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Abstract

The flow of stratified fluid over complex topography may lead to a signif-

icant drag on the fluid, exerted by the bottom obstacles. Using a 2-m

resolution, three-dimensional, non-hydrostatic numerical ocean model, the

drag and associated mixing on a stratified flow over real, 1-m resolution

topography (interpolated to model resolution) is studied. With a typical

mountain height of 12m in 174m water and buoyancy frequencies ranging

from 0.6×10−2 s−1 to 1.2×10−2 s−1, resolving the topographic features leads

to extensive drag exerted on the flow manifested through three different pro-

cesses: i) gravity wave drag, ii) aerodynamic or blocked flow drag, and iii)

hydraulic drag. A parameterization of the internal wave drag based on linear,

two-dimensional, hydrostatic wave solutions provides satisfactory results in

terms of the turbulent kinetic energy levels. The depth of the layer where the

vertical momentum flux is deposited, however, is underestimated, leading to
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an overestimated gravity wave drag in the layer.

1. Introduction

Understanding the boundary layer processes in the ocean is essential for

an accurate representation of the vertical buoyancy flux in ocean general

circulation models. In order to close the overturning circulation, the dense

water masses sinking to abyssal depths across all major ocean basins have

to be balanced by a buoyancy gain and an upward vertical motion. In the

interior of the ocean, diapycnal mixing is the only mechanism that can in-

crease the buoyancy of a water parcel (Gregg, 1987). Observations indicate

a strong association between diapycnal mixing in the abyss and rough to-

pography (Polzin et al., 1997; Ledwell et al., 2000), and that the abyssal

circulations have complex spatial structures that are linked to the underly-

ing bathymetry (Thurnherr, 2006). Bottom attached, dense overflows and

their mixing with ambient waters (diapycnal mixing) are strongly influenced

by complex topography. Understanding and parameterizing the mechanisms

leading to mixing of stratified flow over topography is important to properly

understand the overturning circulation.

It has been recognized that overflows are not necessarily homogeneous,

but may have a vertical density structure, typically consisting of a well-mixed

dense bottom layer and a stratified interfacial layer (Peters and Johns, 2005;

Fer et al., 2010; Seim et al., 2010), in which internal waves can contribute

to mixing (Seim and Fer, 2011). Internal wave breaking is suggested to be

the dominating mechanism for dissipation of turbulent energy in the ambient

water above the Faroe Bank Channel overflow plume and its contribution to
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mixing in the interfacial layer should not be ignored (Seim and Fer, 2011).

This mechanism is typically neither resolved nor parameterized in numerical

model studies of such overflows due to the scale of typical overflow regions

(and consequently coarse resolution of numerical models) and the lack of

internal wave mixing parameterization in local turbulence closure schemes.

The models only account for bottom roughness through simple drag laws.

Parameterizations of mountain wave drag based on linear internal wave solu-

tions have significantly improved the atmospheric general circulation models

(Kim and Arakawa, 1995). In most ocean models, on the other hand, due

to the lack of high resolution topographic data and limited knowledge of the

interaction between topographic features and the bottom boundary layer,

the effect of subgrid-scale topographic features is not parameterized. Kly-

mak and Legg (2010) presented a numerical mixing scheme that enhances

mixing and viscosity in the presence of breaking internal waves, but the

scheme requires that the breaking internal waves are relatively well resolved

by the model. Bottom topography can affect the momentum budget of the

ocean, without requiring significant turbulence fluxes, through pressure drag

and internal wave propagation with wave dissipation possibly occurring some

distance from the source region (Skyllingstad and Wijesekera, 2004).

In this study we employ a high resolution (comparable to the typical

length scale of turbulent overturns) and non-hydrostatic numerical ocean

model to investigate the flow of stratified fluid over complex topography. The

high resolution, non-hydrostatic model is essential to resolve the overturning

internal waves induced by the complex topography (Xing and Davies, 2006;

Berntsen et al., 2009). The aim of this study is to test a parameterization
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of the wave drag on the flow exerted by unresolved topography, with known

characteristics in our case, and consequently test its ability to represent the

wave drag from subgrid-scale topography in models with coarse resolution, or

where the resolution of the topographic data is inadequate. The background

theory is given in Section 2 for homogeneous and stratified flow over topog-

raphy. The numerical model and the model set-up are described in Section 3,

followed by the results presented and discussed in Section 5. Conclusions are

drawn at Section 6.

2. Background

2.1. Homogeneous fluid flow

The first step in studying flow over topography is to consider the flow of

a homogeneous layer past isolated topography (Baines, 1995, Chap. 2). Such

single layer flows are typically characterized by the Froude number of the

undisturbed flow defined by F0 = U/
√
gd0, where U is the horizontal velocity,

g is the gravitational acceleration, and d0 is the undisturbed flow depth. The

critical Froude number is defined as F0 = 1, i.e. when the flow speed equals

the phase speed of long gravity waves. In sub-critical flows (F0 < 1), linear

long gravity waves may propagate both upstream and downstream, whereas

in super-critical flows (F0 > 1) the upstream propagation is not possible.

For the one-dimensional flow there is only an associated drag force on the

obstacle in the resonant case when F0 = 1 (critical flow), and the upstream

propagating wave remains stationary relative to the obstacle. In the two-

dimensional case, there is no drag force on the obstacle for F0 < 1, but a

discontinuously increasing drag as F0 increases above unity (Baines, 1995).
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In this hydraulic flow theory it is assumed that the flow is hydrostatic, which

is a good approximation for obstacles with a long horizontal scale compared

to the fluid depth such that d0/L ≪ 1, where L is the obstacle width, or

kd0 ≪ 1, where k is the wave-number. For the values of kd0 ≫ 1, the

flow generates dispersive, non-hydrostatic waves that propagate energy away

from the obstacle. In general, this condition is not atypical in the ocean,

particularly when considering regional scale flows such as the flow of dense

overflow water over rough topography or through channel systems.

2.2. Stratified flow

The above hydraulic theory is no longer applicable when the flow is strat-

ified (due to propagating internal waves). Assuming a stable, undisturbed

flow, any small disturbance may extract energy from the kinetic energy of

the mean flow, generating a spectrum of internal wave modes . In particular

breaking internal waves may be generated when topography is introduced.

If the aspect ratio, h/a where h is the height of an obstacle and a is the half-

width, of the obstacle is sufficiently large (typically h/A larger than 0.1 to 1.0

depending on the stratification), overturning lee waves leading to increased

mixing are expected (Baines, 1995; Xing and Davies, 2011). In a flow limited

with depth d0, two significant dimensionless quantities are the vertical mode

number,

K =
Nd0
πU

, (1)

and the dimensionless obstacle height,

hn =
Nh

U
, (2)
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where

N =

√
− g

ρ0

∂ρ

∂z
, (3)

is the buoyancy frequency, h is the height of the obstacle, ρ is the density

and ρ0 is a constant reference density. The dimensionless obstacle height is

the ratio of the vertical extent of the obstacle to the approximate vertical

length scale of the waves, U/N , and is thus a measure of the non-linearity

of the disturbed flow. As hn increases, the flow is more likely to generate

overturning and breaking internal waves. The critical limit , where breaking

of the internal waves commences, of the non-dimensional obstacle height,

hnc, depends on the shape of the obstacle. In a study of obstacles of general

semi-elliptical shape over the whole range of aspect ratios γ = hm/a, where

hm is the maximum obstacle height and a is the half-width of the obstacle,

Huppert and Miles (1969) found hnc to range from 0.67 (γ = 0; flat semi-

ellipse) to 1.73 (γ = ∞; vertical barrier). Long (1955) derived a non-linear

stream-function equation for a uniform infinite-depth flow over a bump and

predicted hnc = 1.27 for a semi-circle (γ = 1). In a more recent numerical

study, Lamb (1994) found that hnc (for 1 < K < 2) was considerably smaller

than that predicted by Long’s model.

For depth-limited flow the additional length-scale d0 is introduced through

the vertical mode number K, which can also be interpreted as one half of the

inverse Froude number with respect to the fastest internal wave mode with

phase speed c0 = ±2Nd0/π relative to the fluid (Baines, 1995). When K < 1

(supercritical flow) linear theory gives a reasonably accurate description of

the flow, in good agreement with observations (Baines, 1979). In this case

the obstacle exerts no significant drag on the flow. For flows with K > 1
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(subcritical flow), observations and numerical studies have concentrated in

the range where only the first lee wave mode is present, i.e. 1 < K < 2. The

linear theory describes the lee wave field reasonably well as long as hn ≪ 1,

and K is not close to an integer; if K = j for a positive integer j, the mean

flow is critical with respect to the jth mode in the long wave length limit,

see Baines (1995). For steady flows with K ̸= j, the pressure distribution

over the obstacle is symmetric and the drag vanishes, while for K = j the

upstream propagating part and the steady part of the jth mode internal wave

are in resonance, and the drag is non-zero as in the homogeneous layer case.

Performing three-dimensional large-eddy simulations of a stratified oceanic

flow over topography with a ”witch of Agnesi” profile with mode numbers

(K) ranging from 0.89 to 2.24, Skyllingstad and Wijesekera (2004) obtained

qualitatively similar results to the analytical and laboratory results of Long

(1955) and Baines (1979). They found a strong dependence on both the

mode number and the relative obstacle height when a free-slip condition on

the lower boundary was used. Introducing a bottom frictional drag decreased

the role of lee waves and the accompanying wave drag in some cases, espe-

cially for large velocities (small K). Skyllingstad and Wijesekera (2004)’s

results were also in agreement with Lamb (1994) in showing that obstacle

height thresholds for wave breaking based on Long’s equation were too high.

2.3. Stratified flow over complex terrain

Proceeding to the more realistic case of three-dimensional topography,

the distinction between finite and infinite depth is less significant as the

disturbances caused by a topographic feature spread out laterally as well as

vertically so that the presence of an upper boundary has a minor effect locally
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(unless it is at a low level) (Baines, 1995). If the obstacles in a complex region

all have comparable heights with Nh/U < 1, the disturbance field of each

obstacle is approximately linear and the interaction is minimal. In this case

the drag is transmitted in the form of internal gravity waves. The reference-

level drag, τ0, and the drag above the reference level, τ , may be expressed as

(Palmer et al., 1986; Kim and Arakawa, 1995)

τ0 = κρ0N0U0h
2 , (4)

τ = κρNUδh2 , (5)

where κ is a tunable constant dependent on the statistical properties of the

topography, h is a height proportional to the standard deviation of the to-

pography, δh is displacement wave amplitude, and ρ0, N0 and U0 are the

low-level reference density, buoyancy frequency, and the velocity component

in the direction of the reference drag. The low-level parameters are typically

evaluated between the blocking height zb ≈ h− U/N and the representative

obstacle height h. If, on the other hand, when Nh/U > 1 flow splitting and

lee wave overturning occur. The interaction between disturbances induced

by individual obstacles may be significant and the drag by the complex ter-

rain is spread amongst three different processes: gravity wave drag (Eqs. 4

and 5), hydraulic drag associated with hydraulic flow over the topography,

and aerodynamic or blocked flow drag. Linear theory may, however, still be

applied if the obstacles are relatively isolated and spread out, by the linear

superposition of the net effects of each obstacle and its wake (Baines, 1995).

In this study we focus on the gravity wave drag, and discuss blocked flow

drag and hydraulic drag where appropriate.
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3. The numerical model and set-up

The numerical model used in this study is the Bergen Ocean Model

(BOM, Berntsen, 2000). BOM is a σ-coordinate (terrain-following) ocean

model with non-hydrostatic capability. The standard second-order Prince-

ton Ocean Model (POM) method is applied to estimate the internal pres-

sure gradients (Blumberg and Mellor, 1987; Mellor, 1996). For advection of

momentum and density a TVD-scheme with a superbee limiter described in

Yang and Przekwas (1992) is applied. The model is mode split with a method

similar to the splitting described in Berntsen et al. (1981) and Kowalik and

Murty (1993). The solution is propagated in time using single time step

methods. For the depth-integrated momentum and continuity equation a

predictor-corrector method is applied.

3.1. Model set-up

The domain (Fig. 1) covers a 400m × 400m subregion of the Storegga

slide region, on the continental slope west of mid-Norway. This region is

selected due to its rough topography and the available high horizontal reso-

lution (1m) topography data collected in connection with the development

of the Ormen Lange gas field. The original topographic data is truncated in

the vertical to decrease the total depth and thus the time-step in the simula-

tion. The model has a horizontal resolution of 2m. In the vertical there are

81 layers, in 174m water depth, resulting in a resolution of approximately

2m (1.96-2.30m). The boundaries at y = 0m and y = 400m are closed,

while at both the inflow (x = 0m) and outflow (x = 400m) boundary, a

flow relaxation scheme (FRS, Martinsen and Engedahl, 1987) is used. The
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FRS zone extends for 30 grid cells. To assure proper flux conservation in the

domain, the topography is flattened toward the boundaries with the first 5

cells set to the mean depth and a region of 25 cells where the topography is

weighted by a hyperbolic tangent function.

Initially, the fluid is at rest. Two forms of stratification are studied: a

linear density profile and a hyperbolic-tangent density profile resembling the

Faroe Bank Channel overflow (Fer et al., 2010; Seim et al., 2010) with a well-

mixed bottom layer and an interfacial layer of comparable thickness (Fig. 2).

At the inflow boundary the velocity in the x-direction, u, is ramped up to-

ward the background velocity u0, over approximately twice the time a parcel

needs to travel over the length of the the domain, Lx, with the background

velocity. The chosen ramp up period ensures a smooth transition to the

background flow without introducing transients that can cause the model to

run unstable. The density profile of the inflow water is set to either the lin-

ear or the hyperbolic-tangent density profile (Fig. 2a). Relaxation is applied

for the surface elevation at the inflow boundary and for the surface eleva-

tion, density, and velocity at the outflow boundary to avoid contamination

of the results by barotropic signals and reflection at the outflow boundary.

The surface elevation at the inflow boundary is relaxed toward an average

of the elevation in 30 grid cells (60m) outside the FRS zone. At the outflow

boundary, density is relaxed toward the average of 30 cells outside the FRS

zone, while the velocity is relaxed toward the average over the domain omit-

ting the FRS zones. The surface elevation is relaxed toward zero elevation

at the outflow boundary. Due to the small extent of the domain we have

ignored rotation in this study, i.e. f = 0 where f is the Coriolis param-
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eter, and thus these boundary conditions will ensure a steady background

flow when the flow has settled after the initial ramp up of the velocity. The

high resolution of the model partially resolves the turbulent overturns and

allows for numerical stability even at weak viscosity. The background values

of turbulent eddy diffusivity and viscosity are therefore kept low to allow the

overturns develop in the model. The horizontal and vertical diffusivity is set

to 1.0 × 10−6m2 s−1, the horizontal viscosity is 1.0 × 10−4m2 s−1 and in the

vertical the viscosity is 1.0× 10−5m2 s−1.

3.2. Model runs

The results presented in this study comprise of four different cases sim-

ulating flow over resolved complex terrain with varying stratification, and

a fifth simulation in which the topography and drag are parameterized. In

the last run, the domain represents one grid point region (GPR) with flat

bottom, and the wave drag exerted on the flow is parameterized using the

statistical properties of the resolved topography and the linear wave theory.

The different simulation runs are listed in Table 1, and the high resolution

topography is shown in Fig. 1. Initially the density is linear (run1 and run2)

or a hyperbolic tangent profile (run3-5). The density and the corresponding

buoyancy frequency profiles are shown in Fig. 2 together with the spin-up of

the velocity identical for all cases. For the two linear density profile cases,

the buoyancy frequency is 5.7×10−3 s−1 (run1) and 1.0×10−2 s−1 (run2).

4. Representation of topography

Considering our domain resembling one grid point in a coarse model with

a depth given by the mean value of the 1-m resolution topography, d̄, the sub-
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grid-scale topography of that GPR may be represented by four parameters:

the variance µ2 (µ is the standard deviation), the (an)isotropy parameter γ,

the slope parameter (average of the local square gradient) σ, and θ giving

the direction of most rapid variation. Analysing the Ormen Lange topogra-

phy, Hove (2003) suggested a method of estimating these parameters which

is adopted in this study. The vector field m(x) as a finite difference approx-

imation to ▽d(x) is given by

m(x) =

(
d(x+∆x)− d(x)

∆x
,
d(x+∆y)− d(x)

∆y

)
. (6)

We then define the vector sum as

M =
1

n

∑
x

m(x)

|m(x)|
, (7)

where n is the number of grid points. Then the sub-grid-scale topography

parameters are given by

µ2 =
1

A

∫ ∫ (
d− d̄

)2
dA , (8a)

γ =
√

1− |M| , (8b)

σ =
1

n

∑
x

|m(x)| , (8c)

θ = arctan

(
My

Mx

)
. (8d)

In Eq. 8d Mx and My denote the x- and y-component, respectively, of the

vector sum M. For the domain in this study, the following parameter values

are obtained: µ = 5.80m, σ = 0.56, γ = 0.94 and θ = 1.35 radian. Using µ,

σ, γ and θ, an obstacle representative of the entire GPR topography can be

obtained with height 2µ and known shape and orientation (σ, γ, and θ). The
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actual topography can now be conceptually replaced by repetitions of this

representative obstacle within the computational domain. The problem of

specifying the effect of the complex terrain on the flow reduces to specifying

the effect of this single obstacle, see e.g. (Baines, 1995, Chap. 7).

5. Results and discussion

5.1. Drag states

Domain-integrated kinetic (Ek), available potential (Eap), potential (Ep)

and background potential (Eps) energies have been calculated following Mole-

maker and McWilliams (2010):

Ek =
∫
V

Ek dx dy dz , (9a)

Ep =
∫
V

Ep dx dy dz , (9b)

Eps =
∫
V

Eps dx dy dz , (9c)

Eap =
∫
V

Eap dx dy dz , (9d)

where the energy densities are defined as

Ek =
1

2

(
u2 + v2 + w2

)
, (10a)

Ep = zb , (10b)

Eps = zb̄s , (10c)

Eaps =

(
bs − b̄2s

)
2δz b̄s

, (10d)

Eap = Ep − Eps + Eaps . (10e)
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Here b = g(1 − ρ/ρ0) is the buoyancy field proportional to the density ρ,

bs is the buoyancy field resulting from sorting the density field following a

technique proposed by Winters et al. (1995), and δz denotes vertical differ-

ential operator. A sorting algorithm is applied assigning the densest fluid to

the grid boxes with the lowest vertical coordinate. Following Molemaker and

McWilliams (2010), the available potential energy of the sorted buoyancy

field is added in the calculation of Eap to correct for the deviation of the

available potential energy of the sorted field (dependent on the grid) from a

horizontally uniform profile. The overbar denotes a horizontal average.

The model was run for 14 hours until the energy stabilizes with time so

that the dynamics is not dominated by the external forcing of the model.

The time evolution of the domain-integrated energetics is shown in Fig. 3

for both the linear (run1) and the hyperbolic-tangent (run3) density profiles.

The kinetic energy and the available potential energy stabilize within 3 hours

after the spin-up of the velocity, while the potential energy needs longer time

to stabilize due to the different outflow boundary condition on the density

field. The results from a 2-hour period between 8.5 and 10.5 hours is selected

for further investigation.

The time average of the velocity normalized by u0 along a section at

y=200m is shown for run1 to run3 in Fig. 4, together with the density fields.

In all the cases the potential density surfaces and the horizontal velocity field

are significantly affected by the topography. The maximum velocities are

0.20m s−1, 0.15m s−1, and 0.17m s−1 for run1, run2, and run3, respectively,

and the minimum velocities are -0.05m s−1, -0.05m s−1, and -0.07m s−1. The

only difference between the three cases is the stratification which has a major
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impact on the wave/non-wave regime of the flow, and affects the velocity

maxima and the drag exerted in the water column.

Different from run2 and 3, the constant buoyancy frequency in run1 is

such that the non-dimensional height is less than unity (Table 1), and the

flow is expected to be linear, with no overturning internal waves. To generate

propagating waves, according to the linear theory of two-dimensional waves,

the intrinsic frequency of the waves (U/L) must be smaller than the buoy-

ancy frequency. This leads to a limit on the horizontal length scale of the

topography, L > 2πN/U , approximately 110m for run1 and 60m and 50m

for run2 and run3, respectively, using the background velocity u0. This cal-

culation supports the difference seen between run1 and run2 where the latter

supports propagating waves, while the former will generate evanescent wave

solutions as oscillations at frequencies above the buoyancy frequency are not

supported. Although the mode number, K, for run1 is sub-critical for the

lowest mode (K >1) and the non-dimensional mountain height is sub-critical

with respect to the typical mountain height of the domain, locally hn exceeds

the critical limit. The flow is then non-linear and goes through a ”hydraulic

transition” which is the case in run1 (Fig. 4a). In run1 the flow is partially

blocked only behind the obstacles where the critical limit is exceeded, i.e.,

no discernible perturbations are seen in transects away from the ”critical”

obstacles. The model domain is centred at such a critical obstacle (Fig. 1,

at (x,y)≈(200,200)) across which the section shown in Fig. 4 is extracted.

In run2 and run3, on the other hand, propagating non-linear waves are seen

and the drag on the flow is distributed throughout the entire domain, not

confined to a few topographic features. Nevertheless, locally the drag exerted
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on the flow by the topography in run1 is significant and comparable in mag-

nitude to run2 and run3. This is illustrated by showing the percent change

of the horizontally averaged velocity with respect to the background velocity

u0 (Fig. 5). In run1 significant drag occurs near the depth corresponding to

Nz/u0 = π, and the average velocity is reduced by more than 20%. The

largest decrease in relative velocity is due to flow blockage in run1, whereas

in run2 and run3 the near-bottom reduction in relative velocity is due to

bottom drag. Internal wave drag acts at run2, decreasing continuously with

increasing height above bottom. For the more realistic N -profile of run3, the

drag away from the bottom is concentrated at the pycnocline centered at a

∼20m thick layer between π < Nz/u0 < 2π.

A proxy is calculated for the turbulent kinetic energy (TKE) by assuming

that the cross-stream averages describe both the mean current and velocities

associated with internal waves (Skyllingstad and Wijesekera, 2004). Com-

puting the perturbations of u, v, and w by (for the u-component)

u′ = u− 1

ny

∑
y

u(x, y, z) , (11)

where ny is the number of grid points in the cross-stream direction, an esti-

mate of the turbulent kinetic energy is expressed by TKE= 1/2(u′2+v′2+w′2).

The fields of TKE for run1, run2, and run3 are shown in Fig. 6, and support

the inferences from percent-change velocity profiles (Fig. 5). In this repre-

sentation, the cross-stream averaging of topography smooths out the large

obstacles. The maximum reduction of the background flow due to drag in-

duced by the internal gravity waves observed in run3 (Fig. 5c) is restricted

to the stratified zone where the buoyancy frequency is large enough for the

waves to break. This is also evident in the cross-stream averaged TKE from
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run3 (Fig. 6c) compared to run2 where high TKE (defined as TKE greater

than the mean TKE level of run1) is present in 55% of the domain. The

corresponding value for run1 and run3 is 28% and 14%, respectively. In

run1, TKE is elevated closer to the bottom in the vicinity of large obstacles

(not seen in the average topography), particularly behind the central obsta-

cle. The difference between run1 and run2, and run3 is also evident in Fig. 7

where a horizontal section of TKE at a level corresponding to 95m above the

bottom topography is shown. The evanescent modes in run1 lead to weak

perturbations in TKE away from the topography as well, but the perturba-

tions in TKE are significantly greater for the breaking waves in run2 and run3

(the maximum TKE for run2 and run3 is 3 and 4 times greater, respectively,

compared to run1). TKE integrated over the domain is 1.27×105m5 s−2,

2.80×105m5 s−2, and 0.71×105m5 s−2 for run1, run2, and run3, respectively,

confirming run2 as the most turbulent. Run2 has the highest vertical mode

number, and the non-dimensional obstacle heights of the major topographic

features are well above the critical value. Blocked flow drag is expected at

low levels and at several vertical levels due to waves, clearly visible in Fig. 4b

and Fig. 5b. The maximum reduction in the velocity close to the topography

is a combination of the blocked flow drag and the deepest wave.

5.2. Mixing

Given the open boundaries, the rate of change in the domain-integrated

background potential energy cannot be used as a proxy for mixing. To di-

agnose the bulk measure for mixing a method suggested by Burchard and

Rennau (2008) is adopted. For a conservative tracer s without any internal

sources or sinks, a conservation equation for the square of the mean tracer is
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developed assuming that the turbulent fluxes can be parameterized as down-

gradient fluxes with different diffusivities in the horizontal and in the vertical

direction:

∂t
(
s2
)
+ (vj∂j)

(
s2
)
− ∂x

(
kh∂x

(
s2
))

− ∂y
(
kh∂y

(
s2
))

− ∂z
(
kz∂z

(
s2
))

(12)

= −2kh (∂xs)
2 − 2kh (∂ys)

2 − 2kz (∂zs)
2 ≡ −Dphys

(
s2
)
,

where s is a tracer (in our case density), kh and kz are the horizontal and

vertical turbulent diffusivities, and the spatial partial derivative is defined

as ∂i = ∂/∂xi
with indices i, j = 1, 2, 3 defining the spatial coordinates xi

(x1 = x, x2 = y and x3 = z). The terms on the r.h.s of Eq. 12 denote

the turbulent mean tracer variance decay, Dphys, shown to be a suitable

measure for mixing. Burchard and Rennau (2008) also present a method

for quantifying the numerical mixing (due to the advection scheme) in ocean

models by calculating the numerically induced tracer variance decay:

Dnum
{(

snp,q,r
)2}

i,j,k
=

A
{(

snp,q,r
)2}

i,j,k
−

(
A
{
snp,q,r

}
i,j,k

)2

∆t
, (13)

where A is the advection operator of the numerical model and ∆t is the

model time step. Dnum is quantified by diagnostically applying the advection

operator on the square of the tracer field and subtract the square of the

advected tracer field for each time step. The resulting Dphys and Dnum

after applying these two methods on our results are presented in Fig. 8a-d.

Strong tracer gradients and increased velocities associated with the internal

waves induce numerical mixing orders of magnitude greater than the physical

mixing in some locations (compare Fig. 4 with Fig. 8). This is consistent with

the results of Rennau and Burchard (2009) for the Arkona Sea. The patches
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of high variance decay are always associated with negative (anti-diffusive)

variance decay of the same magnitude. The former is an effect of the TVD

scheme limiter ensuring monotonicity, and the latter is an effect of the non-

monotone, higher-order (2nd order accurate) scheme. Similar behaviour is

found by Burchard and Rennau (2008). The volume-integrated variance

decay is -0.3×10−3 kg2m−3 s−1 and -5.9×10−3 kg2m−3 s−1 for run1 and run3,

respectively. The negative values are due to the anti-diffusive properties

of the superbee-limited (TVD) advection scheme. The volume-integrated

physical mixing is 1.2×10−6 kg2m−3 s−1 and 3.4×10−6 kg2m−3 s−1.

The vertical diffusivity associated with the numerical mixing can be es-

timated by νnum
z = Dnum/2(∂zs)

2. As a result of the anti-diffusive Dnum,

the vertical numerical diffusivity has both negative and positive contribu-

tions presented separately in Fig. 8e-h, averaged in the cross-stream section

along x. Horizontally averaged profiles are then presented for run1 and run3

(Fig. 9). The depth of the maximum vertical diffusivity is not necessarily

co-located with the maximum variance decay due to the inverse dependence

on the vertical tracer gradient. Particularly for run1, the maximum ver-

tical diffusivity is associated with small ∂zs, while the variance decay has

maxima and minima where the velocity and gradients are large. Run3 has

relatively enhanced numerical diffusivity compared to run1 (Fig. 8e-h and

Fig. 10) with comparable contribution from the negative, anti-diffusive com-

ponent. The distribution of positive and negative contributions to νnum
z is

obtained by counting the number of occurrences in bins of νnum
z (Fig. 10).

While the opposing contributions are evenly distributed in run1, run3 shows

more frequent occurrences of negative diffusion, particularly in the range
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10−3 < νnum
z <10−2, which densely populates the domain.

5.3. Parameterization of topographic drag

Generally the drag exerted by the topography on the flow can be described

by two conceptual models whose relevance depends on the non-dimensional

obstacle height (Lott and Miller, 1997). In the atmospheric context of flow

over mountains, when hn is small the flow is forced over the mountain and

the vertical motion of the fluid forces gravity waves. The surface stress due

to these gravity waves has a magnitude given by Eq. (4) or similar expres-

sions (Palmer et al., 1986; Kim and Arakawa, 1995; Lott and Miller, 1997).

At large hn, the vertical motion of the fluid is limited and the low level flow

has to flow around the mountains, effectively reducing h in Eq. (4) and in-

troducing a drag on the flow due to the blocked flow at low levels. Following

Lott and Miller (1997), the depth of the blocked layer can be expressed as

zb/h = max[0, (hn − hnc)/hn], where hnc is a critical non-dimensional moun-

tain height of order unity. In this study hn < 1 at low levels for all cases

except run2, and the blocked flow drag has an insignificant contribution to

the total drag on the flow, especially for the cases with a hyperbolic tangent

density profile.

We have also tested an additional case with drag due to the blocked flow

parameterized following Lott and Miller (1997) and using the linear density

profile of run2 such that hn > 1 (not shown). This results in a blocked flow

layer depth of approximately half the typical mountain height (6-7m), and

shows increased drag at the bottom and a well-mixed layer with a thickness

on the order of zb. Above the blocked layer, the magnitude of the gravity

wave drag can be estimated from the vertical wave momentum flux, assuming
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linear, hydrostatic waves

τ = −ρ0u′w′ =
1

2
ρkUNδh2 , (14)

where the vertical wavenumberm is replaced byN/U (the hydrostatic disper-

sion relation is m = N/U when k2 ≪ m2, k being the horizontal wavenum-

ber). Depending on the horizontal wavenumber, evanescent (k > N/U) or

propagating (k < N/U) wave solutions may be expected, but only the latter

results in a pressure gradient over the topography and an associated drag

force. Adding the wave drag Eq. (14) of all mountains within one grid point

region (GPR) leads to Eq. (5). Using the high resolution topographic data we

choose to express κ as a function of the statistical properties of the resolved

topography following Lott and Miller (1997),

(κx, κy) =
σ

4µ
G
(
B cos2 θ + C sin2 θ, (B − C) sin θ cos θ

)
, (15)

where B = 1− 0.18γ − 0.04γ2, C = 0.48γ + 0.3γ2, and the difference in the

along stream and across stream wave stress is expressed in κ leading to κx

and κy in the along and across stream direction, respectively. Applying the

parameters obtained from Eq. (8a-8d) we get (κx, κy) = (0.02, 0.0004)m−1.

For hydrostatic waves, their impact on the local static stability and shear

may be combined to form a minimum local Richardson number (Rim) repre-

senting the smallest Richardson number Ri achieved under the influence of

internal gravity waves

Rim = Ri
1− N

U
δh(

1 +Ri1/2N
U
δh
)2 . (16)

The presence of the waves may lead to local instability in a stable background

flow either by a convective overturning mechanism (numerator of Eq. (16)
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becomes small) or by a billow instability mechanism (denominator of Eq. (16)

becomes large) (Palmer et al., 1986). By defining a critical Ri (typically

Ric = 0.25) and employing a saturation hypothesis (Lindzen, 1981), the

vertical distribution of the gravity wave drag is estimated. When Rim < Ric,

instability results in turbulent dissipation of the wave such that its amplitude

is reduced until it regains stability. Below this critical level τ = τs, from the

Eliassen-Palm theorem (Eliassen and Palm, 1961), for vertically propagating

waves in the absence of transience and dissipation. If N is constant, the

wave amplitude must increase with height as the density is reduced, until

the wave becomes unstable. In the case with a hyperbolic tangent profile,

N ≈ 0 at low levels; the minimum Richardson number formulation fails in

the nearly neutral stratification at low levels. Consequently a simpler scheme

is applied where the wave amplitude is assumed to be equal to the typical

mountain height, δh = h = 2µ, at low levels as N ≈ ∂ρ/∂z ≈ 0, and wave

breaking is assumed to commence at the level where δh equals the saturation

wave amplitude given by δhsat = U/N . From Eq. (16) this corresponds

to the purely convective instability limit and is a strict requirement. Due

to the low buoyancy frequency at low levels, however, attenuation of the

wave amplitude with height (evanescent modes) may be expected and δh is

probably overestimated.

We conduct two runs (run4 and run5) to test the topographic drag param-

eterization, each with the hyperbolic-tangent density profile and the Mellor

and Yamada (1982) 2-1/2 level turbulence closure scheme (MY2.5). The only

difference is that run4 employs the resolved topography, whereas run5 has flat

bottom but includes the wave drag parameterization. Velocity and density
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distributions at y=200m are contrasted in Fig. 11. As the Ri drops below the

critical level (and even becomes negative by wave overturning, see Fig. 4c),

the turbulence closure prohibits the overturning of waves by increasing the

vertical diffusivity. This results in well-mixed neutrally stratified patches vis-

ible in Fig. 11a. Otherwise the results from run4 are qualitatively similar to

run3 in both velocity and density distribution (compare Fig. 4c and 11a), and

the cross-stream averaged TKE (compare Fig. 6c and 12a). The only differ-

ence between run3 and run4 is that run4 employs the MY2.5 closure whereas

run3 does not. When applying the gravity wave parameterization (run5),

the turbulence closure is retained as it smooths the strong velocity gradients

imposed by the parameterization of the wave drag. Because the domain re-

sembles one GPR, a horizontally constant drag was applied throughout the

domain, resulting in a smoother velocity structure (Fig. 11b). The estima-

tion of TKE by subtracting the cross-stream averaged velocity is not a good

approximation for run5. This is due to the lack of topography and the con-

stant drag employed in run5 which results in TKE estimates two orders of

magnitude smaller than run4 (Fig. 12b). Because there is no significant wave

activity in run5, the TKE may be alternatively estimated by calculating the

velocity fluctuations after removing the background velocity. This results in

a domain-integrated TKE of 0.65×105m5 s−2 in better agreement with the

resolved topography results (0.71×105m5 s−2 for run3 and 0.76×105m5 s−2

for run4). The similarity between run3 and run4 is confirmed by the per-

cent change of the horizontally domain-averaged and time-averaged velocity

relative to the background velocity (Fig. 13). In run5, although remarkably

similar in the domain average TKE (equal to run3 within 14% and to run4
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within 25%), the wave drag is deposited over a too shallow layer (5m and 8m

shallower compared to run3 and run4, respectively) resulting in an overesti-

mated drag (integrated over the domain) and consequently a larger reduction

of the velocity (89% and 122% larger compared to run3 and run4) in the

layer where the wave parameterization predicts wave breaking (Fig. 13c).

The volume-integrated variance decay of run4 and run5 is -4.3×10−3 kg2m−3 s−1

and -1.63×10−3 kg2m−3 s−1, respectively. This is about 70% and 30% of

run3, respectively, due to the smoother density fields in run4 and run5. In

Fig. 14 the vertical profile of the diffusivity estimated from Dnum is shown

together with the vertical eddy diffusivity from the turbulence closure. The

eddy diffusivity from the turbulence closure is more than two times greater

than the numerical diffusivities. Fig. 14 also illustrates that the positive and

negative contributions from the numerical mixing, due to the superbee lim-

ited TVD advection scheme, are of the same order of magnitude. The zero nu-

merical diffusivity near the bottom and toward the surface in run4 (and run3)

is due to the vanishing vertical density gradient. The volume-integratedDphys

for run4 is 3.3×10−6 kg2m−3 s−1, equal to that in run3 (3.4×10−6 kg2m−3 s−1)

to within 3%, while for run5, using the internal gravity wave parameteriza-

tion, the volume-integrated Dphys is 4.0×10−6 kg2m−3 s−1, i.e. 20% larger.

This suggest that, although the parameterization is underestimating the lo-

cal internal wave drag (Fig. 11c), the total mixing due to the internal waves

is captured satisfactory by the parameterization.
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6. Concluding remarks

Recent observations of the dense, bottom-attached plume of the Faroe

Bank Channel overflow show that in the O(100)m thick stratified interface

between the mixed bottom layer and the overlaying ambient, in addition

to the entrainment and shear-induced mixing, breaking internal waves can

contribute to vertical mixing (Fer et al., 2010; Seim and Fer, 2011). Regional

model simulations using local turbulence closure schemes did not capture this

(Seim et al., 2010). Here, we suggest that internal wave drag and internal

wave breaking in response to flow over complex topography can be responsible

for elevated levels of mixing at the stratified interface. Numerical simulations

of stratified flow over complex topography have been performed using a high-

resolution, non-hydrostatic ocean model, to study the drag exerted on the

flow by bottom obstacles. Several runs with various stratification but with

realistic topography are discussed. Depending on the stratification, the drag

on the flow is described by three different processes, acting separately or

in combination; internal wave drag, blocked flow drag, and hydraulic drag.

Three cases with a hyperbolic tangent density profile, resembling the well

mixed bottom layer and the stratified interface of the Faroe Bank Channel

overflow, were performed to illustrate the possible interfacial mixing caused

by rough bottom topography. The simulations support the hypothesis that

the complex bottom topography leads to wave overturning and significant

mixing in the stratified interface. The drag exerted on the flow as internal

waves break reduces the horizontally domain averaged velocity by up to 27%

in the stratified interface, imposing a strong shear on the flow. Typical

topographic irregularities of order 10m height present in the domain are
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common in nature; the non-dimensional obstacle height, hn, is typically less

than unity in the domain and only locally exceeds the critical limit. Complex

flow structures, however, result extending far above the bottom contributing

to mixing at levels about 10 times the obstacle heights where the stratified

interface is located.

When the stratification is linear, the buoyancy frequency N is constant,

we contrasted two cases where N was approximately doubled. For the weak

stratification case significant disturbances in the flow were observed only

locally near the critical obstacles, leading to blocked flow drag. In stronger

stratification propagating internal waves lead to complex flow structures,

internal wave breaking, and mixing, distributing the drag on the flow in the

entire water column. The domain integrated mixing is significantly increased

in the latter case compared to the weak stratification case. All rest set

equal, imposing the realistic density profile representative of the Faroe Bank

Channel overflow increased the volume integrated physical mixing by a factor

of three above the weakly stratified case.

A parameterization of the wave drag when the subgrid-scale topography

statistical properties are available was applied in a final simulation where a

flat bottom is prescribed. The internal wave drag parameterization, tested

on the hyperbolic tangent case, yields reasonable levels of turbulent kinetic

energy and predicts wave breaking at the correct level compared to the sim-

ulation with resolved topography. The vertical extent of the layer where the

wave breaking is effective, however, is underestimated, leading to an over-

estimated volume-integrated wave drag (i.e., larger reduction in velocity) in

the layer. Volume integrated physical mixing is satisfactorily captured by
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the parameterization yielding values about 20% larger than the case with

the realistic topography. When the sub-grid scale topography is unknown

caution should be exerted when tuning such a parameterization, but in areas

where strong interaction between the flow and topography is expected, such

as the Faroe Bank Channel overflow area, parameterizations of the internal

wave drag may be applied to improve the results of models too coarse to

resolve the internal wave drag or where high resolution topographic data is

lacking.
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Table 1: Parameters for different model runs. For the hyperbolic-tangent (tanh) density

profiles, the maximum value of the buoyancy frequency, N , is listed

Run ρ(z) u0 (m s−1) N (s−1) hn K

run1 linear 0.1 5.7×10−3 0.7 3.2

run2 linear 0.1 1.0×10−2 1.2 5.8

run3 tanh 0.1 1.2×10−2 1.2a 5.4 (3.1b)

run4c tanh 0.1 1.2×10−2 1.2 5.4 (3.1)

run5d tanh 0.1 1.2×10−2 1.2 5.4 (3.1)

a hn is calculated where N is non-zero (50 to 100m).

b If d0 is taken to be the depth of the dense water (below 75m).

c With turbulence closure.

d With turbulence closure and gravity wave drag parameterization.
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Figure 8: (first column: run1; second column: run3) Physical mixing calculated according

to Eq. 12 from (a) run1 (1011 × Dphys) and (b) run3 (1010 × Dphys), numerical mixing

calculated according to Eq. 13 from (c) run1 (107 × Dnum) and (d) run3 (106 ×Dnum),

(e-f) positive and (g-h) negative numerical viscosity from run1, and run3, respectively. In

(b) 1010 ×Dphys < 0.1 is masked with white colour for clarity.
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Figure 9: Vertical profile of the vertical diffusivity from (a) run1 and (b) run3, calculated

from the volume-averaged Dnum, averaged in time between 8.5 to 10.5 hours. Positive

(black) and negative (gray) contributions are shown separately. One data point for run1

at ∼145m depth is off the scale with νnumz ∼ 1m2 s−1.
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Figure 10: Distribution of the cross-stream averaged numerical diffusivity by the number

of grid cells, n, with positive diffusivity (black bars) and negative diffusivity (grey bars)

relative to the total number of cells with non-zero diffusivity, Nn, for (a) run1 and (b)

run3. The number of cells for each diffusivity level is denoted over each bar and Nn in the

lower right corner.
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Figure 11: Vertical cross section of potential density and the horizontal velocity normalized

by u0 for (a) run4 and (c) run5 at y=200m averaged over the period from approximately 8.5

to 10.5 hours. Density contours are drawn at 0.05 kgm−3 intervals. In (b) the Richardson

number (Ri) is shown for run4. Ri > 2 is not shown for clarity.
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Figure 12: Cross-stream average of potential density and TKE averaged in time between

8.5 and 10.5 hours for (a) run4 and (b) run5.
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Figure 13: Vertical profile of the percent change of the horizontally domain averaged and

time averaged (8.5 to 10.5 hours) u component of velocity relative to the background

velocity u0 for (a) run3, (b) run4, and (c) run5.

46



10
−4

10
−3

10
−2

10
−1

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

ν
z
 (m2s−1)

D
ep

th
 (

m
)

 

 
ν

z
+

ν
z
−

ν
z
phys

Figure 14: Vertical profile of the vertical diffusivity from run4 calculated from a horizon-

tally averaged Dnum time averaged over the period from 8.5 to 10.5 hours and the vertical

diffusivity from the turbulence closure (grey).
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