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Abstract—This paper presents a filter for positioning of an
underwater vehicle in exposed aquaculture environments. The
input to the filter is time of flight measurements from acoustic
transponders mounted at near the sea surface. The transpon-
ders are exposed to oscillations from wave disturbances. This
has an impact on the accuracy of the positioning system. An
extended Kalman filter (EKF) solution has been proposed with a
wave motion compensation. Experimental results show that the
proposed filter compensates for the disturbances and thereby
increase performance of the position estimate.

I. INTRODUCTION

A. Background and Motivation

There is a strong need for increasing global sea food
production as the world population is growing significantly.
Due to environmental challenges of local sea production there
is a need to investigate the possibilities for more exposed aqua-
culture [1]. Remoteness and harsher environments motivate the
use of Underwater Vehicles (UV) in inspection, maintenance,
and repair (IMR) operations. Positioning and localization are
key technologies for enabling such operations [2]. In the aqua-
culture industry, the overall goal is to reduce on-site manual
operations for increased safety and reduced risk for workers
[3], as well as to keep the cost of installation, operation and
maintenance low. One way of doing this is increased use of
remote operations and UVs. For efficient UV operations, there
is a need for an underwater positioning system. Acoustic based
technologies like long baseline (LBL), short baseline (SBL)
and ultrashort baseline (USBL) systems are available for under
water position. LBL systems use the same principle as Global
Navigation Satellite Systems (GNSS). A receiver measures the
time of flight (TOF) to multiple transponders and obtains a
so called pseudo-range measurement. In the presented work
transponders are mounted on the net pen to perform a long
baseline network. The main focus of the presented work is to
analyze and reduce the effect the disturbance of wave motion
has on the near surface mounted transponders. The motion is
caused by environmental disturbances like currents or waves
and can create large errors in the position estimate if not
contracted. It is essential that this error is as small as possible
to ensure an accurate positioning of the UVs.

B. Literature review

This paper builds on the work presented in [4]. In the
prvious work a filter with wave motion comensation was
developed and verified by simulations. This work is further
extended by a error spectrum analysis including verfication
by experiments. Surveys on underwater navigation ([5]-
[6]) discuss the sensors available, accuracy and how state
estimation can be applied to fuse sensor information both
for translation and attitude observers. A celebrated nonlinear
filter for the latter is the complementary filter from [7]
and later enhanced in [8]. A widely used extended Kalman
filter (EKF) approach is presented in [9], also for attitude
estimation. Furthermore, various translation observers using
Kalman filter (KF) approaches are discussed in literature
like [10]. Examples are Unscented KF, Ensemble KF and
particle filter. However, in general, the nonlinear KF’s are
not proven globally stable in estimating position by pseudo
ranges. Recently there has been a suggestion to transform
the problem into a quasi-linear. The transformation was first
suggested in [11]. Use for KF was first developed in [12],
which made the implemented observer Global Exponential
Stable (GES), but the transformation is optimal with noisy
measurements. This can be resolved by using the Exogenous
KF (XKF) presented in [13]. The KF using the quasi-linear
model is here used as a linearization point for the next KF
inheriting the stability properties and the noise reduction.
A complete implementation for navigation using pseudo-
range measurements is presented in [14]. Later, it has been
implemented in combination with attitude filter in [15] using
the attitude filter from [8]. Study of wave motions and sea
states has been a wide research field. Examples can be found
in [16], [17], [18].

C. Main Contribution

The main contribution of this paper is the experimental
verification of the work presented in [4], where an error
model was suggested. This is an important contribution since
it enables mounting of transponders near the ocean surface
on aquaculture structures in harsh conditions, without more
expensive solutions like calculating the transponder position
with GNSS in real time. The work solves the challenge



Fig. 1: Transponder configuration [4]

of modeling the position estimate error. This error occurs
because of the wave motion of the transponders. Moreover,
the frequency spectra of the error is identified.

D. Notation

(·)T is the transposed of a vector or matrix, and || · || is
used as the euclidean norm. The set of real numbers are noted
as Rn×m with the dimension n×m, where no indication R
implies m = 1 and n = 1. 0p×q and Ip×q are the zero and
identity matrix respectively, with dimension p × q. Position
will always be denoted as a vector p =

[
x y z

]T ∈ R3×1

where x is surge, y is sway and z is heave. Wave motion
vector will be designated pw =

[
xw yw zw

]T ∈ R3×1.
N(0, σ2) is a Normal Gaussian distribution with variance σ2

and mean zero. (̂·) is the notation for an estimated variable
and (̄·) denote an averaged value. For a matrix A and value xi,
A = diag(x1, . . . , xn) ∈ Rn×n means a matrix with diagonal
terms x1 to xn and zeros everywhere else. For a function h(x)

and vector x, ∂h(x)
∂x is the notation for the partial derivative.

II. PROBLEM STATEMENT

The problem of oscillating transponders will be studied in
an aquaculture environment around a net pen as seen in Figure
1. The transponders are mounted near the ocean surface in a
non-rigid manner, meaning that wave disturbances should be
considered. It can for instance be on the end of a flexible
wire mounted at the surface. Two filter design cases are
discussed in this paper. The former is denoted as A, and wave
disturbances are not considered. In the latter case denoted
as B, the wave disturbances are considered and contracted.
The following section presents these and their assumptions.
It should also be mentioned that the reference frame has an
origin in the fish cage center at the mean sea surface. Positive
z-axis points towards the sea floor and x-axis north. The y-axis
complete the right hand rule, therefore pointing east. This is
known as the North-East-Down (NED) reference frame [18].
The transponders and receiver position are denoted as p̆i(t)
with i = 1, .., 4 and p. Remark that in this work, the receiver
position does not depend on time and is therefore static.
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Fig. 2: Graphical position estimate p̂ and solution p

III. MATHEMATICAL MODELING

This section discusses of the mathematical model as pre-
sented in [4].

A. Pseudo-range Models

Figure 2 is a central illustration to understand the problem.
Since waves are periodical it can be assumed that the influ-
enced transponder positions will behave in a similar manner.
Therefore, will this work simplify the problem to only consider
the mean transponder position over a wave period denoted ¯̆pi.
The difference for the real transponder position and average
are denoted by εi. The mean and real transponder positions are
encircled by a solid green and dotted red circle, respectively.
Both circles have the same radius, which is ||p − p̆i|| and
consequently the intersection of the green circles is in point
p. The red dotted circles centered at ¯̆pi intersect in another
point denoted p̂, which is the estimated position if the position
error e is not contracted. The next two points suggest two
pseudo-range models denoted case A and B as suggested in
the previous section.

Case A: Position error not considered

The following Equation use the estimated position p̂.

yi = (||p̂− (¯̆pi)||+ εy) = hi(x) (1)

Measurement noise for each transponder is written as
εy ∈ R in N(0, σ2

m).

Case B: Position error considered

The measurement model considering position error is ob-
tained inserting p̂ = p+ e as the following:

yi = ||p+ e− ¯̆pi||+ εy = hi(x) (2)
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Fig. 3: Low (LF) and wave frequency (WF) motions [18].

B. Error Dynamics

To model the motion of the error we need to exploit that it
will move in a wave motion pattern. This is why the second
order wave model approximation is attractive. The goal of the
wave motion model presented in this section is to separate
the low and wave frequency motions. This is illustrated in
Figure 3. The blue dashed line is the combined low and wave
frequencies, while the red solid and yellow dash-dot line are
the separated low and wave frequency motions, respectively.
Here is the second-order wave model used for the separation
of p and e given in Equation (2). This model originated in [17]
and can also be found in newer literature [18]. The model is
given as following:[

ζ̇
ė

]
= Aw

[
ζ
e

]
+ Ewεw ∈ R6×1 (3)

where εw ∈ R3×1 and each noise term is N(0, 1). Further,
the matrices are defined as the following:

Aw =

[
03×3 I3×3

−ω2
0I3×3 −2λω0I3×3

]
, Ew =

[
03×3

Kw

]
where Kw = diag(σw1, σw2, σw3) ∈ R3×3.

C. Position Dynamics

A kinematic model is required in order to model the motion
real position p. The velocity will be modeled as a random walk
as following:

ṗ = App+ εp (4)

Where εp ∈ R3×1 is N(0, σ2
p) and Ap = 03×3. Random

walk is used because this case study only takes into account
pseudo-range measurements. The velocity is not estimated in
the work. It should be remarked that it is simple to also include
a velocity state by including accelerometer measurements
directly in the process model [14]. This would also improve
the position estimates, of course depending on the quality of

the accelerometer. However, since this is not the purpose of
this paper, it is not taken into account. Only having position
estimates also make it possible to further include this in a
loosely coupled observer [19].

IV. ERROR SPECTRUM ANALYSIS

This section discusses how to obtain the parameters for the
position error dynamics model discussed in Section III-B. It
is first necessary to derive a solution for the error e as seen
in Figure 2. The error depends on the mean transponder ¯̆p,
transponder position error εi, and the real position p. In the
next section we derived an algebraic solution for the error.

A. Algebraic Solution of the Error

Inspired by [11] and later used in ([14],[20],[21]) it is
possible to find an exact solution of the error. Starting with
one exact pseudo-range distance from Equation (5) using the
time varying transponder position p̆(t). Equation (6) uses the
mean position time invariant transponder position ¯̆p which
will give an estimated position p̂. ρ is the pseudo-range from
the real transponder position to the real position as illustrated
in in Figure 2 by the radius of the circles. Furthermore, we
define an error trajectory of the transponder ε(t) such that
p̆(t) =: ¯̆p+ ε(t).

ρ2 = ||p− p̆i(t)||2 (5)

ρ2 = ||p̂− ¯̆pi||2 (6)

Inserting this into Equation (5) results in the following:

ρ2 = ||p− ¯̆pi||2 + 2(¯̆pi − p)T εi(t) + ||εi(t)||2 (7)

From Equation (6) we can insert p̂ =: p+ e and obtain:

ρ2 = ||p− ¯̆pi||2 − 2(¯̆pi − p)T e+ ||e||2 (8)

By further subtracting Equation (7) from (8) results in the
following:

−2(¯̆pi − p)T︸ ︷︷ ︸
Ci

e+ ||e||2︸︷︷︸
r

= 2(¯̆pi − p)T εi(t) + ||εi(t)||2︸ ︷︷ ︸
ki

(9)

Provided that we have m ≥ 3 transponders and their
positions p̆i(t) = ¯̆pi + ε(t), we can find the error trajectory
e(t) from Equation (9) by the following:

C =

C1

...
Cm

 , k =

k1

...
km

 (10)

Gathering all equations in matrix form as stated we obtain
the following:

Ce+ rl = k (11)

Solving for e we obtain,



e = C−1k︸ ︷︷ ︸
w

−r C−1l︸ ︷︷ ︸
c

(12)

Reformulating the variables as suggested Equation (12) and
inserting this into r = eT e and solving for r we obtain the
second order solution:

r =

{
−h±
√
h2−wTwcT c

cT c
, ifcT c 6= 0

−w
TMw
2h , otherwise

(13)

where h = 2cTw − 1. When r is obtained we can insert
it into Equation (12) and obtain the difference between the
real and estimated value. Figure 2 illustrates the computed
solution e as a vector from p to p̂ in two dimensions. The green
circles are centered in the real varying transponder position
with the radius of the distance between the real transponder
position p̆ and the red circles have centers in the averaged
transponder positions and intersect to create the estimated
solution p̂. Further, the error between the estimated and real
positions is denoted as the vector labeled e.

B. Position Error Spectrum

Using the error solutions of a given position we can obtain
the error spectrum by obtaining a time serie of the transponder
positions when induced by waves. This can then be used to
approximate the parameters in the second order wave model
given in Equation (3). The procedure can be summarized as
the following:

1) Gather a time series of position of each transponder p̆i(t)
during wave disturbances.

2) Compute mean transponder positions ¯̆pi and transponder
errors εi

3) Compute the position errors e from Equation (12) and
(13) given a position p.

4) Extract the error spectrum by using our favorite spec-
trum analysis tool for each degree of freedom. An
example of a spectrum analysis tool is [22].

5) Fit the second order wave model in Equation (3) to the
obtained error spectrum to identify the parameters ω0, λ
and σ2 for each degree of freedom. A good fitting tool
for this purpose is [23].

V. EXTENDED KALMAN FILTER’S DESIGN

The general structure of the EKF for pseudo-range mea-
surements is described in Figure 4 [10]. The filter estimate
feedback x̄k, generates a linearized measurement matrix called
Ck. Initially in the first iteration k = 0, and a guess x̄0 is used.
The process and measurement equations will in this section be
put together to fit the cases. Discrete process model will be
defined as following:

ẋk = Axk−1 +Dεk (14)

where xk is the state vector, A is the transition matrix,
D is the noise driver matrix and εk is the noise vector with
uncorrelated white noise terms which is N(0, σ2).

Fig. 4: General structure of EKF [24].

The state and noise vectors are defined as following:

x =

ζe
p

 , εk =

[
εw
εp

]
By using the state and noise vectors it is easy to find the A

and D matrices followed by discretization to obtain Equation
(14) by using Equation (4) and (3).

For the EKF it is also necessary to have a measurement
matrix Ck. This is found by taking the Jacobian of Equation
(2) . This is defined as following:

Ck =
∂h(x)

∂x
=

Ck,1...
Ck,m

 ∈ Rm×10

where m is the number of pseudo-range measurements. The
calculations result in the following:

Ck,i =
∂hi(x)

∂x

∣∣
x̄

=
[
∂hi

∂ζ
∂hi

∂e
∂hi

∂p

]∣∣
x̄

Where

∂hi
∂ζ

∣∣
x̄

= 01×3

∂hi
∂e

∣∣
x̄

=
∂hi
∂p

∣∣
x̄

=
p+ e− ¯̆pi
||p+ e− ¯̆pi||

∣∣
x̄

Now that both process and measurement model are derived,
can the EKF be stated. The equations are as following [25]:

Kk = P̄kC
T
k (CkP̄C

T
k +Rk)−1

x̂k = x̄k +Kk(yk − h(x̄k)))

Pk = (In×n −KkCk)P̄k

x̄k = Ax̂k−1

P̄k = APk−1A
T +Qd

where Qd ∈ Rn×n and R ∈ Rm×m are the process and
sensor noise covariance matrices, respectively. Furthermore,



Fig. 5: Experimental setup in the marine cybernetics lab

n and m correspond respectively to the number of states and
measurements. Pk is the covariance matrix. Note that (̄·) marks
posterior estimates. Also, it should be noted that in the first
iteration, k = 0, the initial values x̄0 and P̄0 are used. Remark
that the EKF design is only modeled for case B. For case A
we use the exact algebraic solution such that p̂ = p+ e.

VI. EXPERIMENTAL SETUP

An experimental setup to test the EKF design was per-
formed in the Marine Cybernetics Lab at NTNU Norwegian
University of Science and technology. Four Qulisys markers
[26] were placed under the water surface supported by wires,
which were mounted at buoyancy elements. They were oscil-
lated by regular waves generated by a wave maker. An image
of the setup is shown in Figure 5.

In this case the wave frequency was set to ω = 3.5863,
which gave a wave length of L = 4.6 and the wave hight
was 0.05 m. This was approximately twice the length between
transponder positions in the wave direction in calm water.
Firstly, it was necessary to identify the parameters in Equation
(3) in order to model the error. This was performed by
following the procedure in Section IV-A. The transponder
positions were captured by Qualisys Motion System [26] while
induced by waves for 300 seconds with a time step of 0.02
second. The logged data determined the mean transponder
positions ¯̆pi and εi. The mean transponder positions and real
position are the following:

¯̆p1 =
[
−0.28 0.35 0.46

]T
, ¯̆p2 =

[
1.77 0.25 1.44

]T
¯̆p3 =

[
2.09 −1.79 2.15

]T
, ¯̆p4 =

[
0.09 −1.81 4.14

]T
p =

[
−1.82 −0.81 0.28

]T
Further, the error spectrum was computed and the error dy-

namics in Equation (3) was fitted and both plotted in Figure 6

1.3

Axis ω0 λ σ

x 3.59 2.9e-3 1.07
y 3.59 2.9e-3 0.94
z 3.59 2.8e-3 1.35

TABLE I: Parameters for error model
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Fig. 6: Estimted and fitted spectrum for position error e in
x-direction.

for the error in x-direction. The black solid line is the spectrum
estimate and the red dashed line is the model fit of Equation
(3). The resulting parameters are presented in Table I. These
parameters are implemented with the EKF design from Section
V using Matlab. The filter is tested by using the same 300 sec-
ond long time series as used for the parameter estimation. Note
that the positions were converted into pseudo-ranges by using
Equation (5) before running it through the EKF implementa-
tion. The initial states in the EKF were set to x̄0 =

[
09×1

]
. The

sensor noise covariance matrix R = diag(σ2
m, σ

2
m, σ

2
m, σ

2
m),

where σ2
m = 0.1. Process noise covariance matrix is set to

Q = diag(11×3, σ
2
p, σ

2
p, σ

2
p) ∈ R6×6, where σ2

p = 0.1. The
discretized process noise denoted by Qd is approximated by
Taylor expansion a as suggested in [24]. The initial covariance
matrix is set to P0 = diag(11×3, ω011×3, 11×3) ∈ R9×9,
where the subscripts denote dimensions. The filter’s update
rate is set to 50 Hz, which is the same as the measurement
frequency.

VII. RESULTS AND DISCUSSIONS

The experimental results are presented in Table II and Figure
8-7. Figure 7 presents EKF estimated positions against the real
position p and the uncompensated position p̂ as well as the
EKF estimated errors e along with the real ones form the
algebraic solution. Figure 7a shows the combination of real
low and wave frequency motions, x̂, shown by a solid blue
line. Furthermore, it shows the EKF estimated real position
drawn as a red dashed line and the real position x in a black
solid line. From these, we can see that the estimate converges
to the real position at x = −1.82, as defined in Section
VI. Figure 7c shows that the same occurs in heave direction.
Note that the waves are not oscillating the markers before
approximately 25 seconds into the time series. Figure 7b and
7d show a 20 second plot of the estimated error ê in a red
dashed line against the real error e in a black solid line from
200 to 220 seconds. They show that the estimation is correct.
However, since the error is not oscillating perfectly around
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Fig. 7: Estimated states with EKF

zero it is difficult for the error model to capture all motions, but
it is a good approximation. Figure 8 shows how the covariance
matrix converges towards steady state values. This effectively
means that the filter converges. Table II compares the root
mean square values for the converged filter against the position
error e. It shows a considerable decrease from uncompensated
to compensated. It is an reduction of almost 80% in x- and
z-directions.

RMS x[m] y[m] z[m]
Uncompensated 0.0292 0.0281 0.03366
Compensated 0.0062 0.0167 0.0076

Decrese in RMS 78.8% 40.5% 77.4%

TABLE II: RMS Error for case A and B

VIII. CONCLUSION AND FURTHER WORK

This paper presents an experimental verification of an EKF
design building on [4]. Demanding weather conditions will
impose oscillations on the transponders near the surface area.
The work presents a method for identifying parameters for an
error model. The final EKF design was experimentally tested
in the Marine Cybernetics lab at NTNU. The results show
that the EKF compensates for the wave motion resulting in
a considerable decrease in RMS values in comparison to no
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Fig. 8: Norm of the covariance matrix from the EKF (||P ||2)

compensation. Further work will consist in an experimental
verification of the design in an aquaculture environment.
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