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ABSTRACT 
In numerical simulations with moving bodies, and often 

with complex geometries, generation of high-quality body-fitted 

grids is a cumbersome and time-consuming task. An alternative 

is to use a fixed (Cartesian) background grid, and allow the 

body to move freely over this. The challenge in such methods is 

to transfer the body-boundary conditions of the moving body to 

fixed grid nodes in a rational manner. In this paper, an 

Immersed Boundary Method (IBM) is proposed to simulate 

potential flow about a moving body on a Cartesian background 

grid. The recently developed Harmonic Polynomial Method, 

proven both accurate and computationally efficient, is used to 

represent the velocity potential in the fluid. The body-boundary 

conditions are interpolated by using ghost nodes inside the body 

with mirror interpolation points in the fluid.  

The method is first tested for a fixed cylinder in oscillatory 

flow to determine the accuracy of the proposed IBM, before 

considering the equivalent case of an oscillating cylinder in still 

fluid. Finally, a steadily-advancing cylinder is studied, which is 

considered as the most challenging case with respect to spurious 

pressure oscillations. These are known to be a challenge in 

many IBMs, and special attention is therefore devoted to this 

aspect.  

INTRODUCTION 
In fluid-flow problems with significant nonlinear features, 

it is desirable to solve fully nonlinear hydrodynamic equations 

in time domain. For simulation of flow around submerged or 

semi-submerged bodies, the traditional approach is to use body-

fitted grids that conform to the body boundary. For a moving 

body this means that, every time the body boundary moves, the 

grid needs to be updated accordingly. This may lead to 

difficulties in generating high-quality grids for challenging 

geometries and large boundary motions, and generally involves 

increased computational cost. In addition, assumptions that 

restrict the range of allowable motion may be necessary. As an 

alternative fixed-grid methods have been developed, where the 

grid nodes do not generally coincide with the body boundary. 

This approach offers significant gains in computational 

efficiency and eases the process of grid generation. The 

challenge in such methods is to obtain sufficient accuracy for 

the flow features at the body boundary. 

For a fixed (Cartesian) grid, body-boundary conditions on 

immersed boundaries are projected onto surrounding nodes. 

Schemes for doing this are commonly denoted by Immersed 

Boundary Methods (IBM). Peskin [1] was the first to introduce 

this idea to simulate the viscous flow patterns around heart 

valves. The effect of the flexible immersed boundaries was 

replaced by a force field that only attained nonzero values in the 

immediate neighborhood of the immersed boundary. This 

approach represents a diffusive-interface (continuous forcing) 

method, where the boundary conditions effectively are smeared 

over a finite band of grid nodes. Later, IBMs belonging to the 

family of sharp-interface (discrete forcing) methods have 

emerged [2]. These generally offer higher accuracy than 

diffusive-interface methods, since the sharp nature of the 
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boundary is better preserved.  

A well-known challenge in sharp-interface IBMs is the 

occurrence of spurious oscillations in the fluid pressure, see e.g. 

[3], [4]. These are mainly related to the numerical evaluation of 

time derivatives. In continuous forcing methods, such as [1], 

oscillations are avoided more easily due to the diffuse nature of 

the interface. A sharp-interface method known as the cut-cell 

method may also be helpful in removing numerical oscillations. 

In this case cells that are intersected by boundaries are modified 

to conform to them. This method may however lead to accuracy 

issues when very small cells emerge from the cutting algorithm, 

which may be remedied by cell-merging schemes. However, 

such schemes may be nontrivial to implement, especially in 

three dimensions [5]. 

The present paper proposes a sharp-interface IBM for the 

recently established Harmonic Polynomial Cell (HPC) method 

for inviscid flows. This was developed by Shao & Faltinsen 

[6] - [8] as an efficient alternative to solve fully nonlinear 

potential flow problems. In [6], [7] it is demonstrated that the 

HPC method is highly competitive in terms of accuracy and 

computational efficiency compared to both a Boundary Element 

Method (BEM) and a Finite Volume Method (FVM). The 

method was further applied to sloshing in rectangular tanks, a 

fully nonlinear wave tank in two- and three dimensions and 

nonlinear wave diffraction around bottom-mounted cylinders. 

Fredriksen et al. [9] successfully coupled a HPC-based 

potential-flow solver with a laminar Navier-Stokes solver in two 

dimensions by applying a domain-decomposition strategy to 

study the gap resonance in a moonpool with small forward 

speed. Generally, their results were in good agreement with 

experiments. Liang et al. [10] applied the HPC method to study 

several additional problems relevant for marine hydrodynamics, 

including violent (nonlinear) sloshing in a two-dimensional 

tank. Very good agreement with experimental results was 

achieved indicating that, as long as the underlying assumptions 

of potential flow are valid, the method is capable of handling 

strongly nonlinear free-surface flows. 

The accuracy, computational efficiency and relatively easy 

numerical implementation of the HPC method make it a well-

suited tool to simulate flows around bodies undergoing arbitrary 

motions. Since an IBM preserves the ease of implementation as 

well as the computational efficiency of the HPC method, this 

seemingly represents a more attractive choice than a body-fitted 

grid for the purpose. Moreover, since the HPC method is based 

on a linear combination of polynomials, the additional 

interpolation required by an IBM is natural. The challenge is 

then to preserve the accuracy of the method in a numerical 

implementation. 

In the present IBM, ghost nodes inside the body are applied 

to reconstruct the velocity and pressure at the immersed 

boundary. A concept is introduced to deal with time derivatives 

for nodes emerging from inside the body when the body is 

moving. 

The paper is organized as follows: First, the numerical 

formulation is outlined, including a brief summary of the HPC 

method and a more thorough description of the deployed IBM. 

Then, the accuracy of the IBM is demonstrated for a two-

dimensional cylinder in three conditions: fixed in an oscillatory 

inflow, oscillating and steadily advancing in still fluid. Finally, 

some concluding remarks and notions on further work are 

given. 

NUMERICAL FORMULATION 

Harmonic Polynomial Cell Method 
 A brief summary of the HPC method as formulated by Shao 

& Faltinsen is given. For an in-depth description, reference is 

made to [6], [7].  

In the two-dimensional form of the HPC method, the 

computational domain is divided into overlapping quadrilateral 

cells. Each cell contains nine grid nodes: Node 1 – 8 along the 

boundaries and node 9 in the cell center. The velocity potential 

in each cell is written as a linear interpolation of the velocity 

potential i  in the eight nodes 1,...,8i   along the cell’s edges, 

   
8 8

,

1 1

, ,j i j i

i j

x y c f x y 
 

 
 
 
 

  . (1) 

Here ( , )jf x y  are the values of the eight harmonic polynomials 

listed in [6] evaluated in a generic ( , )x y  set coincident with the 

local cell coordinates; ,j ic  are elements of the inverse of the 

square matrix [ ]D  with elements , ( , )i j j i id f x y . Each 

harmonic polynomial satisfies the Laplace equation, so that the 

velocity potential in each cell automatically satisfies the 

continuity equation for an inviscid, incompressible fluid: 

   2, , 0u x y x y    . (2) 

The origin of the local coordinate system is chosen to 

coincide with the location of the ninth node in each cell. At the 

origin, ( , ) (0,0)x y  , only 1 1 0f   . Thus, for the central node 

in each cell the following equation applies: 

 
8

9 9 9 1,

1

0, 0 i i

i

x x y y c  


      . (3) 

Eq. (3) connects the entire computational domain, in that the 

velocity potential in every node is expressed as a combination 

of the potential in the eight surrounding nodes.  

For nodes along the edges of the computational domain, 

either Dirichlet or Neumann conditions apply. A Dirichlet 

condition directly provides the value of the velocity potential, 

whereas a Neumann condition is given as 

     
8 8

,

1 1

, , ,j i j i

i j

x y c f x y n x y
n




 

 
   

  
 

  , (4) 

where ( , )n x y  is the two-dimensional normal vector in ( , )x y . 
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Immersed Boundary Treatment 
For the flow around an impermeable body, a zero-flux 

Neumann condition applies at the boundary, 

     , , ,b b b b b bx y n x y U n x y    , (5) 

where ( , )b bx y  is a point along the body boundary with normal 

vector ( , )b bn x y  and U  is the local rigid-body velocity.  

Eq. (5) is straightforward to impose in a body-fitted grid. 

However, for a complex body geometry, it may be nontrivial to 

construct a suitable body-fitted grid in the first place. Moreover, 

for moving bodies, the grid must be updated at every time step. 

In the context of the HPC method, this implies that the elements 

of the local matrices in Eq. (1) have to be recomputed for each 

cell at every time step. Altogether, the process of re-gridding 

can significantly increase the computational time for dense 

grids or large computational domains. It should be noted that 

the computational burden due to re-gridding often can be 

reduced by only deforming the grid in a confined region close 

to the moving boundary. This does nonetheless put a restriction 

on the allowable motion amplitudes of the body. 

The IBM described in the following belongs to the family 

of sharp-interface methods [2], using ghost nodes inside the 

immersed boundary to interpolate the body boundary 

conditions. The interpolation scheme is inspired by the ghost-

cell method used by Tseng & Ferziger [11], although the 

fundamental flow equations differ. This section highlights key 

aspects of the IBM scheme.  

Body Discretization 

Uniformly distributed discrete Lagrangian marker points 

that move with the rigid-body velocity are used to track the 

boundary of the moving body. Linear segments between 

markers describe the body surface. The density of the 

background grid does not restrict the number of applied 

Lagrangian markers, but an excessive amount of markers may 

increase the computational time unnecessarily. Alternatively, a 

signed distance function such as used by Liu & Hu [12] could 

also have been used to track the position of the body boundary. 

Node Identification 

The first step in the applied IBM is to identify which grid 

nodes are inside or outside the body boundary. Further 

subdivision categorizes the nodes inside the body into four 

groups as illustrated by FIGURE 1: The first ghost-node layer 

contains the nodes that are next to the body boundary, the 

second layer contains the nodes inside the body that are next to 

the first layer and the third layer contains the nodes that are next 

to the second layer. The remaining interior nodes are without 

any specific purpose. However, we allow a fictitious interior 

flow to exist by enforcing Eq. (3) for these nodes, which 

appears to increase the solvability of the global matrix system 

somewhat.  

For a moving body, node identification is required at every 

time step. This involves a double loop over all grid nodes and 

all Lagrangian body markers. A more efficient scheme is 

available by only considering grid nodes that are within a 

certain distance from the body’s position at the previous time 

step, i.e. a confined search region. Liu & Hu [12] deployed this 

type of approach to limit the computational cost involved in 

tracking the body boundary in their level-set method.  
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FIGURE 1: Ghost nodes and interpolation points for an 

example case with a medium dense background grid.  

Body Boundary Condition 

The body boundary condition in Eq. (5) is transferred to 

the three layers of ghost nodes by deploying an interpolation 

scheme along the direction of the body’s local normal vector as 

illustrated in FIGURE 2. A cubic interpolation is chosen to 

interpolate the normal fluid velocity, giving third-order 

accuracy for the boundary condition in the spatial interpolation 

variable. The rationale behind this is to have an interpolation 

scheme of comparable order as the underlying HPC method, 

which has between third- and fourth order accuracy in the grid-

separation distance [6].  

The normal fluid velocity in a point ( , )x y  near the body 

boundary is approximated by a third-order polynomial,  

 
  2 3

0 1 2 3,
,b bx y

n x y a a r a r a r      . (6) 

( , )b bn x y  is the local normal vector related to a certain ghost 

node, and r is the distance from the ghost node along the 

direction of this normal vector. The normal vector for a given 

ghost node is taken as a weighted average of the normal vector 

of the body segment closest to the ghost node and one neighbor 

body segment on each side of this. This ensures a smooth 

variation of the body normal vectors as the body moves over the 

grid, which is found helpful in reducing numerical oscillations 

in the velocity potential. 

The unknown coefficients in Eq. (6) are expressed through 

the normal velocity at the ghost node and at three uniformly 
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distributed interpolation points in the fluid region (FIGURE 2). 

The distance between the points is 2s, where s  is the normal 

distance between the ghost node ( , )g gx y  and its normal 

projection ( , )b bx y  onto the body boundary. FIGURE 1 shows 

that, as a result, interpolation points are distributed at varying 

distances from the body boundary. 

 
FIGURE 2: The boundary condition at the body point ( , )b bx y  

is interpolated by using the ghost node ( , )g gx y  and three mirror 

points 1 3 1 3( , )x y  . The red line illustrates a linear body segment. 

Applying Eq. (6) to all four interpolation points in 

FIGURE 2 gives an expression 1{ } [ ] { }a A v  for the unknown 

coefficients , 0,...,3ia i  , where 1[ ]A   is a coefficient matrix and 

{ }v  is a vector with the normal velocity ( , )b bn x y   in the 

ghost node ( , )g gx y  and in the three mirror points 1 3 1 3( , )x y  . 

The normal velocity ( , ) ( , )b b b bx y n x y   at the immersed 

boundary can then be written as the vector product 
2 3 1{1 }[ ] { } { }{ }s s s A v b v  , where { }b  is a vector with four 

coefficients , 0,...,3ib i  . Using Eq. (4) to express the 

components of { }v , and applying the body-boundary condition 

in Eq. (5), the Neumann condition for the ghost node can be 

written as 

   

   

   

   

8 8
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0 0

,1
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b b

b b b b

U n x y
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b b



  

. 
(7) 

The indices 0 3k k  denote the cells associated with the ghost 

node and interpolation points 1 – 3, see FIGURE 2: 0k  is the 

cell that contains the ghost node and is closest to the fluid 

domain, whereas 1 3k k  are the fluid cells where the 

interpolation points 1 – 3 are closest to the cell center. 

Eq. (7) is enforced for all ghost nodes (layer 1 – 3) inside 

the body at every time step. However, if a ghost node is very 

close to the body boundary, the interpolation scheme can cause 

numerical inaccuracies due to very densely spaced interpolation 

points. So, when the normal distance from a ghost node to the 

body boundary s is smaller than some predefined tolerance 
tols , 

Eq. (7) is replaced with the lowest-order approximation 

possible, i.e. the body-boundary condition is enforced directly 

on the ghost node, 

     
8 8

0 0 0 0

,

1 1

, , ,k k k k

j i j g g b b i b b

i j

c f x y n x y U n x y
 

 
    

 
  . (8) 

2 20.02tols x y    is found to be a reasonable choice, where 

x  and y  are the grid-separation distances in x and y direction, 

respectively. Eq. (8) is expected to have small influence on the 

overall accuracy, since tols s  for most ghost nodes. 

Assembly of Global Matrix System 

Eq. (3), (4), (7) or (8) and eventual Dirichlet conditions 

constitute a global matrix equation for the velocity potential in 

all grid nodes. This has a narrow-banded coefficient matrix with 

dimension ( , )x y x yn n n n , where 
xn  and yn  are the number of grid 

nodes in x and y direction, respectively. An example of the 

structure of a coefficient matrix in this system is shown in 

FIGURE 3. When the HPC method is applied with a body-fitted 

grid, there are at most nine nonzero elements in each row of the 

global coefficient matrix. These are indicated as “Basic HPC” 

in the figure. With the applied IBM, there can be up to 32 

nonzero elements in the rows connected with ghost nodes inside 

the body. These elements do not deviate much from the 

diagonal matrix. Moreover, the number of ghost nodes will 

always be relatively small compared to the total number of 

nodes, so that the matrix is still essentially a diagonal matrix. 

Therefore, the IBM does not compromise the computational 

efficiency that is achievable with the HPC method due to its 

sparse coefficient matrix significantly.  

 
FIGURE 3: Nonzero entries in global coefficient matrix. Rows 

inside the stapled square correspond to the enforcement of the 

body-boundary condition at the ghost nodes.  

Fluid 

Inside  
body 
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An iterative solver applying the GMRES algorithm and 

with a tolerance 0.5E-08 is used to solve the global equation 

system at each time step in the present work. 

Calculation of Fluid Pressure 

The fluid pressure follows from Bernoulli’s equation [13], 

 
21

, ,
2

p x y t
t


  


   


, (9) 

where the hydrostatic pressure term is omitted. The quadratic 

(last) term in Eq. (9) is easily computed for any point by taking 

the analytical spatial gradient of Eq. (1), whereas a backward 

Finite Difference Method (FDM) is used to evaluate the linear 

term. A second-order FDM uses the value of the velocity 

potential at the present and previous time step, 

     , , , , , ,x y t x y t x y t t

t t

    


 
, (10) 

where t  is the time step. A third-order approximation can be 

obtained by fitting a Lagrange polynomial to the velocity 

potential, 2 3

1 2 3 4( ) ( )c c t c t c t        , using the value of the 

velocity potential at the present and the previous three time 

steps to determine the unknown coefficients. The linear pressure 

is then given as 

 
 

2

2 3 4

, ,
2 3

x y t
c c t c t

t


    


, (11) 

which better approximates the temporal curvature of the linear 

pressure. However, as illustrated later it may cause additional 

pressure oscillations compared to Eq. (10) for moving bodies. 

Integration of the Pressure 

The fluid pressure at the body boundary is interpolated by 

using a similar scheme as for the normal velocity in Eq. (6), i.e. 

  2 3

0 1 2 3p r d d r d r d r    . (12) 

The same interpolation points (separated by a distance 2s) as 

used for the body-boundary condition are employed to 

determine the coefficients , 0,...,3id i  . The interpolation 

variable r is defined in FIGURE 2 as the distance from the 

relevant ghost node in the direction of the local body normal 

vector. The pressure in each interpolation point is taken as a 

weighted sum of the pressure in the nine grid nodes of the cell 

that has the interpolation point closest to its center node. 

The pressure associated with ghost nodes in layers 1 and 2 

(see FIGURE 1) is interpolated at the position of the immersed 

boundary with Eq. (12) and integrated over the body surface. 

The procedure for doing this is as follows: Each of the ghost 

nodes is projected normally onto the piecewise linear body 

surface, defining an intersection point. Then, each ghost node i 

is associated with an area 
idA  of the body that extends from the 

intersection point for this particular ghost node and halfway 

towards the adjacent intersection points for neighbor ghost 

nodes on both sides (see FIGURE 4). Thus, in practice, a new 

body discretization which depends more on the number of ghost 

nodes than on the number of Lagrangian markers is defined for 

integrating the fluid pressure. 

 
FIGURE 4: Assignment of pressure areas (blue curves) to 

ghost nodes. 

Thus, with N  ghost nodes in layer 1 and 2, the integrated 

pressure-force vector on the body is 

 
1

N

i i i

i

F t p dA n


  , (13) 

where 
ip  is the pressure at the immersed boundary interpolated 

from Eq. (12) and 
in  is the normal vector directed out of the 

body. FIGURE 5 shows the convergence of the total integrated 

surface area and the variation of 
idA  for a cylinder as a function 

of the number of grid nodes per cylinder diameter. The error in 

the total area decreases at a rate 2.2( )D x   as the grid density, 

and thus the number of ghost nodes, increases. At the same 

time, the 
idA  values become more homogenous. 
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FIGURE 5: Left: Ratio between total area tot iA dA  and 

analytical area D  versus the number of grid nodes per cylinder 

diameter D x . k is the exponent of the error. Right: Spread of 

incremental area versus D x . 

Numerical oscillations in the pressure force associated with 

sharp-interface IBMs are partly due to the role conversion of 

different grid nodes when the body moves over the grid [3]. In 

particular, when new grid nodes are activated, the time history 

of the velocity potential in these nodes does not have a physical 

meaning. This causes nonphysical values in the FDM scheme 

used to estimate the linear pressure term in Eq. (9). The 

deficiency is remedied in the present method by imposing the 

body-boundary condition in Eq. (7) on all three layers of ghost 

nodes, while only using the two outer layers in the pressure 

integration scheme. This is done because nodes that emerge 
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from the interior region into the third ghost-node layer do not 

have a time history directly related to the exterior flow. 

Differently, when nodes emerge from the third layer into the 

second layer of ghost nodes, the velocity potential at the 

previous time step was physically consistent with the exterior 

flow through the imposed boundary condition. This puts certain 

restrictions on the grid density and the time step, i.e. the body is 

not allowed to move more than one grid spacing per time step if 

Eq. (10) is applied or more than one third of the grid spacing 

per time step if Eq. (11) is applied. 

It should be noted that other authors have used different 

treatments to reduce spurious oscillations associated with 

numerical time derivatives. Liu & Hu [12] used an extrapolation 

scheme based on pseudo-points inside the body to reconstruct 

the fluid variables. Lee et al. [3] added artificial source terms in 

the momentum equation, thereby reducing force oscillations on 

a moving body by better preserving global conservation laws. 

Seo & Mittal [4] also identified mass sources associated with 

the generation of fresh and dead cells as the main cause of 

spurious oscillations, and applied a cut-cell based approach to 

mitigate them. 

NUMERICAL RESULTS FOR A TWO-DIMENSIONAL 
CYLINDER IN INFINITE FLUID 

Fixed Cylinder in Oscillatory Flow 

We first consider a fixed cylinder with radius 5R m  in an 

oscillatory flow, where the ambient flow is given as 

 , , cosax y t iU t    (14) 

with 11aU ms  and 10.5s  . The body-boundary condition 

on the cylinder surface is given as 0n G    . A square 

computational domain is applied, with the cylinder located in 

the center of the domain (see FIGURE 6). The higher-order 

FDM in Eq. (11) is applied to compute the linear pressure term 

t    . The velocity potential for this case has an analytical 

solution for all points in the fluid, 

 
2

, , cos cosa

R
r t U t r

r
   

 
  

 

. (15) 

Eq. (15) is given in polar coordinates, with 
2 2r x y   and 

1cos ( )x r  . The corresponding analytical force on the 

cylinder is 

22 sinx af R U t    . (16) 

xf  is the force per unit span of the two dimensional cylinder 

with unit 1Nm .  

Two types of boundary conditions are considered along the 

outer boundaries of the computational domain in FIGURE 6. In 

the first case, the analytical solution of the velocity potential in 

Eq. (15) is given as Dirichlet condition along all four 

boundaries. In the second case, the analytical solution is given 

as Dirichlet condition along the upper and lower boundaries and 

as Neumann condition along the left and right boundaries. An 

uniform grid with grid spacing 0.25 1.0m x m    is applied. 

The time step is constant, 0.05t s  , i.e. 251 time steps per 

oscillation period. Thus, the maximum Courant-Friedrichs–

Lewy (CFL) number 
aU t x   varies between 0.05 - 0.25. 

 
FIGURE 6: Computational domain for two-dimensional 

cylinder in oscillatory flow. 

As a measure of the accuracy of the numerical results, we 

compute the L2-error 

 
2 2

2, , , ,

1 1

K K

num i an i an i

i i

L    
 

    (17) 

for the variable    and 
xf  . More in detail, 2,L   is 

computed for a given time step with K N  the number of grid 

nodes (disregarding the interior nodes, see FIGURE 1), whereas 

2, xf
L  is computed over the entire time series with K M  the 

number of time steps. 

The L2-errors are plotted in FIGURE 7 versus the number 

of grid nodes per cylinder diameter D x . The number of 

Lagrangian body-marker points 
bn  is varied, so that the ratio of 

the uniform distance between marker points 
b bds D n  to the 

grid spacing x  is constant, 10bds x  . The convergence of 

the velocity potential is seen to be between third- and fourth-

order in the grid spacing, 3.7

2, ( )L D x

 . This agrees well the 

theoretical order of the applied HPC method in x  [6], [7], and 

with the body-boundary condition interpolation scheme in Eq. 

(6) which is third-order in the normal coordinate r . From 

FIGURE 1, for most of the ghost nodes the distance between 

the associated interpolation points (2s, see FIGURE 2) is so that 

( )r O x  . The error in the integrated force converges at a rate 
2.3

2, ( )
xf

L D x  , which is slower than for the error in the 

velocity potential. This seems to be connected with the 

estimation of the body surface area, which converge at a similar 

rate towards its analytical value in FIGURE 5. This is 

encouraging in the sense that refining the area-integration 

scheme likely can improve the convergence of the force. 

The results in FIGURE 7 indicate that the proposed IBM 

does not compromise the overall convergence of the 

fundamental quantity (the velocity potential) in the HPC 

method. The integrated force has better than second-order 
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convergence, and if only the three data points with coarsest 

grids in FIGURE 7 are included, the convergence is of third 

order. For the highest grid densities, the convergence rates 

decrease somewhat. The reason behind this is not fully 

understood; it could possibly relate to small separation 

distances between ghost nodes and the immersed boundary 

when the grid spacing becomes very small. 
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FIGURE 7: Convergence of velocity potential and longitudinal 

force on fixed cylinder in oscillatory flow. D: Dirichlet 

condition along domain boundaries, D/N: Dirchlet/Neumann 

conditions along domain boundaries. 

It is expected that the convergence of the velocity potential 

shown in FIGURE 7 also applies for other types of geometries 

where the body-curvature varies smoothly. In case of sharp 

corners, where the potential-flow solution becomes singular, 

additional measures such as the local analytical solution 

proposed by Liang et al. [10] would be necessary to retain an 

accurate solution.  

Oscillating Cylinder in Undisturbed Fluid 

The main motivation behind the proposed IBM is to 

remove the difficulties involved in creating and regenerating 

body-fitted grids in simulations with arbitrarily shaped moving 

bodies. It is therefore of interest to consider a harmonically 

oscillating cylinder in still fluid, and compare the performance 

of the IBM to the physically equivalent case of a fixed cylinder 

in oscillatory flow. Forced oscillations are considered, where 

the velocity is given by 

 
tU

dt

tdx
a cos  (18) 

and the displacement estimated by numerical time integration. 

The analytical solution of the velocity potential in this case is 

 
2

, , cos cosa

R
r t U t

r
   

 
   

 

. (19) 

The hydrodynamic force corresponds to a pure radiation load, 

2 sinx af R U t   . (20) 

First, we consider the convergence of 
xf  and compare it to 

the convergence for a fixed cylinder in oscillatory flow. The 

parameters are the same as in FIGURE 7, i.e.: 5R m , 
11aU ms , 10.5s  and 0.05t s  . This gives a displacement 

amplitude 2.0 0.2aU m D   . We also compare with results 

for three other velocity amplitudes: 10.5aU ms , 11.25ms  and 
12.5ms . For the latter case, the time step is reduced to 

0.025t s   due to CFL requirements given by the higher-order 

FDM for the linear pressure in Eq. (11) (CFL ≤ 0.33). All other 

parameters are the same for each case. The grid is varied so that 

0.25 1.0m x m    in a square-computational domain with 

dimension 4 4D D  and with Eq. (19) defined as Dirichlet 

condition along the outer boundaries. The ratio of the distance 

between body marker points to the grid spacing is 10bds x   

for all grids.  

FIGURE 8 shows that 
xf  overall converges slower for the 

oscillating cylinder compared to the fixed cylinder in oscillatory 

flow, and also that the magnitude of the error is larger for the 

former. Furthermore, the convergence rate decreases slightly 

while the magnitude of the error increases slightly for the 

largest oscillation amplitude. 
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FIGURE 8: Convergence of force 

xf  on a fixed cylinder in 

oscillatory flow and on an oscillating cylinder in still fluid with 

four different oscillation amplitudes.  

It is likely that the poorer accuracy and convergence for the 

oscillating cylinder compared to the fixed cylinder is due to 

spurious pressure oscillations, which lead to spurious 

oscillations also in the integrated force. An indication of this is 

seen by comparing the force on the oscillating cylinder with the 

force on a fixed cylinder multiplied by a factor -0.5 in FIGURE 

9. The left column shows results for the oscillating cylinder 

with displacement amplitude 0.2aU D   for three different 

grid refinements, while the right column shows results for a 

displacement amplitude 0.5aU D  . Severe oscillations can 

be seen for the coarsest grid, especially for the larger 
aU -

value, making clear that a finer grid is needed. For the left 
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column, the spurious oscillations converge quickly towards 

zero, and 0.5x m   (middle figure) seems to be a sufficiently 

refined grid for practical purposes. 
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FIGURE 9: Time series of the force on a fixed cylinder in 

oscillatory flow and on a cylinder oscillating in still fluid. 

Top/mid/bottom: 1.0/0.5/0.25x m  , left/right: 11.0 /2.5aU ms . 

The time axis is normalized against the oscillation period 

2T   . 

The observations from FIGURE 9 are consistent with the 

results by Lee et al. [3], where spurious force oscillations on an 

oscillating cylinder decreased with increasing CFL number. 

Although their study considered viscous flow, their conclusions 

are relevant also for potential-flow IBMs. They further found 

that the effect of refining the grid was stronger than that of 

increasing the time step. Seo & Mittal [4] made a similar 

observation; in their case the spurious force oscillations on an 

oscillating cylinder decreased both by decreasing the grid 

spacing and by increasing the time step. Again, the effect of the 

former was stronger. 

Steadily Advancing Cylinder in Undisturbed Fluid 

As illustrated for the oscillating cylinder above, IBMs can 

cause spurious pressure oscillations for moving bodies if the 

grid is not sufficiently dense (or if the time step is too fine 

compared to the grid density, effectively giving a very small 

CFL number). A body moving with a constant velocity is 

considered as the most challenging case in this respect. We 

therefore proceed to study a cylinder with 5R m  that advances 

with a constant velocity 
10.5dx dt ms  in a 10 6D D  

computational domain. The fluid is otherwise at rest, with zero 

Neumann conditions along the vertical boundaries and zero 

Dirichlet conditions along the horizontal boundaries (recall 

FIGURE 6). The initial and final positions of the cylinder center 

are 10x m   (i.e. 4D right of the left boundary) and 10x m , 

respectively. We consider a situation with fixed time 

step, 0.25t s  , and the grid spacing is varied so that 

0.4 1.0m x m   . This corresponds to CFL numbers ranging 

from 0.13 – 0.31. The ratio of the distance between Lagrangian 

body markers to grid spacing is kept constant, 10bds x  . 

Time series of the integrated force on the cylinder are 

shown in FIGURE 10 with the linear pressure evaluated by the 

low-order FDM in Eq. (10), and similarly in FIGURE 11 with 

the linear pressure term evaluated by the higher-order FDM in 

Eq. (11). The figures show that the forces oscillate around the 

analytical value (zero), with decreasing amplitudes for 

increasing grid refinement (i.e. increasing CFL number). The 

amplitudes approximately double in magnitude when the 

higher-order FDM for the linear pressure is used instead of the 

low-order FDM. Both the peak-to-peak amplitude and the 

standard deviation of the spurious oscillations in the 

longitudinal force have close to third-order convergence in x . 

Spurious oscillations in the transverse force are all insignificant 

but for the coarsest grid, and do not seem to follow any specific 

convergence pattern with respect to the grid density.  
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FIGURE 10: Left: Time series of forces on steadily advancing 

cylinder with fixed t  and varying x . Right: Convergence 

plots for standard deviation and peak-to-peak amplitude of 

forces. Linear pressure evaluated with Eq. (10). 

The spurious behavior in the force is related to oscillations 

in the fluid pressure. It is therefore instructive to examine the 

time series of the pressure in a point fixed in space as the 

cylinder advances. For this, we consider the point shown in 
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FIGURE 12, which is 1 m above the cylinder surface midway 

through the simulation. This is a fixed-grid node for all grid 

densities. The low-order FDM in Eq. (10) is used to evaluate 

the linear pressure. The pressure time series for the different x  

values are plotted in FIGURE 13. Both the total pressure and 

the separated components of Eq. (9) are shown. It is clear that 

the spurious pressure oscillations mainly originate from the 

linear pressure component, whereas the quadratic component is 

insensitive to grid refinements.  

 
FIGURE 11: Same as FIGURE 10, but with linear pressure 

evaluated with Eq. (11). 

 
FIGURE 12: Fixed point for evaluation of pressure. The point 

is 6 m above the center of the cylinder at t = 20s. 

Some remarks can be made concerning the practical 

significance of the observed oscillations. First, by carefully 

selecting an appropriate grid refinement and time step for the 

boundary velocities to be expected, the magnitude of the 

numerical oscillations can be reduced to a small portion of the 

physical quantity. A CFL number in the range 0.15 – 0.30 seems 

to be a good guidance in this respect. Secondly, the frequency 

of the spurious oscillations are in the order of 1t , which in 

most cases will be significantly higher than any important 

frequency. Thus, in case of a freely moving rigid body with a 

large inertia, e.g. an offshore floater, this will act naturally as a 

filter, removing the spurious oscillations from the reaction time 

series. For a flexible body, however, higher frequencies may be 

present. In this case, special care may be necessary. 

Numerically speaking, it is of course equally important to 

prevent growing instabilities in time-marching schemes due to 

small spurious oscillations. A possible mean to remove the 

problem of numerical time derivatives entirely in a potential 

flow is to solve an additional boundary-value problem similar to 

that illustrated in FIGURE 6 for the temporal derivative of the 

velocity potential. Since   satisfies the Laplace equation 

initially, its time derivative t   (the acceleration potential) 

will also do the same, and with the same global coefficient 

matrix as for the velocity potential. An additional matrix 

equation for t   then has to be solved for each time step with 

the appropriate boundary conditions. For instance Greco [14] 

successfully used this idea to determine the acceleration 

potential in her BEM approach.  

 
FIGURE 13: Time series of the pressure- and pressure 

components in the point shown in FIGURE 12 for four different 

CFL numbers.  

DISCUSSION AND FURTHER WORK 
The novel feature proposed in this paper is an immersed 

boundary method for potential-flow simulations by the HPC 

method with application to a moving body immersed in a fixed 

(Cartesian) background grid. The interpolation of fluid 

properties, that is necessary in an IBM, is natural in the HPC 

method since the velocity potential is developed as a 

combination of harmonic polynomials. A concept is introduced 

to ensure that fresh nodes do not introduce inaccuracies, which 

is important to prevent unphysical behavior when t     is 

interpolated at the position of the immersed boundary. 

No assumptions are made regarding the motion of the body, 

which means that motions of arbitrary amplitude can be 

9 Copyright © 2015 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 02/08/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

simulated as long as inherent restrictions due to the CFL 

number and grid convergence are met.  

A fixed cylinder in oscillatory flow was first studied, 

demonstrating that the proposed IBM maintains the spatial 

convergence properties of the velocity potential in the HPC 

method. Also the computational efficiency is substantially 

maintained. The force on the cylinder converges slower than the 

velocity potential, most likely due to the scheme applied to 

estimate the body-surface area in the pressure integration.  

The force on an oscillating cylinder converged somewhat 

slower than that on a fixed cylinder in oscillatory flow. This is 

possibly due to oscillations in the fluid pressure associated with 

numerical time-differentiation schemes. 

In general, it is found that the present method is able to 

compute forces on moving bodies accurately and with little 

contributions from spurious oscillations, as long as a reasonably 

fine background grid is applied. The required grid density is 

generally a function of the body curvature, the body velocity 

and the time step. Examined cases indicate that the required 

grid spacing is approximately proportional to the body velocity. 

Very short time steps t  generally tend to increase pressure 

oscillations associated with numerical time differentiation 

schemes, which is not strictly desirable from a convergence 

perspective. However, this is a recurring tendency also observed 

by other authors working with IBMs, and can be mitigated by 

adjusting the grid density accordingly. The CFL number, which 

can be considered as a non-dimensional body velocity, is a 

governing parameter in this context. It is found that CFL 

numbers in the range 0.15 – 0.30 represent a good compromise 

between accuracy and minimization of spurious oscillations. 

Since the presented method does not perform any grid 

modifications, it should be straightforward to use also with 

other boundary-tracking methods, as well as to extend it to 

three-dimensional applications and to problems with elastic 

bodies. The next step is to attempt to use the proposed IBM to 

simulate fully nonlinear wave-body interactions for a floating 

body in a HPC-based numerical wave tank. Following this 

approach, both the floating body and the free surface can be 

immersed in the same Cartesian background grid. This allows 

for efficient computation of nonlinear free-surface flows 

combined with arbitrary body motions. 
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