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The evolution of a flip-through event [6] upon a vertical, deformable wall during
shallow-water sloshing in a 2D tank is analyzed, with specific focus on the role of
hydroelasticity. An aluminium plate, whose dimensions are Froude-scaled in order
to reproduce the first wet natural frequency associated with the typical structural
panel of a Mark III containment system, is used. (Mark III Containment System is
a membrane-type tank used in the Liquefied Natural Gas (LNG) carrier to contain
the LNG. A typical structural panel is composed by two metallic membranes and
two independent thermal insulation layers. The first membrane contains the LNG, the
second one ensures redundancy in case of leakage.) Such a system is clamped to a fully
rigid vertical wall of the tank at the vertical ends while being kept free on its lateral
sides. Hence, in a 2D flow approximation the system can be suitably modelled, as a
double-clamped Euler beam, with the Euler beam theory. The hydroelastic effects are
assessed by cross-analyzing the experimental data based both on the images recorded
by a fast camera, and on the strain measurements along the deformable panel and
on the pressure measurements on the rigid wall below the elastic plate. The same
experiments are also carried out by substituting the deformable plate with a fully stiff
panel. The pressure transducers are mounted at the same positions of the strain gauges
used for the deformable plate. The comparison between the results of rigid and elastic
case allows to better define the role of hydroelasticity. The analysis has identified three
different regimes characterizing the hydroelastic evolution: a quasi-static deformation
of the beam (regime I) precedes a strongly hydroelastic behavior (regime II), for
which the added mass effects are relevant; finally, the free-vibration phase (regime
III) occurs. A hybrid method, combining numerical modelling and experimental data
from the tests with fully rigid plate is proposed to examine the hydroelastic effects.
Within this approach, the measurements provide the experimental loads acting on the
rigid plate, while the numerical solution enables a more detailed analysis, by giving
additional information not available from the experimental tests. More in detail, an
Euler beam equation is used to model numerically the plate with the added-mass
contribution estimated in time. In this way the resulting hybrid method accounts for
the variation of the added mass associated with the instantaneous wetted length of the
beam, estimated from the experimental images. Moreover, the forcing hydrodynamic
load is prescribed by using the experimental pressure distribution measured in the
rigid case. The experimental data for the elastic beam are compared with the numerical
results of the hybrid model and with those of the standard methods used at the design
stage. The comparison against the experimental data shows an overall satisfactory
prediction of the hybrid model. The maximum peak pressure predicted by the standard
methods agrees with the result of the hybrid model only when the added mass effect
is considered. However, the standard methods are not able to properly estimate the
temporal evolution of the plate deformation. C© 2014 Author(s). All article content,
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I. INTRODUCTION

The wave impact phenomenon that may occur during the evolution of sloshing flows in a tank is
an important issue for the safety of Liquefied Natural Gas (LNG) carriers. The violent free-surface
motions in a sloshing tank generally occur when the wave-induced horizontal ship velocities, in roll
and/or pitch, contain sufficient energy in the frequency band close to the lowest sloshing frequency
of the tank. Then, slamming events may occur, which originate impulsively with accompanying
large local loads that may compromise the integrity of the tank structure.

The technological solutions consolidated for oil tankers to damp the sloshing phenomena are
unsuitable for the membrane-type prismatic LNG tanks: the need of maintaining low temperature
inside the tank, in order to keep the gas at the liquid state, implies that the side walls, designed to
provide a good thermal insulation and adequate mechanical properties, are not capable of supporting
the damping devices (e.g., vertical baffles).

The full understanding of the physical phenomena and the accurate evaluation of the local
loads in sloshing-induced slamming events is a challenge for research. Typically, LNG carriers can
operate both in fully loaded and ballasted conditions: in both cases, sloshing phenomena matter.
The filling height and the geometry of the tank influence the sloshing scenarios and the induced
global and local loads on the walls of the tank. The sloshing motion of the liquid, in partially filled
tanks with finite liquid depth, generates a standing wave that may cause the liquid impact against
the roof of the tank; eventually with the formation of a large gas cavity entrapped.2 Conversely, in
ballasted conditions, when low filling depth of the tank, i.e., shallow liquid, conditions exist,14, 15

the occurrence of travelling bore waves propagating with high velocity back and forth into the tank
may cause large slamming loads. Depending on the impact angle, several and complex scenarios can
occur. For example, when the impact angle between liquid and wall is small, gas entrapment may
happen leading to gas compression and its interaction with the free surface.4, 5 In contrast, for an
incipient breaking wave approaching a vertical wall, flip-through events6 or flat impacts may occur
causing localized and large loads without any gas-entrapment.

In all these cases, when the typical temporal duration of the local load is comparable with
a natural period of the structural mode contributing to large structural stresses, hydroelasticity
matters,7 and affects the integrity of the structure. As a consequence, the assessment of the structural
strength of a LNG membrane tank exposed to the dynamic and impulsive sloshing loads requires
the prediction of the hydroelastic response of the structure.

However, because of the difficulty in solving the hydroelastic problem and in scaling the
structural properties of the complex and composite material constituting a LNG tank, both the fully
coupled hydroelastic calculations and the hydroelastic experiments at model scale are still unsolved
challenges.

Simplified methods are used during the design stage. The classification rules10, 11 suggest two
calculation methods to assess the dynamic structural response to sloshing loads: (i) the Direct
Dynamic Finite Element Analysis (FEA) uses the pressure loads measured during experiments
carried out with a rigid model (properly scaled to prototype scale) as input of a dynamic FEA of the
full scale structure; (ii) the Indirect Dynamic FEA uses the results from a static FEA multiplied by a
correction factor obtained through the Dynamic Amplification Factor (DAF) curve. The DAF is the
ratio between the maximum dynamic response and the maximum static response for a considered
sloshing pressure rise time.

The present investigation pursues the experimental study of the kinematic and dynamical features
of a flip-through event occurring on a vertical wall of a 2D sloshing tank in shallow water condition.
The previous paper by Lugni et al.,6 has emphasized how the maximum pressure at a fixed point of
the impact area is a poor indicator for the maximum load, because of the extremely local behavior
of the impact phenomena. In the present paper, the strain distribution along a vertical deformable
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aluminium plate inserted in the rigid vertical wall of a sloshing tank has been measured in model
tests to characterize the dynamical features of the local loads. Since the plate is clamped at the
vertical ends, kept free at the lateral ones and the impacting flow is almost 2D, the plate is modeled
as a beam. The sizes, the thickness and the structural properties of the deformable beam have been
fixed in order to reproduce the lowest structural natural wet frequency of a prototype panel typically
used in a Mark III containment system.7 Geometric scaling is respected using

λ = L P

Lm
, (1)

where LP and Lm indicate the length of the tank in prototype (P) and model (m) scale, respectively.
Since the considered response (pressure, strain) is a function of the frequency of oscillation of the
structure σ , of the length L of the tank and of the gravity acceleration g, it follows from the Pi
theorem that the non-dimensional response is a function of

σ

√
L

g
. (2)

Since gravity is involved, this is in general sense called Froude scaling. Although the complete
scaling of the structural properties of a Mark III structural panel is far from the objective of the
present work, a comprehensive hydroelastic model scale experiment is carried out, which reproduces
the lowest natural wet frequency of a prototype panel. In Sec. II, a theoretical model is described
to study the hydroelastic problem. Such a model is preliminarily used to define the scaling of the
experimental model, whose set-up together with the dynamic response of the deformable plate is
detailed in Sec. III. Section IV contributes to understand the role of hydroelasticity during the
evolution of the flip-through phenomenon. Finally, in Sec. V the results of the proposed hydroelastic
model are compared against the experiments and the results of two simplified models typically used
at the design stage to assess the role of the hydroelastic effects.

II. THEORETICAL MODEL AND DYNAMIC SCALING

Because of the complex physical phenomena connected to the sloshing flow and the subsequent
hydroelastic slamming, here we propose a simplified theoretical model to estimate when hydroelastic
effects matter. A hybrid numerical-experimental method, which uses both the information coming
from a simplified numerical hydroelastic model and the data from experiments carried out using a
fully rigid tank, is proposed to solve it. The hybrid model recovers, at the global level, the contribution
coming from the time variation of the added mass.

In general, hydroelasticity may involve a strong or a weak coupling between the loading and the
response. In the former case, the response influences the wetted area and the free-surface deformation
causing a time varying added mass effect and a nonlinear variation of the kinematic and dynamic
field. When a weak coupling is assumed, a quasi-static approach can be used and the hydrodynamic
load on a fully rigid structure forces the structural response.

A. Definition of the problem

A 2D square tank with length L and height H (L = H), partially filled with water up to a height h
has been considered. An elastic beam of length l is placed at a vertical distance a from the tank bottom
y = 0 (see Figure 1). It reproduces the structural behavior of a single Mark III structural panel fixed
between the stiffeners of a LNG tank, hence double-clamped conditions hold. The geometric and
structural properties of the beam are chosen to obey Froude scaling of the lowest natural frequency
of the structural panel at full scale, that is, based on Eqs. (1) and (2):

σm = σP

√
λ. (3)

Here σ P and σ m indicate the lowest natural frequency of the structural panel at prototype and model
scale, respectively. The Euler beam theory describes the deformation w(t, y) along the beam that is,
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FIG. 1. Global sketch of the tank with the positioning of the elastic beam (red line).

for a ≤ y ≤ a + l x = L + w(t, y):

MB
∂2w

∂t2
+ μ

∂w

∂t
+ E I

∂4w

∂y4
= p(t, y, w)

w(t, a) = w(t, a + l) = 0 (4)

∂w(t, y)

∂y
|y=a = ∂w(t, y)

∂y
|y=a+l = 0

Initial Conditions on w and
∂w

∂t
.

Here, MB indicates the mass per unit length and breadth of the beam, μ the structural damping, I
the inertial moment (i.e., area moment of inertia of the beam cross section/breadth of the beam), and
E the Young’s modulus of the material. On the right-hand side, p(t, y, w) is the local hydrodynamic
pressure load, which includes the mutual interactions between the structural deformations (and
stresses) and the hydrodynamic flow. In order to know the pressure field p(t, y, w), the solution
of the hydrodynamic field for the sloshing problem is required. Because of the complex local
phenomena involved in the sloshing flows (e.g., breaking waves, double phase flows, wave impacts)
their numerical prediction requires, in general, the solution of the Navier-Stokes equation with
nonlinear boundary conditions on the instantaneous air-water interface and on the wetted surfaces
of the tank. This implies that along the beam, the following boundary condition holds

∂w

∂t
= uuu · nnn, a ≤ y ≤ a + l, x = L + w(t, y), (5)

where uuu is the local fluid velocity (a part in the liquid and a part in the air when air is entrapped,
while it is assumed that the open air is at rest) and nnn is the local normal to the beam. The latter
boundary condition, applied to the instantaneous deformable wetted beam, and the forcing pressure
in the Euler equation, make the hydroelastic problem strongly coupled.

Colagrossi et al.3 demonstrated that the simulation of the local flows characterizing the impact
events in sloshing phenomena is complex, even when the tank is taken as fully rigid, which makes
the use of the double-phase Navier-Stokes solvers unavoidable. On the other hand, the numerical
simulation of a flip-through event can be done on the basis of potential flow assumptions, as assessed
by Professor Peregrine.12, 13 In the present experimental investigation the analyzed flip-through event
occurs during the third cycle of oscillation of the tank, after two previous oscillations during which
some wave impact events occurred with air entrapped and vorticity was generated in the water as
induced by the run down of the jet falling along the wall. These phenomena, in principle, preclude
use of the potential flow theory to reproduce the hydrodynamic field that leads to the formation of
the flip-through event of interest. However, since the main aim of the present paper is the physical
discussion and assessment of the hydroelastic effects, we do not perform any numerical simulation
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of the hydrodynamic field and, rather, in the following, we propose a simplified approach which
takes into account the hydroelastic actions.

B. A simplified hydroelastic approach: The hybrid model

The proposed hybrid model is based on the assumption of a weak interaction between exci-
tation and response, so that the forcing term in Eq. (4) can be decomposed as the followng linear
superposition:

p(t, y, w) = pr (t, y) + pv(t, y, w).

The first contribution pr(t, y) is the pressure field induced by the flip-through event on the fully
rigid wall, i.e., uuu = 0 at x = L. It is a fully nonlinear load which depends on the nonlinear kinematics
of the flip-through event and needs to be modeled as such. Because of the difficulty in reproducing
it numerically, at least in the present case, we have chosen to model it using the experimental value
of the pressure measured during the experiments on a fully rigid tank. During these experiments we
reproduce exactly the same filling condition and tank motion used in the case of a deformable panel,
hence the features of the wave interacting with the wall are the same.

The second contribution, pv(t, y, w), is the vibrational pressure, which solves the hydroelastic
problem of the vibrating beam around a rest state. Using the potential flow assumption for an
incompressible fluid with density ρ, the pressure forcing term pv = −ρ

∂φv

∂t is given by the linearized
Bernoulli equation. The vibrational potential function is instantaneously determined as solution of
the Boundary Value Problem (BVP):

∇2φv = 0 in the water field

∂φv

∂n
= 0 on the rigid walls of the tank and on the bottom

∂φv

∂n
= ∂w

∂t
a ≤ y < h(t) x = L (6)

φv = 0 y = h(t) 0 ≤ x ≤ L .

In this case we assume the vibrational pressure to be independent from the local shape of the free-
surface and from the local kinematics of the flip through (which is already taken into account in
the term pr). However, pv accounts for the instantaneous wetted length h(t) of the vertical beam,
influenced by the evolution of the flip-through. Because of the large value of the lowest wetted
natural vibration frequency of the beam (with respect to the typical frequency range when gravity
affects the free-surface behavior), a high-frequency approximation is assumed for the combined
free-surface boundary condition. Although this is a strong approximation, we solve the problem
through a simple approach and then verify the validity of the assumption through the comparison
with the experiments. The above BVP for the Laplace equation is solved numerically as detailed in
the following. Like pr, also the wetted length h(t) of the beam depends on the evolution of the flip-
through, hence it cannot be predicted numerically and it has been measured from the experimental
images.

The beam deflection w(t, y) is expressed as the eigenfunction expansion of a finite number N
of dry normal modes ψk, k = 1...N, satisfying the stationary homogeneous problem obtained from
Eq. (4) with clamped conditions at the beam ends. Following Faltinsen and Timokha,7 by defining
q̇kφk the velocity potential associated with the vibrations of mode k, and assuming a proportional
model for the structural damping, we get

[M + A(t)] · q̈qq(t) + [C] · q̇qq(t) + [K ] · qqq(t) =
∫

l
pr (t, y)ψTψTψT dy (7)
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with

[M] = MB

∫
l
ψψψψTψTψT dy = MBl[I]

[A] = ρ

∫
l
φvφvφvψ

TψTψT dy

[K ] = E I (
eee

l
)4

∫
l
ψψψψTψTψT dy = E I (

eee

l
)4l[I]

which, respectively, are the mass, the hydrodynamic added mass and the stiffness matrices. The
added mass matrix requires the solution of the BVP (6) for the vibrational potential function. By
introducing the eigenfunction expansion for the beam deformation, the BVP (6) becomes

∇2φvφvφv = 0

φvφvφv = 0 y = h(t) (8)

∂φvφvφv

∂n
=

{
ψψψ(t, y) a ≤ y ≤ a + l, x = L

0 otherwise

and the potential vibrational vector φvφvφv follows as solution of N Boundary Value Problems, each one
corresponding to a prescribed vibrational mode of the beam.

Due to the orthogonality of the eigenfunction vector ψψψ , the mass and stiffness matrices are
diagonals ([I] is the identity matrix), while the added mass matrix is full. Structural damping [C] is
determined from the impulsive dry tests (hammer tests), as specified in Sec. III.

C. Numerical solution of the hybrid model.

The hydroelastic problem (7) is integrated in time using a fourth-order Runge-Kutta method
to determine the mode amplitude vector q(t)q(t)q(t). At each time step, the forcing pressure pr(t, y)
is prescribed by using the experimental pressure distribution measured through seven pressure
transducers distributed along a rigid wall located like the beam in the fully rigid tank experiments
(see Sec. III). In contrast, φvφvφv comes from the numerical solution of the BVPs (8). For the latter,
Faltinsen and Timokha7 proposed an analytical solution assuming a Fourier expansion for ψψψ and
φvφvφv . However, its validity is limited to the fully wet beam case, i.e., h(t) ≥ a + l in the third equation
of (8). Since the dynamics of the flip-through phenomenon imposes a rapid change of the beam
conditions from completely dry to fully wet (i.e., a ≤ h(t) ≤ a + l in the third equation of (8)), a
numerical solution is used here to solve the vibrational problem associated to each mode. To this
purpose the solution for the vibrational potential vector is assumed of the form

φvφvφv =
∑

n

AAAn sin (2n + 1)π
y

2h
cosh (2n + 1)π

x + L

2h
(9)

which satisfies, in the BVP (8), the Laplace equation and the boundary conditions on the free-surface,
the bottom and the wall opposite to the impact. This corresponds to using the Fourier Transform
method, hence a linear system is solved for the unknown coefficients AAAn which forces the fulfillment
of the boundary condition on the tank side with the deformable beam. At each time t, h(t) is measured
from the corresponding experimental image.

The present solution of the potential vector has been validated against the results of a Higher
Order Boundary Element Method (HOBEM) used to solve the BVP (8). In this case the BVP has
been rewritten within an integral formulation using the Green’s second identity; the integral equation
is discretized by means of quadratic elements on the boundaries of the computational field.8, 9 The
results of the comparison, limited to the modal analysis, are presented hereinafter.
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D. Modal analysis: Structural natural frequencies

The equations of motion (7) with pr = 0 are solved with the aim to determine the natural
frequency of each mode of the beam. Since the added mass matrix is time dependent, a more and
more complex solution of the homogeneous problem is achieved depending on the shape function
assumed for [A(t)]. In the following, just to give a rough estimation of the wet natural frequency
(under the hypothesis of a quasi-static variation of the wetted length), the added mass is assumed
to be constant on the time scale of the natural frequency. From the physical point of view, this is
equivalent to solve the BVP (8) with the free-surface flat and constant in time, i.e., frozen. Assuming
the solution to be harmonic, that is qqq(t) = QQQeiσwσwσw t , the homogeneous problem related to Eq. (7) gives
the eigenvalue problem:

(σwσwσw
2[M + A] − [K ])QQQ = 0. (10)

The natural frequency vector σwσwσw is evaluated from the characteristic equation:

det (σwσwσw
2[M + A] − [K ]) = 0. (11)

When [A] = 0, the dry natural frequency vector is simply

σdσdσd
2 = (

eee

l
)4 E I

Mb

with eee the eigenvalue vector associated with the problem. Figure 2 shows the variation of the wet
natural frequencies associated with the first and second (i.e., i = 1, 2 in figure) modes of the beam
as function of the instantaneous dimensionless filling height of the tank. The lowest dry natural
frequency of the beam σd (i = 1) = σd,1 = 1.575 kHz is used to make the data dimensionless. The
symbols represent the solution obtained by using the HOBEM method to solve the BVP (8) for the
added mass calculation. While, the lines represent the solution obtained by using the shape function
(9) for the vibrational potential function. Their good agreement confirms the reliability of the latter
method, which is preferred in the following (because of its higher efficiency).

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

0.5

1

1.5

2

2.5
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h/L

w
(i

) 
/ 

d(1
)

 i = 1 (FT)

i = 2 (FT)

i = 2 (BEM)

i = 1 (BEM)

FIG. 2. Variation of the first (blue) and second (green) wet natural vibration frequency as a function of the filling depth.
Symbols are obtained by using the HOBEM method, while lines come from use of the Fourier Transform method.
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In the solution of the complete hybrid problem (i.e., with pr �= 0), although the free-surface is
still considered flat at each time step, no hypothesis about the shape of the added mass function is
given, since it is calculated from the solution of the BVP (8) by enforcing the instantaneous wetted
length measured from the experiments. This means that h(t) changes in time.

E. Scaling of the physical problem

The modal analysis is first used for the scaling of the experiment, in order to properly design
the hydroelastic model which reproduces the behavior of the prototype. Sloshing model tests with
hydroelastic impact require the simultaneous satisfaction of the Froude scaling together with proper
scaling of the elastic properties of the structure.7 Because of the complex structure characterizing
a typical panel of a Mark III containment system, its complete structural scaling is an unresolved
challenge, which is far from the aims of the present study. According to Faltinsen and Timokha,7

we must ensure the Froude scaling of the relevant natural frequencies of the elastic vibrations
of the structural panel. Further, Faltinsen and Timokha7 showed that several natural modes play
an important role in describing the maximum structural stresses in the Mark III panel and their
frequencies vary between 100 Hz and 500 Hz. However, since the lower modes are associated
with the steel plate of the Mark III panel, only the lowest is properly Froude scaled in the current
investigation. In particular, for a LNG tank, whose typical length is about 30–40 m, the maximum
length of a structural panel is about 3 m and the lowest wet natural frequency is around 110 Hz
(in fully wet condition).7 Because the sloshing tank used in the actual experiments is 1 m long (the
same tank used in Refs. 4–6), a geometrical scale factor λ = 30 is assumed. This choice forced the
length of the model beam to be equal to 0.09 m and the value of the lowest wet natural frequency
(Froude scaled according to Eq. (3) and in fully wet condition) about 610 Hz. Using Eq. (11), such a
frequency corresponds to the wet natural frequency of an aluminium beam with thickness 2.5 mm.
Since previous investigations in rigid sloshing tanks4–6 showed that the flip-through phenomenon
occurs at a height of h/L = 0.17 − 0.18 from the bottom of the tank, an aluminium plate is placed with
the lower end 0.13L above the tank bottom. Figure 2 shows that both the first (i = 1) and the second
(i = 2) natural frequencies tend to decrease by increasing the filling depth; this is a consequence
of the increasing added mass. A similar behavior is then expected also during the evolution of the
flip-through as a consequence of the changing wetted length of the beam. However, they remain
quite far from each other; this suggests that they remain uncoupled and justifies the scaling of the
lowest mode of vibration only.

III. EXPERIMENTAL SET-UP

A 2D plexiglas tank (L ×H×B = 1 m × 1 m × 0.1 m) reinforced with steel and aluminum
structure (see Fig. 3) has been used. It is almost the same tank used in the previous experiments with
rigid tank.4, 5 The difference is the presence of an aluminium plate on the lateral left wall (highlighted
by the white arrow in the red oval in Figure 3).

The lateral left wall has been completely rebuilt in stainless steel (see right panel of
Figure 4) and milled (see enlarged view on the bottom-left panel of Figure 4) to hold the de-
formable aluminium plate (see enlarged view on the top left panel of Fig. 4). A suitable clamping
system has been designed (visible on the left panels of Figure 4) to ensure clamped conditions at
the vertical ends of the plate. Conversely, its lateral boundaries have been left free and sealed with
silicone.

The plate is 110 mm high. However, two bulges (each one 10 mm high) have been built at both
vertical ends (see enlarged view on the top left panel of Fig. 4) to realize the clamping system. Then,
the deformable part of the plate is extended vertically for 90 mm according to the geometric scaling
specified in Sec. II E. Since the sloshing flows reproduced in the model tank and here studied are
almost 2D, the deformable part of the plate behaves like a beam; then, its bending deformation is
measured by means of 5 half-bridge strain gauges HBM XY11 − 3/350 placed along the centreline
at 12, 28, 45, 62, 78 mm from the lowest end of the beam, i.e., at 142, 158, 175, 192, 208 mm from
the bottom of the tank.
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FIG. 3. View of the plexiglas tank reinforced with aluminium and steel structures. The red oval highlights the left lateral
wall built in stainless steel and holding the deformable aluminium plate (indicated by the white arrow).

A. Static calibration of the strain gauges

The strain gauges have been calibrated by imposing uniform load along the clamped beam. In
particular, once the plate has been mounted and clamped on the stainless steel wall, static tests have
been performed by lowering the pressure inside the tank in order to reproduce uniform pressure
distribution on the plate. The calibration factor of each gauge has been computed by comparing the
measured strain with the theoretical solution given by the beam theory and with the numerical data
obtained by using a finite element method (FEM)19 on the 2D plate. Several pressure conditions
inside the tank have been realized, in order to perform a linearization of the calibration factor. A
linearization error lower than 2% has been measured for each strain gauge. Because of the half-
bridge configuration used for the strain gauges, their output is proportional to the difference (εa

− εt) between the axial and transversal strains. However, transversal strains can be assumed to be
negligible during the sloshing tests performed in the present research investigation; nearly 2D flow
conditions were realized during the whole experimental activity.



032108-10 Lugni et al. Phys. Fluids 26, 032108 (2014)

FIG. 4. Right column: Enlarged view of the external side of the stainless steel lateral wall, before being mounted on the tank.
The red frame highlights the part milled to hold the aluminium plate. Bottom-left panel: Enlarged view of the external side of
the milled part with the clamping system. The aluminium plate is mounted from the internal side. The screw holes around are
not used in the present experiments. Top-left panel: Enlarged view of the aluminium plate with the full-bridge strain gauges
along the vertical centreline. The bulges at both vertical ends are used to clamp the plate at the stainless steel wall.

B. Dynamic calibration of the strain gauges

Impulsive tests with a calibrated hammer have been also performed to check the dynamic
behavior of the strain gauges. The hammer test consists in hitting the structure, hence giving an
impulsive load which excites a wide frequency spectrum. Because the hammer is calibrated, the
time history of the impulsive load can be recorded, as well as the response of the structure through
the strain gauges. This allows both for a measurement of the dynamical response of the structure and
for the dynamical response of the strain gauges. For the latter, a FEM method solving the structural
problem on the same structure with the same input load is necessary. The hammer blow is given as
close as possible to the centre of the plate. Due to the impulsive and intrinsically 3D load distribution
(the tip of the hammer is small), the beam theory is no longer valid; the plate theory must be applied
and transversal strains affect the measurement of the strain gauges. Figure 5 shows the comparison
of the measured strains (symbol) along the plate with the numerical results of the FEM model εa

applied on the 2D plate (continuous line) at the time of the maximum strain and for two different
hammer tests. The maximum value of the impulsive load is reported at the top of each panel in
Fig. 5. The small difference is justified by the contributions of the transversal strains εt, numerically
evaluated and represented by the short-dashed (red) line in Fig. 5. This is due to the strongly 3D
load applied. Since the global flow during the flip-through phenomenon studied here is 2D, this
difference does not affect the experimental results of the present investigation. The value (εa − εt),
calculated and indicated by the green line in Fig. 5, shows a good agreement with the corresponding
experimental measurements, hence validating the adopted calibration procedure.

Use of the strain gauge to measure such an intense dynamics of the strain time evolution might
be questionable. To further check the dynamic response of a single strain gauge, an accelerometer
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FIG. 5. Hammer test: Strain distribution along the centreline of the plate at the time of the maximum strain and for two
different impulsive loads (whose maximum is indicated at the top of each panel). Symbols represent the measured strains
along the vertical centerline of the plate, while the red continuous line reports the strains distribution εa predicted by applying
a FEM method to the 2D plate. The short-dashed red line represents the transversal strains εt calculated numerically. Finally,
the green dashed line gives the difference εa − εt.

has been mounted as close as possible to it at the same vertical position. An accelerometer is a
transducer with a reliable response at high frequencies. Then, a hammer test has been performed and
the time histories of the signals (acceleration and strain) have been compared in Fig. 6 (top panel)
together with the corresponding logarithmic value of the amplitude (bottom panel) spectrum. They
confirm the reliability of the strain gauge measurement, at least until 2.0 kHz. In the low frequency
range (lower than 300 Hz) the strain gauge is a transducer with a reliable dynamic response; the
disagreement with respect to the accelerometer is mainly due to the low energy content of the
spectrum in that frequency range. Because of the limitation in the dynamic response of the strain
gauges, hereinafter our analysis is mainly focused on the highest natural vibration period of the
beam. As a consequence, each observation about the effects of the higher modes (whose frequencies
are larger than 2.0 kHz, see Fig. 2) should be regarded purely qualitative.

Since the aim of the present work is the assessment of the hydroelastic effect during the wave
impact in a LNG tank by means of the hybrid model proposed in Sec. II, the same slamming events
have to be reproduced both in the case of the full rigid wall and for the wall with deformable plate.
To this purpose, a second setup corresponding to the fully rigid case (no hydroelastic case) has been
built to measure the pressure distribution along the rigid wall. The aluminium thin elastic plate has
been replaced with a rigid 20 mm thick aluminium plate. Five differential pressure transducers Kulite
(with full range equal to 38 kPa) have been mounted along it at the same position as the strain gauges
in the elastic case. An accelerometer on the vertical stainless steel wall and a wire potentiometer are
used to check the global horizontal motion of the tank. Two additional differential pressure probes
have been installed on the stainless steel wall, below the removable plate (rigid or elastic). A filling
depth h/L = 0.122 has been considered. The time evolution of all the transducer signals has been
recorded at a sampling rate of 50 kHz. A high-speed camera with a rate of 5000 fps and a resolution
of 1024 ×1024 pixels provided the visualization of the local flow during the evolution of the impact
event while the global view of the sloshing flow in the tank has been recorded through two slow
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FIG. 6. Hammer test. (Top panel) Comparison between the acceleration time history on the plate measured through an
accelerometer and a strain gauge. (Bottom panel) Comparison of the amplitude of the corresponding Fourier Transform.

digital cameras (with a frame rate of 100 fps). The spatial resolution of the high-speed camera
gives a calibration factor of 7.8 pixels/mm, which ensures high accuracy in the measurement of the
instantaneous height of the wave at the wall.

A common reference signal was used to synchronize the flow images and the analog signals of
the transducers. An absolute pressure transducer measured the ullage pressure inside the tank.

The tank is forced to move along its longitudinal axis with the sinusoidal motion,

x = Acos(2π t/T (t))

through the system “MISTRAL,” a dynamic hexapod for the motion of the tank following the 6DOF.
A is the amplitude of the motion, while T(t) is the period which varies with a ramp function between
an initial value and the final value T0 = 1.6 s. The high accuracy of the system ensured a good
repeatability of the forced motion. To reproduce a flip-through phenomenon (FT), an amplitude A/L
= 0.03 is enforced with the following ramp function:

T (t) = T0 + (T1 − T0)e
−

(
t

Ta

)2

,

where T1 = 4 s and Ta = 0.05 s. The considered flip-through event occurs at the third cycle of
oscillation, after one first impact event, with air trapping which occurs on the opposite wall.

C. Dry and wet lowest vibration natural frequencies

The hammer test has been used to check the lowest vibration natural frequency of the beam
with respect to the theoretical value. According to Eq. (11), the lowest natural frequency varies with
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TABLE I. Dry natural frequencies associated with the first two bending and torsional modes.

Beam theory FEM plate Experiments
(Hz) (Hz) (Hz)

1st bending mode 1575 1653 1486
2nd bending mode 4343 4564 4318
1st torsional mode . . . 1902 1791
2nd torsional mode . . . 2922 2795

the wetted length of the beam. Then, several hammer tests have been performed by using several
filling depths of the tank. Initially, dry vibration frequencies have been measured and compared with
the corresponding values predicted by the beam theory and by the FEM model applied to the plate.
The comparison, reported in Table I, shows a satisfactory agreement. The time history of the strains
measured at the centre of the plate and the corresponding Fourier Transform for a hammer test in dry
condition are shown in the left and right panel of Figure 7, respectively. In the latter the frequencies
associated with the first two bending and torsional modes of the plate are also highlighted. Because
of the constraints of the plate, the first bending mode prevails. This is confirmed also by the test
carried out in wet condition, where the first bending mode is dominant. Inspection of Table I reveals
that the measured frequency associated with the first bending mode is quite close to that predicted
by the beam theory. The disagreement can be attributed to the additional mass induced by either the
wire or the strain gauges (see Fig. 4). This quantity, estimated in few grams (5–7 g) is compatible
with the difference in the value of the first bending frequency measured and predicted through the
beam theory. Then, in our hybrid model we consider the mass of the beam increased by 7 g with
respect to the nominal mass value, obtaining a predicted value of the first bending frequency equal
to 1.499 kHz.

To further stress the good approximation given by the beam theory, Figure 8 shows the compar-
ison between the calculated wet natural frequency (blue line) associated with the first bending mode
of the beam and the corresponding value measured through the hammer tests (green symbols) for
several filling depths of the tank.

D. Experimental analysis of the structural damping

From a theoretical point of view, two contributions may influence the response damping: the
hydrodynamic damping due to the boundary layer flow and the structural damping. The former
is taken to be negligible in sloshing flows. However, by studying the oscillation of an air pocket
entrapped by a standing wave at the roof of a sloshing tank, Abrahamsen1 found that the boundary
layer damping in the water domain influences the decay of the pressure signal when the frequency
associated with the bubble oscillation is much larger than the main natural frequency of the global
sloshing flow. In our study, in spite of the high oscillation frequency of the elastic plate, the structural
damping governs the decay of the measured strain. It means that the hydrodynamic contribution
does not matter. Moreover, the flow field associated with the local problem is completely different
in the present case from that considered in Ref. 1.

Impulsive tests have been used to calculate the structural damping. The hammer test, indeed, re-
produces a free-vibration test, that is mathematically represented through the homogeneous equation
associated with Eq. (7). For this the solution

q(t) = Q0exp(−ξωnt) exp (iωnt)

holds, under the hypothesis of small dimensionless damping ξ and neglecting the vibration modes
higher than the first one (whose natural pulsation is indicated by ωn). Note that ξ = C11, with C11

the first element of the damping matrix [C]. This solution, properly multiplied by the eigenfunction
ψ1(y), is used to calculate the time history of the beam deformation and then of the strain at the
centre of the beam. The best fitting with the measurement of the strain gauge #3 during the hammer
test, allows achieving the damping value.
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FIG. 7. Hammer test. Left panel: Time history of the strains measured by means of the strain gauge at the centre of the plate
in dry condition. Right panel: Amplitude of the corresponding Fourier Transform. The frequencies associated with the first
two bending and torsional modes are highlighted.

Structural damping is frequency dependent because of the varying natural frequency of the
structure induced by the changing wet length of the beam. This implies that structural damping has
been evaluated by performing free-vibration tests (i.e., hammer tests) with several filling depths of
the tank, in order to realize several conditions of the elastic plate, from dry to fully wetted. A suitable
constant damping value has been identified from each hammer test performed with a prescribed
filling depth. Figure 9 shows the dimensionless damping coefficients relative to the lowest structural
mode estimated experimentally as function of the filling depth. The dashed line illustrates the
structural damping in dry conditions, while the symbol at h/L = 0.13 refers to the completely dry
beam condition. The reported interpolation function (solid line in Figure 9) is used in the hybrid
model to determine the dimensionless damping coefficient as a function of the beam wetted length.
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IV. DISCUSSION OF THE RESULTS

A. Kinematic and dynamic flow fields

When a steep wave approaches a vertical wall, a flip-through event may occur causing large
local loads.12 The kinematic and dynamic evolution of a flip-through event along a rigid wall of a
2D sloshing tank is detailed in Ref. 6. Three different stages are recognized: (i) wave advancement,
characterized by the wave front, moving towards the wall, which forces the wave trough to quickly
rise up; (ii) focusing stage, where the wave crest and trough approach to one another causing their
focusing and then the occurrence of the (iii) flip-through. The latter stage causes a sudden turning
of the flow close to the focusing area which forces the formation of an energetic vertical jet. This
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is associated with a rapid change of the contact angle between the free surface and the tank wall.
Here we are considering a pure flip-through, i.e., with no air entrapped, but more generally in our
previous studies4–6 we demonstrated that the flip-through always occurs when a steep wave hits a
wall, even when air is entrapped and it is associated with the formation of a jet flow escaping from
an open cavity.

1. Rigid wall case

Figure 10 (Multimedia view) shows the evolution of the pure flip-through event generated along
the rigid wall during the present experimental activity: each image shows the flow configuration for
all the stages that characterize the wave impact. On each panel the vertical pressure distribution along
the wall (red line) is also reported as reconstructed from the interpolation of the pressure signals
recorded by five gauges P3, P4, P5, P6, and P7 located on the rigid wall at the positions highlighted
by the green diamonds. Two other gauges, P1 and P2, were placed at y = 35 and 50 mm from the
bottom of the tank, respectively, but they are not shown in the figure.

The evolution of the local loads at the wall reflects the kinematic behavior of the flow field: the
hydrodynamic term induced by the slow increase of the vertical velocity at the wall (see left panel
of Fig. 11 in Ref. 6) added to the quasi-static term (i.e., to the term ρg(h(t) − yi) where h(t) is the
instantaneous height of the wave trough at the wall and yi the vertical position of the ith pressure
sensor) characterizes the local load distribution during the wave advancement stage. Because of the
small vertical velocity of the wave trough, at the beginning of stage (i), the quasi-static hydrostatic
pressure prevails, generating a spatial pressure distribution that decreases with the distance from the
bottom of the tank down to zero at the free surface (see top-left panel in Figure 10 (Multimedia
view)). This behavior is further confirmed by the time history of the pressure probes located along the
wall and reported in Figure 11. In each panel, the dashed curve and the error bars represent the mean
value of the pressure (made dimensionless with the hydrostatic pressure ρgh) and the corresponding
standard deviation of five statistically equivalent repetitions of the same run, respectively. Moreover,
the black line represents the result of a single run, i.e., that associated with the images of Figure 10
(Multimedia view). The time instants corresponding to the frames shown in Figure 10 (Multimedia
view) are also indicated with the vertical dotted-dashed lines and highlighted through the labels
A, B, C, D, and E, respectively. Each pressure signal refers to the atmospheric pressure, i.e., to a
completely dry probe. The Euler equation,

ρ
Dvvv

Dt
= −∇ p + ρggg, (12)

helps identifying the physical flow regime at each stage. Before and around the time of the first
frame, i.e., t = −10.0 ms (labelled as A in Figure 11), Dvvv

Dt � −ggg meaning that the problem is
dominated by the quasi-static term. The pressure signal of the probes below the instantaneous free
surface increases almost linearly with the almost constant vertical wave velocity V according to the
instantaneous quasi-static pressure ρgV t (see Lugni et al.6). To this purpose, the dashed line shown
in the two panels of Figure 11, relative to the pressure at y = 35 mm and y = 50 mm, is drawn with
the slope equal to the vertical velocity of the wave trough.

For increasing time within stage (i), the accelerating water along the wall causes an increase of
the pressure signal recorded by the wetted probes, resulting in a nonlinear pressure variation in time
(see Figure 11, around t = −2.9 ms labelled as B). Similarly, the spatial pressure distribution at t =
−2.9 ms (top-right panel of Figure 10 (Multimedia view)) increases moving toward the free surface
where the fluid velocity and acceleration are larger.

At the focusing time (t = 0 ms), the rapid increase of the vertical acceleration induces a strong
and sudden growth of the ρ Dvvv

Dt term in Eq. (12), which dominates the time and spatial evolution of the
dynamic load. This causes an intense variation, both in time (see time range around label C in Figure
11) and space (see middle-left panel of Figure 10 (Multimedia view)), of the pressure signal, which
reaches a maximum value (approximately equal to 10 times the undisturbed hydrostatic pressure) at
the probe located at y = 175 mm above the bottom of the tank. At this time, see panel C of Figure 10
(Multimedia view), the pressure gradient can be roughly estimated as 1

ρ

∂p
∂y ≈ 1

1000
251000
30.016 ≈ 520 m/s2
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FIG. 10. Rigid case. Evolution of the flip-through event at five different times (reported on each panel). On each panel, the
red dashed line represents the interpolation of the pressure data (red symbols) recorded by five transducers P3, P4, P5, P6, and
P7, numbered from the lowest position, placed on the rigid wall at the location indicated by the green diamond (Multimedia
view) [URL: http://dx.doi.org/10.1063/1.4868878.1].

where 0.016 m is the distance between two subsequent pressure probes. This means that the vertical
acceleration dominates over the gravity. At this stage, a jet flow is starting at the wall. The value of
the jet acceleration estimated from the measured pressure gradient is lower than that given by the
direct measurement of the acceleration shown in Ref. 6. This implies that a larger pressure value
may occur between the pressure probes P5 and P6 at the time corresponding to panel C of Figure 10
(Multimedia view). A bias error must be accounted for when discussing this analysis where a single

http://dx.doi.org/10.1063/1.4868878.1
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in the images of Figure 10 (Multimedia view). The slope of the black dashed line (present in the panels relative to P1 and P2

for −20 ≤ time(ms) ≤ −10) equals the vertical velocity V of the wave.

experimental run is examined. However, this error is assumed not to influence the results reported
in Sec. V, where the mean value of the maximum load obtained from repeated runs is considered.
Because of the highly local behavior of the pressure at the time of the impact, the standard deviation
of the measured pressure takes into account the variability of the maximum pressure position also.
From the kinematic evolution of Figure 10 (see middle-left panel C), the focusing area occurs at a
location corresponding about to probe P5; as a consequence, the transducers below this area show
the maximum pressure peak at the same time and with a value decreasing with the distance from
the focusing area. In contrast, the time histories recorded by the pressure sensors above P5 shows a
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time delay that is a consequence of the steadiness of the phenomenon in a reference system moving
with the maximum pressure peak.13 The latter moves upwards with a velocity approximately equal
to the velocity V of the wave trough6 (i.e., during the flip-through stage). During the focusing and
the flip-through stages (see panels C, D, and E of Figure 10 (Multimedia view)) the vertical pressure
gradients (varying between 520 m/s2 in C and about 300 m/s2 in E) govern the kinematic field giving
the vertical acceleration of the flow. Because the last available pressure transducer is P7 (panel E),
the spatial pressure variation (red curve in Figure 10) stops here. However, for a rough estimate
of the pressure gradients, we assume that pressure vanishes at the upper free surface, i.e., at y ≈
225 mm from the bottom. The large pressure gradients are associated with the rapid turning of the
flow around the focusing point. This type of pressure gradient is similar to the one observed at the
spray roots during the water-entry phenomenon of a wedge. Since the beam portion above P5 is dry
during the previous stages (i) and (ii), the pressure signals recorded in (iii) above P5 grow almost
instantaneously from zero to the maximum value after a sudden drop (see Figure 11). Moreover,
because of the disrupting jet occurring during stage (iii), the value of the maximum pressure peak
above P5 decreases with the distance of the pressure transducer from the focusing area (see D and
E panels in Figure 10 (Multimedia view), and pressure sensor P6 at the time labelled D and sensor
P7 at time E in Figure 11).

2. Deformable beam case

A rather different dynamic behavior is observed when a deformable plate is inserted in a rigid
wall, rather than in a fully rigid wall. As discussed in Sec. II, the plate is assumed equivalent to a
beam with the lowest wet natural frequency that is Froude scaled with respect to the corresponding
frequency of a prototype panel of a LNG tank. The same motion of the tank used for the rigid case
is applied to ensure the highest repeatability of the event. Five repetitions of the same run have
been performed for the error analysis. Figures 12 and 13 show the flow behavior and the dynamic
evolution of the local loads (stress and pressure, respectively) during several stages of the flip-through
phenomenon. Each panel of Figure 12 (Multimedia view), beyond the image of the instantaneous
configuration corresponding to the time specified, reports also the spatial deformation of the vertical
plate through the dashed curve interpolating the values of the beam displacement (circle) measured
at the strain-gauge positions (diamond). For a proper representation of the deformation curve, the
local displacement of the beam is multiplied by a factor of 3 × 105.

Figure 13, from top to bottom, shows the time evolution of the dimensionless stresses (made
dimensionless with the yield stress of the aluminium, i.e., σ Y = 15 MPa) at three points along the
centreline of the plate (i.e., at y = 192, 175, and 158 mm), and of the pressure measured on the rigid
part of the vertical wall at a height y = 35 mm from the bottom of the tank. The dashed curve with
the circles and the error bars represent, respectively, the mean value and the standard deviation of
the physical quantity (i.e., stress or pressure) obtained through five repetitions of the same run. The
solid line refers to the single run, whose evolution is shown by the images of Figure 12 (Multimedia
view). The first six vertical dashed lines identify the times (from A to F) corresponding to the
instantaneous configurations reported in Figure 12 (Multimedia view). The stress σ is calculated
from the measured strain ε, using the relation σ = Eε with E = 210 MPa. The location of the
pressure transducer is exactly the same used for the tests on the fully rigid wall.

The kinematic evolution of the flip-through event along the deformable beam resembles the
one observed along the rigid wall (see Fig. 12 (Multimedia view)). The same three stages can be
identified in the movie attached to the present paper. However, large differences characterize the
dynamic evolution, especially after the focusing stage. Then, by referring to the dynamic evolution
reported in Figure 13 the following regimes characterize the hydroelastic behavior of the beam
during a flip-through event:

I. quasi-static regime, dominated by the quasi-static hydrodynamic load;
II. fully hydroelastic regime, characterized by the maximum stress distribution and by the strong

coupling between the hydrodynamic load and the structural reaction;
III. free-vibration regime, where the structure behaves as a beam excited and free to oscillate.
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FIG. 12. Elastic case. Evolution of the flip-through event at six different times (reported on each panel). The red dashed line
represents the interpolation of the beam deformation (red symbols) recorded through five gauges placed on the elastic wall
at the location indicated by the green diamond (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4868878.2].

During the wave advancement stage (top-left panel of Figure 12 (Multimedia view)), the quasi-
static hydrodynamic load dominates, causing a weak and quasi-static deformation of the wall. This
behavior characterizes the hydroelastic regime I in Figure 13, called quasi-static.

Evolving towards the wave focusing stage, the beam deforms smoothly (top-middle panel of
Figure 12 (Multimedia view)). Because of the asymmetric load induced by the rise up of the trough,
the second vibration mode of the beam matters at this stage. This is confirmed also by the different
values of the stress loads measured by the sensors at y = 158 mm and y = 192 mm (see Fig. 13),
i.e., placed symmetrically with respect to the centre of the beam at y = 175 mm. Starting from
this time, the hydroelastic regime II called fully hydroelastic governs the dynamic evolution of the
phenomenon (see Fig. 13) up to t = 5 ms.

At the focusing time t = 0 (see top-right panel of Figure 12 (Multimedia view)) the beam
reaches its maximum deformation. Now, the first vibration mode of the plate dominates the spatial
deformation field; however, from the evolution of the stresses (see the first three diagrams of
Figure 13), the maximum value recorded at t = 0 ms is different at the strain gauges located at y
= 158 mm and at y = 192 mm. This implies that the second vibration mode is relevant even at the
focusing time, as a consequence of the asymmetric distribution of the wetted length of the beam.

The comparison of the pressure signal recorded at y = 35 mm for the rigid and elastic plate case
(see Figure 14), emphasizes the role of the hydroelasticity. For each of them, both the average results
(indicated with P1m) and the instantaneous curve (indicated with P1) related to the attached movies
are also reported. Up to the focusing time t = 0 (identified by the vertical dashed-dotted line), both

http://dx.doi.org/10.1063/1.4868878.2
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signals appear similar, reaching the same value at t = 0. This means that the hydrodynamic forcing
that originates from the focusing is the main cause of the maximum deformation of the wall.

In the following evolution of the phenomenon, a strong hydroelastic behavior occurs as illus-
trated by comparing the pressure signals in Figure 14. Due to the structural reaction, at the beginning
of the flip-through stage, i.e., from t = 0 ms to t = 0.6 ms (the latter is labelled as D in Figure 13), the
plate moves against the incoming wave, hence counteracting the hydrodynamic load (see panels C
and D in Figure 12 (Multimedia view)). This behavior causes a steady increase of the pressure field
(see bottom diagram of Figure 13) up to the maximum value at time D. The deflection field along
the beam at this time reveals (see bottom-left panel of Figure 12 (Multimedia view)) that the second
vibration mode is still acting. The maximum pressure measured at the sensor in y = 35 mm in the
deformable plate case is twice the value measured in the rigid case (see Fig. 14), this revealing a
strong hydroelastic effect. The full hydroelastic coupling persists for the next three oscillations of the
signals (see bottom-middle and bottom-right panels of Figure 12 (Multimedia view), corresponding
to times E and F in Figure 13), that is until t = 6 − 7 ms.

Later on, the beam behaves like a freely oscillating system, this characterizing the hydroelastic
regime III (see Fig. 13) called free-vibration. The elastic plate is almost fully wetted, the first
wet natural period of the beam is fully excited and governs the oscillation of the structure at this
stage. Furthermore, for each oscillation cycle, the maximum stress measured on the elastic plate
corresponds to a minimum of the pressure measured on the rigid wall below the deformable plate,
and viceversa (see, for example, the times G and H in Figure 13). This behavior identifies the
free-vibration regime of the beam which concludes the hydroelastic interaction.

B. Analysis by means of the empirical mode decomposition

The Empirical Mode Decomposition (EMD),16 is a reliable mathematical tool to analyse the
dynamic evolution of the local load at the wall, aiming to highlight the role of the hydroelasticity
during the evolution of a flip-through event. Conversely, the classical Fourier Transform, assuming
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the stationarity of the signal and giving the correct interpretation of linear problems, is inadequate
for the comprehension of a strongly nonlinear and transient event like the flip-through.5 Similar
arguments are valid for the Morlet Wavelet analysis, being a Fourier based technique. The main idea
of the EMD is the use of the Hilbert transform applied to a signal with (i) local symmetry around the
local zero mean and (ii) the same number of zero crossings and extrema. Fulfilment of the previous
constraints, allows for the definition of suitable basis functions, the Intrinsic Mode Functions (IMF),
and ensures a correct application of the Hilbert Transform and, then, a meaningful definition of the
instantaneous frequency.5 The latter quantity is essential to understand the dynamic evolution of a
transient nonlinear signal. Figure 15 shows the time evolution of the first three IMFs (top panel)
obtained by the dimensionless stress signal σ 3/σ Y measured at the centre of the beam, and the
corresponding instantaneous frequency (bottom panel) colored as function of the local amplitude of
the IMF. The theoretical variation of the first and second wet natural frequency, estimated through
Eq. (11), are also represented with the dashed and solid line, respectively, in Figure 15. In Eq. (11)
the wet natural frequencies depend on the wetted length of the beam. This has been measured at each
time from the images collected by the high-speed camera. Because of the increasing wetted length
of the beam, the added mass increases causing a decrease of the first wet natural frequency. The time
variation of the dominant instantaneous frequency well reproduces the theoretical variation of the
first natural wet frequency. The first IMF, reproducing the effect of the higher modes (in particular
of the second mode), is almost zero at the centre of the beam, which is a node for the second
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FIG. 16. Elastic case. Enlarged view of the instantaneous frequency reported in Figure 15.

mode. Conversely, the second IMF contains most of the signal associated with the dominant first
wet natural frequency during the first six oscillation cycles. During the same time range, the third
IMF modulates its instantaneous frequency from the first wet natural frequency around t = 0 ms to
the changing value of the first wet natural frequency approximately at t = 10 ms. After this time,
the third IMF contains all the energy of the signal associated with the free-vibration regime of the
beam. However, over this time span the estimated theoretical frequency slightly decreases in time
(as a consequence of the rising free-surface) while the experimental value remains almost constant.
This aspect is emphasized by Figure 16 which shows an enlarged view of Figure 15. This difference,
though small, is taken into account to improve the hybrid numerical model for times larger than
7 − 8 ms.

The above considerations imply that during the hydroelastic regime II a quick variation of the
added mass occurs; conversely, during regime III the added mass remains almost constant.

The strain gauge at the centre of the beam cannot capture the oscillations associated with the
higher modes of vibration. To analyse the role of the second vibration mode, Figure 17 reports the
time history of the first three IMFs derived from the stress measurements at gauges 2 and 4 (top
panels), and the corresponding instantaneous frequency (bottom panels). It is worth to recall that the
Froude scaling between prototype and model has been applied for the natural frequency associated
with the first vibration mode only. Then, hereinafter, every observation about the second vibration
mode is intended to be purely qualitative. As expected, the wet natural frequency associated with
the second vibration mode has a marginal role and is limited to the time range around the first peak
of the local load, i.e., the hydroelastic regime II and the beginning of regime III. This is confirmed
by the time evolution of the first IMF in both the panels of Figure 17. The associated instantaneous
frequency shows a large scattering of the data between the first (dashed line) and second (solid
line) wet natural frequency of the beam. According to Faltinsen and Timokha,7 the higher mode
initially has an amplitude much lower than the lowest mode. Further, because of the relatively large
damping, the higher modes nearly disappear at the scale of the period of the lowest mode. However,
because of the dynamic response of the strain gauges used (see Sec. III) any quantitative evaluation
of the energy associated with the higher modes cannot be expected.

V. COMPARISON WITH THEORETICAL MODELS

A. Hybrid model

In Sec. II we proposed a simplified hybrid model to investigate the role of hydroelasticity. Such
a model takes into account both the pressure distribution measured in the corresponding experiments
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on the rigid wall, and the time variation of the wetted length of the beam. This choice is a consequence
of the experimental observations that highlighted the role of the quick change of the added mass
induced by the changing wetted length of the beam. Figure 18 reports the comparison between the
results of the hybrid model (solid line) with the data of the experiments (dashed line) for the time
history of the strains measured at the centre of the beam. Five repetitions of the same run have been
considered (both for the rigid case, used as input to the hybrid model, and for the hydroelastic case)
to estimate the mean values (middle panel) and the maximum (i.e., standard deviation added to the
mean value, shown in the top panel) and the minimum (i.e., standard deviation subtracted from the
mean value shown in the bottom panel) variation. Both the structural and the hydrodynamic damping
terms calculated in Sec. III D are used in the numerical results. At a first glance, the relative error,
estimated as

Err% = ε3std

ε3m

∗ 100
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with

ε3 = − t

2

∂2w(t, a + l/2)

∂y2

the strain at the centre of the beam and t the thickness of the beam, is larger for the numerical
results (Err% = 41%) than for the experimental data (Err% = 25%), at least at the first peak (t
= 0 ms in Figure 18). This behavior is a consequence of the larger standard deviation measured
on the rigid wall experiments by using a pressure transducer. Conversely, on the elastic wall the
repeatability of the measured strain is higher. The hybrid numerical solver is globally able to capture
the wet vibration frequency of the beam at least for the first cycles of oscillation, i.e., until 6–7 ms in
Figure 18; later a phase shift occurs.

With the aim to explain the disagreement between the theoretical model and the experiments for
t > 6–7 ms, we recall the main assumptions of the hybrid model. In particular, the solution of (7) is
based on the linear superposition of the forcing pressure field p = pr + pv . The first term accounts
for the local hydrodynamic load acting on a fully rigid beam. Furthermore pv , coming from the
solution of the BVP (6) for the potential function φv , is used to calculate the added mass term [A]
in Eq. (7) associated with the vibrational problem of the elastic plate around a rest state. Since the
solution of (7) depends on the instantaneous wet length of the elastic beam (through the boundary
condition), the added mass will increase with h(t). As a consequence, from Eq. (11), the wet natural
frequency of the elastic beam will decrease by increasing h(t). Even though this behavior justifies
the ability of the hybrid model to properly capture the wet vibration frequency of the beam during
the regime II, it cannot justify the phase shift between the numerics and the experiments occurring
at t > 7 ms.

The hydrodynamic force can excite the structural reaction until the corresponding energy is
larger than a threshold value. This threshold value corresponds, in the present case, to the fully
wet beam and occurs at t = 7 ms (see Figures 15 and 16). When the energy content of the forcing
contribute is insufficient, the structure behaves as a beam in the free-vibration regime,7 i.e., it keeps
vibrating with the frequency corresponding to the fully wet beam (this identifies the hydroelastic
regime III). The latter is slightly larger than the frequency corresponding to the instantaneous filling
depth (see also Figure 16) but it justifies the phase shift between the numerical solution and the
experiments.

Because of the large scatter induced by the pressure measurements on the rigid wall and to
better evaluate the capability of the hybrid numerical solver, the numerical results obtained using
the maximum pressure distribution measured at the rigid wall are compared with the experimental
data corresponding to the maximum strain distribution measured at the elastic wall. Even though the
numerical results shown in Figure 18 account for the proper modelling of the damping term, in the
following the effect of the damping term is analysed.

Figure 19, therefore, shows the comparison between the experiments (magenta line) and the
numerical results (black line) calculated with no damping term included and with the added mass
varying in time according to the instantaneous variation of the wet length. A reasonable agreement
is observed for the prediction of the first peak. However, a difference of about 15% still persists. This
means that further hydroelastic effects, not included in the present model, could matter at the first
peak. As already observed, a good prediction of the instantaneous hydroelastic frequency exists as
long as the beam is not fully wet. Later, i.e., for t > 6 – 7 ms, a time-dependent phase delay appears
because of an unreliable estimate of the added mass in the numerical model (see Figure 16), as
already mentioned above. Further, due to the absence of the damping term in the numerical model,
prediction of the successive peaks completely fails. To overcome the disagreement, a suitable
modelling of the physical damping is essential. Damping sources of the structural response are
viscous dissipation, acoustic radiation damping, thermodynamic dissipation, and structural damping.
The latter contribution is expected to be dominant in the present case. In Sec. III D the structural
damping was assumed to be frequency dependent as a consequence of the varying wet natural period
of the beam with its wet length. The damping coefficient has been determined by using the results of
the hammer tests in dry and wet conditions; Figure 9 reports this dimensionless damping coefficient
as a function of the dimensionless water depth of the tank. To assess the frequency dependence
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FIG. 20. Elastic case. Comparison between numerical prediction of the hybrid model (black line) with the constant value of
the damping coefficient (evaluated in dry condition) and experimental results (magenta line) relative to the time history of
the strains at the centre of the beam. Both data are related to the run corresponding to the maximum measured value.

of the structural damping, this is the first assumed constant in the hybrid model and it is taken
equal to the value measured in dry condition (dashed line in Figure 9); the comparison between
numerical results and experimental data related to the strain gauge #3 is shown in Figure 20. The
time history of the wet length, used for the calculation of the added mass term, is also reported
(dashed green line). Accounting for the structural damping in dry condition is not enough to justify
the experimentally observed decay. The frequency dependent damping coefficient in wet condition
(solid line in Figure 9) is then used; the results are shown in Figure 21. The green dashed line shows
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FIG. 21. Elastic case. Comparison between numerical prediction of the hybrid model (black line) with the varying damping
term (evaluated as a function of the instantaneous wetted length of the beam) and experimental results (magenta line) relative
to the time history of the strains at the centre of the beam. Both data are related to the run corresponding to the maximum
measured value.

the instantaneous variation of the wet length which has been considered both for the calculation
of the added mass and of the damping term (by using the results of Figure 9 solid line). Although
the method used to estimate the damping coefficients does not completely account for the dynamic
variation of the wet length of the beam, the agreement between numerical and experimental results
is globally satisfactory. However, some differences appear in the first two-three oscillations (see
Figure 21) after the first maximum peak, and more in general during the hydroelastic regime II.
They are essentially related to the decay of the pressure time history measured in the fully rigid case
(see Figure 11). In the proposed hybrid model the peak of the pressure distribution measured in the
rigid case causes an impulsive load on the structure, which begins to oscillate as in a free-vibration
regime (but with a varying natural frequency due to the changing wetted length). The disagreement
between the results of the hybrid model and the experimental data in the prediction of the maximum
amplitudes of the structural deformation of the elastic beam indicate that a stronger hydroelastic
effect occurs during the first two/three oscillations of the structure, suggesting the need of a more
reliable model for the regime II. At following times, i.e., at t > 6 − 7 ms, the hydroelastic evolution
resembles the free-vibration behavior with a constant added mass. This means that a constant value
of the wet natural frequency of the beam follows as detailed at the beginning of this section. To this
purpose, Figure 22 shows the comparison of the numerical and experimental time histories of the
strain at sensor #3 with the results of the numerical model properly enhanced with the constant added
mass for t > 6 − 7 ms (i.e., a constant wet length, see green dashed line in Figure 22), resulting in a
good agreement both in phase and amplitude.

B. Simplified models

A first question arises about the effectiveness of the mathematical models used during the
design stage. Two different models are typically suggested by the classification rules to take into
account the liquid-structure interaction: (i) FEA and (ii) Indirect Dynamic FEA. Method (i) solves
the unsteady structural problem with the external forcing coming from the rigid pressure distri-
bution measured in the sloshing model tests. In contrast, method (ii) solves the quasi-static FEA
with forcing given by the maximum rigid pressure loads measured in the model tests. A suitable
DAF which depends on the rise time of the local load, amplifies the calculated local stresses to
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account for the dynamic effects. Moreover, the proper modelling of the added mass term associ-
ated to the vibration of the structure is questionable. In the classification notes10 it is suggested
to calculate the added mass in model (i) using a linearized potential flow solver on a significant
portion of the possible wetted surface of the membrane; however, the added mass is assumed
to be constant in time. In method (ii) the DAF should take into account also the added mass
contribution. To better understand the limits of the simplified methods, we implemented both mod-
els for the specific problem, and we compared their results with the experimental data for the elastic
wall. In particular, method (i) resembles the hybrid method we proposed previously, except for the
estimate of the added mass. In method (i) the added mass is kept always constant and estimated on
an a priori prescribed portion of the wetted surface. Conversely, in the hybrid model the added mass
is varying in time during the rise up of the wave trough along the wall (influencing the maximum
peak of the structural load), and until the end of the focusing stage; after, when the jet is formed and
the elastic wall is almost fully wet, the added mass in kept constant.

The comparison with the experimental results for the time history of the strains recorded by
sensor #3 is shown in Figure 23. No damping term is used in the model. Although the first peak
value looks similar to that estimated through the hybrid model, it occurs at a slightly different
time. Furthermore, large differences characterize the evolution of the phenomenon. Due to the
constant added mass used, the prediction of the vibration frequency completely fails. However,
if the main interest is the value of the maximum load peak, method (i), consistently with the
hybrid model, still underestimates the experimental value (around 20% lower than the experimental
value). Nevertheless, this underestimation is much lower than that obtained from the quasi-static
model, i.e., method (ii). In this model, Eq. (7) is applied by completely neglecting the inertial
and damping terms; the pressure distribution is given from the measurements on the rigid wall
experiments. The results, concerning the average and the corresponding error bar (calculated through
the repetition of 5 runs) of the strain distribution along the vertical beam, are shown in Figure 24.
Both the experiments (red symbol) with the reconstruction based on the use of the first natural
vibration mode of the beam (red line) and the quasi-static calculations (blue symbol) are reported.
Also for the latter, only the first vibration mode is used. Comparing the maximum value of the strain,
the ratio between the measured strain and the quasi-static one, follows, i.e., DAF = 1.84. This value
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FIG. 25. Elastic case. Red symbols: experimental results relative to the mean value of the maximum strain distribution along
the elastic beam. The corresponding strain reconstruction by using one (dashed line), two (dotted line), and three (solid line)
modes is also reported.

is much larger than that proposed in Gervaise et al.18 (approximately equal to 1 at the rise time
measured in the present experiments, i.e., 1 ms at model scale corresponding to 5 − 6 ms at full
scale) using the dynamic model described in Pillon et al.17 and applied to a Mark III containment
system. However, in the present experiments a completely different type of impact and a different
material for the structural panel is considered. Nevertheless, some remarks can be done. The model
proposed by Pillon et al.17 does not seem to account for the added mass contribution: a finite
element method on a structural panel excited through the pressure load distribution measured during
experiments on a rigid tank (with a well refined grid of sensors) is used. This aspect can explain why in
Refs. 18 and 17 a maximum DAF = 1.6 is obtained at a rise time around 1 ms in full scale; a maximum
DAF value at a larger rise time is expected when the added mass contribution is also considered.
A third curve, the black one shown in Figure 24, is numerically obtained by using the simplified
method (i) with the constant added mass term. In this case, a ratio between the experimental and the
numerical maximum strain equal to 1.33 is achieved, confirming the essential role of the added mass
in the dynamic calculation. Finally, the error bars reported on the data shown in Figure 24 allow
to assess the reliability of the maximum strain (or stress) recorded at the centre of the beam. The
experimental value on the elastic beam shows a relative error around 27%. Differently, the relative
errors corresponding to the quasi-static and dynamic numerical model (based on the experimental
maximum pressure value recorded at the centre of the beam in the rigid case) are around 42% and
48%, respectively. This confirms that the maximum strain (or stress) can be a good candidate to be
used as an indicator of the maximum local load.

The mean value of the experimental maximum strain distribution along the wall reported
in Figure 24 (red symbols), shows an evident asymmetric trend, even highlighted by comparing
with the symmetric reconstruction using only the first vibrational mode (see red solid line in
Figure 24). This behavior of the experimental data hides the effect of the higher vibrational modes.
Their contribution to the local structural load has been previously discussed and observed at the time
instant of the maximum strain. Figure 25 shows the experimental strain distribution (dot symbol)
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and the related reconstruction using one, two, and three modes (dashed, dotted, and solid line,
respectively), and assesses the role of the higher mode at this time. The first two vibration modes
well recover the experimental measures of the strain along the elastic beam; the third mode is almost
negligible. The maximum strain occurs at y = 0.17 m, i.e., 5 mm below the location of the strain
gauge (in the elastic case) and of the pressure transducer (in the rigid case). This suggests the optimal
positioning of the transducers (both for the rigid and elastic case) to be used in a next step of the
study.

VI. CONCLUSIONS

A comprehensive experimental investigation has been carried out to explore and quantify the
role of the hydroelasticity during the evolution of a flip-through event6 inside a sloshing tank in
low filling depth condition. A deformable aluminium plate, whose dimensions have been fixed in
order to ensure the Froude scaling of the first natural vibration frequency of a Mark III structural
panel, has been clamped in a stiff stainless steel wall. Strain gauges along the deformable plate
centerline measure the structural load. To properly characterize the hydroelastic effects, the same
experiments have been performed in a fully rigid tank, i.e., by substituting the deformable plate with
a stiff plate, and by using pressure transducers to measure the dynamic load along the wall. A ramp
function on the sinusoidal motion of the tank forces the flip-through event to occur at the third cycle
of oscillation, after a first impact on the opposite wall. The study emphasizes that the hydroelastic
evolution is characterized by three different regimes which vary from the quasi-static deformation
of the beam in regime I to a strong and fully coupled hydroelastic interaction in regime II and to a
free-vibration regime in regime III which ends the dynamic evolution.

The three regimes are detailed with the aid of figures and movies illustrating the kinematics of
the flow and the dynamic evolution of the beam deformation (in the elastic case) and of the local
pressure (in the rigid case). In particular, during regime I the quasi-static hydrodynamic load induces
a small and quasi-static deformation of the beam. A strong and fully coupled hydroelastic behavior
follows in regime II; the rapid increase of the hydrodynamic load originates the maximum strain.
As a consequence of the structural reaction, the hydrodyanamic pressure still increases. The varying
wetted length of the beam causes a variation of the added-mass term and then of the natural vibration
frequency of the deformable plate. When the elastic plate is fully wetted the natural frequency
remains constant characterizing the free-vibration regime III.

A numerical-experimental model, called hybrid model, has been proposed in order to model
the structural load. Such model couples the unsteady Euler beam-theory with the forcing term given
by the experimental pressure measured in the rigid case. The added mass term is calculated using
a potential flow model for incompressible liquid and assuming a quasi-static variation of the free
surface. The instantaneous wetted length of the beam is determined by the experimental images.
The comparison against experimental data confirms an overall satisfactory prediction of the model.
However, differences appear in regime II where a more refined hydroelastic model is necessary.

More simplified theoretical models, typically used at the design stage, have also been imple-
mented and compared with the experimental data. They show an error similar to that of the hybrid
model for the prediction of the maximum structural stress when dynamic hydroelastic effects are
taken into account. In any case they are not capable to correctly predict the subsequent evolution of
the plate deformation.
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