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Problem Description

The purpose of this thesis is to model and develop solution methods capable of solv-
ing realistic problem sizes of the Static Free-Floating Electric Vehicle Carsharing Han-
dling Problem (SFFEVCHP). The SFFEVCHP is concerned with determining the optimal
charging stations to charge rental cars and the optimal routes of service vehicles transport-
ing operators moving the cars in a free-floating electric carsharing system. Central to the
problem is the trade off between repositioning cost and the cost of not meeting demand
due to an unfavorable distribution of rental cars in the system.
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Abstract

Carsharing systems have emerged as an attractive form of transport in urban areas since the
beginning of the 21st century. Effective carsharing systems carry significant environmental
advantages as well as economic advantages for its users. Challenges faced by carsharing
organizations can be modeled and solved using Operations Research (OR) methods in
order to enhance system performance. As a result, carsharing has received increased at-
tention in the OR community in the recent years. In this thesis, three gaps are identified in
the existing carsharing literature: Operation of free-floating systems, repositioning under
realistic conditions, and integrated routing of rental cars and operators to handle rental cars
in repositioning operations.

Aiming to close the aforementioned gaps, the Static Free-Floating Electric Vehicle
Carsharing Handling Problem (SFFEVCHP) is defined and modeled. In the SFFEVCHP,
electric rental cars in a free-floating carsharing system are repositioned to charging stations
when their battery level fall below a predefined threshold. The charging location decision
takes balancing the distribution of cars in the business area into account. The rental cars
are moved by operators that are transported between charging stations and rental cars by
service vehicles. The problem includes several connected decisions. First, the optimal
location to charge rental cars must be determined. Second, the routes of service vehicles
transporting operators between rental cars in need of charging must be decided. The time
and location to drop off an operator affects the pick up of the operator leading to tempo-
ral and spatial interdependencies between the routing of operators and service vehicles.
Central to the problem is the trade off between the cost of not meeting demand due to a
disadvantageous distribution of cars in the system and the cost of transporting operators to
charge and reposition rental cars.

We first model the SFFEVCHP as a mixed integer program. The complexity of the
problem requires an approximate solution method in order to solve real world instances.
A Hybrid Genetic Search with Adaptive Diversity Control (HGSADC) based on the work
of Vidal et al. (2012) is therefore developed. To be able to use the HGSADC on this
complex problem type, new chromosomes to represent individuals have been developed
and the Genetic Algorithm (GA) operators are adapted to the problem. Also, a novel
construction heuristic inspired by construction heuristics for the Dial-A-Ride problem is
proposed.

To demonstrate the capabilities of the presented algorithm, 15 instances with sizes
ranging from 100 to 200 rental cars in need of handling are solved. Ten algorithm runs are
executed for each instance. The algorithm is able to solve all the instances with an average
gap to the best known solution of 1.3 percent and a gap coefficient of variance of 0.9
percent in less than an hour. Furthermore, solutions with an average gap of 1.9 percent are
found after ten minutes with a coefficient of variance of 0.9 percent. To demonstrate the
value of repositioning in conjunction with handling, the algorithm is run while prohibiting
repositioning. Comparing these results to the results with repositioning for an instance
with 100 rental cars yield a net total cost improvement of 3.7 percent. As the total cost



captures the profit effect of the repositioning activities, this improvement can likely be
directly transferred to the gross profit margin of the carsharing companies.

The results are a clear indication of the strength of the proposed algorithm. Realis-
tic systems studied typically have 100 to 150 rental cars in need of handling at a given
time. Hence, we are consistently able to solve realistic problem sizes yielding high quality
solutions. Furthermore, the problem formulation combining repositioning with neces-
sary charging and maintenance provide the opportunity for operators to realize the added
profits of repositioning while only marginally increasing operational costs. We believe
this presents a significant enhancement of existing models and algorithms. In addition to
establish the effectiveness of the HGSADC for the SFFEVCHP, this thesis exhibits the ca-
pabilities of the algorithm for routing problems with complex synchronization constraints
including spatial and temporal interdependencies.



Sammendrag

Siden begynnelsen av 2000-tallet har bildelingstjenester vokst frem som en attraktiv trans-
portform i urbane strøk. I tillegg til økonomiske fordeler for sine brukere har effektive
bildelingstjenester betydelige miljømessige fordeler. Utfordringer som bildelingsselskaper
står overfor kan modelleres og løses ved hjelp av operasjonsanalyse. På bakgrunn av dette
har bildeling fått økt oppmerksomhet fra forskningsmiljøet innenfor operasjonsanalyse
de siste årene. I denne oppgaven har vi identifisert tre mangler i den eksisterende litter-
aturen på området: fritt-flytende systemer, reposisjonering av leiebiler under realistiske
antakelser og integrert ruting av leiebiler og operatører for å håndtere leiebiler i repo-
sisjoneringsoperasjoner.

Med mål om å adressere de ovennevte manglene definerer og modellerer vi det Statiske
Fritt-Flytende El-bildelingstjeneste Håndteringsproblemet (Static Free Floating Electric
Vehicle Carsharing Handling Problem - SFFEVCHP). I SFFEVCHP reposisjoneres el-
biler i et fritt-flytende bildelingssystem til ladestasjoner når batterinivået faller under en
predefinert terskel. Leiebilene flyttes av operatører som blir transportert til leiebiler og
fra ladestasjoner av servicebiler. Problemet inneholder flere sammenkoblede beslutninger.
For det første må den optimale lokasjonen for å lade hver elbil velges. Deretter må rutene
til servicebilene som transporterer operatørene bestemmes. På grunn av at tidspunktet og
lokasjonen en operatør slippes av påvirker hvor og når han/hun blir plukket opp, oppstår
det gjensidige, geografiske og temporære avhengigheter når problemet skal løses. Sen-
tralt for problemet er avveiningen mellom kostnaden som oppstår ved at selskapet ikke
er i stand til å tilfredstille etterspørselen på grunn av en ufordelaktig fordeling av biler i
systemet og kostnaden ved å gjennomføre reposisjonering.

I denne oppgaven modellerer vi først SFFEVCHP som et blandet heltallsproblem.
Problemet er komplisert å løse, noe som gjør det nødvendig med en tilnærmet løsningsme-
tode for å løse virkelige problemstørrelser. Et hybrid genetisk søk med adaptiv mangfold-
skontroll (Hybrid Genetic Search with Adaptive Diversity Control - HGSADC) basert på
arbeidet av Vidal et al. (2012) er derfor utviklet. For å kunne bruke et HGSADC på denne
kompliserte problemtypen har vi utviklet nye kromosomer for å representere individene. I
tillegg er nye operatorer for de ulike modulene i den genetiske algoritmen presentert. Til
slutt er en ny kontruksjonsheuristikk inspirert av kontruksjonsheuristikker for Dial-A-Ride
problemet utviklet.

For å demonstrere kvalitetene til den presenterte algoritmen har tester på instanser med
100 til 200 leiebiler med behov for lading blitt gjennomført. Algoritmen har blitt kjørt ti
ganger for hver instans. Resultatene viser at HGSADC-algoritmen er i stand til å løse alle
instansene med et gjennomsnittlig gap til den beste kjente løsningen på 1,3 prosent og en
variasjonskoeffisient av gapet på 0,9 prosent. Videre finner algorithmen løsninger med
gap til beste kjente løsning på 1,9 prosent og variasjonskoeffisient på 0,9 prosent etter en
kjøretid på ti minutter. For å tydeliggjøre verdien av å gjøre reposisjonering samtidig som
flytting av biler til ladestasjoner har algoritmen blitt kjørt uten reposisjonering. Når disse
resultatene sammenlignes med resultatene med reposisjonering ser vi en netto forbedring



av totalkostnaden på 3,7 prosent for en instans med 100 leiebiler. Siden totalkostnaden
inneholder profitteffekten av reposisjoneringaktivitetene er det rimelig å anta at denne
forbedringen kan overføres direkte til selskapenes driftsmargin.

Resultatene av denne rapporten viser tydelig styrken av den presenterte algoritmen.
Realistiske bildelingssystemer har typisk 100 til 150 leiebiler med behov for lading på et
gitt tidspunkt. Dermed er algoritmen i stand til å løse realistiske problemstørrelser med
konsistente løsninger av høy kvalitet. I tillegg gjør muligheten til å reposisjonere biler
samtidig som de flyttes til ladestasjoner at bildelingsselskaper kan realisere fordelene ved
reposisjonering med kun en marginal økning i operasjonskostnadene. Vi anser dette som
en betydelig forbedring over eksisterende modeller og algoritmer. Ved siden av å tydelig-
gjøre verdien av HGSADC-algoritmen for SFFEVCHP viser denne oppgaven potensialet
til algoritmen på rutingproblemer med komplekse synkroniseringsrestriksjoner, inkludert
problemer med gjensidige geografiske og temporære avhengigheter.
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Chapter 1

Introduction

Since the beginning of the 21st century, carsharing systems have emerged as an attractive
means of transport in urban areas across the globe. A car used to be the ultimate symbol
of freedom and independence. However, consumers are rethinking the value of ownership,
starting to buy mobility instead of vehicles (Belk, 2014). Changed consumer behavior has
opened the doors for carsharing systems that provide their users with the convenience and
flexibility of ownership without the financial commitment, burden of maintenance, and
parking space requirement of car ownership.

Changed consumer behavior is not the only driving force behind carsharing systems.
According to Frost and Sullivan (2010), each shared vehicle replaces on average 15 per-
sonally owned vehicles and users of carsharing services drive 31 percent less than when
owning a car. These two factors result in an annual reduction of 482,170 tons carbon
dioxide emissions globally and less travel congestion in urban areas. Furthermore, a pri-
vate vehicle is on average parked 23 hours a day and accounts for around 688,000 acres
of land, representing 25 percent of urban surface occupancy, in the US (Li et al., 2016).
Hence, large-scale carsharing adoption represents an opportunity for significant reductions
in emissions and traffic congestion, in addition to more effective use of space in urban ar-
eas.

In this thesis, we define carsharing as short-term vehicle access among a group of mem-
bers enabled by a third-party organization taking care of ownership, day-to-day mainte-
nance and vehicle insurance. Carsharing organizations face many strategic and operational
challenges. We focus on operational challenges, as these are crucial to create profitable
systems. Some of these challenges are maintenance, like refueling/charging, cleaning and
minor repairs, and repositioning of the rental cars. Repositioning is done to redistribute the
fleet of rental cars to achieve a more favorable distribution to improve the operator’s ability
to meet customer demand. These operations need dedicated staff resulting in substantial
costs for carsharing organizations. Efficient maintenance and repositioning can increase
both the resource utilization of the operators and lead to greater customer satisfaction due
to higher availability of rental cars. Ultimately, it is essential for the financial viability and
sustainability of carsharing systems to find good solutions to these problems.

The evolution of carsharing systems has resulted in increased attention in the Opera-
tions Research (OR) community during the last years. However, the existing research fails

1



Chapter 1. Introduction

to address the full complexity of the challenges under realistic conditions. Generally, the
available models and algorithms either solve only parts of the problems or solve for system
setups that do not resemble the operations of current state of the art systems.

The purpose of this thesis is to develop an optimization model and solution method
that address charging and repositioning of rental cars in a carsharing system with a fleet of
electrical vehicles. At a given point in time, the carsharing organization know the current
distribution of rental cars, the state of charge of each car, and the availability of charging
stations. The carsharing organization must then decide at which charging station to charge
the rental cars, which operator to take care of each car, and the route of service vehicles
transporting the operators between charging stations and rental cars. Deciding the as-
signment of rental cars to charging stations aiming to reach a more favorable distribution
of cars in the system can significantly increase profitability of the carsharing organiza-
tions. Modeling the described problem is involved because the assignment of rental cars
to charging stations and the routing of service vehicles transporting operators are closely
linked. This results in spatial and temporal interdependencies because the pick up and
drop off destinations of the operators, i.e. the routing of service vehicles, are dependent
on the destination, handling order, and operator assigned to handle each rental car. As all
these decisions are made by the model, the problem represents a complex class of vehicle
routing problems.

This work is constituted of two main parts. First, a novel mathematical model is pro-
posed, making the following decisions:

• Which charging station to charge each rental car while evaluating the distribution of
rental cars in the system.

• Which operator to handle each rental car and in which order.

• The routes of service vehicles transporting the operators from charging stations to
rental cars.

The problem is formulated as a mixed integer program (MIP). Due to the complexity of the
problem, the MIP is computationally demanding to solve limiting the problem sizes solv-
able using a commercial solver. Consequently, a hybrid genetic algorithm with adaptive
diversity control (HGSADC) is developed to be able to solve realistic problem sizes. The
algorithm should be able to solve problems with up to 100 rental cars in need of handling.
To our knowledge, this algorithm type has not been applied to vehicle routing problems
with spatial and temporal interdependencies before. The main contributions of this thesis
are thus:

• A novel model considering the full complexity of electric carsharing organizations’
daily operations by integrating charging of rental cars and repositioning.

• An efficient algorithm capable of solving real-life problem sizes.

• A demonstration of the performance of Genetic Algorithms (GA) on vehicle routing
problems with spatial and temporal interdependencies.

These contributions represent a substantial improvement of the available models and al-
gorithms for carsharing systems. In addition, they advance the knowledge of heuristic
approaches to routing problems with complex synchronization constraints.
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The thesis is organized as follows. First, we give an introduction to the carsharing
business worldwide in Chapter 2. Second, a detailed presentation of the problem studied
is given in Chapter 3 followed by an extensive literature review on research related to car-
sharing operations in Chapter 4. Then, a mathematical model of the problem is proposed in
Chapter 5 before the hybrid genetic algorithm with adaptive diversity control is described
in Chapter 6. A computational study is presented in Chapter 7, while Chapter 8 discusses
the practical use of the model. Finally, we conclude on the work of the thesis and suggest
future research avenues in Chapter 9.
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Chapter 2

Background

In this chapter, an overview of modern carsharing systems is given. First, common charac-
teristics of carsharing systems are presented in Section 2.1. Then, the history of carsharing
systems is briefly reviewed in Section 2.2.

2.1 Characteristics of Carsharing Systems
Carsharing is generally defined as short-term vehicle access among a group of members
who share the use of a vehicle fleet that is owned, maintained, managed, and insured by
a Carsharing Organization (CSO). The users are able to access the shared cars without
interacting with the operator, i.e. reservations, pick ups, and returns are self-serviced.
Carsharing services can be divided into two categories: free-floating systems and station-
based systems. Free-floating systems enable users to pick up available cars and deliver
them anywhere within a specified business area. In a station-based system, the cars are
allocated at dedicated stations. A station-based system is either a two-way or a one-way
system. In a two-way system, the user must pick up and return the car at the same station,
while the user can pick up and return the cars at different stations in a one-way system.
The fleet of a system can consist of both gasoline powered cars and/or electrical vehicles
(EVs).

The main sources of revenue for a typical CSO are subscription fees from users and per
minute or distance rates when renting a car. Examples from existing carsharing companies
are given in Table 2.1. Most companies require monthly or yearly subscriptions. On
top of the subscription fee, all companies researched charge a time-based rate. Some
operators also practice distance-based rates. The costs borne by a CSO mainly consist
of capital costs related to rental cars, service vehicles (i.e. vehicles used when travelling
between rental cars to perform daily operations, e.g. maintenance) and rental stations,
and operational costs. The operational costs are driven by staff costs to maintain, handle,
and refuel/recharge cars. In addition, the CSO incur costs for fuel or charging when a
vehicle is used, but this scales directly with usage and is thus a less important aspect of the
operational costs of a carsharing company.

The revenues of a CSO are heavily dependent on the utilization of the rental car fleet.
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Chapter 2. Background

Demand in different geographical areas may change throughout a day or week. In addition,
the characteristics of an average trip may differ. E.g., trips originating in the city center
may on average have shorter duration than trips originating in the outskirts of a city. Hence,
forecasting and understanding these trends are important to operate the system efficiently.
This may also motivate operators to employ staff to move cars between areas to achieve
better utilization and thus higher revenues.

Table 2.1: Subscription fees and usage rates for ZipCar, Autolib and Car2Go, Autolib converted to
approximate USD amounts. The information is retrieved from the respective companies’ websites
May 11th, 2017.

ZipCar Autolib Car2Go

Subscription Fee USD 7 per month USD 11 per month N/A

Duration rates USD 7.75 per hour USD 0.3/min
(20 min. minimum)

USD 0.41 per min

Per kilometer rates USD 0.45 per mile if
trip exceeds 180 miles N/A N/A

Some operational challenges faced by a CSO are maintenance, refuelling/charging
and cleaning. These challenges may be handled in numerous ways, for example by having
dedicated staff that refuels/recharges and maintains cars, reimburse or incentivize users
to handle it, or have payment solutions like fuel cards placed in the rental cars. Another
challenge is repositioning of cars in one-way or free-floating systems, i.e. moving cars
from one location to a more favorable one. After operating a while, the system may end
up with an unfavorable distribution of cars. Some strategies to avoid this are proactive
approaches, user based repositioning and operator based repositioning. These strategies
may be used alone or combined. Proactive approaches try to avoid repositioning by deny-
ing unfavorable trips, i.e. a user have to specify its destination and if the trip is unfavorable,
the CSO denies the reservation. In user-based repositioning the users reposition the cars
either by being motivated by monetary compensation or by the CSO making users split or
share trips. Operator based repositioning is done by designated CSO staff. It is common to
distinguish between static repositioning and dynamic repositioning. In static reposition-
ing, the relocation of cars is done when the carsharing system is closed or selected cars
are made unavailable for users for repositioning purposes. In dynamic repositioning, the
repositioning process is done while the system is operating, taking into account changes in
e.g. traffic, demand, and distribution of rental cars during the handling and repositioning
period.

2.2 Carsharing History
The following section is based on the article by Shaheen et al. (2015) elaborating on the
history of carsharing.
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2.2 Carsharing History

Table 2.2: Lessons learned from early carsharing systems (Shaheen et al., 2015).

Service Location Operation dates Lessons learned
Proctip Montpellier, France 1971-1973 Failed due to lack of proper control

systems and technological issues

Witkar Amsterdam, Netherlands 1974-1986 Failed because of high costs, lack of
governmental support, and techno-
logical limitations

Liselec Yélomobile La Rochelle, France Since 1993 Successful due to continued gov-
ernmental support

Praxitéle Saint-Quentin-en-
Yvelines, France

1997-1999 Failed because of high costs and
low demand

CarLink II San Francisco Bay USA 2001-2002 Terminated after transfer from pilot
to third-party operator due to finan-
cial concerns; limited scale

UCR IntelliShare University of California,
Riverside, USA

1999-2010 Successful due to advanced tech-
nologies and support from agencies
and industry

Honda DIRACC Singapore 2003-2008 Terminated due to declining service
quality

Carsharing is not a new phenomenon. The first known carsharing organization "Sefage"
started in Zurich, Switzerland, in 1948. The motivation for early carsharing was eco-
nomic benefits, aiming to increase people’s welfare. Starting in the 1980s carsharing was
increasingly fuelled by environmental concerns. Since the 1990s pilot programs have
been launched all over the world and the subject has been getting increased attention in
academia. Lately, the main research focus for carsharing organizations have been one-way
station-based systems, free-floating systems and systems with EV fleets.

Though there have been many attempts, the first nation to reach a successful carsharing
system was Switzerland with "Mobility Car Sharing Switzerland", founded in 1997. This
system was a merger between two earlier systems, AutoTeilet-Genossenschaft (ATG) and
ShareCom. Almost all of the earliest programs closed operation after a few years. The
reasons for failure could be many; overly ambitious projects given available technology at
the time, inadequate planning and marketing, or lack of support from local governments.
Table 2.2 gives an overview of lessons learned from early carsharing systems.

Carsharing first gained its popularity in Europe, which still accounts for the majority of
members and number of cars. Lately carsharing has become increasingly popular in North
America. The first US adopters were motivated rather by convenience than economic or
environmental reasons, possibly due to lower driving costs in the US. In Asia, carsharing
systems have gained popularity more recently, especially in Japan and Singapore. The
main focus of CSOs in Japan is business use, while the focus is more shifted towards
households in Singapore (Correia and Antunes, 2012). Figure 2.1 shows the development
of carsharing members and shared vehicles between 2006 and 2014.

Since the beginning of carsharing the information technologies have evolved dramat-

7



Chapter 2. Background

Figure 2.1: The evolution of carsharing members and number of shared cars from 2006-2014 (Frost
and Sullivan, 2014)

ically, facilitating modern carsharing systems. Technological limitations that made early
carsharing systems fail do not longer apply and CSOs experience an increased govern-
mental support due to the environmental benefits. These factors have resulted in a bloom
of carsharing systems worldwide the last few years. Challenges faced by a carsharing
system can be modeled and solved using mathematical programming in order to enhance
performance to create profitable systems. As a result, carsharing has become an interesting
Operation Research (OR) topic.
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Chapter 3

Problem Description

In this chapter, the Static Free-Floating Electric Vehicle Carsharing Handling Problem
(SFFEVCHP) is defined. The system considered is free-floating, but cars are charged
at fixed charging stations. Central to the problem is the trade off between the cost of
not meeting demand due to a disadvantageous distribution of cars in the system and the
cost of transporting operators to charge and reposition rental cars. Figure 3.1 shows the
conceptual principles of the model solving the SFFEVCHP. Necessary definitions of the
problem are described in Section 3.1. Furthermore, detailed descriptions of the problem
specifics are introduced in Section 3.2. The chapter concludes with a summary of the
problem in Section 3.3 and an illustrative example in Section 3.4.

Figure 3.1: Conceptual overview of the model solving the SFFEVCHP, inputs on the left side and
outputs on the right side.
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Chapter 3. Problem Description

3.1 Definitions

When formulating the SFFEVCHP two types of cars are considered: rental cars and ser-
vice vehicles. Rental cars are the EVs available for customers of the CSO, while cars used
to transport operators within the business area are denoted service vehicles. In practice
these vehicles could be equal, but because they are assigned to different tasks they are sep-
arated. Rental cars with battery level lower than a pre-specified threshold must be charged.
When a rental car needs charging, an operator handles the rental car from its original posi-
tion to a charging station. The planning period is the total time available for handling the
fleet of rental cars, typically between one and four hours.

The rental cars are charged at charging stations. Each charging station has a given
number of available charging slots and is assigned a surrounding area. From here on, the
surrounding area is included when discussing charging stations. Only one rental car can be
handled to each available charging slot within a planning period. If a rental car occupies
a charging slot at the beginning of a planning period, the charging slot will be marked as
available if the battery level of the rental car is above a given threshold. An operator can
then unplug the rental car when handling another car to the given charging station.

To be able to quantify the distribution of rental cars in the system in order to make
rebalancing decisions, the concept of states are introduced for each charging station, i.e.
the charging station and its surrounding area. The initial state describes the number of
rental cars available for customers at the charging station when the planning period starts,
i.e. all rental cars at the charging station or in the surrounding area with a battery level
above a given threshold. The ideal state is the ideal number of rental cars at the charging
station with a battery level above the threshold. After solving the problem, the final state
is reached. The final state equals the initial state in a charging station plus the number
of rental cars handled to the station. As rental cars moved to a charging station becomes
available for customers after a given time, they are counted in the final state. The ideal and
final state are not necessarily equal. The problem at hand is static, meaning that all input
data is kept constant throughout the whole planning period.

3.2 Problem Specification

In this section the specifics of the considered problem are presented. Section 3.2.1 de-
scribes the objectives of the CSO. Furthermore, Sections 3.2.2 to 3.2.5 describe details
of the routing of service vehicles, handling of rental cars, service vehicle and operator
capacity, and time usage, respectively.

3.2.1 Objective

The objective of the problem is to minimize the cost of handling rental cars, the cost
of postponing handling, and the cost of deviations from the ideal state at each charging
station. The cost of handling cars includes the cost of transporting operators with service
vehicles to the rental cars in need of charging, and the cost of transporting operators from
charging stations back to the depot.

10



3.2 Problem Specification

The CSO incurs deviation costs when there is a deviation between the ideal and final
state at a charging station and the surrounding area at the end of the planning period. These
costs represent lost potential revenue. Rental cars can be charged at a charging station even
though there are more rental cars than ideal at the station. Hence, the deviation can both
be positive and negative. If the deviation is positive it is expected that the CSO will not
be able to meet demand in the period following the planning period and if the deviation
is negative it is expected that the rental car will be underutilized. Therefore, both too few
and too many cars in the final state are penalized.

A penalty cost is incurred if handling of a rental car is postponed, i.e. not performed
within the given planning horizon. This is to capture the trade off between added travel
cost and not fulfilling handling needs. At last, a fixed cost is added for each service vehicle
and operator used to handle the fleet of rental cars.

3.2.2 Routing

The SFFEVCHP consists of two integrated routing problems: the routing of rental cars
to charging stations, and the routing of service vehicles. The CSO has to decide at which
charging station to charge a rental car. In addition, the CSO has to assign operators to
handle cars. Operators do not necessarily have to be picked up by the same service vehicle
that dropped them off, but service vehicles are the only available means of transport. Fur-
thermore, service vehicles are allowed to wait at charging stations if necessary to pick up
operators transporting rental cars to that station. Operators can handle multiple rental cars
during the planning period and both service vehicles and operators are allowed to visit the
same charging station several times.

3.2.3 Handling of Rental Cars

The CSO has to decide whether a rental car should be handled in the current planning
period or postponed. There must be an available charging slot if a car is handled to a
charging station. Cars with a battery level above a threshold at the charging station are
considered to not take up a slot, as the operators can move the car upon arrival. Finally,
the time each rental car can travel is limited based on the current battery level.

3.2.4 Service Vehicle and Operator Capacity

A given number of service vehicles are available to transport operators. Each vehicle has
a fixed capacity to carry operators. This capacity cannot be exceeded on any route driven
by the service vehicle. Also, there is a given number of operators available that can be
assigned to handle rental cars. A fixed cost is associated with each service vehicle and
operator used.

3.2.5 Time Usage

Available time to handle rental cars is limited. Service vehicles and rental cars use the
same amount of time to travel between rental car positions and charging stations. The time
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required to plug in the rental car and potentially move fully charged rental cars from the
charging slot is omitted, as it is moved to the nearest available parking spot.

3.3 Summary of the SFFEVCHP
The SFFEVCHP is a complex problem having both spatial and temporal interdependen-
cies. The decisions that must be made are the following:

• Assignment of rental cars in need of handling to charging stations, taking the cost
of postponing handling and deviations from the ideal state in each charging station
into account.

• Assignment of operators to move rental cars to the specified charging station.

• Routes for service vehicles, including drop off and pick up of operators such that all
rental cars not postponed are handled.

3.4 Example Problem
Figures 3.2 to 3.4 illustrate an example of the SFFEVCHP. The example case includes
four charging stations and five rental cars in need of handling. The planning period is two
hours, and service vehicles have capacity to carry four operators. Furthermore, two service
vehicles and eight operators are available at the depot. Travel times, deviation cost, and
transportation cost are taken as given. The values of these parameters are not important in
the given example, as the problem is not solved to optimality. Rather, a feasible solution
is given for illustrative purposes.

The initial state of the system is shown in Figure 3.2. For each charging station (in-
cluding the adjacent area), the parentheses show the current available number of charging
slots, the initial state, and the ideal state. The status of each rental car is illustrated using
color codes. Also, dotted lines indicate the area appointed to each charging station. In the
initial state, there is a total of eight deviations from the ideal state, counting both positive
and negative deviations.

Figure 3.3 shows a feasible solution to the problem. The planning period stars at 13:00,
lasts two hours and ends at 15:00. Arrival times at different cars and charging stations are
indicated at the arrowheads. In the given solution, rental cars 1 and 2 are charged at
charging station 1, car 3 at charging station 2, and cars 4 and 5 at charging station 3. The
first service vehicle leaves the depot carrying three operators. First, the vehicle drives
to rental car 4 and drops off one operator. Then, the vehicle drives to car 5 and drops
off another operator before the last operator is dropped off at car 3. The service vehicle
proceeds to charging station 3 to pick up two operators and then to station 2 to pick up one
more operator. The operator handling car 3 is arriving at the charging station two minutes
after the service vehicle. Hence, the service vehicle has to wait. Finally, the service vehicle
drives to the depot to end the route. The second service vehicle leaves the depot carrying
two operators. The first operator is dropped off at rental car 2 and then the second operator
is dropped off at rental car 1. The service vehicle then drives to charging station 1 to pick
up the two operators and then drives to the depot to end the route.
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3.4 Example Problem

Figure 3.2: Initial state: Five cars need handling. Total deviations from the ideal state equal eight.

After the planning period is over, the system is in its final state, shown in Figure 3.4.
All cars in need of handling are handled, and the solution reduces the imbalance in the
system by three, from eight to five total deviations from the ideal. In this solution, all cars
are handled and a more favorable distribution of the fleet of cars is achieved.
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Figure 3.3: Feasible Solution: Two service vehicles and eight operators are available, planning
period of two hours.

Figure 3.4: Final state: All cars handled, total deviations from the ideal state equal five.
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Chapter 4

Literature Survey on Carsharing

This chapter elaborates on the literature on operational problems faced by carsharing or-
ganizations, specifically repositioning, recharging, and refueling. The SFFEVCHP has
similarities with repositioning in station-based carsharing systems, as the objective is to
reposition rental cars to achieve a favorable distribution while minimizing the reposition-
ing cost. Hence, the main focus of this literature survey is vehicle repositioning, discussed
in Section 4.1. Operational perspectives of recharging and refueling of carsharing systems
are often not the subject of optimization models, but some literature found concerning the
subject is presented in Section 4.2. Finally, Section 4.3 motivates the scientific contribu-
tion of this thesis.

4.1 Vehicle Repositioning

In this section, literature on the three different repositioning approaches introduced in
Chapter 2 are discussed. Operator-based repositioning presented in Section 4.1.1 is the
most relevant for the SFFEVCHP and hence the main focus of this chapter. User-based
repositioning and proactive approaches are discussed in Section 4.1.2 and 4.1.3, respec-
tively. These methods are potential extensions of the SFFEVCHP that can further enhance
the performance of carsharing systems.

4.1.1 Operator-Based Repositioning

The problem of finding the optimal repositioning of rental cars in a carsharing system has
become an interesting topic of research the last years. The literature contains several MIP
optimization models trying to solve the problem as well as simulation models analyzing the
performance of different repositioning techniques. The main focus is often to determine
how many cars to reposition between stations in station-based systems, but some literature
also takes routing of service vehicles and operators into account.

Kek et al. (2006) conduct a qualitative analysis on operator-based repositioning to pro-
vide insights on key issues. To support the analysis, a simulation model is developed. The
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simulation model proposed is used to evaluate the impact of different repositioning tech-
niques. Using it for optimization would however be impractical due to the large number
of required simulation runs. Kek et al. (2009) propose a three-phase optimization-trend-
simulation decision system for carsharing operators, using the simulator from Kek et al.
(2006) as an evaluation tool. A MIP optimizer outputs the lowest cost resource alloca-
tion, staff activities, and repositionings. Then, a trend filter receives the optimized outputs
and "filters" them through a series of heuristics to obtain a set of recommended operating
parameters like shift hours and repositioning technique. The main contributions of the
research by Kek et al. (2009) are the formulation of the vehicle repositioning problem as
a MIP problem in phase one and the introduction of heuristics that convert the optimal
solution to more practical parameters in phase two.

Jorge et al. (2014) solve a classic transportation problem to determine repositioning
of rental cars between stations, assuming apriori knowledge of demand. A simulation
model that determines optimal repositioning using a minimum cost network flow algorithm
is also introduced to study different real-time repositioning policies. By integrating the
repositioning policies with the optimization model, the results of the simulation can be
improved.

Boyaci et al. (2015) develop and solve a multi-objective MIP model taking electrical
vehicle charging requirements into account. To cope with the large number of reposition-
ing variables, an aggregated model using the concept of a virtual hub is introduced al-
lowing the problem to be solved with a branch-and-bound approach. Multi-objective MIP
optimization is also used by Boyaci et al. (2017), who develop an optimization framework
involving three mathematical models. The first is station clustering to cope with the dimen-
sionality of the operational problem, the second is an optimization of operations including
repositioning of vehicles, and the third is optimizing the flow of personnel. The objective
is to maximize trips served, minimize repositioning cost, and maximize charging time for
the cars. A simulator tests the feasibility of the optimization outcome in terms of vehicle
recharging requirements, and the model is solved iteratively adding the new constraints
restricting cars that need further charging until the results are feasible.

The focus of some studies is on system optimization under uncertainty. Fan et al.
(2008) formulate a multistage stochastic linear integer model with recourse that account
for system uncertainties, with the objective of maximizing CSO profits. A Monte Carlo
sampling-based stochastic optimization method is used to solve the problem. The output
of the model is the number of cars the operator should reposition at the end of a given
day and to what stations to move these cars. Nair and Miller-Hooks (2011) develop a
stochastic MIP involving joint chance constraints that minimizes repositioning cost under
demand uncertainty. This stochastic MIP has a non-convex feasible region. To overcome
this, a divide-and-conquer algorithm for generating p-efficient points is used to transform
the problem into a set of disjunctive, convex mixed integer programs, and handle dual
bound chance constraints. The model decides how many rental cars to be moved from one
zone to another.

The work presented by Kek et al. (2009) and Boyaci et al. (2017) take operator ac-
tivities in a repositioning process into account. In addition, staff must be routed between
stations due to the staff imbalance that results from repositioning cars. Nourinejad et al.
(2015) solve the joint optimization of car and staff repositioning by introducing two inte-

16



4.1 Vehicle Repositioning

grated multi-traveling salesman formulations. One of the TSPs represents the car reposi-
tioning and the other the staff relocation. The objective is to find the optimal set of vehicle
and staff repositioning tasks to minimize operator costs. Bruglieri et al. (2017) introduce
four heuristics that can be applied to a MIP formulation of the car repositioning problem in
a one-way carsharing system based on operators moving between rental cars and charging
stations using a bike. Two of the proposed heuristics are greedy heuristics while the other
two are structured heuristics that exploit some general properties of the feasible solutions.

Research on algorithmic solution methods for the repositioning problem is limited.
Herbawi et al. (2016) is the only contribution found addressing algorithmic solutions for
repositioning in free-floating systems. Herbawi et al. (2016) model the repositioning prob-
lem as a generalization of the pick up and delivery problem. The objective is to maximize
the number of cars repositioned within a given time limit. The repositioning is done by
multiple operators transported by a single service vehicle. To solve the problem, an evolu-
tionary algorithm outputting the route of the service vehicle is proposed.

To enable dynamic repositioning throughout a day, future demands has to be known
for very small time steps and carsharing demand models thus have to be reliable. Weikl
and Bogenberger (2013) develop an integrated two-step model for optimal rental car repo-
sitioning for a free-floating system. Their main focus is an offline demand module carried
out periodically to identify periodically repeating spatial-temporal demand patterns within
a specific business area. A second online optimization module is carried out several times
a day to determine optimal repositioning operations to minimize repositioning costs and
penalty costs for not meeting demand. Repoux et al. (2015) introduce an event-based sim-
ulator to understand demand patterns and explore repositioning possibilities. Based on the
simulation they develop a new repositioning strategy to minimize demand loss due to rental
car unavailability. The strategy is to update repositioning plans with a MIP optimization
framework that utilizes the current state of the system and partial knowledge of near future
demand based on reservations. The optimization framework decides which repositionings
to perform and assigns necessary personnel. Choosing what cars to move correspond to
finding the shortest repositioning path between two distributions, i.e. reaching the ideal
distribution of cars with minimum effort and cost.

4.1.2 User-Based Repositioning
Cepolina and Farina (2012) present a carsharing system relying solely on user-based repo-
sitioning. When users are leaving the city center with a rental car, they are assumed in-
different to which station they use to leave the car, as all stations are public transportation
hubs considered equal. Therefore, a system administrator can balance the system by de-
ciding which station users should return their cars to. Another way of influencing the users
to achieve better balance in the system has been explored by Kaspi et al. (2014). The pa-
per explores the effects of parking reservations in one-way systems. The proposed scheme
requires the user to provide his destination. This information is then used to alert users if
there are no available parking spaces in their desired destination and to suggest alternative
stations. Hence, the parking reservation policy ensures that there will be available parking
space at the destination, reducing the time users have to spend travelling to other stations.
Although the approach is not strictly a repositioning strategy, the scheme can have positive
effects on the system balance, especially if users are directed to close-by stations based on
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the current distribution of cars.
More targeted schemes are proposed by Weikl and Bogenberger (2013). First, pricing

incentives are presented. By reducing the price for trips with destination in areas that have
too few cars, or even make them free, users can be inclined to move cars, reducing the
amount of repositioning required by the operator. Second, trip sharing and trip splitting
are introduced. The idea is that users can drive together in the same car if they have similar
destinations and they are travelling from a high demand area. If two users are traveling
together to an area with too few cars from a low demand area, the system manager can
ask the users to split the trip instead. These schemes can reduce the risk of the CSO not
meeting demand in some areas. Trip splitting and trip sharing are likely to be combined
with pricing incentives in order to make it attractive for users.

4.1.3 Proactive Approaches
In the literature, schemes aiming to reduce the need for repositioning are proposed. Fan
et al. (2008) introduce an optimization model maximizing operator profits in a one-way
station-based system where the operator is allowed to deny trips if they are not profitable
or if there are no cars available. Building on this concept, Correia and Antunes (2012)
investigate how the distribution of cars in the system develops when three different trip
selection criteria are used. Based on this they present a station location optimization model
maximizing operator profits. The first scheme proposed assumes that the CSO has total
control of trip selection and is free to accept or reject requested trips. Hence, a trip is only
accepted if it contributes to increasing the profits of the operator. The second scheme is the
standard approach found in most literature; accepting all trip requests. The third scheme
proposed is a hybrid, that only allows denying trips if the pick up station has no available
cars. When applied to a case study from Lisbon, Portugal, allowing the CSO to accept and
deny trips yielded significant improvements in operator profits. Furthermore, both partial
and full control of trip selection yielded positive profits for most cases, in contrast to the
scheme where all trips must be accepted.

Building on Correia and Antunes (2012), Correia et al. (2014) assess the added value
of accounting for users’ flexibility in one-way fixed station systems. In addition to the trip
selection schemes developed by Correia and Antunes (2012), the model proposed allows
users to pick up cars at the second closest, and even third closest station from their origin
and destination. Combined with real time information about the number of cars at each
station, accounting for user flexibility allows the system to be more efficient. Boyaci et al.
(2017) build on this concept and include user flexibility in a repositioning optimization
model. In the model, all stations within a 500 meter radius are bundled together, i.e.
making all the stations in one cluster available to serve demand at any of the stations. The
results of the paper indicate that accounting for user flexibility can have a significant effect
on the need for repositioning of cars.

4.2 Refueling and Recharging
Li et al. (2016) propose an optimization model that aims to determine optimal station lo-
cations and fleet size of a one-way fixed station carsharing system with electric vehicles.

18



4.3 Conclusions and Motivation of the Thesis

The paper takes charging of the EVs into account. Charging is assumed to be done at the
stations, and the model keeps track of the battery level of each car, demanding that each
car is sufficiently charged before it can be booked by users. Similarly, Cepolina and Fa-
rina (2012) assume charging at stations and make cars that do not have sufficiently charged
batteries unavailable for users. Kuhne et al. (2016) extend the emphasis on charging in-
troduced by Cepolina and Farina (2012) and Li et al. (2016) by incorporating different
charging speeds, i.e. fast and regular charging with limited capacity of fast chargers. The
objective of the model is to determine optimal locations of stations and fleet size based on
the availability of fast and regular chargers.

An approach for refueling is presented in the work of Santos and Correia (2015). The
paper describe a new MIP optimization model designed as an upgrade of the work by Kek
et al. (2009), to manage repositioning and maintenance operations of a one-way carsharing
system in real time. The three main upgrades of the model is that it is prepared to be used in
a rolling horizon approach, that it allows trip joining, meaning that staff can travel together
in the same car, and that it is prepared to consider two maintenance procedures (including
refueling) with different time durations. The model is able to decide the best schedule for
each staff member.

4.3 Conclusions and Motivation of the Thesis
The SFFEVCHP addresses three gaps in the existing literature: Operation of free-floating
systems, repositioning under realistic conditions, and integrated routing of rental cars and
operators in repositioning operations. Table 4.1 provides an overview of the 19 articles
surveyed in this literature review. It is evident that one-way carsharing systems have re-
ceived increased attention in the literature the last ten years. We believe this is due to the
attractiveness of these systems to the users compared to two-way systems, while at the
same time causing significant operational complexities for the CSOs. A free-floating sys-
tem provides even greater flexibility. However, there is little research on how such systems
can be operated efficiently and hence be economically viable for CSOs. Only two of the
19 articles surveyed are concerned with free-floating systems.

In the literature, repositioning is proven to increase the efficiency of carsharing systems
and increase CSO profits, even though it is a costly procedure. The gains of reposition-
ing may be lost to increased operating costs if repositioning procedures are suboptimal,
making CSOs reluctant to perform repositioning. Unlike repositioning, recharging and
refueling of the fleet of rental cars are strictly necessary. We believe that combining neces-
sary daily operations like recharging with repositioning give more realistic repositioning
conditions for CSOs. That way, the full benefits of repositioning may be realized while
only marginally increasing the operational costs.

Finally, few of the surveyed articles include integrated routing of rental cars and op-
erators. Bruglieri et al. (2017) propose a model for a fixed station system with electric
vehicles, with charging being performed at the stations. Operators travel between sta-
tions with folding bicycles which may be infeasible for realistic business areas. Similarly,
Boyaci et al. (2015) and Boyaci et al. (2017) propose a model for a station-based electric
one-way system. However, routing of rental cars and operators are performed separately,
failing to account for the trade off between the costs and additional revenue of reposition-
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ing. Nourinejad et al. (2015) address the trade off between repositioning costs and gains
by including both routing of rental cars and operators in the same problem. However, only
repositioning under the assumption that the CSO must fulfill all demand is performed, with
no attention on daily operations like recharging. Herbawi et al. (2016) propose an evolu-
tionary algorithm routing both operators and a service vehicle transporting the operators.
Nevertheless, the algorithm only considers one service vehicle, which restricts the routing
possibilities greatly. In the systems studied in this thesis, multiple service vehicles are
used for repositioning procedures. Finally, Santos and Correia (2015) present a model for
daily maintenance, refueling, and repositioning that considers routing of both rental cars
and operators. The cars being refueled must be moved back to the original spot, which is
unrealistic for an all electric system and excludes the opportunity to perform repositioning
in conjunction with daily operations.

Consequently, the available literature fails to provide a model that determines the rout-
ing of both rental cars and operators that can be applied to free-floating systems where
repositioning is performed in conjunction with daily operations. The SFFEVCHP ad-
dresses this gap.
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Table 4.1: Comparison of articles included in literature review. System costs include both operating
costs for the CSO and inconvenience cost for the customers.

Authors (year) Objective Function Model
Formulation

System
Configuration

Electric
Vehicles

Correia and An-
tunes (2012)

Maximize CSO profit MIP One-way No

Boyaci et al. (2015) Maximizing system
profit

Multi-objective
MIP

One-way Yes

Li et al. (2016) Minimize system cost Continuum Approx-
imation

One-way Yes

Kek et al. (2006) Maximize resources and
enhance service levels

Simulation One-way No

Kek et al. (2009) Minimize system cost MIP, simulation One-way No

Jorge et al. (2014) Maximize CSO profits MIP One-way No

Bruglieri et al.
(2017)

Maximize CSO profits MIP, heuristics One-way Yes

Boyaci et al. (2017) Maximize trips served,
minimize repositioning
cost, maximize charging
time

Multi-objective
MIP

One-way Yes

Fan et al. (2008) Maximize CSO profits Multistage MIP One-way No

Nair and Miller-
Hooks (2011)

Minimize repositioning
cost

MIP One-way No

Nourinejad et al.
(2015)

Minimize CSO cost Multi-TSP One-way No

Weikl and Bogen-
berger (2013)

Minimize system cost Unknown Free-floating No

Repoux et al. (2015) Minimize trips lost due to
unavailable cars

Simulation One-way Yes

Santos and Correia
(2015)

Minimize cost of reposi-
tioning, loss of demand
and penalty for not fulfill-
ing maintenance

MIP One-way No

Cepolina and Farina
(2012)

Minimize system cost Nonlinear MIP,
heuristics

One-way Yes

Correia et al. (2014) Maximize CSO profits MIP One-way No

Kuhne et al. (2016) Minimize system cost MIP One-way Yes

Kaspi et al. (2014) N/A Simulation One-way No

Herbawi et al.
(2016)

Maximize number of
repositionings

Evolutionary algo-
rithm

Free-floating No
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Chapter 5

Mathematical Model

This chapter presents a mathematical formulation of the Static Free-Floating Electric Ve-
hicle Carsharing Handling Problem (SFFEVCHP). Section 5.1 presents modeling assump-
tions, while Section 5.2 defines the applied notation. Furthermore, the mathematical for-
mulation of the problem is described in Section 5.3. Finally, symmetry breaking con-
straints and valid inequalities that can be employed to improve computation time are pro-
posed in Section 5.4.

5.1 Modeling Assumptions
The key assumptions made when modeling the SFFEVCHP are discussed in this section.
The assumptions presented aim to make the model general and applicable for any CSO
managing a fleet of EVs. Sections 5.1.1 - 5.1.3 addresses assumptions about nodes and
states, routing and handling, and time usage, respectively.

5.1.1 Nodes and States
To formulate the problem at hand, nodes are used to represent charging stations and their
corresponding surrounding area, rental cars, and the depot. Recall from Chapter 3 that
each charging station is associated with a surrounding area, and that this area including
the charging station has an ideal and an initial state. Charging stations can be visited
multiple times by both service vehicles and operators. If a rental car is visited, it has to be
handled. Hence, a rental car can only be visited once. Both service vehicles and operators
start and end up in the depot. Service vehicles can not make intermediate visits to the
depot. Therefore, depots have two possible visits.

5.1.2 Routing and Handling
Only rental cars in need of handling are considered as a part of the SFFEVCHP. Service
vehicles drive directly between nodes. This assumption can be made without loss of gen-
erality as detours would incur extra costs without added benefits. Operators can only be
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dropped off in nodes representing rental cars or the depot, and picked up in nodes repre-
senting charging stations or the depot. A rental car can only be handled by one operator.

5.1.3 Time Usage

Time is continuous and monotonically increasing for every transport route or handling
route of the system. The time it takes to drop off and pick up operators is assumed included
in the travel times.

5.2 Defining the Notation

This section describes the sets, indices, parameters, and variables used to model the SF-
FEVCHP in detail. An overview of the applied notation is shown in Table 5.1. First, sets
and indices are described in Section 5.2.1. Furthermore, the parameters and the variables
are described in Section 5.2.2 and Section 5.2.3, respectively.

5.2.1 Sets and Indices

The problem at hand is defined over a set of nodes, N. N can be divided into three disjoint
sets NCS , NEV , and {0}, representing charging stations, rental cars in need of handling,
and the depot, respectively. Figure 5.1 shows an overview of the set of nodes. The set Mi

represents all possible visits a service vehicle or operator can make to node i. If a service
vehicle visits node i, the visit is denoted by (i,m). m = 1 for the first visit, m = 2 for the
second visit, etc. To index visits m, n, and k are used for nodes i, j, and k, respectively.
The same notation applies for visits by operators, except the indices a, b, and c are used
for visits to node i, j, and k, respectively. V and D are the set of available service vehicles
and operators, respectively, and the indices v and d are used to describe the elements of
the sets.

Figure 5.1: Overview of sets of nodes.
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5.2.2 Parameters
The cost of deviation from the ideal state is CEi in node i for each unit deviation. Recall
that nodes representing charging stations also includes the surrounding area of the charging
station. CPHi is the costs of postponed handling of rental car i. CV and CD are the fixed
cost of using a service vehicle and an operator, respectively. CTij denotes the travel cost
between two nodes i and j. The travel time between two nodes i and j is represented by
Tij , and TEVi denotes the maximum travel time for the rental car in node i, i.e. the range
of the EV. The time limit for the planning period is T . NCSP

j gives the number of available
charging slots in node j. The upper limit on the number of operators a service vehicles can
transport at any given time is Q. Finally, S0

j and SIj are parameters representing the initial
state and the ideal state of node j ∈ NCS , respectively. There are no states associated with
nodes representing rental cars or the depot.

5.2.3 Variables
To track the flow of service vehicles and operators, a set of binary variables are used.
Figure 5.2 shows the flow of service vehicle 1 and operators 1, 2, and 3 from the example
in Chapter 3. ximjnv is the arc flow variable for service vehicles, taking the value 1 if
service vehicle v drives directly from visit (i,m) to visit (j, n), 0 otherwise. If a service
vehicle v transports an operator d between its visit (i,m) to visit (j, n) on the operator’s
visit (i, a) to visit (j, b) fimajnbvd equals 1, 0 otherwise. The variable qivd is 1 if service
vehicle v drops off operator d in node i, 0 otherwise. Similarly, gjnbvd is 1 if service
vehicle v on visit (j, n) picks up operator d on its visit (j, b), 0 otherwise. Furthermore,
hijbd equals 1 if operator d handles a rental car from node i to visit (j, b), 0 otherwise. The
continuous variables tVimv and tDiad gives the time of arrival for service vehicle v to visit
(i,m) and the arrival time for operator d to visit (i, a), respectively.

If the handling of rental car i is postponed, the binary variable zHi equals 1, otherwise
0. The integer variable yj gives the absolute value of the deviation between the ideal state
and final state in charging station j. Finally, the binary variables sv and wd equal 1 if the
service vehicle v and operator d are used, respectively, and 0 otherwise.

5.3 Model Formulation
This section presents the formulation of the SFFEVCHP as a MIP. First, the objective of
the SFFEVCHP is presented in Section 5.3.1. Then, the constraints defining the problem
are described in Sections 5.3.2 to 5.3.7. The constraints are divided into sections where
each section covers similar constraints.

5.3.1 Objective
The objective function (5.1) consists of five terms. The first term accounts for the cost
of deviations from the ideal state. The second term calculates the total travel cost for all
service vehicles. Furthermore, the third term accounts for the penalty cost that incur if
handling is postponed. Finally, the two last terms account for the fixed cost that incur if
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Table 5.1: Sets, indices, parameters, and variables used to formulate the problem mathematically

Sets
N Set of all nodes
NCS Set of all charging stations, NCS ⊂ N

NEV Set of rental cars in need of handling, NEV ⊂ N

Mi Set of all possible visits to node i
V Set of all service vehicles
D Set of all operators

Indices
i, j, k Node i, j, k ∈ N

a, b, c Operator visit a,b,c to node i, a, b, c ∈Mi

m, n, o Service vehicle visit m,n,o in node i, m,n, o ∈Mi

v Service vehicle v ∈ V

d Operator d ∈ D

Parameters
NCSP
j Number of available charging slots at charging station j

CEj Deviation cost in charging station j
CTij Travel cost between node i and j
CPHi Cost of postponed handling of rental car in node i
CV Fixed service vehicle cost
CD Fixed operator cost
Tij Travel time between node i and j
TEVi Max travel time for rental car in node i
T Time limit for the planning period
Q Service vehicle capacity
S0
j Initial state at charging station j
SIj Ideal state at charging station j

Variables
ximjnv 1 if service vehicle v drives directly from visit (i,m) to visit (j,n),

0 otherwise
fimajnbvd 1 if operator d is transported from visit (i,a) to (j,b) by service

vehicle v in visit (i,m) to (j,n), 0 otherwise
qivd 1 if operator d is dropped off in i by service vehicle v, 0 other-

wise
gjnbvd 1 if operator d is picked up in visit (j,b) by service vehicle v in

visit (j,n), 0 otherwise
hijbd 1 if operator d handles rental car i to charging station visit (j, b),

0 otherwise
tVimv Time of arrival to visit (i,m) for service vehicle v
tDiad Time of arrival to visit (i,a) for operator d
zHi 1 if the handling of rental car i is postponed, 0 otherwise
yj Deviation from ideal state in node j
sv 1 if service vehicle v is used, 0 otherwise
wd 1 if operator d is used, 0 otherwise
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Figure 5.2: Illustration of the flow variables for one service vehicle and three operators.

a service vehicle or operator is used, respectively. The entire objective function is mini-
mized.

min
∑

j∈NCS

CEj yj +
∑
i∈N

∑
m∈Mi

∑
j∈N

∑
n∈Mj

∑
v∈V

CTij ximjnv+ (5.1)

∑
i∈NEV

CPHi zHi +
∑
v∈V

CV sv +
∑
d∈D

CD wd

5.3.2 Routing of Service Vehicles
Constraints (5.2) and (5.3) enforce that if a service vehicle is used, it must leave and return
to the depot, respectively. Constraints (5.4) enforce that only service vehicles in use visit
nodes and that only one arc is leaving a given visit (i,m). Finally, constraints (5.5) ensure
that a vehicle arriving a visit (j, n) leaves the node from the same visit. This must hold for
all nodes except the depot.

∑
j∈N\{0}

x01j1v = sv v ∈ V (5.2)

∑
j∈N\{0}

∑
m∈Mj

xjm02v = sv v ∈ V (5.3)
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∑
j∈N\{0}

∑
n∈Mj

ximjnv ≤ sv i ∈ N\{0},m ∈Mi, v ∈ V (5.4)

∑
i∈N

∑
m∈Mi

ximjnv =
∑
i∈N

∑
m∈Mi

xjnimv j ∈ N\{0}, n ∈Mj , v ∈ V (5.5)

5.3.3 Handling of Rental Cars
Constraints (5.6) ensure that the number of rental cars handled to a station does not exceed
the number of available charging slots at the station. Constraints (5.7) force either the
handling variable or the postponed handling variable to 1 for all rental cars. Furthermore,
constraints (5.8) ensure that rental cars are handled to a charging station within reach given
the car’s battery capacity.

∑
i∈NEV

∑
b∈Mj

∑
d∈D

hijbd ≤ NCSP
j j ∈ NCS (5.6)

∑
j∈NCS

∑
b∈Mj

∑
d∈D

hijbd + zHi = 1 i ∈ NEV (5.7)

∑
b∈Mj

∑
d∈D

Tij hijbd ≤ TEVi i ∈ NEV , j ∈ NCS (5.8)

5.3.4 Routing of Operators
Constraints (5.9) and (5.10) ensure that an operator handling a rental car is dropped off by
the rental car and picked up at the charging station the rental car is handled to, respectively.
Furthermore, constraints (5.11) make sure that an operator only makes a given visit b to
a charging station once, either by handling to the charging station or by being transported
through the charging station.

∑
j∈NCS

∑
b∈Mj

hijbd =
∑
v∈V

qivd i ∈ NEV , d ∈ D (5.9)

∑
i∈NEV

hijbd =
∑
v∈V

∑
n∈Mj

gjnbvd j ∈ NCS , (5.10)

b ∈Mj , d ∈ D

∑
i∈NEV

hijbd +
∑
i∈N

∑
m∈Mi

∑
a∈Mi

∑
n∈Mj

∑
v∈V

fimajnbvd ≤ wd j ∈ NCS , (5.11)

b ∈Mi, d ∈ D

A service vehicle can only transport operators in use. Also, an operator cannot be
picked up by more than one service vehicle in the depot. This is enforced by constraints
(5.12). Constraints (5.13) ensure that operators are returned to the depot. If an operator
is transported out of a node, it must be transported to that node or picked up in that node.
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Similarly, if an operator is transported to a node, but not out of a node, it must be dropped
off in the node. Constraints (5.14) ensure this and hence maintain the flow of operators
in all nodes. Finally, constraints (5.15) make sure that a service vehicle does not exceed
its seat capacity transporting operators and force the flow on arcs not driven by a service
vehicle to 0.

∑
j∈N\{0}

∑
v∈V

f011j11vd = wd d ∈ D (5.12)

∑
i∈N

∑
m∈Mi

∑
a∈Mi

∑
v∈V

fima022vd = wd d ∈ D (5.13)

∑
k∈N

∑
o∈Mk

∑
c∈Mk

fjnbkocvd =
∑
i∈N

∑
m∈Mi

∑
a∈Mi

fimajnbvd (5.14)

+ gjnbvd − qjvd j ∈ N\{0}, n ∈Mj , b ∈Mj

v ∈ V, d ∈ D

∑
a∈Mi

∑
b∈Mj

∑
d∈D

fimajnbvd ≤ Q ximjnv i ∈ N,m ∈Mi, (5.15)

j ∈ N, n ∈Mj , v ∈ V

5.3.5 Time Usage

Constraints (5.16) - (5.18) determine the service vehicle arrival time in all nodes. First,
constraints (5.16) ensure that service vehicles return to the depot before the planning pe-
riod is over. Constraints (5.17) track the arrival time of the service vehicles for all visits.
Furthermore, constraints (5.18) make sure that a service vehicle that picks up an operator
does so after the operator has arrived in the node. M1 and M2 are big Ms, making the
constraints non-restrictive when they do not apply.

tVimv ≤ T sv i ∈ N,m ∈Mi, v ∈ V (5.16)

tVimv + (Tij +M1) ximjnv ≤ tVjnv +M1 i ∈ N,m ∈Mi, j ∈ N, (5.17)

n ∈Mj , v ∈ V

tDjbd +M2 gjnbvd ≤ tVjnv +M2 j ∈ NCS , n ∈Mj , (5.18)

b ∈Mj , v ∈ V, d ∈ D

Constraints (5.19) - (5.21) determine operator arrival time in all nodes. Constraints
(5.19) ensure that operators are returned to the depot within the planning time. Constraints
(5.20) track the time of an operator when handling a rental car. Finally, constraints (5.21)
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track the time of an operator when transported by a service vehicle. M3 and M4 are big
Ms, making the constraints non-restrictive when they not apply.

tDiad ≤ T wd i ∈ N, a ∈Mi, d ∈ D (5.19)

tDiad + (Tij +M3) hijbd ≤ tDjbd +M3 i ∈ NEV , a ∈Mi, (5.20)

j ∈ NCS , b ∈Mj , d ∈ D

tVimv + (Tij +M4) fimajnbvd ≤ tDjbd +M4 i ∈ N,m ∈Mi, (5.21)

a ∈Mi, j ∈ N, n ∈Mj ,

b ∈Mj , v ∈ V, d ∈ D

5.3.6 Final State Constraints

Constraints (5.22) and (5.23) assign the absolute value of deviations from the ideal state in
each charging station node to the variable accounting for deviations.

yj ≥ S0
j +

∑
i∈NEV

∑
b∈Mj

∑
d∈D

hijbd − SIj j ∈ NCS (5.22)

yj ≥ −S0
j −

∑
i∈NEV

∑
b∈Mj

∑
d∈D

hijbd + SIj j ∈ NCS (5.23)

5.3.7 Non-negativity, Integer, and Binary Restrictions

Constraints (5.24) - (5.34) define non-negativity, integer, and binary restrictions on all
variables of the problem.

ximjnv ∈ {0, 1} i ∈ N,m ∈Mi, j ∈ N, n ∈Mj , v ∈ D (5.24)
fimajnbvd ∈ {0, 1} i ∈ N,m ∈Mi, a ∈Mi, j ∈ N, (5.25)

n ∈Mj , b ∈Mj , v ∈ V, d ∈ D

qivd ∈ {0, 1} i ∈ NEV , v ∈ V, d ∈ D (5.26)

gjnbvd ∈ {0, 1} j ∈ NCS , n ∈Mj , b ∈Mj , v ∈ V, d ∈ D (5.27)

hijbd ∈ {0, 1} i ∈ NEV , j ∈ NCS , b ∈Mj , d ∈ D (5.28)

tVimv ≥ 0 i ∈ N,m ∈Mi, v ∈ V (5.29)

tDiad ≥ 0 i ∈ N, a ∈Mi, d ∈ D (5.30)

zHi ∈ {0, 1} i ∈ NEV (5.31)

yj ∈ Z+ j ∈ NCS (5.32)
sv ∈ {0, 1} v ∈ V (5.33)
wd ∈ {0, 1} d ∈ D (5.34)

30



5.4 Performance Enhancing Constraints

5.4 Performance Enhancing Constraints
In this section, performance enhancing constraints aiming to improve the computation time
while keeping the same optimal solution are proposed. Sections 5.4.1 and 5.4.2 present a
set of symmetry breaking constraints and valid inequalities, respectively. The effect of the
performance enhancing constraints will be tested in Chapter 7.

5.4.1 Symmetry Breaking Constraints
A large number of symmetric solutions of the SFFEVCHP exist. This is a result of assum-
ing a homogeneous fleet of service vehicles and operators, and because multiple visits to
charging stations are allowed. Symmetric solutions are solutions that are equal in prac-
tice but mathematically different. Constraints (5.35) - (5.38) aim to reduce the number of
symmetric solutions for service vehicles. Constraints (5.35) state that the service vehicle
with lowest index must be utilized first. Constraints (5.36) enforce that the service vehicle
with lowest index has the longest travel time. Finally, constraints (5.37) and (5.38) enforce
chronological order of service vehicle visits.

s(v+1) − sv ≤ 0 v ∈ V\{|V|} (5.35)

∑
i∈N

∑
m∈Mi

∑
j∈N\{i}

∑
n∈Mj

Tij (ximjn(v+1) − ximjnv) ≤ 0 v ∈ V\{|V|} (5.36)

∑
j∈N

∑
n∈Mj

(xi(m+1)jnv − ximjnv) ≤ 0 i ∈ N, (5.37)

m ∈Mi\{|Mi|}, v ∈ V

tVimv +M5

∑
j∈N

∑
n∈Mj

xi(m+1)jnv ≤ tVi(m+1)v +M5 i ∈ N, (5.38)

m ∈Mi\{|Mi|}, v ∈ V

Constraints (5.39) - (5.41) aim to reduce the number of symmetric solutions for opera-
tors. Constraints (5.39) state that the operator with lowest index must be utilized first. Con-
straints (5.40) ensure that the operator with lowest index handles rental cars over longer
distances. Finally, constraints (5.41) - (5.44) enforce chronological order of operator visits.

w(d+1) − wd ≤ 0 d ∈ D\{|D|} (5.39)

∑
i∈NEV

∑
j∈NCS

∑
b∈Mj

Tij (hijb(d+1) − hijbd) ≤ 0 d ∈ D\{|D|} (5.40)
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∑
i∈NEV

(hij(b+1)d − hijbd)−∑
i∈NEV

∑
m∈Mi

∑
a∈Mi

∑
n∈Mj

∑
v∈V

fimajnbvd ≤ 0 j ∈ NCS , (5.41)

b ∈Mj\{|Mj |}, d ∈ D

tDjbd +M6

( ∑
i∈NEV

hij(b+1)d+∑
i∈N

∑
m∈Mi

∑
a∈Mi

∑
n∈Mj

∑
v∈V

fimajn(b+1)vd

)
≤ tDj(b+1)d +M6 j ∈ NCS , (5.42)

b ∈Mj\{|Mj |}, d ∈ D

tDjbd +M7

∑
i∈N

∑
m∈Mi

∑
a∈Mi

∑
n∈Mj

∑
v∈V

fimajn(b+1)vd

≤ tDj(b+1)d +M7 j ∈ N, (5.43)

b ∈Mj\{|Mj |}, d ∈ D

∑
m∈Mi

∑
j∈N

∑
n∈Mj

∑
b∈Mj

∑
v∈V

(fim(a+1)jnbvd − fimajnbvd) ≤ 0 i ∈ NCS , (5.44)

a ∈Mi\{|Mi|}, d ∈ D

5.4.2 Valid Inequalities

Introducing valid inequalities makes the LP relaxation of the problem tighter without re-
moving feasible solutions. Constraints (5.45) state that rental cars only can be handled by
operators in use. Furthermore, constraints (5.46) state that if a service vehicle traverse an
arc, the service vehicle must be used. Constraints (5.47) - (5.49) declare that if a service
vehicle transports, picks up, or drops off an operator, the service vehicle must be used,
respectively. Similarly, constraints (5.50) - (5.52) ensure that if an operator is transported,
picked up, and dropped off, the operator must be used.

hijbd ≤ wd i ∈ NEV , j ∈ NCS , b ∈Mj , d ∈ D (5.45)
ximjnv ≤ sv i ∈ N,m ∈Mi, j ∈ N, n ∈Mj , v ∈ V (5.46)
fimajnbvd ≤ sv i ∈ N,m ∈Mi, a ∈Mi, j ∈ N, (5.47)

n ∈Mj , b ∈Mj , v ∈ V, d ∈ D

gjnbvd ≤ sv j ∈ NCS , n ∈Mj , b ∈Mj , v ∈ V, d ∈ D (5.48)

qivd ≤ sv i ∈ NEV , v ∈ V, d ∈ D (5.49)
fimajnbvd ≤ wd i ∈ N,m ∈Mi, a ∈Mi, j ∈ N, (5.50)

n ∈Mj , b ∈Mj , v ∈ V, d ∈ D
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5.4 Performance Enhancing Constraints

gjnbvd ≤ wd j ∈ NCS , n ∈Mj , b ∈Mj , v ∈ V, d ∈ D (5.51)

qivd ≤ wd i ∈ NEV , v ∈ V, d ∈ D (5.52)
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Chapter 6

Hybrid Genetic Search with
Adaptive Diversity Control for
the SFFEVCHP

This chapter presents a heuristic proposed for the SFFEVCHP based on the Unified Hy-
brid Genetic Search (UHGS) framework developed by Vidal et al. (2014). UHGS has been
ranked among the most promising metaheuristics in the survey by Koç et al. (2016). This
survey compares metaheuristic algorithms proposed for vehicle routing problems between
1984 and 2015. UHGS is a general algorithm that can solve multiple variants of the VRP.
Overall, the SFFEVCHP can be regarded as a VRP but the problem also includes syn-
chronization of the routing of rental cars and the routing of service vehicles as well as the
decision to handle or postpone a rental car.

The implementation of the heuristic draws on the Hybrid Genetic Search with Adaptive
Diversity Control (HGSADC) first presented by Vidal et al. (2012), which is an implemen-
tation of the UHGS framework. The original HGSADC has been modified and extended
significantly to fit the SFFEVCHP. The HGSADC is a non-deterministic heuristic, mean-
ing that it neither guarantees an optimal solution nor necessarily gives the same solution
when run multiple times. The following chapter describes the specifics of the HGSADC
proposed for the SFFEVCHP. First, an overview of the algorithm is presented in Section
6.1. Second, the representation of individuals, the motivation for solving parts of the prob-
lem as a dial-a-ride problem, and the evaluation of individuals are described in Sections
6.2, 6.3, and 6.4, respectively. Third, each module of the overall algorithm is described in
detail in Sections 6.5 to 6.8. Finally, the novelty of the proposed algorithm is discussed in
Section 6.9.

6.1 Overview of the Algorithm
Algorithm 1 shows an overview of the HGSADC proposed to solve the SFFEVCHP. The
algorithm evolves a population of individuals, where an individual represents a solution
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to the SFFEVCHP. The population is divided into two disjoint subpopulations; a feasi-
ble subpopulation and an infeasible subpopulation. The feasible subpopulation consists of
all individuals in the population representing feasible solutions. The metaheuristic litera-
ture indicates that allowing a controlled exploration of infeasible solutions may enhance
the performance of the search (Vidal et al., 2012). Hence, the infeasible subpopulation
contains all individuals representing solutions infeasible with respect to planning time or
number of service vehicles used.

The algorithm breeds new individuals from the population as long as there have been
improvements within the last INI iterations or the maximum running time limit TMAXRUN

is not reached. In each iteration, the algorithm picks two parent individuals from the pop-
ulation and combines them, yielding a new individual denoted an offspring. The offspring
can be enhanced using an education procedure and, if infeasible, further enhanced using
a repair procedure. The maximum population size is given by µ + λ, where µ is the min-
imum population size and λ is the maximum number of offsprings that can be created
before individuals are removed, i.e. the generation size. When the maximum population
size is reached, the individuals with highest biased fitness, i.e. high cost and low diversity
contribution, are removed until there are only µ individuals left in the population. This
process is referred to as survivor selection. To prevent the algorithm from converging to a
local optimum, a diversification procedure is performed if there has been no improvement
for IDIV iterations. The initial population is created using a construction heuristic and
must be large enough to contribute sufficiently to the diversity of the population.

Algorithm 1 Hybrid Genetic Search with Adaptive Diversity Control (HGSADC)

1: Initialize population Section 6.5
2: while Iterations without improvement < INI and time < TMAXRUN do
3: Select parent individuals s1 and s2 Section 6.6
4: Generate offspring snew from s1 and s2
5: Educate offspring snew with probability ρEDUoffspring Section 6.7
6: if snew is infeasible then
7: Repair snew with probability ρREPoffspring Section 6.7
8: end if
9: if snew is still infeasible then
10: Insert snew into infeasible subpopulation
11: else
12: Insert snew into feasible subpopulation
13: end if
14: if maximum subpopulation size µ+ λ reached then
15: Select survivors Section 6.8.1
16: end if
17: Adjust penalty parameters for violating feasibility condition Section 6.8.2
18: if best individual not improved for IDIV iterations then
19: Diversify population Section 6.8.3
20: end if
21: end while
22: Return best feasible individual
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6.2 Individual Representation

6.2 Individual Representation
An individual describes the routes of all operators and service vehicles. The operator
routes include assignment of operators to handle each rental car, postponement of handling
or assignment of rental cars to charging stations, and the handling order of each operator.
The routes of the service vehicles include assignment of transport requests by operators
and the visit sequence of each service vehicle. An example individual of a small, simplified
problem instance is shown in Figure 6.1 below to help facilitate the discussion.

Figure 6.1: Example of an individual for a small example problem instance: Four cars in need of
handling, two charging stations, two service vehicles, and three operators.

Each individual s in the population S is represented by five chromosomes. The first
chromosome is the rental car destination chromosome α(s), determining the charging
station to move a rental car. Alternatively, determining that the handling of the car is
postponed. Each individual s consists of a destination αi(s) for each rental car i.

The second chromosome is the operator chromosome β(s), that for each rental car
defines which operator that is going to perform the handling. Each individual consists
of an operator βi(s) to handle each rental car i. The rental car destination and operator
chromosomes for the individual in Figure 6.1 are shown in Table 6.1.

Table 6.1: Rental car destination and operator chromosomes of the example individual given in
Figure 6.1.

Rental car i 1 2 3 4
αi(s) 1 1 2 2
βi(s) 1 3 2 2

The third chromosome is the handling sequence chromosome γ(s), that for each oper-
ator d defines the order to handle the rental cars assigned to the operator. Each individual
consists of a handling sequence γd(s) for each operator d. The handling sequence for the
individual in Figure 6.1 are shown in Table 6.2.

Table 6.2: Handling sequence chromosome of example individual given in Figure 6.1.

Operator d 1 2 3
γd(s) {1} {3,4} {2}
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Taking the first three chromosomes as given, transport requests for the operators that
need to be taken care of by the service vehicles are formulated. A transport request is
formulated for each pick up of an operator. The transport request is represented by a node
pair, the first node is the origin where the operator is picked up and the second node the
destination where the operator is dropped off. Each transport request is denoted τr(s),
indexed by r and the set of all transport requests is denoted R. The transport requests for
the individual presented in Figure 6.1 are shown in Table 6.3.

Table 6.3: Transport requests of the example individual given in Figure 6.1. The depot is denoted
D, rental cars 1, 2, 3, and 4 EV1, EV2, EV3, and EV4, respectively, and charging stations 1 and 2
CS1 and CS2, respectively.

Transport
request r 1 2 3 4 5 6 7

Request τr(s) {D,EV1} {CS1,D} {D,EV3} {CS2,EV4} {CS2,D} {D,EV2} {CS1,D}

The transport request formulation is used to define the fourth chromosome, the trans-
port request assignment chromosome δ(s), that assigns each transport request r to a service
vehicle v. Each individual consists of a transport request assignment δr(s) for each trans-
port request r. The transport request assignment chromosome for the example is presented
in Table 6.4.

Table 6.4: Transport request assignment chromosome of example individual given in Figure 6.1.

Transport request r 1 2 3 4 5 6 7
δr(s) 2 1 2 2 2 1 1

Finally, the last chromosome is the route chromosome ε(s), that describes the route
of each service vehicle. The route chromosome determines the order a service vehicle
visits the nodes defined by the transport request assignment chromosome. Recall that an
operator can be transported to an EV by one service vehicle, and picked up at the charging
station by another. Each individual consists of a route pattern εv(s) for each vehicle v.
The route patterns for the given example are presented in Table 6.5.

Table 6.5: Route chromosome of example individual given in Figure 6.1. The depot is denoted D,
rental cars 1, 2, 3, and 4 EV1, EV2, EV3, and EV4, respectively, and charging stations 1 and 2 CS1
and CS2, respectively.

Service vehicle v 1 2
εv(s) {D,EV2,CS1,D} {D,EV1,EV3,CS2,EV4,CS2,D}

6.3 Solving the SFFEVCHP as a Dial-a-Ride Problem
If the chromosomes presented in Section 6.2 are determined in the same order as they are
discussed, the problem of determining the transport request assignment and route chro-
mosomes while considering the rental car destination, operator, and handling sequence
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chromosomes fixed is similar to a dial-a-ride problem (DARP). As described in Section
6.2, the first three chromosomes can be used to formulate transport requests. Each trans-
port request is associated with the operator requesting transport by the variable ηr(s),
which is equal to d if operator d requires transport request r. In the DARP, customers can
preorder trips and specify a time window to be picked up or dropped off. Cars are then
routed to pick up customers at their desired location and transport them to their destination
and multiple customers can be served simultaneously as long as there are available seats
in the car. By specifying time windows for the formulated transport requests, solution
methods used for the DARP can be used to create the transportation request assignment
chromosome and the route chromosome in the HGSADC for the SFFEVCHP.

Using the travel times between nodes, time windows can be determined. The upper
and lower limit for the time window of the origin node of transport request r is denoted
lor(s) and uor(s) for individual s, respectively. Similarly, the upper and lower limit for
the destination node is given by ldr(s) and udr(s), respectively. The time windows are set
by considering the minimum possible time required by the operator to either get to the
origin node (lower limit) or finalize all handling after the destination node (upper limit)
as described in Algorithm 2. The lower and upper limits are calculated by considering
the arrival time of the operator in each node if a service vehicle drove together with the
operator all the time, resulting in the operator being transported directly between all nodes
he has to visit.

Algorithm 2 Determining time windows

1: for each operator d ∈ D do
2: for each transport request r by operator d, r ∈ {r | ηr(s) = d, r ∈ R(s)} do
3: lor(s) ← ld

(r−1)
(s) + Tτd

(r−1)
τor

, lower limit in the destination node of the last transport

request
plus the minimum travel time from the last transport request to the current

4: ldr(s)← lor(s) + Tτor τdr
, lower limit in the origin node of the current transport request plus

the minimum travel time to the destination node of the current transport request
5: end do
6: for each transport request r by operator d, r ∈ {r | ηr(s) = d, r ∈ R(s)} (reverse direction)

do
7: udr(s)← uo

(r+1)
(s)−Tτdr τo(r+1)

, upper limit of the origin node of the next transport request

minus
the minimum travel time from the current transport request to the next

8: uor(s)← udr(s)− Tτor τdr , upper limit of the destination node in the current transport request
minus

the minimum travel time from the origin to destination node in the current transport request
9: end do
10: end do

Finding the transport request assignment and route chromosomes by solving the sub-
problem as a DARP is done whenever new individuals are created in the HGSADC. How-
ever, the DARP itself is a hard problem to solve, as it is NP-hard (Healy and Moll, 1995).
Hence, approximate solution methods are needed to solve large instances. A fast con-
struction heuristic for the DARP is needed for the HGSADC. Low computation time is
prioritized potentially at the expense of solution quality because the algorithm is executed
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many times. The static DARP as discussed here, as well as variations of the problem,
are well studied in the literature. An extensive literature survey of model formulations
and heuristic solution methods for DARP is presented by Cordeau and Laporte (2007).
Although this survey is somewhat dated, it includes the majority of significant contribu-
tions to solution methods for the static DARP relevant for this thesis. More recent papers
that present promising heuristics for the static DARP have been presented by Parragh and
Schmid (2013), Kirchler and Wolfler Calvo (2013), Braekers et al. (2014), Osaba et al.
(2015), Gschwind and Drexl (2016), and Masmoudi et al. (2017).

Cordeau and Laporte (2007) survey 16 papers on heuristics for the static DARP. As the
SFFEVCHP commonly has 100 to 150 rental cars in need of handling at a given point in
time, algorithms that are able to construct an initial solution for similar problem sizes in
negligible time are desired. None of the full algorithms surveyed by Cordeau and Laporte
(2007) achieve this, hence, only the construction phase of these algorithms are consid-
ered. Only five out of the 16 papers propose fast algorithms to construct an initial solution
that are more sophisticated than random assignments. Toth and Vigo (1997), Aldaihani
and Dessouky (2003), and Xiang et al. (2006) propose construction algorithms that sort
transport requests by their time windows. The routes are created by assigning all transport
requests possible to do without breaking any time windows to a route. For the remaining
transport requests, it continues the same process with a new service vehicle, until all re-
quest have been assigned to a vehicle. This approach can be denoted cluster first sweep
second (CFSS). Diana and Dessouky (2004) and Wong and Bell (2006) build on the same
principles but also take the spatial distribution of the transport requests into account to
decide the insertion order in an insertion heuristic. In the more recent papers not covered
by Cordeau and Laporte (2007), Parragh and Schmid (2013) develop a hybrid column
generation and large neighborhood search with an initial pool of columns generated by
an insertion heuristic. Kirchler and Wolfler Calvo (2013) and Braekers et al. (2014) also
employ a similar insertion heuristic to construct an initial solution. Osaba et al. (2015) and
Gschwind and Drexl (2016) do not discuss the construction phase in detail. Masmoudi
et al. (2017) introduce a hybrid genetic algorithm for the heterogeneous DARP, construct-
ing the initial population using simple construction heuristics similar to Xiang et al. (2006)
and randomization.

Because of a simple formulation and lower computational effort, the CFSS algorithm
proposed by Xiang et al. (2006) is employed as a construction algorithm for the DARP
subproblem of the individuals considered in the HGSADC. The construction heuristic is
adapted to the SFFEVCHP and described in detail in Section 6.5. The constructed solution
is improved by local search strategies discussed in Section 6.7.

6.4 Evaluation of Individuals
In evolutionary algorithms, evaluation of individuals is often based on the solution cost.
This method promote the best individual (elitism), but does not take other factors such as
the diversity of the population into account. A diverse population is important for GAs
in order to avoid premature convergence to local optima and loss of information. The
evaluation of individuals in the HGSADC is based on the biased fitness function presented
by Vidal et al. (2012). The biased fitness function evaluates individuals based on their cost,
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how much they contribute to the diversity of the population, and how much they violate
the constraints.

To evaluate the cost of an individual, let A(s) be the set of route patterns in individual
s ∈ S. Let csa be the cost of driving route a ∈ A(s), and CEs , CPHs , CVs , and CDs the
cost of deviations from the ideal state, postponed handling, and use of service vehicles and
operators in s, respectively. The individuals are allowed to violate the constraints on time
used to perform handling and the number of service vehicles used. The penalty costs φTsa
and φVs account for how much the time constraints are violated in route a and violations in
number of service vehicles used in individual s, respectively. These are given by equations
(6.1) and (6.2), where wT is the penalty parameter per unit violation of the constraints on
duration and tsa is the duration of route r in individual s. wV is the penalty parameter
per unit violation of number of vehicles used by individual s, calculated by using the
difference between V USEDs , and available service vehicles |V|. The total cost Cs of an
individual s is calculated by equation (6.3).

φTsa = wTmax{0, tsa − T} s ∈ S, a ∈ A(s) (6.1)

φVs = wVmax{0, V USEDs − |V|} s ∈ S (6.2)

Cs =
∑

a∈A(s)

(csa + φTsa) + φVs + CEs + CPHs + CVs + CDs s ∈ S (6.3)

The diversity contribution of each individual s is defined as the average distance to its
closest neighbors. Let NCLO

s be the set containing the nCLO closest neighbors of s. The
diversity contribution, Π(s), can then be calculated as:

Π(s) =
1

nCLO

∑
s′∈NCLO

s

π(s, s′) s ∈ S (6.4)

where π(s, s′) is the normalized Hamming distance between individual s and s′, based
on the Hamming distance first presented in Hamming (1950). Here, we let the normalized
Hamming distance be the number of different charging station assignments and the dif-
ferent handling assignments, i.e. the difference between destination assignment αi(s) and
αi(s

′) and the handling assignment βi(s) and βi(s′). The normalized Hamming distance
is expressed as

π(s, s′) =
1

2|NEV |
∑

i∈NEV

(
1(αi(s) 6= αi(s

′)) + 1(βi(s) 6= βi(s
′)
)

s ∈ S (6.5)

where 1(cond) = 1 if condition cond is true and 0 otherwise. Every individual is ranked
based on its total cost and its diversity contribution. Let RankC(s) and RankD(s) be the
rank of individual s in terms of total cost and diversity contribution, respectively. The
individual with the lowest total cost will have RankC(s) = 1, and the individual with the
highest total cost will have RankC(s) = |S|. Equally, the individual s with highest diver-
sity contribution will have RankD(s) = 1. Finally, the biased fitness, given by equation
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(6.6), is calculated using the ranks. nELI is the number of elite individuals to survive to
the next generation. If nELI equals 0, the cost and diversity ranks are given equal weight
and if nELI equals |S|, the rank is set based on the cost rank only. Hence, the composition
of the total population S is influenced by how diversity is valued relative to the total cost
because survivor selection is done based on the biased fitness.

BF (s) = RankC(s) +
(

1− nELI

|S|

)
RankD(s) s ∈ S (6.6)

6.5 Constructing the Initial Population

The initial population is constructed by creating µKINIT individuals and assigning each
individual to the appropriate subpopulation, where µ is the minimum number of individ-
uals in each subpopulation. KINIT should be set so that the number of individuals cre-
ated ensure sufficient diversity in the population. However, setting KINIT too large will
increase the computational burden with marginal solution improvement as the survivor
selection step of the algorithm restricts the size of each subpopulation to µ+ λ.

The initial population is created by the construction heuristic described in Algorithm
3. An individual s is created in four steps. Steps 1 to 3 create chromosomes α(s), β(s),
and γ(s), respectively, and Step 4 creates the remaining chromosomes δ(s) and ε(s) by
solving a DARP. In the first step, each rental car i is assigned a destination αi(s). The
destination is chosen semi-randomly with the closest charging station to each car having
the largest probability of being chosen, the second closest second highest probability, and
so on. Charging stations are chosen among the nCS closest and the probabilities of all
these plus the probability of postponing handling will sum to one ensuring that the rental
car is assigned to a station or postponed. nCS is chosen to be five in this algorithm. The list
of possible destinations Gi(s) is updated to only include charging stations with available
charging slots. Furthermore, only charging stations within the range reachable with the
given battery level of each rental car are included.

To guide how the remaining chromosomes are set, a pseudo time for each operator is
used to avoid solutions with large infeasibilities in the total time constraints. Since only a
small part of the problem is determined after the first step of Algorithm 3, the destination
of each rental car is used to estimate the total duration of the handling. The travel time
between i and j is given by Tij . However, this time only accounts for the time spent while
the rental car is handled. In addition to this, the operator must be transported to the rental
car and picked up at the charging station. The operator may have to wait before being
picked up and visit other rental cars or charging stations while riding in the service vehicle
to pick up or drop off other operators. To account for this, the handling time is multiplied
by a constant Kpseudo, which is greater than 1. Hence, the pseudo time can be expressed
as:

tpseudod (s) =
∑

i∈NEV |βi(s)=d

KpseudoTiαi(s) s ∈ S (6.7)
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Step 2 assigns a random handling assignment pattern to each rental car. With prob-
ability ρassign the pattern is chosen with priority on using a low number of operators as
presented in Algorithm 3.1. Rental cars are assigned to operators with a greedy algorithm,
adding rental cars to the operator as long as the pseudo time of the operator does not ex-
ceed the planning time T . When the planning time is exceeded for one operator, rental cars
are added to the next operator in the same fashion. Alternatively, operators are assigned
with priority on reducing the distance travelled by service vehicles, presented in Algorithm
3.2. This is done by attempting to assign rental cars to operators so that cars handled to
the same charging station are handled by different operators to allow service vehicles to
only visit charging stations once. To do this, a list Hi(s) of rental cars with destination i is
created for each charging stations. For each charging station i, the rental cars in Hi(s) are
assigned to different operators. Only if the number of operators is limited, multiple rental
cars will be handled to the same charging station by the same operator. ρassign is set to
0.5 to make sure the two methods are used approximately as many times.

The third step of the algorithm sets the handling order for the cars assigned to each
operator. Until all cars have been included in the sequence, a new car is added to the end
of the sequence. The car closest to the position of the operator after the previous handling
is added with a probability ρseq , otherwise a random car is added.

Using the time windows, the origin and destination nodes of the transport requests are
sorted, lowest upper limit first, in a list L(s). The transport requests are split into origin and
destination nodes because a service vehicle assigned to that request does not necessarily
drive directly from the origin to the destination, other nodes can be visited in-between.
Requests that are in conflict, i.e. not possible to fulfill with the given time windows on
the same route, are stored in a conflict table C(s). Using L(s) and C(s), routes are cre-
ated using the sweep heuristic proposed by Xiang et al. (2006), described in Algorithm
3.3. The algorithm iterates through the list L(s) adding unvisited nodes that are not in
conflict with any of the nodes already in the route. Furthermore, destination nodes are
added to the route if the origin node already is in the route. After all elements of L(s) are
searched, a new route is created and all unvisited nodes in L(s) are searched and added
by the criteria described above. The resulting assignment of transport requests to service
vehicles and service vehicle routes are stored in the transport request assignment and route
chromosomes, respectively.

6.6 Parent Selection and Crossover
Crossover is the process where the chromosomes of two parent individuals, s1 and s2, are
combined into a new individual, snew, denoted an offspring. Each parent is selected by a
binary tournament, i.e. randomly picking two individuals from the entire population and
choosing the one with best biased fitness as the parent, as proposed by Vidal et al. (2012).
The four-stepped crossover operator is described in Algorithm 4. In the first step (Step 0),
the genes to inherit from each parent are decided. This is done by randomly dividing the
set of rental cars in three disjoint sets: Λ1, Λ2, and Λmix containing rental cars inheriting
patterns from s1, s2, and both, respectively.

The next step (Step 1) inherits data from s1. The destination and operator for all
EVs in Λ1 are copied directly from s1 to snew. Two random cut-off points υ1 and υ2,
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Algorithm 3 Construction heuristic

1: individualsCreated s← 0
2: while s < µKINIT do

STEP 1: SELECT SEMI-RANDOM DESTINATION PATTERN
3: Create sorted list Gi(s) with the closest charging stations to rental car i
4: CScapi (s)← Number of available charging slots at charging station i
5: for each rental car i ∈ NEV do
6: Choose charging station, with available charging slot, g in Gi(s) with probability ρg = 1

|Gi(s)|
7: αi(s)← g

8: CSCapg (s)← CSCapg (s)− 1
9: end do

STEP 2: SELECT RANDOM HANDLING ASSIGNMENT PATTERN
10: with probability ρassign do
12: Apply algorithm 3.1 to create handling assignment pattern with low operator cost
13: else do
14: Apply algorithm 3.2 to create handling assignment pattern with low travel cost
15: end do

STEP 3: SELECT SEMI-RANDOM HANDLING SEQUENCE PATTERN
16: for each operator d ∈ D do
17: Create set of rental cars that are handled by each operator, Fd(s) = {i|βi(s) = d}
18: while Fd(s) 6= ∅ do
19: with probability ρseq do
20: add rental car i ∈ Fd(s) closest to position of operator d after previous handling to γd(s)
21: else do
22: add random rental car i ∈ Fd(s) to γd(s)
23: end do
24: Remove i from Fd(s)
25: end do
26: end do

STEP 4: SOLVE THE DIAL-A-RIDE PROBLEM WITH THE THREE FIRST CHROMOSOMES
AS INPUT

27: Formulate transport requests and determine time windows using Algorithm 2
28: Create list L(s), the node visit sequence sorted by the end time of the time window to serve all

transport requests
29: Create conflict table C(s) of the transport requests with conflicting time windows
30: Create initial service vehicle routes using Algorithm 3.3, use routes to set δr(s) and εv(s)

31: Educate generated individual with probability ρEDUconstruct
32: if generated individual is infeasible then
33: Repair individual with probability ρREPconstruct
34: end if

35: individualsCreated s← s+ 1
36: end while
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Algorithm 3.1 Handling assignment with low operator cost

1: d← 1
2: Create sorted list H(s) of rental cars that are handled, shortest handling time first
3: while H(s) 6= ∅ do
4: EV ← first element of H(s)

5: if pseudo time of d ≤ T when EV is assigned to d then
6: βEV (s)← d
7: Update pseudo time and remove EV from H(s)
8: else if (d+ 1 ≤ |D|) then
9: d← d + 1
10: else
11: Set αi(s) to postpone for the remaining rental cars i in H(s)
12: H(s)← ∅
13: end if
14: end do

Algorithm 3.2 Handling assignment with low travel cost

1: for each charging station i ∈ NCS do
2: Create set of rental cars being handled to charging station Hi(s)
3: d← 1
4: while Hi(s) 6= ∅ do
5: EV ← random rental car from Hi(s)
6: βEV (s)← d
7: Remove EV from Hi(s)
8: d← d+ 1
9: if d > |D| then
10: d← 1
11: end if
12: end do
13: end do

υ1 ≤ υ2, are picked for the set Λmix, and the destination and the operator for the EVs in
the sequence between these cut-off points are copied from s1 to snew. Furthermore, the
handling sequence are copied directly from s1 to snew.

In Step 2, data is inherited from s2. For all the remaining EVs in Λ2 and Λmix, the
destination is copied to snew if capacity constraints on the charging stations are not vi-
olated. If the capacity constraints are violated, the rental car will instead be assigned to
the closest charging station with available charging slots. The operator is copied directly.
The handling sequence are copied directly from s2 to snew, except for the EVs already in
γd(snew). This ensures that all rental cars are handled without conflict between operators.
An improvement heuristic minimizing the travel distance of the operator is then applied to
improve the handling sequence patterns.

Finally, in Step 3, transport requests and service vehicle routes are constructed using
Step 4 from the construction heuristic (Algorithm 3.1). Due to the design of the crossover
operator, offspring individual snew is feasible except in the time constraints and number of
service vehicles used, which are allowed to violate. The crossover procedure used for the
two first chromosomes of the SFFEVCHP is strongly inspired by the periodic crossover
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Algorithm 3.3 Route construction heuristic (Xiang et al., 2006)

1: for each unvisited vertex i in list L(s) do
2: if vertex i is a pick up site then
3: Add vertex i as the first pick up site in a new route
4: for each unvisited vertex j after vertex i in list L(s) do
5: if vertex j is a pick up site and does not conflict with any request already in this route or

vertex j is a delivery site and its corresponding pick up site is already in this route then
6: Add vertex j to the tail of this route
7: end if
8: end do
9: end if
10: end do

with insertions (PIX) dedicated to periodic routing problems and designed to transmit good
sequences of visits. The PIX is proposed by Vidal et al. (2012).

6.7 Education

The education phase aims to decrease the total cost of an individual. This is achieved
by attempting to improve the handling sequence, transport request assignment, and route
chromosomes. As different rental car destination and operator chromosomes are evaluated
as a part of the overall HGSADC, these are not altered in the education module. Simple
improvement operators are sought in order to be able to run a large number of improvement
iterations with little computational effort. The education module also includes a procedure
to make infeasible individuals feasible. In this section, solution improvement is discussed
in Section 6.7.1 and the repair procedure is presented in Section 6.7.2

6.7.1 Solution Improvement

Neighbors are defined by a neighborhood operator based on Braekers et al. (2014). A re-
locate operator removes a transport request from its current position in a route and attempts
to insert the transport request in either another position in the same route or in a different
route. The operator is illustrated in Figure 6.2. Transport requests can be inserted in po-
sitions that requires modification of the handling sequence chromosome. This happens if
the modified routes force an operator to visit the rental cars in a different order than the
order defined in the handling sequence chromosome. A change in this chromosome also
requires the transport requests to be modified. This is done so that the transport requests
satisfy the flow of operators as described in Section 6.2. Furthermore, if an improving
inter-route move is found, the transport request assignment chromosome is modified so
that it captures that a new service vehicle handles the transport request.

A first improvement strategy is implemented, meaning that the first improvement found
is accepted and the search for better solutions continues by considering the next transport
request. First improvement is chosen because it has been shown that there is little dif-
ference between best improvement and first improvement (Breedam, 2001). When all
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Algorithm 4 Crossover operator

STEP 0: INHERITANCE RULE
1: Pick two random numbers between 0 and |NEV | according to a uniform distribution. Let n1 and n2

be the smallest and the largest of these numbers, respectively
2: Randomly select n1 rental cars to form the set Λ1

3: Randomly select n2 − n1 remaining rental cars to form the set Λ2

4: The remaining |NEV | − n2 rental cars make up the set Λmix

STEP 1: INHERIT DATA FROM s1
5: for each EV i belonging to the set Λ1 do
6: Copy the destination αi(s1) to αi(snew) and the operator βi(s1) to βi(snew)
7: end for
8: Pick two random cut-off points υ1 and υ2 dividing the set Λmix
9: for each EV i in the subset between υ1 and υ2 do
10: Copy the destination αi(s1) to αi(snew) and the operator βi(s1) to βi(snew)
11: end for
12: Copy handling sequence γd(s1) to γd(snew) for all drivers and EVs so far inherited from s1

STEP 2: INHERIT DATA FROM s2
13: for each EV i ∈ Λ2 ∪ Λmix do
14: if αi(snew) = ∅ and destination assignment not violates capacity at charging station αi(s2) do
15: Copy the destination αi(s2) to αi(snew)
16: Copy the handling assignment βi(s2) to βi(snew)
17: else if αi(snew) = ∅ do
18: Assign EV i to the closest available charging station or postpone
19: if EV i not postponed do
20: Copy the operator βi(s2) to βi(snew)
21: end if
22: end if
23: end do
24: Copy the handling sequence from s2 to snew for all drivers and EVs inherited form s2
25: Apply improvement heuristic to improve handling sequence pattern

STEP 3: ROUTE SERVICE VEHICLES
26: Apply step 4 from construction heuristic (Algorithm 3) to formulate transport requests and route ser-

vice vehicles

transport requests in the current routes are searched through, the search terminates. The
education procedure is run as long as improvements are found.

6.7.2 Repair
Individuals that are feasible after education is performed are referred to as naturally fea-
sible individuals. If an individual is infeasible, the individual is repaired with probability
ρREP attempting to make it feasible. This is done by multiplying the penalty parameters
by ten and running the education procedure again. If the individual still is infeasible, the
penalty parameters are multiplied by 100 and the education procedure executed. If the in-
dividual still is infeasible, a module forcing the individual to become feasible is employed.

The force feasibility module consists of two parts. The first part repairs individuals that
are using to many service vehicles and the second individuals that exceeds the maximum
time limit. If too many service vehicles are used, the module searches through all routes
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Figure 6.2: Illustration of relocate-operator, inter and intra-route moves allowed. 1+ and 1− denote
pick up and drop off nodes of transport request 1, respectively. Equivalent notation applies for
transport requests 1 to 4.

to find the vehicle that handles the fewest transport requests. Then, all the rental cars
corresponding to these transport requests are postponed. The postponed rental cars are
removed from the handling sequence chromosome of the relevant operators and the DARP
is re-solved with the updated chromosomes to determine the transport request assignment
and route chromosomes. This procedure is repeated until enough rental cars are postponed
so that the service vehicle limit is no longer exceeded. If an individual is exceeding the
maximum time limit constraint, all routes are searched through to find the route with the
longest duration. Then, the rental car corresponding to the last transport request in the
route is postponed. Similar to the first part of repair, the handling sequence chromosome is
updated and the DARP re-solved. The procedure is repeated until the individual no longer
exceeds the maximum handling time. Note that even though repair guarantees feasibility,
the procedure is not run for all individuals. Hence, infeasible solutions are still present.

6.8 Population Management

Three population management schemes are employed to improve the performance of the
genetic search algorithm. These are survivor selection, penalty parameter adjustment,
and diversification discussed in Sections 6.8.1, 6.8.2, and 6.8.3, respectively. The purpose
of the proposed schemes is to promote convergence towards high quality individuals, to
maintain a certain balance between feasible and infeasible individuals, and to ensure the
diversity of the population.
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6.8.1 Survivor Selection
Survivor selection is performed to increase the quality of the population by removing the
worst quality individuals based on the biased fitness. Survivor selection is executed on
a population whenever the number of individuals in the population reaches its maximum
limit µ+ λ. Individuals are removed until there are µ individuals left.

6.8.2 Penalty Parameter Adjustment
The penalty parameters ωp, where p ∈ {T, V }, for violating the planning time and maxi-
mum number of service vehicles constraints are updated every 100 iterations with the goal
of attaining a desirable share of feasible individuals. Looking at the current population, the
proportion of individuals feasible in each of the constraints is evaluated and compared to
the desirable proportion. The procedure for adjusting the penalty parameters is described
in Algorithm 5. The share of individuals feasible in the time constraints and service vehicle
constraints are denoted ζT and ζV , respectively. Furthermore, the desired ratio is denoted
ζREF . Finally, ξUP ≥ 1 and ξDOWN ≤ 1 are adjustment factors for the penalties.

Algorithm 5 Penalty Parameter Adjustment

1: for p ∈ {T, V } do
2: if ζp ≤ ζREF − 0.05 then
3: ωp = ωpξUP

4: else if ζp ≥ ζREF + 0.05 then
5: ωp = ωpξDOWN

6: end if
7: end for

6.8.3 Diversification
The diversification procedure is executed to prevent the algorithm from converging to a
local optima. If no improvement is made to the best individual in IDIV iterations, two
thirds of the worst individuals are removed from each subpopulation. Then, µKDIV new
individuals are generated using the construction heuristic described in Section 6.5.

6.9 Novelty of the HGSADC
This chapter describes a novel application of the UHGS framework developed by Vidal
et al. (2014). The UHGS framework is a component-based heuristic framework for multi-
attribute vehicle routing problems (MVRPs), that has demonstrated solid performance.
Nevertheless, with synchronization of the routing of operators and service vehicles in-
cluding both spatial and temporal interdependencies, the SFFEVCHP represents a new
and complex problem type. Hence, new chromosomes are proposed to represent the in-
dividuals and the GA operators have been adapted to fit this new problem type. A novel
construction heuristic has been developed, combining semi-random assigning and heuris-
tics used for DARPs. Components have been developed for education, diversification,
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and population management, strongly inspired by the HGSADC presented in Vidal et al.
(2012).

The concepts of penalty costs for infeasibilities, ranking of individuals and inclusion
of diversity contribution rank are all used by Vidal et al. (2012). These concepts are also
used in the HGSADC for the SFFEVCHP, but the operators are changed to fit the represen-
tation of the individuals. Vidal et al. (2014) allow investigation of infeasible individuals
during the search. In the HGSADC for the SFFEVCHP, infeasibility is only allowed in
two constraints; planning time and number of service vehicles used. We believe that the
complexity of the problem can make it hard to return to the feasible search space if many
constraints are violated. Infeasibilities are handled in the same fashion as in Vidal et al.
(2012) by penalizing violations in the biased fitness function. To demonstrate the capabil-
ities of the proposed algorithm, extensive testing is performed in the computational study
in Chapter 7.
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Computational Study

In this chapter, the Mixed Integer Program (MIP) presented in Chapter 5 and the HGSADC
described in Chapter 6 is thoroughly tested. A short description of the test instances is
provided in Section 7.1. Furthermore, the MIP and the HGSADC are calibrated in Section
7.2 and Section 7.3, respectively. Lastly, the final model and algorithm configuration
are used to solve multiple instances to demonstrate and analyze the final performance in
Section 7.4.2. The hardware and software used in the computational study is summarized
in Table 7.1.

Table 7.1: Details of computer and solver used in the computational study.

Processor: Intel(R) Core(TM) i7-6700 CPU 3.40GHz
RAM: 32 GB
Operating system: Windows 10 Education 64-bit
Xpress-IVE version: 1.24.08 64 bit
Xpress optimizer version: 28.01.04
Mosel version: 3.10.0
Java version: 8
Maximum computation time: 3600 seconds

7.1 Test Instances
Test instances are created based on the data of a real CSO in Milan. An artificial depot
is placed in the city center of Milan, and all rental cars in need of handling within 30
minutes drive form the depot is considered. Rental cars are drawn randomly from the
set of considered cars, depending on the size of the test file. An overview of the test
instances and their parameters are shown in Table 7.2. The letters a, b, and c are used to
distinguish between test files of equal size. Different test instances are used for calibration
and performance testing to avoid overfitting the model and algorithm to the data, i.e. fitting
the model to only perform well on the given data set.

Travel times are retrieved from Google maps and assumed equal for both service ve-
hicles and rental cars. Travel times are computed between all pairs of rental cars and
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Table 7.2: Overview of the key parameters of the constructed test instances

Instance # cars to be
handled

# charging
stations

# service
vehicles

# operators Planning period
duration (min)

4_2 4 2 1 4 120
6_3 6 3 2 6 120
8_4 8 4 3 8 120
15_5 15 5 3 12 120
30_10 30 10 6 24 120
60_20 60 20 10 40 120
100_35 100 35 14 56 120
125_40 125 40 16 64 120
150_45 150 45 18 72 120
175_50 175 50 20 80 120
200_55 200 55 22 88 120

charging stations, as well as the depot. The ideal state of the system is set so that the num-
ber of rental cars is equal in all charging stations. The initial state in each charging station
is a random number such that the total number of rental cars conform with the number of
rental cars in the ideal state. The cost parameters used in the implementation of the model
are estimated and meant to represent the relative size of the costs involved (e.g. how much
does a minute of travel cost compare to having deviations from the ideal state in a node).
To perform the calculations, Euro is used as currency. An overview of the estimations can
be seen in Table 7.3.

Table 7.3: Cost parameters and estimated values.

Cost parameter Deviation cost,
CE

i (i ∈ NCS )
Travel cost per
minute, CT

ij

Postponement
cost, CPH operator cost, CD Vehicle cost, CV

Estimated value 10 0.1 25 / 50 20 20

It is assumed that an average trip in a given area yields a revenue of 10 Euros for the
CSO. Further, a 25 percent profit margin on the revenue is assumed, yielding an average
profit of 2.50 Euros per trip. Deviations from the ideal state results in under-utilization of
the rental cars. We assume that on average a rental car will lose four trips per deviation.
Therefore the average deviation cost is set to be 10 Euros. The deviation cost CEi is
assumed to be equal for all areas. The model does however allow different deviation
costs in different areas. If handling of a rental car is postponed, the rental car will be
unavailable for users in the period following the planning period. In addition, we assume
that it results in lower customer satisfaction as fewer rental cars are available. Therefore,
the cost of postponing, CPHi , is assumed to be 25 Euros for the instances with less than
15 cars in need of handling. The cost of postponed handling is set equal for all rental
cars. For the larger instances, CPH is set to 50 Euros. This is because a higher value is
needed to promote that the HGSADC-algorithm handles the majority of the cars instead of
postponing. In real life, the cost parameters discussed here are dependent on how frequent
handling of the carsharing system is performed and individual characteristics of each CSO.
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All costs associated with the service vehicle is included in the travel cost. Maintenance
cost is included in the travel cost to capture that it will increase with the kilometers driven.
However, only a small fraction of the maintenance costs will be attributed to each minute
travelled. If we assume an average speed during transport of 30 kilometers per hour in
urban areas, a car will travel half a kilometer per minute. Further, we assume a fuel cost
of one Euro and fifty cents per ten kilometers, and add 50 cents per ten kilometer travelled
for maintenance and other costs. Combining these assumptions yield a travel cost of ten
cents per minute travelled. The unit cost is multiplied by the travel times to arrive at the
travel cost matrix CTij . It is assumed that service vehicles are gasoline cars, but in reality
service vehicles might as well be EVs. An hourly total employee cost is assumed to be
10 Euros per hour per operator. The only fixed cost associated with service vehicles not
included in the travel cost is the cost of the operator of the service vehicle. Hence, the cost
of operators and service vehicles are 20, as the planning period is set to 120 minutes.

7.2 Mathematical Model Configuration
The MIP presented in Chapter 5 has been implemented in Xpress IVE version 1.24.08
using the Mosel programming language. In Section 7.2.1 and 7.2.2 the big Ms and the
number of possible visits in the model are briefly explained, respectively. Further, in
Section 7.2.3 different combinations of performance enhancing constraints are tested in
order to arrive at a final model formulation.

7.2.1 Big Ms
To make the formulation as tight as possible, the big Ms must be set as small as possible.
As all big Ms are used to enforce time constraints, the largest difference between two time
variables is the planning time of the problem. This is specified in equations (7.1) - (??).

M1 = max{tVjnv − tVimv} = T i ∈ N,m ∈Mi, j ∈ N,n ∈Mi, v ∈ V (7.1)

M2 = max{tVjnv − tDjbd} = T j ∈ NCS , n ∈Mj , b ∈Mj , v ∈ V, d ∈ D (7.2)

M3 = max{tDjbd − tDiad} = T i ∈ NEV , a ∈Mi, j ∈ NCS , b ∈Mj , d ∈ D (7.3)

M4 = max{tDjbd − tVimv} = T i ∈ N,m ∈Mi, a ∈Mi, j ∈ N, v ∈ V, d ∈ D (7.4)

M5 = max{tVim+1v − tVimv} = T i ∈ N,m ∈Mi, v ∈ V (7.5)

M6 = max{tDjb+1d − tDjbd} = T j ∈ N, b ∈Mj , d ∈ D (7.6)

M7 = max{tDjb+1d − tDjbd} = T j ∈ N, b ∈Mj , d ∈ D (7.7)

7.2.2 Number of Possible Visits
In the MIP the set Mi is defined for each node i, representing possible visits to a node i
for both service vehicles and operators. Hence, the maximum possible visits to a node i is
|Mi| for both service vehicles and operators. The project report by Folkestad and Hansen
(2016) found that setting the number of visits equal to the lower bound plus one ensures
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the best trade off between solution quality and computational time. Hence, number of
possible visits is set equal to the lower bound plus one for all charging stations. Each
rental car can only be visited once, so both the maximum and minimum number of visits
are set to 1 for all rental cars.

7.2.3 Final Model Formulation

Results from Folkestad and Hansen (2016) show that valid inequalities and the simplest
symmetry breaking constraints yield significant improvements when added to the model.
Thus, constraints (5.35), (5.39), and (5.45) - (5.52) are included in the final model for-
mulation. These constraints are referred to as base constraints. In addition to the base
constraints, combinations of the remaining performance enhancing constraints are tested
in order to arrive at the final model formulation. An overview of the different combinations
tested are given in Table 7.4.

Table 7.4: Configurations with different combinations of performance enhancing constraints tested.

Configuration Base Constraints Added Constraints
0 No performance enhancing constraints
1 -
2 (5.35), (5.39), (5.45) - (5.52) (5.37), (5.38), (5.41)-(5.44)
3 (5.36), (5.40)
4 (5.36) - (5.38), (5.40), (5.41)-(5.44)

The computation time and the gap at the end of runs for the tested configurations are
shown in Table 7.5. Looking at the table it is evident that for small instances, none of
the combinations of performance enhancing constraints improve the performance of the
model. Configuration 1, however, performs better than Configuration 0 on the largest in-
stances. For both model configurations the lower bound on each of the 8_4 instances are
equal, but Configuration 1 finds solutions with lower gaps. On the two smaller instance
sizes the gaps are equal as the optimal solution is found in all cases, while the computation
time for Configuration 1 increases significantly compared to Configuration 0. It is likely
that the performance enhancing constraints performs better when test instances gets larger,
while at small test instances they complicate the problem unnecessary. Hence, Configura-
tion 1 is chosen as the final model formulation as good solutions to large test instances are
preferred.

7.3 HGSADC Configuration
In this section the parameters of the HGSADC is calibrated and a final configuration of
the HGSADC is determined. First, the test methodology is discussed in Section 7.3.1.
Then, the target ratio of feasible individuals, population and generation size, stopping
criteria, penalty parameters, pseudo time, education and repair, number of individuals
created in the construction heuristic and diversity step, and proportion of elite individuals
are calibrated in Sections 7.3.2 to 7.3.9, respectively. Finally, concluding remarks on the
parameter calibration are presented in Section 7.3.10.
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Table 7.5: Computational time and gap at the end of MIP runs for combinations of performance en-
hancing constraints. Average is compared to the model without performance enhancing constraints
(Configuration 0).

Instance Configuration 1 Configuration 2
Time (s) Gap % Time (s) Gap %

4_2_a 0.52 0 0.28 0
4_2_b 1.33 0 1.67 0
4_2_c 0.66 0 0.61 0
Average 0.8 0 0.9 0
Average change 36.4% 0% 39.1% 0%
6_3_a 2087.56 0 1890.36 0
6_3_b 122.2 0 116.67 0
6_3_c 6.8 0 9.48 0
Average 738.9 0 672.2 0
Average change 109.5% 0% 90.6% 0%
8_4_a >3600 9.4 >3600 39.3
8_4_b >3600 7.3 >3600 14
8_4_c >3600 67.4 >3600 177.8
Average N/A 28.0 N/A 77.0
Average change N/A -16.1% N/A 130.6%
Instance Configuration 3 Configuration 4

Time (s) Gap % Time (s) Gap %
4_2_a 0.33 0 0.41 0
4_2_b 2.06 0 1.81 0
4_2_c 0.53 0 0.95 0
Average 1.0 0 1.1 0
Average change 58.7% 0% 72.3% 0%
6_3_a 2436.11 0 2412.94 0
6_3_b 290.76 0 134.54 0
6_3_c 13.73 0 11.58 0
Average 913.5 0.0 853.0 0.0
Average change 159.1% 0% 141.9% 0%
8_4_a >3600 38.6 >3600 46.3
8_4_b >3600 15.4 >3600 24.5
8_4_c >3600 159.2 >3600 191.2
Average N/A 71.1 N/A 87.3
Average change N/A 112.8% N/A 161.5%

Best improvement marked with green.
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7.3.1 HGSADC Parameter Calibration Methodology

An overview of the parameters used in the HGSADC for the SFFEVCHP are shown in
Table 7.6 along with their chosen values. ζREF , µ, λ, ηDIV , INI , KPSEUDO, ρEDU ,
ρREP ,KINIT ,KDIV , and ηELI are the parameters that affect the search of the algorithm
the most, and are therefore thoroughly tested. The penalty parameters of this implementa-
tion are different than in Vidal et al. (2012), thus these are tested as well. Each parameter
is tested on five different instances. Since the HGSADC is non-deterministic, the parame-
ters are tested five times for each instance. The average computation time and the average
gap to the best known solution of the given instance are reported. The best known solu-
tion is the optimal solution found by the MIP for the 6_3 instance and the best solution
found using the HGSADC for the remaining instances. High performance on the largest
test instances are weighted the most, as these best resemble the real world usage of the
algorithm.

Table 7.6: Overview of the parameters used in the HGSADC and their values

Parameter Value Description
µ 35 Minimum population size
λ 100 Generation size
INI 10,000 Max. number of iterations without improvement
ηDIV 0.2 Proportion of INI , such that IDIV = ηDIV × INI
ηELI 0.5 Proportion of elite individuals, nELI = ηELI × |S|
ηCLO 0.2 Proportion of individuals considered in diversity contribution,

such that nCLO = ηCLO × µ
KINIT 20 Construction heuristic size factor
KDIV 20 Diversification size factor
ρEDU
construct 0.75 Probability of education in construction heuristic
ρREP
construct 0.25 Probability of repair in construction heuristic
ρEDU
crossover 0.5 Probability of education in crossover
ρREP
crossover 0.5 Probability of repair in crossover
ζREF 0.6 Desired ratio of feasible individuals
wT 2 Duration violation penalty
wV 0.5 Number of vehicles violation penalty
ξUP 1.25 Penalty adjustment factor, up
ξDOWN 0.75 Penalty adjustment factor, down
TMAXRUN 3,600 Maximum running time (seconds)

Based on Vidal et al. (2012) and preliminary testing, a base configuration has been
defined. The base parameter values are presented in Appendix B. Different values for
each parameter are tested individually, keeping the rest of the parameters fixed to the base
values. The parameters are tested in the order presented in this section. Once a parameter
value is chosen, the remaining tests are performed with all prior parameter values set to
the chosen values. This is done to avoid ending up with a set of chosen parameters that
work well when the rest of the parameters are at the base values, but perform badly when
combined. The parameter tuning is described in detail in the following subsections.

Thorough parameter tuning has not been performed on all parameters. ξUP and ξDOWN

are constants set by Vidal et al. (2012). The values set by Vidal et al. (2012) were adjusted
somewhat due to observed improved performance during preliminary testing. ηCLO is not
expected to affect performance of the algorithm significantly and is therefore set to the
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same as in Vidal et al. (2012). Finally, the maximum running time, TMAX , is set to the
same as for the MIP, 3600 seconds.

7.3.2 Calibrating the Target Ratio of Feasible Individuals

ζREF is the target ratio of feasible individuals in the population used in the penalty param-
eter adjustment, described in Section 6.8.2. A high target ratio results in higher penalties
for infeasibility, hence guiding the population towards a higher proportion of feasible indi-
viduals. Table 7.7 shows the average running times and gaps for different values of ζREF .
The performance of all values of ζREF are comparable, but ζREF = 0.6 and ζREF = 0.8
have the best average performance. Of those, ζREF = 0.6 performs better on the two
largest test instances and is therefore chosen as the target ratio of feasible individuals.

Table 7.7: The average running time and gap from the best known objective value for different
values of ζREF . The average gap from the best known objective value is calculated as the gap
between the average objective value and the lowest known objective value for the instance. All
averages are calculated from five runs.

Instance ζREF = 0.6 ζREF = 0.8 ζREF = 1.0
Time (s) Gap % Time (s) Gap % Time (s) Gap %

6_3 4.6 0.2 4.6 0.3 4.2 0.3
15_5 26.8 0.0 25.4 0.1 29.8 0.1
30_10 84.8 9.3 86.0 8.4 52.4 11.5
60_20 158.0 5.6 149.8 5.7 128.4 5.6
100_35 134.8 6.0 147.0 6.3 122.4 5.6
Average 81.8 4.2 82.6 4.2 67.4 4.6
Best and second best average performance for each instance marked with dark and light
green, respectively.

7.3.3 Calibrating the Minimum Population and the Generation Size

The minimum population size µ and the generation size λ are expected to have a high cor-
relation since both adjust the size of the population. Hence, these parameters are calibrated
together. Table 7.8 shows the average running time and gap for different combinations of
µ and λ. In addition to best overall performance on the two largest test instances, λ = 100
and µ = 35 give the best average performance and are thus chosen.

7.3.4 Calibrating the Stopping and the Diversification Criterion

Recall that INI is the maximum number of iterations the HGSADC can run without any
improvements on the best individual. Reducing INI would decrease the number of itera-
tions and the computational time. Since the HGSADC is non-deterministic, reducing INI

might result in deterioration of the objective value. If the best individual does not improve
for IDIV = ηDIV × INI iterations, the diversification procedure is called. As IDIV is
dependent on INI , INI and ηDIV are tested together.

57



Chapter 7. Computational Study

Table 7.9 shows the average running time and gap for different combinations of INI

and ηDIV . Averagely, the combination INI = 10000, ηDIV = 0.2 and INI = 7500,
ηDIV = 0.6 performs best. The former combination performs better on the large in-
stances and is therefore chosen. The combination INI = 10000, ηDIV = 0.2 implies that
the diversification procedure is called five times after the best individual is found before the
algorithm terminates. This process introduces a significant amount of new genetic mate-
rial, which revives the search. There is a trade off between average gap and computational
time when choosing this combination. The computation times are however considered
acceptable for all configurations.

Figure 7.1 presents the best found solution plotted against iteration count of a run of
the algorithm on instance 100_35 with INI = 10000, ηDIV = 0.2. After 1750 iterations,
an individual with gap of 5.6 percent is found. The algorithm searches for an improving
individual for 8300 iterations before a slightly improved individual is found after 10040
iterations. After 17830 iterations multiple significantly better individuals are found until
the best individual in this run is found after 22340 iterations with 4.5 percent gap. This
clearly illustrates that setting INI greater than 7500 leads to better performance in some
runs of the model.

Figure 7.1: Plot of best solution found at different iteration numbers for a single run of the algorithm
on the 100_35 instance with INI = 10000, ηDIV = 0.2.

7.3.5 Calibrating the Starting Values of the Penalty Parameters
The values of the penalty parameters ωT and ωV are adjusted dynamically by the algorithm
in order to maintain the desired ratio between feasible and infeasible individuals. Tests
are run with ωT and ωV equal to a 0.5, 2.0, 3.5, and 10.0. The tests revealed that the
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Table 7.8: The average running time and gap from the best known objective value for different
values of µ and λ. The average gap from the best known objective value is calculated as the gap
between the average objective value and the lowest known objective value for the instance. All
averages are calculated from five runs.

Instance µ λ = 50 λ = 75 λ = 100
Time (s) Gap % Time (s) Gap % Time (s) Gap %

6_3 15 1.2 0.4 2.0 0.4 2.8 0.3
25 1.8 0.3 2.4 0.3 3.2 0.3
35 2.4 0.3 2.0 0.4 3.0 0.4

15_5 15 11.2 0.2 17.2 0.1 28.4 0.1
25 8.4 0.5 13.6 0.2 31.6 0.1
35 11.4 0.3 20.2 0.1 27.0 0.2

30_10 15 39.4 13.3 60.4 8.4 68.4 12.5
25 44.0 9.5 89.0 9.6 61.0 10.0
35 46.0 11.3 70.6 9.2 122.6 8.8

60_20 15 38.0 9.7 61.4 8.3 71.4 7.6
25 34.2 7.3 69.0 6.5 84.6 7.4
35 72.2 6.3 68.8 8.0 131.6 6.0

100_35 15 46.2 10.5 86.0 8.7 109.8 6.8
25 70.0 6.9 123.8 6.6 154.0 6.2
35 127.8 6.7 158.4 6.8 150.6 5.9

Best and second best average performance for each instance marked with dark and light green,
respectively.

Table 7.9: The average running time and gap from the best known objective value for different
values of INI and ηDIV . The average gap from the best known objective value is calculated as the
gap between the average objective value and the lowest known objective value for the instance. All
averages are calculated from five runs.

Instance
ηDIV

INI = 5000 INI = 7500 INI = 10000

Time (s) Gap % Time (s) Gap % Time (s) Gap %
6_3 0.2 2.4 0.2 2.2 0.3 3.0 0.4

0.4 1.6 0.4 2.0 0.2 3.0 0.3
0.6 2.0 0.3 2.0 0.4 3.4 0.3

15_5 0.2 25.2 0.2 25.4 0.2 42.4 0.1
0.4 17.2 0.2 20.2 0.1 29.6 0.1
0.6 18.8 0.1 24.2 0.2 24.0 0.2

30_10 0.2 48.0 7.8 60.2 10.1 98.0 8.1
0.4 36.6 12.0 83.4 7.7 89.2 8.6
0.6 52.8 12.9 112.2 11.5 73.4 8.8

60_20 0.2 79.8 6.0 135.4 5.8 166.2 5.5
0.4 88.2 5.8 94.2 6.0 74.8 6.9
0.6 72.8 6.8 77.4 6.8 139.4 5.6

100_35 0.2 168.8 6.4 188.8 6.0 222.4 6.0
0.4 111.0 6.2 218.0 6.2 245.6 6.7
0.6 101.6 6.4 146.2 5.1 191.6 6.7

Best and second best average performance for each instance marked with dark and light green,
respectively.
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algorithm is robust against changes in these parameters. The performance of the algorithm
is independent of the value chosen for ωT and performs slightly better when ωV is low.
Therefore, ωT = 2.0 and ωV = 0.5 are chosen.

Figure 7.2 shows how the penalty parameters and the number of feasible and infea-
sible individuals develop throughout a search on the 100_35 instance. From the penalty
parameter plot it is clear that the solutions found by the algorithm are not constrained by
the number of available service vehicles as the service vehicle penalty quickly converges
towards zero. Furthermore, we observe that the time constraint penalty parameter varies
greatly but that the ratio of feasible individuals in the population is kept in the area of 60
percent, as defined in Section 7.3.2. Hence, the adaptive diversity control is successful in
maintaining the desired ratio of feasible individuals. In addition, this demonstrates that
the value of the penalty parameters are able to change rapidly, reducing the impact of the
starting values.

Figure 7.2: Plot of the penalty parameters and the number of feasible and infeasible individuals in
the population of a run on instance 100_35. ζREF = 0.6, ωT = 2.0, ωV = 0.5
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7.3.6 Calibrating the Pseudo Time in the Construction Heuristic
Recall that KPSEUDO is used in the construction heuristic to control how many rental
cars that are assigned to an operator for handling. Preliminary testing showed that the
feasibility of solutions generated by the construction heuristic varies greatly for different
choices of KPSEUDO. This is because KPSEUDO in essence affects how aggressive the
operator chromosome is determined. A high KPSEUDO results in fewer rental cars as-
signed to each operator, making it more likely to complete all handling activities within
the maximum time constraint. As the appropriate value of KPSEUDO also varied signifi-
cantly with the input data, KPSEUDO is modified throughout the construction algorithm.
Further preliminary testing reveals settingKPSEUDO = 1.5 and increase it by 1 five times
in the construction algorithm gives both feasible individuals while maintaining individuals
with an aggressive operator chromosome. At the same time, setting KPSEUDO dynami-
cally contributes to the diversity of the generated population. Henceforth, KPSEUDO is
increased by one each time a fifth of the initial population is created.

7.3.7 Calibrating the Rate of Education and Repair
The education and repair procedures are strongly related as repair is using the education
procedure with adjusted infeasibility penalty parameters to attempt to make solutions fea-
sible. Hence, they are tested together. First, the rates to run education and repair when
constructing the initial population are tested. Then, the rates to run education and repair
on offsprings created in the genetic algorithm are tested. Preliminary testing reveals that
solution quality increases when education and repair is performed. Furthermore, testing
shows that repair cannot be run too often because it would lead to too many individuals
being forced feasible and thus a suboptimal proportion of rental cars being postponed.

Table 7.10 shows the results of running education and repair with varying rates in
the construction heuristic. The rates of education and repair after an offspring is cre-
ated, ρEDUcrossover and ρREPcrossover, are kept constant at 0.5 in this test. The results clearly
demonstrate that ρEDUconstruct = 0.75 produces solutions with the lowest average gap. The
results for ρREPconstruct = to 0.25 and 0.5 are comparable on instances 6_3, 15_5, and 60_20.
However, on instance 30_10 and 100_35, ρREPconstruct = 0.25 performs best. Because the
performance of ρREPconstruct = 0.25 is equal or better than 0.5 for all instances, 0.25 is
chosen.

In addition to the rates of education and repair in the construction heuristic, separate
tests are performed with varying rates to run education and repair after an offspring is
created. The results are presented in Table 7.11. None of the tested configurations were
able to outperform the base configuration of ρEDUcrossover = 0.5, ρREPcrossover = 0.5. These
parameter values are thus chosen.

7.3.8 Calibrating the Number of Individuals Created in the Initial
and Diversification Population

KINIT and KDIV are multiplied by the minimum population size µ to determine how
many individuals that are generated during the construction of initial solutions and diver-
sification steps of the HGSADC, respectively. In these tests, KINIT and KDIV are kept
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Table 7.10: The average running time and gap from the best known objective value for different
values of ρEDUconstruct and ρREPconstruct. The average gap from the best known objective value is calcu-
lated as the gap between the average objective value and the lowest known objective value for the
instance. All averages are calculated from five runs.

Instance ρREPcons ρEDUcons = 0.25 ρEDUcons = 0.5 ρEDUcons = 0.75 ρEDUcons = 1.0
Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap %

6_3 0.25 3.6 0.2 3.0 0.4 3.0 0.4 3 0.4
0.5 3.0 0.3 3.0 0.4 3.0 0.4 3.4 0.3

15_5 0.25 33.6 0.2 35.2 0.1 35.2 0.1 30.6 0.2
0.5 30.2 0.1 42.4 0.1 32.0 0.1 47.4 0.1

30_10 0.25 78.8 9.7 88.8 8.2 421.2 8.6 65.0 10.1
0.5 81.4 8.8 98.0 8.1 335.4 9.0 79.8 8.4

60_20 0.25 234.2 5.5 148.8 7.2 257.0 5.2 154.6 5.6
0.5 113.6 5.8 166.2 5.5 177.2 5.3 230.2 6.1

100_35 0.25 290.2 5.9 208.2 5.9 353.4 4.6 155.4 7.7
0.5 287.4 5.7 222.4 6.0 413.0 5.1 329.8 5.3

Best and second best average improvement for each instance marked with dark and light green, respectively.

Table 7.11: The average running time and gap from the best known objective value for different
values of ρEDUcrossover and ρREPcrossover . The average gap from the best known objective value is calcu-
lated as the gap between the average objective value and the lowest known objective value for the
instance. All averages are calculated from five runs.

Instance
ρREPcross

ρEDUcross = 0.25 ρEDUcross = 0.5 ρEDUcross = 0.75 ρEDUcross = 1.0

Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap %
6_3 0.25 4.0 0.3 3.4 0.4 3.8 0.4 4.4 0.3

0.5 3.0 0.4 3.0 0.4 3.2 0.4 4.0 0.3
15_5 0.25 25.4 0.3 33.6 0.2 32.8 0.2 39.4 0.1

0.5 27.8 0.1 35.2 0.1 27.6 0.2 33.6 0.9
30_10 0.25 87.0 9.4 134.6 9.5 96.8 11.8 108.4 8.4

0.5 134.0 8.7 421.2 8.6 63.2 11.4 202.8 6.0
60_20 0.25 105.4 7.0 97.4 6.5 159.4 6.9 171.4 8.2

0.5 239.2 7.2 257.0 5.2 194.8 6.7 129 6.0
100_35 0.25 207.2 6.3 218.0 5.5 226.8 6.4 280.0 6.0

0.5 245.8 6.2 353.4 4.6 343.8 7.0 243.2 7.6
Best and second best average improvement for each instance marked with dark and light green, respectively.
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equal. Four values are tested,KINIT andKDIV equal to four, ten, 20, and 30. Larger val-
ues than 30 are not tested because preliminary testing revealed that the computation times
increase significantly for the large instances and the construction algorithm struggles to
find such a high number of unique individuals for the small instances. The results clearly
show that larger KINIT and KDIV improve the solution quality of the algorithm. This
is natural as more solutions are evaluated. Values 20 and 30 produce comparable results,
with KINIT and KDIV = 20 performing slightly better for the 100_35 instance. Fur-
thermore, the average computation time of 1722.4 seconds for KINIT and KDIV = 30
is becoming undesirable. KINIT and KDIV equal to 20 stand out as the best trade off
between solution quality and computation time and are thus chosen.

Table 7.12: The average running time and gap from the best known objective value for different
values of KINIT . All tests are run with KDIV = KINIT . The average gap from the best known
objective value is calculated as the gap between the average objective value and the lowest known
objective value for the instance. All averages are calculated from five runs.

Instance KINIT = 4 KINIT = 10 KINIT = 20 KINIT = 30
Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap %

6_3 3.0 0.4 4.4 0.2 11.4 0.2 29.2 0.2
15_5 35.2 0.1 30.2 0.0 43.4 0.0 43.6 0.1
30_10 421.2 8.6 86.8 10.3 136.4 8.4 172 8.6
60_20 257.0 5.2 140.8 6.4 169.4 5.1 206.8 4.8
100_35 353.4 4.6 283.2 5.0 596.2 4.2 1722.4 4.6
Average 214.0 3.8 109.1 4.4 191.4 3.6 434.8 3.6
Best and second best average performance for each instance marked with dark and light green, respec-
tively.

7.3.9 Calibrating the Proportion of Elite Individuals
Table 7.13 shows the average of the running time and objective gap for the five instances
with ηELI set to 0.25, 0.5, and 0.75. ηELI is a parameter that influences the number of elite
individuals to survive to the next generation. A higher value of ηELI increases the weight
of the total cost rank relative to the diversity rank in the biased fitness function described in
Section 6.4. ηELI = 0.5 and ηELI = 0.75 clearly outperforms ηELI = 0.25 on instances
30_10, 60_20, and 100_35. ηELI = 0.5 and ηELI = 0.75 have comparable performance
on instances 6_3, 15_5, and 30_10. However, ηELI = 0.5 performs significantly better
on instances 60_20 and 100_35. Although ηELI = 0.5 has somewhat longer computation
time, the performance gains are large enough to defend added computational effort. Hence,
ηELI = 0.5 is chosen.

7.3.10 Final Remarks on the HGSADC Calibration
The parameter calibration of the HGSADC consists of 230 runs of the algorithm for each
of the five training instances. In addition, a large number of algorithm runs was performed
in preliminary testing. The values tested for each parameter are based on the paper by
Vidal et al. (2012) and our preliminary testing. We believe that the parameter values
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Table 7.13: The average running time and gap from the best known objective value for different
values of ηELI . The average gap from the best known objective value is calculated as the gap
between the average objective value and the lowest known objective value for the instance. All
averages are calculated from five runs.

Instance ηELI = 0.25 ηELI = 0.5 ηELI = 0.75
Time (s) Gap % Time (s) Gap % Time (s) Gap %

6_3 18.4 0.2 13.0 0.2 11.4 0.2
15_5 57.0 0.3 53.2 0.0 43.4 0.0
30_10 128.8 10.8 127.6 10.3 136.4 8.4
60_20 243.0 6.5 450.8 2.5 169.4 5.1
100_35 435.8 5.9 764.8 2.7 596.2 4.2
Average 176.6 4.7 281.9 3.1 191.4 3.6
Best and second best average performance for each instance marked with dark
and light green, respectively.

chosen in this chapter are parameters that will cause the algorithm to produce high quality
solutions in reasonable computation time. However, better configurations may exist, as
it is intractable to test all values and combinations of the parameters. As the parameter
tuning is done incrementally, final configuration performance on the training instances can
be found in Table 7.13 where ηELI = 0.5. The chosen configuration produces solutions
with less than 2.7 percent gap for all instances except instance 30_10. The relatively large
gap and variation in objective value for this instance are believed to be caused by the
characteristics of the input data.

The objective value gap is affected by the deviation and postponement costs in the
objective function of the SFFEVCHP. These are artificial costs introduced to evaluate the
trade off between the cost of unmet demand due to a disadvantageous distribution of rental
cars and the cost of transporting operators to charge and reposition the rental cars. The
artificial costs are high compared to the real costs. E.g. for the 100_35 instance, one
additional postponement would increase the total cost with approximately one percent. As
a result, the algorithm may report large gaps between solutions that in real life would be
very similar.

Several chosen parameter values deviate from the values chosen as the basis of our
testing and those used by Vidal et al. (2012). The minimum population size µ, generation
size λ, max number of iterations without improvement INI , proportion of elite individuals
ηELI , and the proportion of individuals considered in the diversity contribution ηCLO

have the same or nearly the same values as Vidal et al. (2012). The target ratio of feasible
individuals is set significantly higher, ζREF = 0.6, compared to 0.4 in Vidal et al. (2012).
This is likely because it is hard to make infeasible individuals feasible without making
large alterations to the chromosomes. Hence, it is troublesome to produce high quality
feasible individuals from infeasible individuals in the SFFEVCHP.

Furthermore, the education and repair rates differ. First, our testing revealed that differ-
ent rates in the construction and offspring creation phase are beneficial. In the construction
phase, ρEDUconstruct = 0.75 and ρREPconstruct = 0.25 proved to be the best configuration, both
0.25 lower than the values of Vidal et al. (2012). The lower education rate is likely because
a large number of individuals are generated in the construction phase and thus no signifi-
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cant improvement was observed by having a higher rate. The lower repair rate is probably
due to the fact that the repair module guarantees feasibility by postponing handling of
rental cars if necessary. If performed too often it will lead to overly pessimistic solutions,
reducing the probability of finding high quality solutions when creating offsprings. In the
offspring generation phase, the repair rate is equivalent to that found by Vidal et al. (2012)
but the education rate found here is lower. We believe this is because the changes made
in the handling sequence chromosome by the education module may not merge well with
other individuals when new offsprings are created at later stages in the algorithm.

In addition to the aforementioned parameters, the diversification rate found here,
ηDIV = 0.2, is lower than 0.4 found by Vidal et al. (2012). This is likely because the
education and repair procedures increase the homogeneity of the population. Thus, a
higher rate of inserting new genetic material is performance improving. Also, the number
of individuals created in the construction and diversification stages are considerably higher,
KINIT = KDIV = 20, than 4 used by Vidal et al. (2012). We strongly believe that this
is caused by the dynamic setting of KPSEUDO throughout the construction heuristic. In
effect a fifth of the generated population is created with a given KPSEUDO, equating the
generation size multiple found by Vidal et al. (2012) for each value of KPSEUDO.

7.4 Results
In this section, the results of running the final configurations of the MIP and the HGSADC
are presented, compared, and discussed. First, the maximum solvable instance size is
explored and the MIP and the HGSADC are compared in Section 7.4.1. Then, results
from running the HGSADC on a large number of instances are reported and discussed in
Section 7.4.2

7.4.1 Performance of the MIP and HGSADC
Figure 7.3 shows how the computation times of the MIP and the HGSADC are affected by
the instance size. The MIP can only solve small instances to optimality within a compu-
tation time of an hour. Two out of three instances with six rental cars in need of handling
are solved to optimality in 662 and 32 seconds, respectively. The remaining instances are
stopped after running an hour with gaps at the end of the computation time ranging from
four to 270 percent. Hence, the MIP cannot reliably produce high quality solutions for
instances with more than six rental cars in need of handling. The plot clearly demonstrates
that the HGSADC scales significantly better with increasing instance size. The algorithm
can solve instances with 200 rental cars in need of handling with acceptable computation
time and objective value stability. Several of the algorithm runs on the tested instances are
using the entire computation time of an hour. The runs lasting an hour do however produce
solutions with less than two percent gap from the best known solution, so the algorithm
may be applied to even larger instances. In this thesis, the ability to solve instances with
100 to 150 rental cars reliably was sought. Hence, solving of larger instances has not been
tested.

Furthermore, Figure 7.3 reveals that the HGSADC for the SFFEVCHP scales approxi-
mately linearly with the number of rental cars in need of handling. The instances with 175
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Figure 7.3: Plot of the average run time and quartiles of the MIP and the genetic algorithm
(HGSADC).

rental cars in need of handling deviates from the linear trend, requiring longer computation
time. Especially one of the three tested data files require longer time, with an average run
time of 2,137 seconds. This is believed to be because the data file has almost as many
available charging slots as rental cars in need of handling (161 available slots), resulting
in a large feasible solution space to explore. This does however demonstrate that the al-
gorithm manages input data with this characteristic as the gaps for this instance remains
below 2.7 percent for all ten runs of the algorithm.

The HGSADC consists of many modules making it a relatively complex algorithm
to design and implement. To rationalize the added complexity, it is essential that the
algorithm provide a significant improvement in solution quality and/or computation time.
To provide evidence of the value of the HGSADC, table 7.14 compares the results of
running the MIP and the HGSADC with different modules on the same instances. Each
instance is run five times when solved with the HGSADC due to randomization. The
average computational times and gaps are reported. The first column reports the results
of running the MIP for the solvable instances. In the second and third column, the results
of running only the construction module of the algorithm without and with education and
repair, respectively, are presented. In the latter case, the construction heuristic is run with
the parameter values decided in Section 7.3 and the best solution found at the end of the
construction heuristic is returned. Then, the fourth column presents the results of running
the algorithm without education and repair in neither the construction algorithm nor after
an offspring is created. Finally, the results of the full algorithm with all parameters as
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described in 7.3 are shown in the last column.

Table 7.14: The average running time and gap from the best known objective value reported for runs
of the MIP, the construction heuristic without education and repair, the construction heuristic with
education and repair, the HGSADC without education and repair, and the HGSADC with education
and repair, respectively.

Instance MIP1 CH2 CH + E/R3 HGSADC4 HGSADC+E/R5

Time
(s)

Gap
%

Time
(s)

Gap
%

Time
(s)

Gap
%

Time
(s)

Gap
%

Time
(s)

Gap
%

6_3* 32.1 0.0 >1 0.1 3.6 0.0 7 0.0 22.8 0.0
8_4 3600 9.2 >1 18.6 >1 11.0 26.2 2.8 26.4 0.7
30_10 N/A N/A N/A N/A 2.0 18.5 66.2 19.2 127.6 10.3
100_35 N/A N/A N/A N/A 18.2 7.1 N/A N/A 764.8 2.7
*Proven optimal.
1: Implementation of the MIP.
2: The construction heuristic without education and repair.
3: The construction heuristic with education and repair as configured in Section 7.3.
4: The HGSADC without education and repair in both the construction heuristic and the crossover.
5: The HGSADC with all configurations from 7.3.

The MIP finds the optimal solution for the instance with six rental cars and three charg-
ing stations, but is unable to find optimal solution for the instance with eight rental cars and
four charging stations within the maximum computation time. Using only the construc-
tion heuristic without education and repair, solutions with an average gap of 0.1 percent
and 18.6 percent are found for the two smallest instances. No feasible solutions can be
found for the two remaining instances. When education and repair are introduced in the
construction heuristic, the optimal solution is found for the smallest instance and feasible
solutions are found for all test instances. Comparing the third column and the fifth column
clearly demonstrates the value of the hybrid genetic algorithm. The construction heuristic
is not able to find feasible solutions for the 30_10 instance, but using the HGSADC feasi-
ble solutions with an average gap of 19.2 percent from the best known solution is found.
Furthermore, the average gap for the 6_3 and the 8_4 instance are reduced to 0.0 and 2.3
percent, respectively. Finally, the last column illustrates that the HGSADC including all
modules clearly outperforms both the MIP and the other modules of the HGSADC.

7.4.2 Final Results
To demonstrate the capabilities of the proposed algorithm, it has been tested on 15 problem
instances. To avoid overfitting of the parameters to the data, none of these data files were
used in the parameter calibration in Section 7.3. Three instances for each size of 100,
125, 150, 175, and 200 rental cars in need of handling have been tested. The remaining
characteristics of the data files are discussed in Section 7.1.

Each instance is run ten times and the average run time, average gap after ten minutes,
average gap at end of the algorithm execution, and coefficients of variance of the gap
and computation time are reported in Table 7.15. The average run time for the tested
instances range from 693.5 to 2403.4 seconds. However, there is a relative large variation
in run time indicated by the average coefficient of variance of the run time of 45.6 percent.
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One of the runs of the 100_35 instances, two of the 125_40 instances, two of the 150_45
instances, two of the 175_50, and three of the 200_55 instances ran for 3600 seconds, the
maximum run time. However, all of these runs found a solution with less than 4.1 percent
gap after ten minutes and less than 3.5 percent gap at the end of the execution, making
the solutions usable for most practical purposes. There are several factors contributing
to the large variation in run time. The most important reason is simply randomization.
The search may progress in a manner such that many, smaller improvements are found so
that the maximum number of iterations without improvements is never reached. Another
observation that can be made is that the average gap to the best known solution and the
coefficients of variance of the gap and run time decrease with increasing instance size.
This indicates that the algorithm performs consistently for all problem sizes.

The gap after ten minutes (600 seconds) is reported because we assume that running the
algorithm for a maximum of ten minutes is desirable in real life scenarios. We show that
the average gap to the best found solution after ten minutes is 1.9 percent with no averages
above 2.7 percent. Furthermore, the average coefficient of variation of the objective value
after ten minutes is equal to the value at the end of the algorithm execution at 0.9 percent.
This demonstrates that the algorithm is able to produce acceptable solutions reliably within
ten minutes. The average gap at the end of the algorithm execution is 1.3 percent. For the
largest instances with 200 rental cars, these numbers are even lower, with average gap of
1.0 percent and coefficient of variation of 0.6 percent. These results are a clear indicator of
the capabilities of the algorithm to produce consistent, high quality solutions for realistic
carsharing systems.

Table 7.15: Final results of running the HGSADC on 15 instances with 100 to 200 rental cars in
need of handling.

Instance Avg. time (s) Avg. gap %
after 600s Avg. gap % Coeff. of Var.

gap %
Coeff. of Var.

time %
100_35_a 1212.1 2.6 1.9 0.9 76.4
100_35_b 693.5 1.6 1.5 1.3 32.7
100_35_c 743.5 1.3 1.2 0.9 29.3
125_40_a 1185.8 2.7 2.0 1.6 85.5
125_40_b 1302.6 2.5 1.9 1.2 68.2
125_40_c 972.7 1.7 1.3 0.6 49.1
150_45_a 1774.9 2.6 1.4 1.0 48.8
150_45_b 760.7 1.0 1.0 0.8 26.0
150_45_c 1362.9 2.1 1.3 0.9 47.4
175_50_a 1453.7 1.8 1.2 1.0 32.2
175_50_b 1849.1 2.9 1.7 1.1 51.1
175_50_c 2137.4 1.8 0.6 0.5 31.2
200_55_a 1496.9 1.5 1.0 0.4 26.4
200_55_b 1265.5 1.0 0.6 0.5 36.7
200_55_c 2403.4 2.1 1.2 0.8 42.8
Average 1374.3 1.9 1.3 0.9 45.6

To investigate the stability of the algorithm further, 100 runs on the 100_35_c instance
have been executed. The results of these runs are presented in the histograms in Figure 7.4.
As can be seen from the plot, the mean objective value gap to the best known solution is
2.0 percent. 58 out of the 100 solutions found have equal or smaller gap than the mean. Of
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the 42 solutions with objective value gap above the mean, 39 are below 4.0 percent. The
remaining three solutions have gaps of 4.3, 5.1, and 5.1 percent, respectively. The mean
run time of the algorithm is 655.7 seconds. 61 of the 100 algorithm executions completed
in less or equal run time as the mean. 91 of the runs completed in less than 1000 seconds.
Of the remaining nine algorithm runs, eight completed in less than 1314 seconds and one
outlier required 1970 seconds to complete. Based on these results we conclude that the
algorithm is largely able to produce solutions with stable quality within a reasonable time
for most executions of the algorithm. If compared to the capabilities and results of the
MIP-model, the HGSADC represents a significant improvement because realistic problem
sizes can be solved with acceptable gaps. In addition, the results demonstrate that the
UHGS framework is suitable for problems with complex synchronization constraints, and
spatial and temporal interdependencies. Further economic implications and sensitivity on
input data will be studied in Chapter 8.

Figure 7.4: Histogram of objective value gap to the best known solution and run time from running
the 100_35_c instance 100 times.
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Chapter 8

Practical Use of the Model and
Solution Algorithm

This chapter discusses the practical use of the HGSADC for the SFFEVCHP. The goal is
to demonstrate how the presented model and algorithm can be used as decision support
for real life CSOs. Section 8.1 presents operational insights obtained by altering different
parameters central to the problem. Moreover, Section 8.2 discuss the general features and
the usefulness of the model.

8.1 Operational Insights
This section takes a closer look on some operational insights deducted from varying in-
put data and configurations of the HGSADC. First, the value of combining handling and
repositioning is discussed in Section 8.1.1. Furthermore, the value of added operators and
service vehicles, and the value of added handling time is discussed in Section 8.1.2 and
Section 8.1.3, respectively.

8.1.1 The Value of Repositioning
An important assumption of the SFFEVCHP is the benefit of performing repositioning si-
multaneously as the fleet of rental cars is handled. As discussed in Chapter 4, repositioning
is necessary to maintain a profitable carsharing system. At the same time, repositioning
is a costly procedure requiring operators and transport of operators. A central hypothesis
of this thesis is that combining necessary daily operations like handling with repositioning
will increase the operational costs of the CSO marginally, while harvesting the full benefits
of repositioning. Furthermore, this represents more realistic repositioning conditions for
CSOs.

To investigate the effect of repositioning, two different configurations are compared.
In the first configuration, all cars are either handled to the closest charging station or post-
poned. The first configuration is meant to represent the handling procedure without con-
sidering repositioning while the second configuration is the full HGSADC as described in
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Chapter 6. An instance with 100 rental cars to handle has been run five times for each con-
figuration and the average costs, number of deviations, and postponements are reported in
Table 8.1. The average change when repositioning is considered is reported in the fourth
column of the table, compared to when repositioning is not considered.

Table 8.1: Comparison of costs, and number of deviations and postponements when repositioning
is omitted and when repositioning is performed. The numbers are the average of five runs with the
HGSADC. The test instance has 100 rental cars in need of handling. The average change when
repositioning considered is reported compared to when repositioning is not considered.

No repositioning With repositioning Change %
Number of postponed cars 46.6 42.6 -9.4
Number of deviations 84.6 79.0 -7.1
Travel cost [Euro] 112.5 116.5 3.2
Service vehicle cost [Euro] 256.0 276 7.3
Operator cost [Euro] 1008.0 1076.0 6.3
Total cost [Euro] 4552.5 4388.2 -3.7
Improvements marked with green.

The table shows that the operational costs increase when repositioning is considered.
The travel cost increases by 3.2 percent as the rental cars are moved to charging stations
farther away. In addition, the cost of service vehicles and operators increase by 7.3 and
6.3 percent, respectively. This implies that when repositioning is considered, more staff is
prioritized in order to achieve a more favorable distribution of rental cars in the system.
Nevertheless, the total cost of the system decreases with 3.7 percent when repositioning is
considered. The reduction in total costs can be attributed to the decreased number of post-
ponements and deviations. When both postponement and deviations are considered, the
marginal benefit of handling increases resulting in more handled rental cars. Furthermore,
when considering more than the closest charging station, the deviation cost decreases. As
the total cost (objective function) includes lost profits when deviations are present and cars
are postponed, the total cost to a large degree captures the profit effect of the repositioning
operations. Hence, the 3.7 percent decrease in total costs can be directly transferred to
gross profit margin improvement, thereby representing a significant improvement of the
economic viability for the CSO.

The gains for a specific CSO will depend on its valuation of postponements and devia-
tions. The numbers reported here should therefore be used as an indication on the potential
benefits of combining handling and repositioning. We believe that the total benefit of per-
forming handling and repositioning simultaneously are even greater than stated in Table
8.1. If no repositioning is performed alongside with handling, a separate handling pro-
cedure should be performed. This would result in a significant increase in operator and
service vehicle costs, as more staff would be required to perform this procedure. Fur-
thermore, the travel costs would increase. Hence, modeling a carsharing system as the
SFFEVCHP increases the operational costs of a CSO marginally, but gives the full bene-
fits of repositioning.

Some CSOs might desire to apply the HGSADC without repositioning. Handling with-
out repositioning might closer resemble these CSOs’ operational mode, or the deviation
cost in these systems may be too cumbersome to derive. When the HGSADC is run with
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no repositioning, the computational time is reduced by 61.2 percent and the stability of the
solutions increase due to a smaller search space. This implies that the HGSADC can be
highly valuable even if repositioning is not done in conjunction with charging.

8.1.2 The Value of Added Operators and Service Vehicles
In the SFFEVCHP, a given number of operators and service vehicles are available at the
depot. By varying these numbers, the marginal benefit of added operators and service
vehicles can be found. Figure 8.1 shows the plot of the objective value, number of rental
cars handled, number of vehicles used, and number of operators used by the HGSADC
solution when the number of available service vehicles is varied. The plot is an average
of five runs and the test instance has 100 rental cars in need of handling. The number
of operators is increased linearly with the number of service vehicles. We have assumed
a service vehicle capacity of four operators, thus keeping a one to four ratio of service
vehicles and operators is reasonable. As expected, the objective value decreases as the
number of operators and service vehicles increase. The improvement in the objective
function can mainly be attributed to the increased number of handled rental cars. The
marginal increase in number of rental cars handled are 1.6 for each added service vehicle.
The benefit of handling more rental cars exceeds the added costs of service vehicles and
operators, and the increased travel costs. This results in an average marginal net benefit
of 62.5 Euros for each additional service vehicle when increasing from two to fourteen
service vehicles.

The marginal benefit reported here is only valid for CSOs with equal operational costs
and valuation of postponement and deviation. By running the algorithm using their own
cost estimates, CSOs can find the marginal benefits applicable for their system. Neverthe-
less, a clear insight from Figure 8.1 is that the number of available operators and service
vehicles used for handling and repositioning has a significant effect on the profitability of
the system. When no more rental cars can be handled due to e.g. shortage of charging
slots, the marginal added benefit of an added service vehicle will equal zero. By running
the algorithm on historic data sets representative for typical conditions in the system and
with the desired planning time, the strategically optimal number of operators to hire and
service vehicles to invest in can be derived.

8.1.3 The Value of Added Handling Time
The length of the planning period is an important decision for the CSO. The length of the
planning period affects the number of operators and service vehicles needed to perform
the handling and the proportion of cars that are postponed. An increased planning period
requires fewer operators and service vehicles to handle the same amount of rental cars, and
gives the possibility to handle more cars. On the other hand, an increased planning period
could result in higher deviation and postponement costs as the time until next handling
increases. This implies that the system will have an unfavorable distribution of cars for
a longer period and that cars not handled will cause the CSO to lose more trips, likely
to also affect customer satisfaction negatively. Furthermore, the salary of an operator per
planning period increases as planning time increases, offsetting some of the cost savings
of having fewer operators.
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Figure 8.1: The plots of the average objective value, number of rental cars handled, number of
vehicles used, and number of operators used when the number of available operators and service
vehicles are varied. The number of operators increases linearly by a factor of four as the number of
service vehicles increases. There are 100 rental cars in need of handling.

Figure 8.2 shows the plot of the objective value, number of rental cars handled, service
vehicles used, and operators used when the planning period is increased. The plot is an
average of five runs and the test instance has 100 rental cars in need of handling. As
the figure shows, the number of handled rental cars are stable and the number of service
vehicles and operators used decrease when the handling time increases. Nevertheless, the
total cost increase due to the increased deviation and postponement cost. This implies that
shorter handling times are favorable for an effective utilization of the system and improved
customer satisfaction. The stable number of rental cars handled indicate that the optimal
number of cars to handle is governed by the trade off between repositioning costs and
postponement costs, not strictly limited by the planning period duration. This trade off
will depend on each CSO’s valuation of lost demand and deviations.

An important decision for the CSO is the trade off between a larger pool of operators
and investments in service vehicles that enable shorter planning times and utilization of
the system. Using real data and cost estimates from the CSO, the HGSADC can be used
to analyze this trade off for different scenarios and hence work as a decision support for
the CSO.
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Figure 8.2: The plots of the average objective value, number of rental cars handled, number of
vehicles used, and number of operators used when the planning period is increased. There are 100
rental cars in need of handling.

8.2 Benefits of the Proposed Model
In this section, the benefits of the proposed model and algorithm are discussed. In Sec-
tion 8.2.1 the main advantages of the proposed model are described, while Section 8.2.2
elaborates on how the model can be implemented as a decision support tool for a CSO.

8.2.1 Advantages of the Proposed Modeling Approach
An important element of the SFFEVCHP is the total cost perspective, including routing of
operators and service vehicles, as well as the cost of postponing rental cars and deviations
from the ideal number of rental cars in an area. The integrated nature of the decisions on
handling, routing, and repositioning makes it necessary to formulate an integrated model
to take the required trade offs into account. Hence, the model proposed is well suited to
be used as decision support for CSOs.

Another strength of the formulation is the division of the business area into smaller
areas surrounding the charging stations. By varying the size of the areas, the model can in-
directly factor in the flexibility of users, as described by Correia et al. (2014) and discussed
in Chapter 4. This can have positive effects on the profitability of the system. Increasing
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the size of the areas results in demand data being aggregated, and thus counting in that
users are willing to walk longer to pick up a rental car. In addition, larger areas lead to a
smaller problem size thus making the SFFEVCHP easier to solve. Finally, the forecast-
ing of demand will have increased likelihood of being correct as aggregation reduces the
variance.

8.2.2 Applying the Model to Real Life Carsharing Systems
Modern carsharing systems often rely on mobile applications that allow customers to find
available cars and make reservations. This is particularly relevant for free-floating systems,
as it is crucial that users are able to locate cars. Therefore, the CSO must have GPS
tracking of the rental cars. Furthermore, an app-based service allows companies to gather
large amounts of data that can be used in the optimization of its handling and repositioning
operations.

By utilizing this source of data, the number of cars in need of handling and the initial
state of the system can be extracted in real time. Furthermore, travelling times can be
calculated based on e.g. Google Maps data in real time, including traffic, or be based on
historical data. If the operator performs handling and repositioning throughout the day,
historic data for travel times can be defined for different times during the day. Finally, cost
parameters can be estimated using historic data of demand, as well as using the CSO’s
operational experience, salary levels, and asset-related costs. Based on historical data, the
operator can define the ideal state for different times during a day to incorporate recurring
trends in the demand pattern, e.g. rush hour traffic into the city in the morning and out of
the city in the evening.

As a result of these factors, the algorithm can handle real world scenarios well by
intelligently collecting and pre-process the input data. If cars that require handling are
made unavailable in the booking system, the HGSADC can easily be applied to handling
and repositioning during the day, without modifications. These operations will then be
performed based on information about handling requirements, traffic, and states available
when the algorithm execution is started. If the model is integrated in a program that col-
lects and prepares data based on real time and historic data, we believe it can contribute
to a significant increase in the efficiency of the handling and repositioning operations of
the CSO. Furthermore, it is expected that CSOs with a large number of rental cars will
realize the biggest benefit of employing the algorithm. A high number of cars is likely to
increase the density of cars in the business area, enabling the service vehicles to drop off
more operators per distance driven. In addition, more operators can be picked up at the
same time when a charging station is visited. Taking advantage of the economics of scale
can be troublesome if planning is done semi-manually but the HGSADC is highly suitable
to exploit these effects.
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Chapter 9

Concluding Remarks

In this chapter, we summarize the major findings of this thesis and discuss attractive future
research areas. First, a conclusion is presented in Section 9.1 and finally, future research
opportunities are discussed in Section 9.2.

9.1 Conclusion
This thesis presents a mathematical formulation and a Genetic Algorithm (GA) for the
Static Free-Floating Electric Vehicle Carsharing Handling Problem (SFFEVCHP). The
studied problem is concerned with charging and repositioning of rental cars in a free-
floating carsharing system of electric vehicles. Discussions with carsharing organizations
revealed that repositioning is costly but desirable to balance the system to better serve
demand. Many companies already have a fleet of service vehicles and staff to move rental
cars to charging stations. Henceforth, considering repositioning to improve the distribution
of cars in the system while moving cars to charging stations shows potential to realize the
benefits of repositioning without a large increase in operational costs. Ultimately, this will
improve the profits and the economic viability of carsharing systems.

A novel model that minimizes the total costs of moving rental cars to charging stations
is proposed. In addition, the model assigns costs to rental cars that have an unfavorable
location in the business area and allows rental cars to be moved to improve the distribu-
tion while being handled. The model finds optimal routes for service vehicles transporting
operators to handle cars and determines to which charging station to move each rental car.
This integrated approach, taking the trade off between repositioning costs and deviations
into account, while handling the fleet of rental cars has, to our knowledge, not been pre-
sented before. The model is formulated as a Mixed Integer Program (MIP) and solved
by Xpress. The problem is however computationally cumbersome to solve, resulting in
intractable computation times. Hence, a GA based on the Hybrid Genetic Search with
Adaptive Diversity Control (HGSADC) presented by Vidal et al. (2012) is developed to
solve realistic problem sizes.

The MIP is able to solve the problem to optimality for instances with six rental cars
in need of charging in less than 3600 seconds. The computation time scales exponentially
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with the number of rental cars in need of charging. Real problem sizes are in the range of
100 to 150 rental cars in need of charging making the MIP unsuitable. The HGSADC is
able to find the optimal solution for all instances tested solvable by the MIP. Furthermore,
the computation time of the HGSADC scales linearly with the number of rental cars in
need of charging and is capable of solving instances with up to 200 rental cars yielding
seemingly high quality solutions in an average computation time of less than 2400 seconds.
The stability of the algorithm is acceptable for practical purposes with an average gap to
the best known solution of 1.3 percent and an objective value coefficient of variance of 0.9
percent. More importantly for practical applications, the average of the gaps to the best
known solutions after 600 seconds for all instances tested is 1.9 percent with a 0.9 percent
coefficient of variance. Furthermore, these values indicate larger variations than what is
true in practice. This is caused by the presence of semi-artificial costs in the objective
function resulting in rather large changes in the objective value with small changes in the
solution chromosomes.

The economic benefit for a carsharing organization implementing the proposed algo-
rithm is twofold. First, the algorithm is largely capable of solving the essential problem
of routing operators to move rental cars to charging stations. This procedure is necessary
to maintain a functioning service. We have not succeeded in obtaining comparable so-
lutions from existing companies to compare to the solutions produced by the algorithm.
However, as the route planning typically is performed semi-manually we believe that sig-
nificant efficiency gains are possible. Secondly, the element of repositioning rental cars
to improve the distribution in the system represents an added value for the organizations.
When comparing solutions from the HGSADC with solutions produced by the algorithm
when prohibiting repositioning, a net reduction in the total cost of 3.7 percent is obtained.
As the total cost function also includes lost profits when the distribution of rental cars
is unfavorable, the total cost approximately captures the profit effect of the daily opera-
tions. As a result, the observed improvements can be transferred directly to the gross profit
margin of the companies.

The HGSADC developed for the SFFEVCHP demonstrate the performance of the Uni-
fied Hybrid Genetic Search (UHGS) framework developed by Vidal et al. (2014) on rout-
ing problems with complex synchronization constraints. The SFFEVCHP consists of two
closely linked routing problems, one for the routing of rental cars to charging stations and
one for routing service vehicles transporting operators to rental cars and from charging
stations. As the drop off time and location of an operator affects the time and location of
his/hers pick up, spatial and temporal interdependencies emerge. The work in this thesis
outline the merit of genetic algorithms for solving this complex problem type. In conclu-
sion, solving the SFFEVCHP with the HGSADC produces high quality solutions within
reasonable computation time for realistic problem sizes. We consider this a significant
contribution to creating efficient and profitable carsharing systems.

9.2 Future Research Opportunities
The SFFEVCHP presented in this thesis is a novel problem type designed to model real
world carsharing systems studied. We regard the MIP and the HGSADC as an initial at-
tempt in modeling and solving this problem type for realistic problem sizes. We believe
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that the developed algorithm will perform well if combined with a modern data collection
system and far outperform manual or partial optimization schemes currently available.
Nevertheless, this section highlights further research opportunities we believe to be im-
portant to improve the algorithm developed and more generally create efficient, profitable
carsharing systems. First, high level research areas are discussed in Section 9.2.1. Then,
possible extensions of the proposed model are introduced in Section 9.2.2. Finally, possi-
ble improvements to the HGSADC algorithm are presented in Section 9.2.3

9.2.1 High Level Research Topics
The pricing of the carsharing service is the major instrument to influence how the users
behave in the system. If prices are set dynamically it is e.g. possible to reduce the imbal-
ances in the system drastically by making disfavorable trips more expensive and trips that
improve the distribution of rental cars in the system cheaper. Furthermore, the users can be
incentivized to leave rental cars at charging stations or perform other minor maintenance.
These efforts may reduce or eliminate the need of interventions by the CSO to charge and
redistribute cars. Hence, research on the pricing problem can have large effects on the
economic viability of the systems.

Another research opportunity is optimizing the charging of EVs taking power grid
balancing into account. Large CSOs with a fleet of EVs represent a large power storage
capacity. By managing charging and connection to the power grid of the rental cars, the
carsharing systems can play a role in balancing the power grid. This is especially attractive
with the presence of volatile power sources such as wind and solar in the grid. Research
on how to leverage this opportunity could provide a new revenue source for CSOs while at
the same time further increase the utilization and environmental benefits of the rental car
fleet.

9.2.2 Extensions of the Presented Model
Several extensions that can improve the performance of the model when applied to a real
world system are identified. First, extending the model to account for the dynamic prob-
lem is considered. The SFFEVCHP models a static system. In practice, this means that
the CSO must rely on the data available when planning starts to make handling and repo-
sitioning decisions. As demand, distribution of cars and traffic vary throughout the day,
a model and algorithm considering these factors to re-solve the problem regularly with
updated data throughout the planning period can improve the value of the model. E.g.,
the decision of where to move cars after handling could be re-solved every time an oper-
ator arrives at a rental car so that the car is repositioned based on the current distribution,
demand and traffic. This could either be achieved by using real time data or expectations
based on historic data.

Furthermore, the current model formulation require that every operator either is trans-
ported by a service vehicle, or handles a car. Allowing operators to be transported by
cars being handled by other operators may reduce the need for service vehicles, hence
reducing the costs of handling and repositioning. E.g., a service vehicle could drop off
three operators by a rental car. One of the operators drive the rental car, drops off the two
other operators at other rental cars and places the car at a charging station. This extension

79



Chapter 9. Concluding Remarks

may yield significant gains in operational efficiency for the CSO. However, we expect that
the routing problem will become substantially more complex as it must identify possible
routes for rental cars including drop offs. In addition, it must take into account the trade
off between rental cars travelling a longer distance to drop off operators and travel costs of
service vehicles.

Another extension of the model is to include the possibility to perform repositioning
of rental cars even though they are not in need of charging. In conjunction with the afore-
mentioned extension to allow operators to be transported by rental cars handled by other
operators, this may lead to better utilization of the cars in the system with a marginal cost
increase. The current algorithm can be used in this manner by including more cars in the
input data not necessarily in need of charging and adjust the postponement costs so that
cars in need of charging have significantly higher cost than those that do not. This may in-
clude intelligent ways to select which cars to include in the data file to avoid getting overly
large instances. Other approaches to this extension are also possible and implementing a
pure repositioning element can lead to a higher utilized fleet.

Finally, the presented model and algorithm include a single depot. In real life systems
however, multiple depots can be beneficial. There are mainly two factors contributing to
this. First, the driving distance from the depot to the rental cars and charging stations can
become long. Secondly, employees may have to travel a long distance to and from the
depot wasting travel time that can be used on repositioning of rental cars. When traffic is
taken into account, the importance of these effects increase. Thus, extending the model
and algorithm to allow multiple depots can be of great value for companies. The MIP can
easily be extended to allow multiple depots. The HGSADC however must be considerably
modified to allow this. It is possible to develop a cluster first route second algorithm
where rental cars are clustered to a depot and a SFFEVCHP is solved for each depot. The
performance of such an algorithm is however highly dependent on the clustering scheme.
As a result, incorporating multiple depots into the current algorithm is likely to perform
better.

9.2.3 Improving the HGSADC for the SFFEVCHP
We believe that the improvement of some modules of the HGSADC as well as adding an
intensification step may improve the solution quality and stability of the proposed algo-
rithm. A possible area of improvement is the education module. The proposed education
module attempts to improve the individual by rearranging the handling sequence, trans-
port request assignment and route chromosomes. However, the rental car destination and
operator chromosomes are not modified. Improvement of these chromosomes will likely
contribute to finding high quality solutions faster. Particularly, we believe that attempting
to insert postponed rental cars into existing operator sequences or adding more operators
to handle postponed cars merits future research.

In addition to the education module, further development of the crossover module
may improve the algorithm performance. The main contribution would be to employ a
crossover operator capable of transferring more information about the route chromosome
to the offsprings. Currently, the rental car destination, operator, and handling sequence
chromosomes are inherited, but the DARP is solved for each offspring to form the transport
request assignment and route chromosomes. We believe that including genetic material
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from the parent individuals for these chromosomes can further improve solution quality
and stability.

Finally, we believe the notion of adding an intensification step to the algorithm de-
serves attention. As the dial-a-ride problem formed by the three first chromosomes is
a complex problem to solve in itself, better solution methods of the DARP could be em-
ployed to further improve promising individuals. This can be done by employing a solution
method capable of producing high quality solutions of the DARP in reasonable time. E.g.,
Masmoudi et al. (2017) present a genetic algorithm with operators designed for the DARP
that shows promising results. Intensifying promising solutions, either at some interval dur-
ing the HGSADC iterations or after the HGSADC terminates can have a positive effect on
the solution quality. Nevertheless, as the DARP is complex to solve computation time is
a significant concern and the trade off between the allowed running time of the HGSADC
and the intensification module must be investigated.
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Appendix A

Final Model Formulation

Notation

Sets
N Set of all nodes
NCS Set of all charging stations, NCS ⊂ N

NEV Set of rental cars in need of handling, NEV ⊂ N

Mi Set of all possible visits to node i
V Set of all service vehicles
D Set of all operators

Indices
i, j, k Node i, j, k ∈ N

a, b, c Operator visit a,b,c to node i, a, b, c ∈Mi

m, n, o Service vehicle visit m,n,o in node i, m,n, o ∈Mi

v Service vehicle v ∈ V

d Operator d ∈ D

Parameters
NCSP
j Number of available charging slots at charging station j

CEj Deviation cost in charging station j
CTij Travel cost between node i and j
CPHi Cost of postponed handling of rental car in node i
CV Fixed service vehicle cost
CD Fixed operator cost
Tij Travel time between node i and j
TEVi Max travel time for rental car in node i
T Time limit for the planning period
Q Service vehicle capacity
S0
j Initial state at charging station j
SIj Ideal state at charging station j
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Variables
ximjnv 1 if service vehicle v drives directly from visit (i,m) to

visit (j,n), 0 otherwise
fimajnbvd 1 if opertor d is transported from visit (i,a) to (j,b) by

service vehicle v in visit (i,m) to (j,n), 0 otherwise
qivd 1 if operator d is dropped off in i by service vehicle v, 0

otherwise
gjnbvd 1 if operator d is picked up in visit (j,b) by service vehicle

v in visit (j,n), 0 otherwise
hijbd 1 if operator d handles rental car i to charging station visit

(j, b), 0 otherwise
tVimv Time of arrival to visit (i,m) for service vehicle v
tDiad Time of arrival to visit (i,a) for operator d
zHi 1 if the handling of rental car i is postponed, 0 otherwise
yj Deviation from ideal state in node j
sv 1 if service vehicle v is used, 0 otherwise
wd 1 if operator d is used, 0 otherwise

Objective Function

min
∑

j∈NCS

CEj yj +
∑
i∈N

∑
m∈Mi

∑
j∈N

∑
n∈Mj

∑
v∈V

CTij ximjnv+ (A.1)

∑
i∈NEV

CPHi zHi +
∑
v∈V

CV sv +
∑
d∈D

CD wd

Constraints

∑
j∈N\{0}

x01j1v = sv v ∈ V (A.2)

∑
j∈N\{0}

∑
m∈Mj

xjm02v = sv v ∈ V (A.3)

∑
j∈N\{0}

∑
n∈Mj

ximjnv ≤ sv i ∈ N\{0},m ∈Mi, (A.4)

v ∈ V∑
i∈N

∑
m∈Mi

ximjnv =
∑
i∈N

∑
m∈Mi

xjnimv j ∈ N\{0}, n ∈Mj , (A.5)

v ∈ V∑
i∈NEV

∑
b∈Mj

∑
d∈D

hijbd ≤ NCSP
j j ∈ NCS (A.6)

∑
j∈NCS

∑
b∈Mj

∑
d∈D

hijbd + zHi = 1 i ∈ NEV (A.7)
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∑
b∈Mj

∑
d∈D

Tij hijbd ≤ TEVi i ∈ NEV , j ∈ NCS (A.8)

∑
j∈NCS

∑
b∈Mj

hijbd =
∑
v∈V

qivd i ∈ NEV , d ∈ D (A.9)

∑
i∈NEV

hijbd =
∑
v∈V

∑
n∈Mj

gjnbvd j ∈ NCS , b ∈Mj , (A.10)

d ∈ D

∑
i∈NEV

hijbd +
∑
i∈N

∑
m∈Mi

∑
a∈Mi

∑
n∈Mj

∑
v∈V

fimajnbvd ≤ wd j ∈ NCS , b ∈Mi, (A.11)

d ∈ D∑
j∈N\{0}

∑
v∈V

f011j11vd = wd d ∈ D (A.12)

∑
i∈N

∑
m∈Mi

∑
a∈Mi

∑
v∈V

fima022vd = wd d ∈ D (A.13)

∑
k∈N

∑
o∈Mk

∑
c∈Mk

fjnbkocvd =
∑
i∈N

∑
m∈Mi

∑
a∈Mi

fimajnbvd (A.14)

+ gjnbvd − qjvd j ∈ N\{0}, n ∈Mj , b ∈Mj

v ∈ V, d ∈ D

∑
a∈Mi

∑
b∈Mj

∑
d∈D

fimajnbvd ≤ Q ximjnv i ∈ N,m ∈Mi, (A.15)

j ∈ N, n ∈Mj , v ∈ V

tVimv ≤ T sv i ∈ N,m ∈Mi, (A.16)
v ∈ V

tVimv + (Tij +M1) ximjnv ≤ tVjnv +M1 i ∈ N,m ∈Mi, (A.17)

j ∈ N, n ∈Mj , v ∈ V

tDjbd +M2 gjnbvd ≤ tVjnv +M2 j ∈ NCS , n ∈Mj , (A.18)

b ∈Mj , v ∈ V, d ∈ D

tDiad ≤ T wd i ∈ N, a ∈Mi, (A.19)
d ∈ D

tDiad + (Tij +M3) hijbd ≤ tDjbd +M3 i ∈ NEV , a ∈Mi, (A.20)

j ∈ NCS , b ∈Mj , d ∈ D
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tVimv + (Tij +M4) fimajnbvd ≤ tDjbd +M4 i ∈ N,m ∈Mi, (A.21)

a ∈Mi, j ∈ N, n ∈Mj ,

b ∈Mj , v ∈ V, d ∈ D

yj ≥ S0
j +

∑
i∈NEV

∑
b∈Mj

∑
d∈D

hijbd − SIj j ∈ NCS (A.22)

yj ≥ −S0
j −

∑
i∈NEV

∑
b∈Mj

∑
d∈D

hijbd + SIj j ∈ NCS (A.23)

s(v+1) − sv ≤ 0 v ∈ V\{|V|} (A.24)
w(d+1) − wd ≤ 0 d ∈ D\{|D|} (A.25)

hijbd ≤ wd i ∈ NEV , j ∈ NCS , (A.26)
b ∈Mj , d ∈ D

ximjnv ≤ sv i ∈ N,m ∈Mi, (A.27)
j ∈ N, n ∈Mj , v ∈ V

fimajnbvd ≤ sv i ∈ N,m ∈Mi, (A.28)
a ∈Mi, j ∈ N, n ∈Mj ,

b ∈Mj , v ∈ V, d ∈ D

gjnbvd ≤ sv j ∈ NCS , n ∈Mj , (A.29)
b ∈Mj , v ∈ V, d ∈ D

qivd ≤ sv i ∈ NEV , v ∈ V, (A.30)
d ∈ D

fimajnbvd ≤ wd i ∈ N,m ∈Mi, (A.31)
a ∈Mi, j ∈ N, n ∈Mj ,

b ∈Mj , v ∈ V, d ∈ D

gjnbvd ≤ wd j ∈ NCS , n ∈Mj , (A.32)
b ∈Mj , v ∈ V, d ∈ D

qivd ≤ wd i ∈ NEV , v ∈ V, (A.33)
d ∈ D

Non-negativity, Integer, and Binary Restrictions

ximjnv ∈ {0, 1} i ∈ N,m ∈Mi, j ∈ N, n ∈Mj , v ∈ D (A.34)
fimajnbvd ∈ {0, 1} i ∈ N,m ∈Mi, a ∈Mi, j ∈ N, (A.35)

n ∈Mj , b ∈Mj , v ∈ V, d ∈ D

qivd ∈ {0, 1} i ∈ NEV , v ∈ V, d ∈ D (A.36)

gjnbvd ∈ {0, 1} j ∈ NCS , n ∈Mj , b ∈Mj , v ∈ V, d ∈ D (A.37)

hijbd ∈ {0, 1} i ∈ NEV , j ∈ NCS , b ∈Mj , d ∈ D (A.38)
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tVimv ≥ 0 i ∈ N,m ∈Mi, v ∈ V (A.39)

tDiad ≥ 0 i ∈ N, a ∈Mi, d ∈ D (A.40)

zHi ∈ {0, 1} i ∈ NEV (A.41)

yj ∈ Z+ j ∈ NCS (A.42)
sv ∈ {0, 1} v ∈ V (A.43)
wd ∈ {0, 1} d ∈ D (A.44)
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Appendix B

Base Configuration for
Parameter Calibration of the
HGSADC

Table B.1: Overview of the base parameters used in parameter calibration of the HGSADC

Parameter Value Description
µ 25 Minimum population size
λ 75 Generation size
INI 10,000 Max. number of iterations without improvement
ηDIV 0.20 Proportion of INI , such that IDIV = ηDIV × INI
ηELI 0.75 Proportion of elite individuals such that nELI = ηELI × |S|
ηCLO 0.2 Proportion of individuals considered in diversity contribution,

such that nCLO = ηCLO × µ
KINIT 4 Construction heuristic size factor
KDIV 4 Diversification size factor
ρEDUconstruct 0.5 Probability of education in construction heuristic
ρREPconstruct 0.5 Probability of repair in construction heuristic
ρEDUcrossover 0.5 Probability of education in crossover
ρREPcrossover 0.5 Probability of repair in crossover
ζREF 0.6 Desired ratio of feasible individuals
wT 2.0 Duration violation penalty
wV 2.0 Number of vehicles violation penalty
ξUP 1.25 Penalty adjustment factor, up
ξDOWN 0.75 Penalty adjustment factor, down
TMAXRUN 3,600 Maximum running time (seconds)
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