.119 0.296 0.238 0.041 0.217 0.726 0.080 0.324

0.0694

1/120 0.155 0.068 0.175 0.042 0.026 0.051 0.143 0.063 0.186

1/60 0.248 0.048 0.333 0.042 0.025 0.102 0.106 0.034 0.352

1/30 0.407 0.043 0.501 0.084 0.033 0.198 0.147 0.033 0.511

1/15 0.746 0.103 1.396 0.968 0.099 0.553 0.691 0.069 1.207

0.2125

1/120 0.570 0.136 0.474 0.175 0.086 0.300 0.508 0.097 0.497

1/60 1.277 0.442 1.016 0.979 0.166 0.683 2.074 0.192 1.045

1/30 2.593 0.606 2.305 1.255 0.569 1.731 5.864 0.546 2.267

1/15 4.078 1.091 1.933 2.463 0.855 4.044 5.311 0.973 1.397

the model tests. There are 91 natural frequencies from the first
one 22.61rad/s to 43.05rad/s. The very strong frequency de-
pendency of generalized added mass for vertical modes causes
a small interval between successive natural frequencies. Fig. 6
presents frequencies ω , 2ω , 3ω and 4ω in rad/s as a function
of νa = ω2a/g. The pink solid straight line is the first natural
frequency 22.61rad/s. When ω , 2ω , 3ω and/or 4ω is above
the pink line for a given νa, it indicates that resonant oscillations
may occur depending on the magnitude of the generalized excita-
tion force and damping. If we relate this fact to the experimental
results in Fig. 5, we note that not all large higher harmonic ac-
celerations can be explained to be a consequence of resonance.

The amplitude of the second harmonics of vertical accelera-
tions from experiments and by the weak-scatter method are com-
pared in Table 4 for the same νa as in Table 2. The relative ex-
perimental errors shown in Table 2 and 4 are large for some wave
conditions. As discussed already, relative error caused by repe-
tition was negligible. Thus, the main contribution comes from
the time variation of amplitude. The maximum relative error is
respectively 43.6%, 61.1% and 44.0% at front, left and aft posi-
tions on the floater. The weak-scatter method has a reasonable
agreement with experiments for wave steepnesses 1/120, 1/60
and 1/30. The difference is larger for the highest wave steep-
ness 1/15. Predicted values of the amplitude of the third and

fourth harmonics of accelerations by the weak-scatter model for
and different wave steepnesses were very low relative to the ex-
perimental results shown in Fig. 5.

The experimental error is of same order of magnitude as
for the amplitude of the second harmonics of the accelerations.
When linear effects dominate, the two considered potential-flow
methods are rational. However, the calculated effect of axial ten-
sion on flexible modes are approximated by using constant ten-
sion between each mooring-line attachment points. When non-
linear hydrostatic and Froude-Kriloff loads dominate, the weak-
scatter model is partially rational. An error source is that the lo-
cal free-surface elevation influenced by the flow caused by torus
velocities and scattering has not been used in finding the wetted
surface. Since the semi-submerged torus surface is not vertical in
the free-surface zone, it is impossible with the considered method
to find the local free-surface elevation.

The weak-scatter model has similarities with blended meth-
ods used in calculating springing and whipping of ships. Shao
and Faltinsen [12] documented that blended methods do not pre-
dict the fact that the second-order potential due to full hydrody-
namic interaction between the incident waves and the ship gives
dominant contribution to sum-frequency hydrodynamic loads
which is also a well-known fact for TLPs. The weak-scatter
model does not handle the effect of flow separation in a ratio-
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nal way. Kristiansen and Faltinsen [13] demonstrated by the CIP
method that flow separation occurs during over-topping of waves
on a semi-submerged circular cross-section.

Since higher-order harmonics of wave loads can cause reso-
nant excitation of flexible modes, structural damping may matter.
We do not know what the structural damping was for the differ-
ent modes of the tested structure and, therefore, what the error
due to structural damping was in the weak-scatter model.

CONCLUSIONS
Model tests of an elastic circular floater of a fish farm have

been conducted to measure the vertical accelerations along the
floater in regular waves of different steepnesses and periods. A
nonlinear weak-scatter method and a linear frequency-domain
method have been applied to complement the physical tests. The
analysis showed that flexible motions, 3D flow and frequency de-
pendency are important. Wave overtopping may occur in steeper
waves. Good agreement was achieved for the first harmonic com-
ponent of vertical accelerations at front, side and aft positions
on the floater. Important higher-order harmonic components of
experimental accelerations occur. The second harmonic accel-
eration component is well predicted by the weak-scatter method
for wave steepnesses 1/120, 1/60 and 1/30. The differences are
larger for the highest wave steepness 1/15. Predictions of third
and fourth harmonic acceleration components are less satisfac-
tory. It is speculated if higher-order wave loads may cause reso-
nant vertical accelerations of the floater. A next step is to include
a net cage with bottom weights and study the wave-induced ver-
tical accelerations and structural stresses of the floater including
practical consequences.

ACKNOWLEDGMENT
This work was supported by the Research Council of Nor-

way through the Centres of Excellence funding scheme AMOS,
project number 223254. The first author is funded by the Cen-
tre for Research-based Innovation in Aquaculture Technology
(CREATE), SINTEF Fisheries and Aquaculture. Discussions
with Trygve Kristiansen, MARINTEK about model set-up are
appreciated.

REFERENCES
[1] Bardestani, M., and Faltinsen, O. M., 2013. “A Two-

Dimensional Approximation of a Floating Fish Farm in
Waves and Current with the Effect of Snap Loads”. In Pro-
ceedings of the ASME 2013 32nd International Conference
on Ocean, Offshore and Arctic Engineering. OMAE2013-
10487.

[2] Dong, G. H., Hao, S. H., Zhao, Y. P., Zong, Z., and Gui,
F. K., 2010. “Elastic Responses of a Flotation Ring in Water

Waves”. Journal of Fluids and Structures, 26(1), pp. 176–
192.

[3] Kristiansen, D., and Faltinsen, O. M., 2008. “Wave Loads
on Floaters of Aquaculture Plants”. In Proceedings of the
ASME 27th International Conference on Offshore Mechan-
ics and Arctic Engineering. OMAE2008-57084.

[4] Claerbout, J. F., 1976. Fundamentals of Geophysical Data
Processing. McGraw-Hill.

[5] Marple, S. L., 1999. “Computing the Discrete-Time Ana-
lytic Signal via FFT”. IEEE Transactions on Signal Pro-
cessing, 47(9), September, pp. 2600–2603.

[6] Oppenheim, A. V., and Schafer, R. W., 1998. Discrete-Time
Signal Processing. Prentice-Hall.

[7] Greco, M., and Lugni, C., 2012. “3-D Seakeeping Analy-
sis with Water on Deck and Slamming. Part 1: Numerical
Solver”. Journal of Fluids and Structures, 33, pp. 127–
147.

[8] Pawlowski, J. S., 1991. “A Theoretical and Numerical
Model of Ship Motions in Heavy Seas”. In SNAME Trans-
actions, Vol. 99, pp. 315–319.

[9] Faltinsen, O. M., 2005. Hydrodynamics of High-Speed Ma-
rine Vehicles. Cambridge University Press.

[10] Cummins, W. E., 1962. “The Impulse Response Function
and Ship Motions”. Symposium on Ship Theory, Schiff-
stechnik, 9, pp. 101–109.

[11] Li, P., and Faltinsen, O. M., 2012. “Wave Induced Response
of an Elastic Circular Collar of a Floating Fish Farm,”. In
Proceedings of 10th International Conference on Hydrody-
namics, Vol. 2, pp. 58–64.

[12] Shao, Y. L., and Faltinsen, O. M., 2012. “A Numerical
Study of the Second-order Wave Excitation of Ship Spring-
ing in Infinite Water Depth”. Journal of Engineering for the
Maritime Environment, 226(2), pp. 103–119.

[13] Kristiansen, D., and Faltinsen, O. M., 2009. “Non-linear
Wave-induced Motions of Cylindrical-shaped Floaters of
Fish Farms”. Journal of Engineering for the Maritime En-
vironment, 223(3), pp. 361–375.

10 Copyright © 2014 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 09/06/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use




