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 The paper investigates the interactions occurring between a gas cavity, the 
surrounding liquid and the nearby structures. In more detail, focus is in the 
characterization of the various dynamical phases (e.g. “acoustic phase” and “gas 
bubble phase”) and in the design of a modelling approach aimed at minimizing the 
computational efforts needed to analyse the cases of gas cavities spatially close to 
the target structure. Hence, a Domain Decomposition (DD) strategy is proposed 
which enables efficient computations. Hyperbolic flow equations govern the flow 
evolution and, while the inner domain 1D solution is calculated by means of an HLL 
scheme for the fluxes and a 1st order time stepping, the outer domain 3D solution is 
achieved on the basis of a MUSCL scheme coupled with a 3rd order Runge-Kutta 
time stepping. Various comparative tests, based on use of the full-scale 
experimental data by Smith (1975), have been used to test the DD strategy. A 
simplified approach is, finally, proposed to be used for the complex case of multiple 
cavity explosions. Use of the approach reveals that the worst load scenario for the 
target structure occurs when all cavities explode simultaneously. 
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1. Introduction 

The study of the interactions between a gas 
cavity, the surrounding liquid and the nearby 
structures in the acoustic regime is very appealing 
because it involves several physical phenomena 
and it is of practical interest in different contexts: 
from underwater explosions, to medical 
applications, to erosion of propellers. 

In [1], the implosion of micro-bubbles close to 
human tissues has been studied with reference to 
ultrasounds used to remove calculi in human 

bodies. In [2], it is shown that the cavitational 
bubble collapse can cause a shock wave associated 
with erosion damage on solid surfaces in hydraulic 
machinery. 

Although there are many practical studies on 
micro-bubble explosions, most of the results are 
for military purposes (e.g. underwater explosions 
of mines close to ships and offshore structures). 
There, it is necessary both to predict structural 
effects and improve the design of the structures. 
To this purpose, physical tests were performed 
over the years and theories were developed [3]. 



Because of this abundance of information, the first 
application of the validation of the present work is 
carried on underwater explosions. 

All the above described problems are 
characterized by: 1) bubble oscillations with the 
generation and/or interaction with acoustic waves, 
2) interaction of the acoustic waves with the 
surrounding structures, 3) reflection of the waves 
and 4) their interaction with the bubble. All these 
phenomena evolve within the so-called “acoustic 
phase”, because compressibility is important for 
both water and gas phases. 

The study, here summarized, covers most of the 
points described above, some other results 
connected with the dynamics of the “acoustic 
phase” are reported in [4]. The following stage, 
where compressibility becomes unimportant for 
water and it is an issue only for the gaseous phase, 
is described in [5]. The generality of these features 
allows the proposed approach to be later extended 
to study the effect of multiple explosions close to a 
structure like those presented in [6]. 

The paper is organized as follows. Section 2 
describes both the problem formulation and the 
Domain-Decomposition strategy. In Section 3 an 
approach is proposed for the simplification of the 
problem for the case of multiple explosions. The 
tools and procedure introduced in Sections 2 and 3 
are, then, applied to a specific case of multiple 
explosions. Conclusive remarks and lines for future 
research are, finally, proposed. 

2.  The solution strategy: a time-space domain 
decomposition and preliminary validation 

The complexity of the involved phenomena 
makes this study difficult: at least two fluids, with 
very different properties, have to be studied and 
there is also the description of the behavior of a 
structure under almost impact pressures. 
 The equation describing the flow is: 
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T
. Here u, v, w are 

the velocity components, p the pressure, ρ is the 
fluid density and E the total energy 

ρ[e+(u2+v2+w2)/2]. 
These equations are completed by the equation 

of state (EOS) for the specific internal energy e. 
Here this is assumed of the form ρe = ff(ρ)p+gf(ρ), 
with the functions ff  and gf  depending on the fluid 
properties. In particular, the Jones-Wilkins-Lee 
EOS is used for the gas [7] and an isentropic Tait 
relation for the water [3] i.e. 
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where the subscripts g and w stand for gas and 
water, respectively, ρ0g is the initial gas density, γw 
is the ratio of specific heats for water, while R1, R2, 
Bg, Ag, and   depend on the explosion features. 
The dynamics of the structure is modeled like that 
of an orthotropic plate: 
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where m , Dx, Dy and B are characteristics of the 
structure and p is the pressure loading. 

The aim of the present work is to study the 
effect of multiple explosions which take place at 
different times and positions with respect to the 
structure in analysis. A fully 3D coupled fluid-
structure interaction solver, being time consuming, 
would limit the extent of the statistical analysis. 
For this reason, first the problem of a single 
exploding bubble is analyzed; the physical features 
of the problem are highlighted together with the 
possible simplification of the analysis, and then 
multiple explosions are taken into account. 

However, even the study of a single explosion 
can be time consuming and, to make the study as 
efficient as possible, several numerical techniques 
are used, eventually combined within a more 
general solution strategy. 

In particular, two types of coupling have been 
performed: a) 1D-3D solutions for the analysis of 
the fluid phase and b) 1D solution-structural 
analysis for the study of the fluid-structure 
interaction. In both cases, we assume that the 
explosion occurs very far from other boundaries 
and that the hydrostatic pressure does not affect 
the explosion phenomenon, leading to a radial 
symmetry of the bubble evolution. 

A compressible 1D solver along the radial 
direction r is, then, used to simulate the flow 
evolution until the first shock wave from the 



explosion becomes close to the rigid boundary of 
interest. This can be done because the problem 
equations are hyperbolic and the downstream flow 
is quiescent, therefore, the presence of the 
structure does not affect the fluid upstream of the 
shock wave. 
 

 

 

Fig. 1. Top: example of the domain of solution. The inner 
domain with the bubble is analyzed with a 1D approximation 
of equations (1) and the outer flow with a 3D solution. The 
black lines represent the edges of the blocks in which the 
domain is decomposed, they become finer with increasing 
pressure values. Bottom: comparison of the 1D and 3D 
pressure solutions for the underwater explosion of [9]. The 
red large circles give the position of the gas-water interface. 

As the shock wave becomes close to the body, in 
case a), a time-space Domain-Decomposition (DD 
hereinafter) strategy is switched on, where a 
compressible 3D solver is initialized by the 
simplified 1D solution in an inner region affected 
by the body and used to investigate the fluid-body 
interactions. The 1D solution is still applied far 
from the structure and provides the boundary 
conditions to the 3D solver along a control surface 

bounding the inner domain as described in the top 
panel of Figure 1. 

This implies a one-way coupling between the 
solvers and limits this kind of decomposition up to 
the instant the reflected waves reach the inner 
region. Even with the DD approach the 3D solution 
can be very time consuming, hence an Adaptive 
Mesh Refinement (AMR) has been introduced to 
make the solution faster. 

The algorithm described in [8] is used to refine 
the mesh size where large pressure gradients take 
place, as shown in the top panel of Figure 1. The 
bottom panel of the same figure documents the 
comparison between 1D and 3D/1D coupled 
pressure profiles along the ray of the explosion in 
the case described in [9]; even though the meshes 
are rather different for the two solvers, the 
position and the intensity of the shock wave are 
quite well captured by the DD strategy. 

The 1D/3D solution is then able to describe the 
reflection of the acoustic waves generated by the 
explosion on the boundary of the domain as shown 
in Figure 2, where an isosurface of density 
r=1061kg/m3 is shown, as well as the pressure 
contour on the mid section of the domain. 

 

Fig. 2. Reflection of the compression wave from an explosion 
onto solid boundaries. An eight of the domain is shown. 

In case b), the analysis of the interaction of the 
shock wave with the structure has been first 
studied in a simplified way, i.e. assuming that the 
radial incoming waves are simply reflected back 
from the moving structure so that the loading 
pressure can be written as 
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where the first two terms on the right hand side 
are compressible contributions and the last one an 
incompressible term. The results of this coupling 
are illustrated in detail in [10]. 

Figure 3 shows the effect of the almost-
impulsive pressure peak on the inception of the 
free vibration of an orthotropic plate, similarly to 
what described in [10]. 
 

 
 

 
 

 
 
Fig. 3. Effect of the distance on the maximum stresses on the 
plate (distance increases from top to bottom (r=4m, 8m, 35m). 

 
 

The maximum stresses generated by this 
vibration vary with the distance of the explosion. If 
it takes place further than 35m, the maximum 
stress does not exceed the yield stress, this means 
that deformations are only elastic, if the distance is 
around 8m the deformation can occur in the 
plastic regime, if it takes place closer, a plastic 
deformation of the plate surely occurs with an 
eventual rupture of the plate. In case of a small 
plastic deformation, the maximum displacement 
has been taken to be the plastic deformation of the 
plate and compared with other numerical and 
experimental findings from [11] (see Figure 4). 
 

 
 
Fig. 4. Comparison of the permanent deformation with other 
numerical and experimental results from [11]. 

 
For small plastic deformations, the agreement is 

promising, although the approach is much 
simplified. As the explosion becomes more intense 
the discrepancy is larger and it is due to having 
neglected the nonlinear strain rate effect, as shown 
in the other numerical data. 

3. Simplification of the problem in case of 
multiple explosions 

Once the tools for the analysis have been 
validated, they can be used to identify possible 
simplifications of the problem in case of multiple 
explosions. 

First, the areas where the superposition 
principle could be valid are estimated by using the 
1D/3D coupled solver to check if: 1) the acoustic 
waves generated by multiple explosions interact 
by simply superimposing each other, 2) the 



contribution of the acoustic waves generated by a 
small displacement of the boundary can be 
accounted for as a simple superposition to the 
acoustic wave existing in the case of a fixed 
boundary. 

To simplify the analysis, hereinafter the 
explosion described in [9] is taken as the 
benchmark for all the examples. For this case, we 
can make variables dimensionless by 
characteristic fluid dynamic quantities. In 
particular, lengths are made dimensionless by L0=c 
Tbubble where Tbubble=0.135s is the period of 
oscillation of the bubble and c=1450m/s is the 
sound speed in water.  

Figure 5 shows the effect of the superposition of 
two acoustic waves (top panel) generated by two 
simultaneous explosions taking place 0.02L0 apart. 
In the bottom panel the red solid line represents 
the full solution and the blue dashed line gives the 
superposition of the curves shown in top panel: 
the pressure contours are practically superposed 
and the differences are due more to the different 
discretization deriving from the AMR technique 
than to nonlinear effects. 
 

 
 

 
 
Fig. 5. Pressure contours generated by two explosions. Top: 
pressure field generated by each separate explosion. Bottom: 
pressure field calculated as the sum of those in the left panel 
(blue dashed line) and as solution of the two simultaneous 
explosions (red solid line). 

 

Figure 6 examines the interaction of a moving 
boundary with an acoustic wave (generated by an 
explosion at 0.01L0 from the solid boundary). The 
green dashed line is the pressure field generated 
by an explosion reflection on a wall moving with 
velocity wb. The effect of the wall motion can be 
modelled simply superimposing the pressure  ρcwb 

to the pressure field generated by the reflection of 
the acoustic wave on a fixed boundary. The result 
is plotted with the red solid line in the figure.. 

The differences in the pressure field are very 
limited, this meaning that the effect of the 
incidence angle θ of the incoming wave relative to 
the wall normal direction (factor 1/cos(θ) in 
equation (4)) can be disregarded in the acoustic 
damping. 
 

 
 
Fig. 6. Pressure contours generated by the reflection of 
acoustic waves on a moving wall (green dashed line) and on a 
fixed wall and shifted by ρcwb. 

 
In these examples, the maximum Mach number 

in water is of the order of 0.1, this means that 
compressibility effects are limited, similarly for the 
nonlinear interaction of the waves. 

The above result enables a simplified 
description of multiple explosions, i.e. by simply 
superimposing their effects and further simplifying 
equation (4) as: 

 
ex exi wctxPtxp mass added),(2),( ,

  (5) 

where the sum is made on the number of 
explosions (“ex”). 

4. Applications to multiple explosions 

Using the superposition principle described in 
the previous paragraph we analyze the problem of 
two explosions taking place 4m (0.02L0) apart and 
4m (0.02L0) below an orthotropic plate, with 



dimensions 6.09m×3.05m and elastic 
characteristics described in [10], as shown in 
Figure 7. 

 
 

 
 
 

Fig. 7. Sketch of the double bubble explosion below a plate. 
 
 

The second bubble explodes with a delay Δt 
from the first. Figure 8 shows the effect of the 
delay, made dimensionless with the first natural 
period of oscillation of the plate Tstructure=0.0172s, 
on both the displacement and velocity of 
displacement of the plate. 

In the free vibration regime (when the transient 
effect of the acoustic wave is exhausted), the 
amplitude of oscillation of the displacement and of 
the velocity of oscillation of the plate, depend on 
the delay between the explosions, in particular if 
the compression wave of the second explosion 
reaches the plate in correspondence with a 
minimum of the velocity (plate deforming towards 
the bubbles) the amplitudes of oscillation are 
minima, conversely if the second explosion arrives 
when the velocity is maximum (plate deforming 
away from the bubbles) the superposition is 
constructive and the amplitudes of oscillation are 
increased. 

Because of the periodic nature of the oscillation, 
also the curves of the top panel of Figure 8 present 
a period Tstructure. Nonetheless, the largest 
amplitudes of oscillations are due to simultaneous 
explosions. 

The effect on the maximum velocity of 
displacement and on the maximum displacement 
is not periodic, the maxima are at zero delays, and 
reduce very fast when the explosions are shifted 
apart in time. In particular, the maximum value 
quickly tends to the value related to the single 
explosion. 

This means that assuming all the explosions to 
take place simultaneously leads to the worst 
scenario for the structure. 

 

 

 

 
 

Fig. 8. From top to bottom: amplitude of the plate 
displacement in free oscillation, amplitude of the plate 
velocity in free oscillation, maximum displacement of the 
plate, maximum velocity of the plate versus the delay between 
two explosions. 



However, here the effect of the reflected wave on 
the initial bubble is not taken into account, its 
study will be the object of the future research. 

5. Conclusions and lines for future research 

A Domain Decomposition (DD) strategy is 
proposed, which enables efficient computations 
for the interactions between an exploding gas 
cavity, the surrounding fluid and target solid 
structures. 

Validations tests, based on use of the full-scale 
experimental data by Smith (1975), have been 
performed and show that the DD strategy well 
reproduces the solution over the entire domain.  

A simplified approach is, finally, proposed to be 
used for the complex case of multiple cavity 
explosions. Use of the approach reveals that the 
worst load scenario for the target structure occurs 
when all cavities explode simultaneously. 

The proposed solution procedure well 
reproduces many of the dynamical features of the 
phenomenon under investigation, but significant 
improvements are still possible and advisable for a 
correct reproduction of the gas cavity-fluid-
structure interaction. In particular, we are 
currently working along the following lines of 
research: 

 Full coupling of the 3D local flow solutions 
with the structural solution. This will enable 
feedbacks of structural dynamics on the 
flow; 

 Modelling of the interaction of the waves 
reflected by the structure with the gas cavity. 
This will lead to a dynamical evolution of the 
boundaries between the 1D and 3D solution 
domains; 

 Give proper account of cavitation 
phenomena. This will permit realistic 
computations such that large negative 
pressures at the structure will force phase 
changes. 
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