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ABSTRACT 43 

Digital soil mapping (DSM) involves the use of georeferenced information and statistical 44 

models to map predictions and uncertainties related to soil properties. Many remote regions of 45 

the globe, such as boreal forest ecosystems, are characterized by low sampling efforts and 46 

limited availability of field soil data. Although DSM is an expanding topic in soil science, little 47 

guidance currently exists to select the appropriate combination of statistical methods and model 48 

formulation in the context of limited data availability. Using the Canadian managed forest as a 49 

case study, the main objective of this study was to investigate to which extent the choice of 50 

statistical method and model specification could improve the spatial prediction of soil properties 51 

with limited data. More specifically, we compared the cross-product performance of eight 52 

statistical approaches (linear, additive and geostatistical models, and four machine-learning 53 

techniques) and three model formulations ("covariates only": a suite of environmental covariates 54 

only; "spatial only": a function of geographic coordinates only; and "covariates + spatial": a 55 

combination of both covariates and spatial functions) to predict five key forest soil properties in 56 

the organic layer (thickness and C:N ratio) and in the top 15 cm of the mineral horizon (carbon 57 

concentration, percentage of sand, and bulk density). Our results show that 1) although strong 58 

differences in predictive performance occurred across all statistical approaches and model 59 

formulations, spatially explicit models consistently had higher R2 and lower RMSE values than 60 

non-spatial models for all soil properties, except for the C:N ratio; 2) Bayesian geostatistical 61 

models were among the best methods, followed by ordinary kriging and machine-learning 62 

methods; and 3) comparative analyses made it possible to identify the more performant models 63 

and statistical methods to predict specific soil properties. We make modeling tools and code 64 
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available (e.g., Bayesian geostastical models) that increase DSM capabilities and support 65 

existing efforts towards the production of improved digital soil products with limited data. 66 

 67 

Keywords: digital soil mapping, boreal forest, spatial autocorrelation, Bayesian analyses, 68 

machine-learning, random forests, boosted regression trees, kriging, geostatistic, cross-69 

validation. 70 
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HIGHLIGHTS: 88 

• Little guidance exists for selecting statistical models and methods in DSM with limited data. 89 

• We performed quantitative comparisons among a range of statistical models and methods. 90 

• Spatially explicit statistical models usually performed better than non-spatial models. 91 

• Bayesian geostatistical models performed the best, followed by ordinary kriging and machine-92 

learning methods. 93 

• Our study provides modeling tools and guidance that further improve DSM capabilities. 94 

 95 
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1. Introduction  111 

Spatially explicit soil information is required to assess potential land use, predict 112 

vulnerabilities and implement biogeochemical models forecasting the impact of human activity 113 

and climate change on terrestrial ecosystems, as well as on the services they provide (Adhikari 114 

and Hartemink, 2016; Folberth et al., 2016). Considerable efforts have been made by the 115 

research community to harmonize and define common specifications of soil data sets from 116 

different origins (Arrouays et al., 2014). These efforts have led to the creation of large soil pedon 117 

databases that facilitate the mapping, monitoring and modeling of ecosystem processes at 118 

multiple spatial scales, making it possible to predict vegetation shifts (Kuhn et al., 2015) and 119 

changes in ecosystem productivity (Maire et al., 2015). Key outcomes of these advances 120 

culminated in the release of soil raster products at continental (Hengl et al., 2015) and global 121 

(Hengl et al., 2014) scales, together with quantitative estimates of uncertainty associated with 122 

predicted soil properties. The availability of soil quantitative estimates is a significant step 123 

toward integrating soil indicators into the assessment of ecosystem function and vulnerability 124 

(Folberth et al., 2016).  125 

Digital soil mapping (DSM) involves the use of numerical methods to fit and validate 126 

statistical models on georeferenced soil information (dependent variables) using environmental 127 

covariates (independent variables) that represent soil-forming factors, and to map predictions and 128 

their uncertainty at a specified spatial resolution over a focal study area. Environmental 129 

covariates are obtained from various sources, including remote sensing products and digital 130 

elevation models (McBratney et al., 2003). When detailed expert-based soil maps are available, 131 

techniques of spatial disaggregation of polygon information are often used (Bui and Moran, 132 

2001; Lamboni et al., 2016). However, over large regions, and more typically in forested regions, 133 
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expert-based soil maps are often unavailable and the scorpan model approach (see McBratney et 134 

al., 2003), which matches environmental covariates with soil point data (pedons), is commonly 135 

used. A key challenge in DSM is that there is almost always a shortage of soil pedon data, which 136 

may lead to low model accuracy and/or misrepresentations of predicted soil attributes (Ahrens et 137 

al., 2008). How to make the maximum use of sparse data is thus a recurrent challenge in soil 138 

science. At the same time, this challenge offers a growing opportunity to develop new statistical 139 

approaches that improve soil predictive mapping.  140 

Canada's forests, which cover over 390 million ha of land and represent 10% of the 141 

world's forest cover, are representative of this situation since only limited soil pedon database are 142 

available at the national level. Over the last decades, the pool of available numerical methods 143 

and statistical models combined with an increase in computing power and data availability have 144 

tremendously boosted DSM capabilities with limited data (McBratney et al., 2003; Grunwald, 145 

2009; Brevik et al., 2016). Various new modeling tools are now freely available to predict and 146 

map soil types as well as continuous or discrete soil properties. The quality of these predictive 147 

soil maps, however, remains highly variable and depends of the interplay among four main key 148 

components: 1) the availability and quality of the data for both soil profiles and environmental 149 

covariates; 2) the inherent variation in nature complexity and heterogeneity of any focal soil 150 

property across spatial scales and soil depth; 3) the specification of statistical models (e.g., the 151 

choice of covariates, with linear vs non-linear effects, with simple vs interaction effect terms, 152 

with hierarchical structures or not, with the inclusion or not of a spatial component); and 4) the 153 

choice of statistical framework (e.g., Bayesian vs frequentist), statistical method and algorithm to 154 

fit these models (see Fig. 1), hereafter referred as ‘statistical methods’.  155 
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Machine-learning techniques, in particular, have become very popular in predictive 156 

modeling (Hastie et al., 2009; Kuhn and Johnson, 2013), especially in DSM where numerous 157 

studies use random forests (Grimm et al., 2008), boosted regression trees (Grinand et al., 2008), 158 

k-nearest neighbors (Mansuy et al., 2014), Cubist (Rizzo et al., 2016), support vector machines 159 

(Were et al., 2015), and artificial neural networks (Behrens et al., 2005). In addition the choice of 160 

of statistical method, the choice of statistical models (model specification) includes the use of 161 

non-spatial vs spatially explicit models. When the geographical locations of sample plots are 162 

recorded, spatially explicit models are often used to account for spatial autocorrelation in the 163 

data or in model residuals (McBratney et al., 2003; Dormann et al., 2007; Hengl 2009; Beale et 164 

al., 2010; Banerjee et al., 2014), which often improves the accuracy of predictions as well as the 165 

predictive performance of the models (Beguin et al., 2012).  166 

Although every spatial statistical method has its intrinsic way of modeling spatial 167 

correlation structure in the data (Li and Heap, 2014), the following are the most common in 168 

practice: 1) using additional covariates that are parametric or non-parametric functions of the 169 

sample geographic coordinates, such as in trend surface analyses with linear or additive models 170 

(Dormann et al., 2007), in spatial filtering regression (e.g., Moran Eigenvectors; Dray et al., 171 

2006) or in autocovariate regression (Dormann et al., 2007); 2) using spatial covariance structure 172 

in the variance-covariance matrix with parametric function (e.g., variograms), such as in 173 

generalized least squares (GLS) models (Dormann et al., 2007) or in regression-kriging (Hengl et 174 

al., 2004); 3) using weighted matrices of interactions among neighboring sites, such as in 175 

conditional (CAR) and simultaneous (SAR) autoregressive models (Banerjee et al., 2014); and 4) 176 

using Bayesian hierarchical models where effects of the covariates, spatial effects and nugget 177 

effects are combined in an additive model (Banerjee et al., 2014). Bayesian methods may be 178 
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computationally heavy, but there has been much recent development that makes them readily 179 

usable for data sets of realistic sizes of an order of 10000 points and bigger (Sun, et al., 2012, 180 

Lindgren and Rue, 2015).  181 

While great efforts by the soil mapping community have led to standardized technical 182 

specifications regarding the spatial entity, the assessment of soil properties to be predicted, and 183 

the handling of uncertainties in DSM (Arrouays et al., 2014), less work has been done to 184 

compare the relative performance of a range of statistical methods and model specifications (e.g., 185 

spatial vs non-spatial) across multiple soil properties. Most DSM studies (but see Heung et al., 186 

2016) use one or a few statistical approach(es) (Poggio et al., 2013; Nawar et al., 2015), typically 187 

with one type of model specification to analyze specific soil data sets, which often makes unclear 188 

the extent to which the combination of particular statistical approach and model formulation 189 

influences the outcome.  190 

The main objective of this study was therefore to investigate to what extent the choice of 191 

statistical methods and model specification could improve the spatial prediction of forest soil 192 

properties with sparse soil data. More specifically, we compared the cross-product performance 193 

of eight statistical methods (linear, additive and geostatistical models, and four machine-learning 194 

techniques) and three different model specifications ("covariates only": model fitted with a suite 195 

of environmental covariates only; "spatial only": model fitted with only a spatial component 196 

derived from geographic coordinates of the plots; and "covariates + spatial": model fitted with 197 

both covariates and a spatial component) to predict five key forest soil properties (thickness and 198 

C:N ratio in the organic layer as well as carbon concentration, percentage of sand, and bulk 199 

density in the top 15 cm of the mineral horizon). 200 

 201 
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2. Material and methods   202 

2.1. Study area 203 

The study area covers 290 million ha of managed forests across Canada and extends from 204 

52⁰ to 138⁰ West and from 42⁰ to 60⁰ North (Fig. 2). The study area encompasses broad 205 

geographical gradients of topography, climate and vegetation (see details in Table 2) that 206 

influence soil formation. To predict soil properties and compare results from different models, 207 

we used a standardized data set of georeferenced soil pits (pedon) composed of ~500 208 

georeferenced ground plots from Canada's National Forest Inventory (NFI; Gillis et al., 2005; 209 

Fig. 2). This field soil data set is similar to the one used in Mansuy et al. (2014). Our analysis 210 

focused on upland forests and therefore did not cover areas dominated by wetlands and non-211 

forested areas (e.g., agricultural lands).  212 

 213 

2.2. Soil data and environmental covariates  214 

NFI soil data have the advantage of having been sampled using a standard methodology 215 

across Canada, making it representative of broad ecological conditions across the country.  216 

However, with about 500 points spaced out at least 20 km apart, NFI data have the disadvantage 217 

of being very sparsely distributed at the national scale. Soil properties in each sample were 218 

measured, recorded by depth classes, and analyzed in the laboratory according to standard 219 

protocols (Gillis et al., 2005). Among the soil attributes available in the database, we selected 220 

five soil properties, both in the organic layer and in the top 15 cm of the mineral horizon, that are 221 

commonly used as ecological indicators in natural resources management projects (Table 1). 222 

Mean, range, and coefficient of variation associated with each of the five selected soil properties 223 

are described in detail in Mansuy et al. (2014). For the statistical analysis, the soil data base was 224 
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randomly split at the beginning of the modeling process to create a training data set and an 225 

independent validation data set (Figs. 2 and 3). We tested different training-validation hold-out 226 

size combinations (90%-10%; 80%-20%; 70%-30%), but as we did not observe any difference 227 

among these combinations, we retained a 90%-10% hold-out partitioning.  228 

We related field soil properties to 12 environmental covariates usually associated with 229 

soil formation as per the scorpan approach (Table 3). We first generated environmental 230 

covariates from a digital elevation model and from spatial climate models at a 250 m resolution. 231 

We retained four different topographic variables derived from the USGS/NASA SRTM 250 grid 232 

map (https://www.usgs.gov) (Table 3). We also used six climate variables derived from the 233 

spatial climate models of McKenney et al. (2011). For vegetation composition, we used derived-234 

MODIS maps of the proportion of coniferous and deciduous species (Beaudoin et al., 2014). We 235 

also tested the use of the surficial geology map of Canada (Geological Survey of Canada, 236 

geogratis.gc.ca) as predictor, but because of a lack of explaining power, these attributes were not 237 

retained in the final analyses. We did not use soil classification maps as predictors because of 238 

their high uncertainty in Canadian boreal forests and because of the low sample size per soil 239 

class. All environmental predictors were raster layers projected into Canada’s Lambert 240 

Conformal Conic with a spatial resolution of 250 m (1 pixel = 6.25 ha), and covered the entire 241 

land base of Canada’s managed boreal forest (Table 3).  242 

 243 

2.3. Statistical methods  244 

We compared the predictive performance of eight different statistical approaches, 245 

including two parametric methods (linear and additive models), four non-parametric methods of 246 

machine learning (boosted regression trees, random forests, Cubist and weighted k-nearest 247 
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neighbors), ordinary and regression kriging, and one method of Bayesian inference with 248 

geostatistical models fitted with the method of integrated nested Laplace approximation (INLA) 249 

(Fig. 3). Justification for the choice of these methods is as follows: 1) except for Bayesian 250 

geostatistical models, these methods encompass the majority of statistical routines currently used 251 

in DSM studies; 2) they include algorithms that are known to be efficient in predictive modeling; 252 

3) they encompass a gradient of complexity; and 4) they can handle spatial dependence 253 

structures in various ways (Li and Heap, 2014). Although we acknowledge that our selection of 254 

methods is not exhaustive, these methods are representative of the ones used in DSM studies and 255 

they suit the purpose of this study. For parametric approaches, we used generalized linear (GLM) 256 

and additive (GAM) models. For machine-learning approaches, we selected four supervised 257 

methods that are used extensively in predictive modeling (Kuhn and Johnson, 2013). Supervised 258 

learning encompasses a wide range of optimized algorithms designed to uncover patterns in 259 

training data, with the primary objective of making accurate predictions based on independent 260 

data (Hastie et al., 2009).  261 

Among the four selected machine-learning methods, we retained two ensemble modeling 262 

techniques: random forests (RF) (Breiman, 2001) and boosted regression trees (BRT) (Friedman, 263 

2001, 2002). Both techniques accommodate a variety of response types and efficiently deal with 264 

missing data and outliers, interactions among predictors, and non-linear relationships between 265 

predictors and the response variable. RF uses a modified bootstrap aggregation (bagging) 266 

algorithm (e.g., Breiman’s algorithm) that fits a high number of independent classification trees 267 

on random subsamples of the original data set (Breiman, 2001). Model predictions are then 268 

estimated as weighted averages across all trees. Weights are calculated according to the 269 

predictive performance of each tree, which ensures that the best trees contribute the most to final 270 
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predictions (Hastie et al., 2009). RF differs from other decision tree methods in that each 271 

regression tree is fitted with a different random subset of covariates based on random subspace 272 

techniques (Ho, 1998). We performed extensive sensitivity analyses on two key parameters: the 273 

maximum number of trees and the number of predictors for each tree. More information on the 274 

theoretical and practical aspects of RF can be found in Breiman (2001), Liaw and Wiener (2002), 275 

and Hastie et al. (2009). 276 

BRT combines large numbers of regression tree models adaptively to optimize predictive 277 

performances (Friedman, 2002) and differs from other decision trees techniques by using a 278 

boosting algorithm (e.g., AdaBoost: Freund and Schapire, 1996). The purpose of a boosting 279 

algorithm is to minimize a loss function averaged over random training data sets and to seek by 280 

the use of successive iterations, to improve predictions on poorly fitted data points (see Elith et 281 

al. (2008) for more details). BRT requires more tuning than RF and we performed extensive 282 

sensitivity analyses on four key parameters: tree complexity or interaction depth (tc), learning 283 

rate or shrinkage parameter (lr), number of trees (nt), and minimum number of observation in 284 

nodes (minobs) (see also Appendix 1.1). A full description of these parameters is beyond the 285 

scope of this study, but detailed information can be found in Elith et al. (2008) and Kuhn and 286 

Johnson (2013).  287 

The third machine-learning method used in this study is Cubist, a rule-based regression 288 

technique developed by Quinlan (1992, 1993), which fits a separate multiple linear model at each 289 

leaf node of a regression tree according to a set of conditional rules (Walton 2008). These rules 290 

have the form of conditional logical statements (if… then…) and divide the training data set into 291 

multiple subsets, where each subset is composed of data points sharing common statistical 292 

properties. A regression model is then fitted separately for each rule/subset. In contrast with 293 
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other tree methods, Cubist allows for more than one conditional statement to be combined at 294 

each intermediate leaf node of a tree. Predictions are then made based on the match with a rule’s 295 

condition and its associated regression model. To improve prediction accuracy, Cubist can be 296 

coupled with a bootstrap aggregation algorithm (committees > 1), where the number of 297 

committee models defines the number of boosting iterations. In addition, Cubist can incorporate 298 

composite instance-based models by varying the number of nearest neighbors. More details on 299 

Cubist and these options can be found here: www.rulequest.com. We performed sensitivity 300 

analyses on two key parameters: the number of committees and the number of nearest neighbors 301 

(see also Appendix 1.1).  302 

The last machine-learning method we tested is derived from the k-nearest neighbors (k-303 

NN) method (Cover and Hart, 1967). The k-NN method is based on the assumption that the more 304 

two observations are similar regarding their range of values for a set of independent variables, 305 

the more their predicted values for a response variable of interest should be close. Predicting 306 

values for a new observation can therefore be made by using the sampled observations from a 307 

training data set that are the closest (= nearest neighbor(s)) to each new observation with respect 308 

to the covariates used (not to be confused with nearest neighbors in geographic space). 309 

Determination of the similarity between new and training samples is based on distance metrics, 310 

and the method has been expanded to a set (k) of nearest neighbors. The weighted k-NN 311 

(KKNN) method extends k-NN by adding the characteristic that sample points within the 312 

training data set that are particularly similar to the new observation should have more weight in 313 

the decision than neighbors that are further away from it (Hechenbichler and Schliep, 2004). The 314 

KKNN method used in this study fits kernel functions to weigh nearest neighbors according to 315 

their similarity distance from each new data point, and uses these weights in combination with 316 
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covariates to make predictions. For each predicted soil variable, we performed sensitivity 317 

analyses on both the type of kernel function for weighing neighbors and the optimal maximum 318 

number (= k) of nearest neighbors (see also Appendix 1.1). 319 

In a Bayesian linear geostatistical model, the dependent variable is described as an 320 

additive combination of latent explanatory components, such as linear effects of independent 321 

variables, a spatial effect indexed by the geographical locations, and a nugget effect representing 322 

a discontinuity from the semi-variogram at its origin. The main advantages of such a model over 323 

the machine-learning methods are 1) the interpretability gained by an explicit model as to how 324 

observations are generated; and 2) in the Bayesian framework, uncertainty estimates are directly 325 

available for all parameters as well as for predictions. The disadvantages of Bayesian methods 326 

are that they can be difficult to implement and are computationally expensive to run. The INLA 327 

methodology (Rue et al., 2009) combined with the recent stochastic partial differential equation 328 

(SPDE) approach to spatial fields (Lindgren et al., 2011), provides a methodological solution to 329 

these limiting factors. Moreover, the INLA R-package makes them easy to use (Lindgren and 330 

Rue, 2015). The main difference between the INLA methodology and the standard use of 331 

Markov Chain Monte Carlo (MCMC) simulations is that INLA is not based on sampling, but 332 

rather on deterministic approximations to integrals, which makes it computationally quicker than 333 

MCMC approaches, while still being very accurate (Rue et al., 2009).  334 

 335 

2.4. Model specifications  336 

To evaluate if patterns of spatial autocorrelation among sample plots could be used as 337 

surrogates for unmeasured covariates and contribute to explaining more residual variation in soil 338 

properties than the variation explained by environmental covariates alone, we fitted and 339 
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compared, for each statistical method, three different statistical model specifications (Fig. 3): 1) a 340 

first type of model (labelled "covariates only") that uses only environmental covariates 341 

(topography, vegetation, and climatic conditions) as predictors. This type of model is non-spatial 342 

because no explicit spatial relationships among sample plots are quantified; 2) a second type of 343 

model (labelled "spatial only") that only uses a spatial component, i.e. a function of the 344 

geographic coordinates of sample plots (latitude and longitude), to predict soil properties. Note 345 

that the specification of spatial functions differs for each statistical method (see section 2.5.). 346 

However, all "spatial only" models share the characteristic that they only consider spatial 347 

locations and distances among plots to predict and map soil properties; 3) the last type of model 348 

(labelled "covariates + spatial") is a combination of the two first types, in which soil properties 349 

are predicted as a function of both environmental covariates and a spatial component that 350 

quantifies possible spatial relationships among sample plots.  351 

 352 

2.5. Spatially explicit models 353 

As the way of quantifying spatial relationships among sample plots varies according to 354 

the statistical method used, we used method-specific spatial functions in the “spatial only” and 355 

“covariates + spatial” models that belong to one of these three classes: kriging, stochastic partial 356 

differential equations, or models that use a function of spatial coordinates (latitude + longitude) 357 

of sample plots directly as predictors. For kriging, we compared local ordinary kriging, and 358 

regression kriging both fitted with an exponential variogram model. We assumed stationarity and 359 

isotropy in all cases. For local ordinary kriging (“spatial only” model), we set the maximum 360 

number of nearest neighbors to 20. In regression kriging (“covariates + spatial” model), a 361 

regression model was first fitted to the data using environmental covariates as predictors, and 362 
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ordinary kriging was performed in a second step on the model’s residuals (Hengl et al., 2004). 363 

Kriged residuals were then added to the predictions of the regression model. In this study, we 364 

compared two regression kriging methods: one in which the relationship between each soil 365 

property and environmental covariates is evaluated through a GLM (Hengl et al., 2014), and the 366 

other in which the relationship between each soil property and environmental covariates is 367 

evaluated through the RF algorithm (Hengl et al., 2015).  368 

For spatial GAMs, we modelled spatial relationships as covariates using a trend-surface 369 

obtained from a two-dimensional spline function on geographical coordinates (Dormann et al., 370 

2007). In addition to the RF-kriging described above, we fitted another spatial RF model using 371 

the geographical coordinates of soil samples directly as predictors along with the other 372 

environmental covariates. As the RF algorithm automatically evaluates interactions among 373 

covariates, the use of geographical coordinates as covariates allowed us to account for possible 374 

latitudinal and/or longitudinal gradients in the effect of environmental covariates on soil 375 

properties. We used the same approach, with the inclusion of geographical coordinates of the 376 

samples as predictors, for BRT, Cubist, and KKNN. For completeness and comparative 377 

purposes, we fitted a linear model with only the latitude and longitude of the sample plots as 378 

simple and linear effect. 379 

For Bayesian geostastistical models, we used INLA together with the SPDE approach 380 

proposed by Lindgren et al. (2011), where the spatial field is described as the solution to a linear 381 

differential equation driven by white noise and involves the construction of meshes on which the 382 

spatial field is defined (see Blangiardo and Cameletti, 2015; Appendix 1.3). With the Bayesian 383 

framework, priors need to be defined for each parameter of the model. We used non-informative 384 

default priors for coefficients of the environmental covariates, and a weakly informative prior for 385 
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the spatial effect (Fuglstad et al., 2015; see Appendix 1.3 for the definition of priors associated 386 

with the spatial effect and the variance of the nugget effect). Overall, the mixture of eight 387 

statistical methods and three different model specifications yielded a total of 24 unique method-388 

model combinations for each soil property (see Fig. 4).   389 

 390 

2.6. Evaluation of predictive performances 391 

All models were calibrated on 90% of the soil data base using cross-validation and 392 

validated on the remaining 10% of the soil data base (see Fig. 3). To address the fundamental 393 

trade-off between model complexity and prediction errors on independent data sets (see p. 220 in 394 

Hastie et al., 2009), we pruned all our models during the calibration stage and only retained 395 

relevant environmental covariates that minimized root mean square error (RMSE) values using 396 

repeated 10-fold cross-validation. We made sure that comparisons among the three types of 397 

model ("covariates only", "spatial only", and "covariates + only") for each statistical method 398 

were valid by retaining the same set of environmental covariates for every predicted soil property 399 

(see Table 1). For all models, we calculated the coefficient of determination (R2) and RMSE 400 

using 10-fold cross-validation repeated 20 times (see Fig. 3) (Bennett et al., 2013). This standard 401 

procedure prevented our analyses from having overfitting issues, while providing fair estimates 402 

of prediction errors (Hastie et al., 2009). Cross-validated R2 was calculated as R2 = 1 - ESS/TSS, 403 

where:  404 

ESS = ∑ (𝑦𝑖 (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − 𝑦𝑖 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 
)𝑖

2  405 

TSS = ∑ (𝑦𝑖 (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − �̅� (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) 
)𝑖

2 406 

We report the quantile distribution (0.025%, 50%, and 97.5%) of cross-validated R2 and 407 

RMSE calculated from 20 runs, which gives us information on the variation in mean cross-408 
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validated R2 and RMSE across repetitions. We reported cross-validated RMSE values as 409 

percentages of the sample mean (RMSE (%) = 100 x RMSE/�̅�). Finally, to ensure independent 410 

validation, we validated all our models in calculating independent R2 between predictions from 411 

cross-validated models with observed values from independent data (Figs. 3 and 5). All models 412 

were run in the R environment (R Core Team, 2015). INLA was run using the ‘R-INLA’ package 413 

(Rue et al., 2009), ordinary kriging was fitted using the ‘gstat’ package (Pebesma and Graeler, 414 

2013), and we used the ‘GSIF’ package for regression-kriging and RF-kriging (Hengl et al., 415 

2016). All other statistical methods and models were run using the ‘caret’ meta-package (Kuhn, 416 

2015) in combination with the following R packages: ‘gbm’ (Ridgeway 2015: BRT), 417 

‘RandomForests’ (Liaw 2015), ‘Cubist’ (Kuhn et al., 2015), ‘kknn’ (Schliep and Hechenbichler, 418 

2015), and ‘mgcv’ (Wood, 2015; GAM). All R-codes used to run our analyses are available in 419 

Appendix 1.    420 

 421 

3. Results  422 

3.1. Performances of statistical methods and models  423 

Our comparative analyses revealed that the choice of the statistical method, the type of 424 

model specification ("covariates only", "spatial only", or "covariates + spatial"), or their 425 

interaction significantly influenced the predictive performance for most soil properties tested in 426 

this study (Figs. 4 and 5). For instance, cross-validated R2 and RMSE values of non-spatial 427 

models for sand content (%) were respectively over 100% higher and lower when using either 428 

RF or BRT (median cross-validated R2 ranging from 0.23 to 0.28; Fig. 4) than when using either 429 

linear or additive models (median cross-validated R2 ranging from 0.04 to 0.13; Fig. 4). On the 430 

other hand, the best cross-validated R2 and RMSE values of "spatial only" models for sand 431 
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content were obtained with INLA/SPDE, followed by ordinary kriging and machine-learning 432 

techniques (median cross-validated R2 ranging from 0.38 to 0.46; Fig. 4). For "covariates + 433 

spatial" models, INLA/SPDE yielded the best predictive performance for sand, followed by 434 

machine-learning techniques and linear regression-kriging (Fig. 4).  435 

Although strong differences in predictive performance occurred across all statistical 436 

methods and model types, models that incorporated a spatial component consistently had higher 437 

cross-validated R2 and lower cross-validated RMSE values than non-spatial models for all soil 438 

properties, except for the C:N ratio in the organic layer (Fig. 4). This result indicates that the 439 

spatial relationships among soil samples contain valuable information that is not captured by 440 

environmental covariates and that the inclusion of spatial information improves the overall 441 

predictive performance (Fig. 4). This improvement was also verified on independent data sets 442 

(Fig. 5). Interestingly, "covariates + spatial" models outperformed "spatial only" models for 443 

only one soil property, the organic layer C:N ratio (Fig. 4). This result highlights that in most 444 

cases in our study, there is a significant redundancy between the variation captured either by 445 

environmental covariates or by spatial functions.  446 

 447 

3.2. Mapping predictions   448 

Mapping the predicted values (mean + standard deviation) from “spatial only” or 449 

"covariates + spatial" models using machine-learning methods with latitude and longitude of 450 

soil samples as covariates occasionally generated spatial discontinuities with sudden transition 451 

patterns along longitude in predicted surfaces (results not shown). Such prediction artefacts, 452 

which could not be detected by analyzing the fit of the model alone, did not occur with spatial 453 

models fitted with INLA or with regression kriging. When spatial relationships among soil 454 
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samples explained a significant part of the total variance (Fig. 4), the spatial distribution of 455 

prediction errors also exhibited strong spatial patterns (Fig. 6D for sand), with clusters 456 

containing the highest level of uncertainty in areas with low sampling density. Inversely, when 457 

the results showed low levels of residual spatial structure, such as for the C:N ratio in the organic 458 

layer (Fig. 4), the spatial distribution of prediction errors was more homogeneous across 459 

landscapes (see Fig. 6E for the C:N ratio). These results may be used to improve data acquisition 460 

strategies.  461 

 462 

4. Discussion 463 

Our main findings demonstrate that, irrespective of the effects of environmental 464 

covariates and of the inherent variation present in soil profile data sets, both the choice of 465 

statistical method and the choice of model type can have a significant impact on the predictive 466 

performance for most predicted forest soil properties tested in this study. These results are 467 

inconsistent with the view that the choice of statistical method and the type of model 468 

specification would have a negligible influence on the performance and accuracy of predicted 469 

soil maps calibrated with limited soil data. Our study shows that selecting one suboptimal 470 

combination of statistical method and model type could lead to a decrease in predictive power as 471 

high as 100% and sometimes higher (see Fig. 4). These results have a number of important 472 

implications for further work on DSM in a context of limited soil data. 473 

Our results indicate that most forest soil properties are characterized by some degree of 474 

spatial autocorrelation that may have different degrees of redundancy with the information 475 

contained in the environmental covariates available. If the spatial information contained in soil 476 

data points overlaps strongly with the one contained in the environmental covariates, including 477 
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both sorts of information in a same model may lead to unnecessary complexity in the model. As 478 

predicted by the bias-variance trade-off, models that are overfitted on training data often have 479 

higher prediction errors with independent data (Hastie et al. 2009). Our results on sand, thickness 480 

and bulk density are in agreement with these predictions as more complex "covariates + spatial" 481 

models fitted with machine learning methods often had lower cross-validated and independent R2 482 

(Figs. 4 and 5) than "spatial only" models. Interestingly, such a pattern did not occur with the use 483 

of the SPDE/INLA approach where either "covariates + spatial" or "spatial only" models were 484 

very similar in terms of predictive performance (see Figs. 4 and 5). At the opposite, if the 485 

information captured by spatial functions and environmental covariates is additive and contains 486 

low levels of redundancy, a model formulation including both the effects of environmental 487 

covariates and an appropriate spatial structure will be useful to decrease prediction errors on 488 

independent data. This raises the question as to whether or not spatial models should be 489 

systematically tested in DSM exercises when soil pit data are limited? A pragmatic answer 490 

would be ‘yes’, but more studies are needed in this area as the benefits of including spatial 491 

correlation structures may also depend on the sampling efforts or the breadth of environmental 492 

gradients present in the study area and in the sampled data.   493 

Under our study conditions, more specifically a very large land base, a limited number of 494 

soil pit data and a high minimal distance between soil pits (> 20 km), "covariates only" models 495 

outperformed "spatial only" models for only one of the soil variables studied: the C:N ratio of 496 

the organic layer. Also, only for this soil property did the "covariates + spatial" models clearly 497 

outperform "spatial only" models. A possible explanation for this result is that forest 498 

composition, which is known to influence soil C to N stoichiometry (Averill et al. 2014), mostly 499 

varies over distances < 20 km because of its strong dependence on local disturbance history 500 
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(Chen et al., 2009). A distance variation < 20 km could not be captured accurately by the 501 

sampling scheme of our data set; hence, the consideration of covariates expressing forest 502 

composition appears to bring relevant information that is non-redundant with that captured by 503 

the "spatial only" models. As for the other soil properties to be predicted, the limited 504 

improvement obtained by adding environmental covariates, once spatial information has been 505 

taken into consideration, indicates that the environmental covariates considered either 506 

contributed little to explaining these soil properties, or that their explaining potential is redundant 507 

with the spatial information contained in the data. Such was the case for climate variables that 508 

varied over large distances (> 100 km) and contributed to predict several forest soil properties in 509 

"covariates only" models, but were redundant in "spatial only" and "covariates + spatial" 510 

models once spatial correlation structures had been taken into account. Although it can be 511 

challenging to identify which ecological process(es) is(are) the cause(s) of the observed patterns 512 

of spatial autocorrelation, the use of spatially-explicit statistical models, together with cross-513 

validation techniques, may at least provide practical alternatives to improve the accuracy of and 514 

decrease prediction errors in digital soil maps calibrated with limited data.   515 

The digital soil maps obtained with the best model fitted with INLA showed patterns 516 

that are consistent with the large-scale gradients observed in existing national soil information 517 

products (Canadian System of Soil Classification: http://sis.agr.gc.ca/cansis/). For example, the 518 

map of sand content (Fig. 6A) highlights the fine texture soils of the Ontario-Quebec Clay Belt 519 

region, formed by the draining of the former proglacial Lake Ojibway around 8,200 BP (Vincent 520 

and Hardy, 1977), as well as the large offshore glaciolacustrine sediment of northern Manitoba 521 

(http://www.gov.mb.ca/iem/geo/). The coarse texture soils, abundant in northern Saskatchewan 522 

(http://publications.gov.sk.ca/) are also apparent. The map of organic layer C:N ratio showed  a 523 
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latitudinal gradient with highest values in the north and  lowest ones in the south, which is 524 

closely associated with the percentage of coniferous species in the canopy of Canadian forests 525 

(Beaudoin et al., 2014). The spatial distribution of bulk density is more complex as it relates to 526 

several soil properties, including soil texture, organic matter content, and soil compaction 527 

(Sequeira et al., 2014). The use of the most performant models substantially improved the 528 

goodness-of-fit obtained from previous national modeling efforts for sand content (+ 131 %), 529 

bulk density (+ 105 %), thickness of the organic layer (+ 205 %), and C:N ratio in the organic 530 

layer (+ 596 %) (Mansuy et al., 2014).  531 

Another implication of our results is that the performance and ranking of modeling 532 

strategies may also depend on the property to be predicted, highlighting the need to move beyond 533 

the single statistical model‒method philosophy for DSM. Clearly, more testing and quantitative 534 

comparisons are needed to get a comprehensive picture of the model-method combination that is 535 

best in specific situations. A significant step forward would be the completion of a comparative 536 

modeling study of soil properties in which the efficiency of a wide range of combinations of 537 

statistical methods and model classes would be evaluated over multiple spatial scales, along a 538 

gradient of sampling density, and across contrasting ecosystems. It would also be relevant that 539 

such a synthesis be expanded to statistical methods not commonly used in soil research. For 540 

instance, the use of Bayesian linear geostatistical models consistently yielded some of the best 541 

predictive performances across the soil properties tested in this study. Although Bayesian 542 

geostatistical models have been used with success in a wide range of applied contexts in 543 

environmental sciences (Rue et al., 2016), it is surprising to note that their use in DSM has been 544 

very limited so far. As our results point out, this might partly be due to the fact that these models 545 

come with an increase in computational time (Appendix 2), require substantial knowledge in 546 
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programming, and involve a relevant choice of priors. However, technical guides available to 547 

non-expert programmers now exist to facilitate the implementation of these types of model 548 

(Blangiardo and Cameletti, 2015), and we freely provide all the scripts needed to replicate our 549 

analyses with k-fold cross-validation and mapping procedures in the R environment. The free 550 

availability of statistical routines to perform comparative analyses in open-access, efficient and 551 

repeatable ways opens new perspectives in this area and provides strong capabilities to non-552 

expert programmers or to researchers working in environments where programming expertise is 553 

limited. 554 

 555 

5. Conclusion 556 

Results from our comparative study suggest that better mapping of soil properties may be 557 

achieved through quantitative assessment when selecting the statistical method and model 558 

specification (spatial vs non-spatial models). Overall, spatially explicit models showed 559 

significantly better predictive performance (R2 and RMSE), with improvements ranging from 560 

10% to more than 100% compared with non-spatial models, depending on the soil property. 561 

Bayesian geostatistical models fitted with INLA showed among the best predictive performances 562 

and mapping properties with our data set. The use of comparative statistical analyses as a 563 

standard modeling practice, which goes beyond the single model‒statistical method philosophy, 564 

would be a valuable asset to increase the development of DSM capabilities. Therefore, this study 565 

constitutes a step forward in the improvement of DSM capabilities by providing a quantitative 566 

assessment of the performance of a variety of spatial techniques coupled with systematic 567 

comparisons with non-spatial models. We provide scripts and suggestions for facilitating the 568 

achievement of this standard in applied research communities with limited computational 569 
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resources and programming expertise. Finally, to avoid overfitting issues and to make 570 

comparison among DSM studies possible, we would recommend that the methodology for model 571 

calibration and validation in DSM studies be better standardized and applied rigorously, for 572 

example, by using repeated k-fold cross-validation. 573 
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TABLES 859 

 860 

Table 1. Description of the five soil properties used in this study. 861 

 862 

Soil horizon Soil property Abbreviation 

Organic layer Thickness (cm)  Thickness 

Carbon:nitrogen ratio C:N 

Mineral horizon 

(0-15 cm) 

Carbon concentration (g/kg) Cmin 

Sand content (%) Sand  

Bulk density (g/cm3) BD 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 
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Table 2. Description of environmental covariates (rasters with pixel resolution of 250 m x 250 889 

m) used to predict each of the five soil properties (see Abbreviations in Table 1) across the 890 

boreal forest of Canada.  891 

 892 

 Predicted soil property 

Covariates Category Definition Mean 

[min;max] 

Sand C:N Cmin Thick

-ness 

BD 

Elevation topography Elevation from the Shuttle 

Radar Topography Mission 

(m) 

563 

[0; 3950] √ √ √ √ √ 

Slope topography Rate of maximum change in 

elevation from each pixel (%) 

4.2 

[0; 64.8] 
   √  

Beers aspect topography Heat index = (1+cos(45-

Aspect))/Slope 

0.99 

[0-2] 
√     

Watersheld 

structure 

topography Local drainage area enclosed 

between the local divide and 

the stream into which each 

cell drains 

483 

[-30; 2582]     √ 

Acmi climate Annual moisture index 

(cm/year) 

43 

[-127; 385] 
√     

Scmi climate Summer moisture index 

(cm/summer) 

-2.5 

[-76.5; 676] 
√     

Pwq climate Precipitation of the warmest 

quarter (mm) 

99 

[0-796] 
√     

Tcm climate Lowest temperature of any 

monthly minimum (°C) 

-12.5 

[-48.9; 6.1] 
  √  √ 

Thm climate Highest temperature of any 

monthly maximum (°C) 

11.2 

[-4.5; 37.8] 
    √ 

Tap climate Total annual precipitation 

(mm) 

315 

[0; 4302] 
   √  

Deciduous vegetation Percentage of deciduous 

species in the pixel (%) 

19.0 

[0; 100] 
√ √ √ √ √ 

Coniferous vegetation Percentage of coniferous 

species in the pixel (%) 

58.3 

[0; 100] 
√ √ √ √  

 893 

 894 
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FIGURES 904 

Fig. 1. Conceptual framework showing the interrelationships among the four main components 905 

that influence predictive errors in digital soil mapping when using statistical approaches. Getting 906 

the lowest prediction errors between observed and predicted soil properties on independent data 907 

is the main objective of digital soil mapping. Conceptually, the causes of prediction errors can be 908 

divided into four main components: (1) the quality and availability of the data (e.g., sample size, 909 

quality, spatial resolution and precision); (2) nature complexity or the level of heterogeneity in 910 

soil properties; (3) the choice of statistical framework (e.g., Bayesian vs frequentist), statistical 911 

method and algorithm, hereafter referred as ‘statistical methods’; and (4) the choice of statistical 912 

model (e.g., spatial vs non-spatial, linear vs non-linear effects, simple vs interaction effect 913 

terms). Each of these components can act alone (bold arrows) or interact with other components 914 

(dashed arrows) to shape the accuracy of digital soil maps.  915 
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Fig. 2. Map showing the extent of the study area in Canada’s managed forest (dark green) and 942 

the spatial distribution of soil profile data (black triangles). Soil profiles used as training data sets 943 

are shown as black triangles and soil profiles used for independent validation are shown as red 944 

triangles.   945 
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Fig. 3. Diagram showing the main steps of the modeling process used in this study. The ‘model 958 

specification’ step involves the selection of three different model types: 1) "covariates only": 959 

non-spatial models using only environmental covariates (topography, vegetation, and climate 960 

conditions) as predictors; 2) "spatial only": spatial models using only a function of the 961 

geographic coordinates of sample plots to predict soil properties. Note that each spatial function 962 

is different and specific to each statistical method (see Fig. 4); 3) "covariates + spatial": spatial 963 

models that combine both the effects of environmental covariates and a spatial function as above. 964 

Each of these three model types is fitted with every statistical method/framework (N = 8) at the 965 

‘selection of statistical method/framework’ step. This process yielded a total of 24 combinations 966 

of model type-statistical method for each soil property. The predictive performances of each of 967 

the 28 combinations are compared using 10-fold cross-validation repeated 20 times. Predictions 968 

are then compared with values observed on independent data.  969 

 970 

 971 

 972 
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Fig. 4. Cross-validated R2 and root mean square error (RMSE %) (median ± 95% quantile 973 

intervals) for five soil properties using 10-fold cross-validation repeated 20 times. Soil variables 974 

of the organic layer: carbon-nitrogen ratio (= C:N ratio organic) and thickness (cm) (= Thickness 975 

organic). Soil variables in the top 15 cm of the mineral horizon: bulk density (g/cm3) (= Bulk 976 

density); carbon concentration (g/kg) (= C mineral), and the percentage of sand (= Sand 977 

mineral). Values are depicted as a function of the statistical method (y-axis) and type of model 978 

used (see colors in the legend). Note that for visual clarity, RMSE quantile values for Thickness 979 

organic and C mineral variables have been downscaled by a factor two and three, respectively 980 

(see right corner of each panel). Acronyms of statistical methods: INLA = integrated nested 981 

Laplace approximation; Kriging = kriging (ordinary or regression-kriging); GLM = generalized 982 

linear model; GAM = generalized additive model; Cubist = Cubist algorithm; KKNN = weighted 983 

k-nearest neighbors; BRT = boosted regression trees; RF = random forests; SPDE = stochastic 984 

partial differential equation approach. 985 
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(Figure 4. continued) 1003 
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Fig. 5. Values of R2
independent (panel in the upper-left corner) and comparison between predicted 1027 

and observed values of bulk density (all other panels) based on independent data as a function of 1028 

model specification ("covariates only", "spatial only", and "covariates + spatial") and the 1029 

statistical method used. Crosses and points’ colors are identical to those in Fig. 3. The black line 1030 

represents a 1:1 relationship.  1031 
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Fig. 6. Predicted soil properties (mean + standard deviation) obtained with the best model 1036 

("covariates + spatial") fitted with INLA (see Table 2 and Fig. 3). Left-hand side panel: 1037 

predicted posterior mean for (A) sand content (%) in the top 15 cm of the mineral horizon; (B) 1038 

C:N ratio in the organic layer; and (C) bulk density in the top 15 cm of the mineral horizon. 1039 

Right-hand side panel: posterior standard deviation (= uncertainty maps) of the same variables as 1040 

in the left-hand side panel (D, E, F). 1041 
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