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Project description

The objective of the project is to develop an inverse model for the extraction of optical parameters in skin
from re�ectance spectra. This inverse model should be applicable on hyperspectral images and deliver
results within a deadline limit speci�ed by the speed of the hyperspectral camera, for future real-time
processing. The project should:

� Develop an inverse approach using a two-layered skin model and test it using simulated and real
re�ectance data

� Through the use of CUDA and GPUs, achieve real-time performance for the inverse model and
apply it on hyperspectral data

� Integrate the inverse model in a hyperspectral processing framework for modularity

� Develop preliminary calibration and visualization tools for the hyperspectral data and results
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Abstract

Hyperspectral imaging with a high spatial and spectral resolution can be used to analyze materials using
spectroscopic methods. This can be applied on skin as a general purpose real-time diagnostic tool.

Light transport models, like the di�usion model, can describe the light propagation in tissue before the
light is captured by the hyperspectral camera. The aim of this project is, through the inversion of these
models as applied on hyperspectral images of skin, to estimate optical properties resident in the tissue.
This will be done within a deadline limit de�ned by the speed of the hyperspectral camera, 30 ms per
line of data.

A two-layered skin model is used to estimate the melanin content in epidermis and the dermal absorp-
tion coe�cient. The skin properties are �tted to the absorption coe�cients using a non-negative least
squares algorithm at separate wavelength intervals to yield properties down to some penetration depth.
Melanin is �rst �tted in dermis before moved to epidermis. The approach is implemented in CUDA for
parallelization on Graphics Processing Units across hyperspectral pixels and wavelengths. The inversion
models are integrated in a hyperspectral processing framework developed by Forsvarets Forskningsinsti-
tutt for modularity. Visualization of the results and calibration tools have been developed using Qt and
OpenCV.

The resulting inversion chain was found to meet the deadline, �nishing the results after 3.5 ms for 1600
pixels, 160 bands and three wavelength intervals. The inversion approach was found to characterize the
relative variations of the optical parameters in hyperspectral images of wounds and normal tissue and
the absolute values were found to be within physical levels. The inversion routine was tested using Monte
Carlo simulations and found to characterize the relative variations in the parameters.

The developed hyperspectral inversion module can be used to estimate skin parameters in real-time. The
parameters extracted can be used to characterize di�erent a�ictions in skin, and will be one of many
necessary processing blocks in a future real-time diagnostic system using hyperspectral imaging.
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Sammendrag

Hyperspektral avbildning med høy romlig og spektral oppløsning kan brukes til å analysere sto�er ved
hjelp av spektroskopiske metoder. Dette kan brukes på hud som et generelt sanntidsdiagnostiseringsverk-
tøy.

Modeller for lystransport, slik som di�usjonsmodellen, kan brukes til å beskrive propagasjonen av lys i
vevet før lyset fanges av det hyperspektrale kameraet. Målet med dette prosjektet er, gjennom inversjonen
av disse modellene anvendt på hyperspektrale bilder av hud, å estimere optiske egenskaper i vevet. Dette
vil bli gjort innenfor en tidsfrist de�nert av hastigheten på det hyperspektrale kameraet, 30 ms per linje
med data.

En tolagsmodell blir brukt til å estimere melanininnholdet i epidermis og absorpsjonskoe�sienten i
dermis. Hudegenskapene blir tilpasset absorpsjonskoe�sientene ved hjelp av en ikke-negativ minste
kvadraters metode på separate bølgelengdeintervall for å gi ut egenskapene ned til en eller annen pen-
etrasjonsdybde. Melanin tilpasses først i dermis før det �yttes oppover til epidermis. Framgangsmåten
er implementert i CUDA for parallellisering på gra�kkort på tvers av hyperspektrale piksler og bølge-
lengder. Inversjonsmodellene er integrert i et prosesseringsrammeverk for hyperspektrale bilder utviklet
av Forsvarets Forskningsinstitutt. Visualisering av resultatene og kalibreringsverktøy har blitt utviklet
ved hjelp av Qt og OpenCV.

Den resulterende inversjonskjeden ligger innenfor tidsfristen, og gir ut ferdige resultat etter 3.5 ms for
1600 piksler, 160 bølgelengder og tre bølgelengdeintervall. Inversjonsmetoden viste seg å være i stand til å
karakterisere relative forandringer i de optiske parametrene i hyperspektrale bilder av sår og normal hud,
og de individuelle verdiene lå innenfor de fysiske grensene som forventes i slik hud. Inversjonsrutinen ble
testet på Monte Carlo-simuleringer, og viste seg å karakterisere de relative forandringene i parametrene.

Den utviklede inversjonsmodulen for hyperspektrale bilder kan brukes til å estimere hudparametere i
sanntid. De ekstraherte parametrene kan brukes til å karakterisere forskjellige tilstander i hud, og dette
kommer til å være en av mange nødvendige prosesseringsblokker i et framtidig diagnosesystem basert på
hyperspektral avbildning.
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Preface

This thesis is written as the �nal part of a Master of Technology in Engineering Physics at the Norwegian
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of the derivation of the di�usion model, scattering and absorption descriptions, Monte Carlo description,
description of light transport in tissue, some parts of the general description of inversion strategy. Some
�gures have been modi�ed and reused, noted in each respective �gure text.
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Also a thanks to Terje for proof-reading. Thanks to #middagsfjas @IRCNET for intellectual dinner
discussions. Thanks to Kjetil for discussions. Thanks to my parents for shoes and upbringing. You
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Asgeir Bjørgan
June 2013, NTNU Trondheim
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Chapter 1

Introduction

Hyperspectral imaging is a technique where images are taken and each pixel represents the whole visible
spectrum instead of intensity values for red, green and blue. Hyperspectral imaging is widely used for
remote sensing, and various techniques have been developed for information extraction. Hyperspectral
imaging has also recently been adopted for diagnostic purposes in imaging of skin [76].

Human skin is a large structure covering the entire human body. Skin is subdivided into three main
layers, epidermis, dermis and hypodermis [25]. The epidermis protects the skin against water loss and
disease-causing organisms, and is a dynamic structure which will protect itself when a�ected by external
stimuli [25]. For instance, it will produce melanin to protect itself against UV-radiation, providing a tan
[25]. Dermis consists mainly of connective tissue and blood vessels supplying nourishment to the skin
[25]. Hypodermis contains fat cells [25]. Light can penetrate through mainly the �rst two of these layers
and be re�ected back. The amount of light re�ected back at di�erent wavelengths will reveal information
about the structures and properties in the di�erent layers.

A hyperspectral image of a skin sample will therefore contain important information about di�erent ma-
terials at di�erent depths. This information can be extracted and used for various purposes in medicine.
Examples are determining the age of bruises [75], characterizing wounds [20], characterizing port-wine
stains [100] and more. As a part of a medical instrument, this can be used by medical doctors to non-
invasively and objectively assess patients instead of relying on visual inspection only. The information
extraction procedures must be fast for this to be viable.

Hyperspectral images are large and contain much information. While a hyperspectral camera today will
be able to deliver its images fast enough, the necessary processing of the data will be a bottleneck. The
hyperspectral community has used FPGAs [34] and GPUs [34, 29, 28, 84, 87, 88, 90] to alleviate the
computational stress associated with the huge data load.

Traditional hyperspectral processing methods used in the remote viewing community will often rely
on spectral unmixing and endmember extraction methods applied directly on radiance data. Objects
present in the scene can be recognized by having di�erent signature spectra. In case of skin, the materials
present will be buried within the skin layers and obstructed by wavelength-dependent scattering, which
complicates the problem. The dermal properties will also be shielded by a high melanin absorption in
epidermis.

Light transport models may describe the light transport through layered models approximating human
skin. Scattering can be eliminated through inversion of these models. Monte Carlo methods for calcu-
lating light transport are regarded to be more accurate solutions to the Boltzmann transport equation
than approximations like the di�usion approximation. In particular is MCML (Monte Carlo for Multi-
Layered media) [109] widely regarded to be the so-called gold standard in the biomedical optics-�eld.
The MCML package is freely available on the Internet [59], which might be part of the reason for its
wide regard. However, Monte Carlo simulations are slow, since only one photon packet at a time can be
simulated. Typically, the number of photon packets need to be in the order of magnitude of 30000 for
the results to be accurate. A calculation time of 20 minutes will be typical for one forward calculation of
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the full visible spectrum given known parameters, from 400 nm to 800 nm with a spectral resolution of
400 wavelengths [10]. A parallelized approach using GPUs [5, 4] will reduce this time to 40-60 seconds
[10]. This Monte Carlo approach is not viable for real-time use as a hyperspectral image will typically
consist of 160 bands × 1600 pixels × an unknown number of hyperspectral data lines. Another method
is to use the di�usion theory, which is an approximation. It has however been used successfully by many
di�erent researchers [100, 93, 74, 77, 62, 61, 75], also for inverse modelling. The di�usion theory has an
analytical solution to the problem, evaluatable using simple arithmetics.

The work of this thesis was initiated by half a year's worth of project work presented in [10]. The
performance of GPU-MCML was here compared against the di�usion model. The derivation of the
absorption needed in dermis from dummy input hyperspectral re�ectance data was found to be feasible
within the de�ned deadline using CUDA and the di�usion model. This depended on the knowledge of
the melanin absorption in epidermis. Some traditional methods for quantifying the relative di�erences in
melanin content were investigated and found insu�cient due to overestimation in the presence of deoxy
hemoglobin crosstalk. Much of the testing in the work was also done using two-layered skin models,
although subdividing dermis into two layers has been seen to be more realistic [75] situation to test the
inverse models against. More emphasis was put on Monte Carlo in the project work than has been done
in this thesis. Before starting this master thesis' work, some major parts were therefore missing:

� A good method for determining the melanin amount, feasible for GPU implementation

� Optimization of the derivation of the dermal absorption

� Integration into a modular hyperspectral framework so that real hyperspectral data could be input
into the model, and the results easily visualized or processed further

� Spectral unmixing for determination of optical properties from derived absorption coe�cients

� Use of three-layered forward models for testing

� Validation of the two-layered approach

� Instant visualization of the results

� Calibration of the hyperspectral radiance data into re�ectance data

The total inverse modelling is desired to be fast with little to no waiting time. There is an external limit
given by how fast the hyperspectral camera can capture its surroundings, and the ambition is to deliver
results equally fast, or faster. This thesis will present a solution to the problem delivering results for
visualization well within the above de�ned deadline. The used approach will be evaluated both using
real data and simulations. There have been earlier approaches to the inversion of hyperspectral images
[104, 44, 30], but none with real-time performance while using more advanced light transport models.

The theory chapter will introduce the light transport problem in tissue and show its solution in terms of
Monte Carlo modelling and the di�usion model. Absorption and scattering properties in skin as assumed
in the literature will be presented. An overview of the GPU architecture is given, along with some real-
time theory and image processing. The spectral unmixing problem and its solutions is presented.

The methods chapter will go through the inversion strategy and detail the CUDA and framework imple-
mentations.

The results and discussion chapter will �rst give some general results for the choice of melanin inversion
model and discuss alternative methods. The e�ects of over- and underestimation of melanin will be given.
The three-layered model �t will be investigated in some problematic wavelength ranges to give some
explanations for later, possible two-layered modelling failure. The timing results for the implementation
will be presented and discussed, �rst some individual CUDA kernels and then the entire inversion chain.
Numerical accuracy and convergence is next investigated, after which the inverse model is veri�ed against
real hyperspectral data and Monte Carlo simulations. The visualization and calibration parts of the chain
are discussed in the end.
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Chapter 2

Theory and background

Light transport theory will �rst be presented, after which the GPU architecture is presented. Some
smaller parts of the theory like least squares �tting, image processing and real-time theory are presented
in the end, before spectral unmixing is discussed.

2.1 Light transport in tissue

2.1.1 Absorption and scattering mechanisms of photons in human tissue

Photons will travel down to some penetration depth when light is shined on tissue, readily illustrated by
shining a �ashlight through a hand. Photons will scatter upon encounter with materials with di�erent
refraction indices than the rest of tissue, for example collagen �bres or red blood cells.

Single-scattering theory is assumed to be valid. The scattering from a single particle can be described
by its scattering cross section, σs, meant to denote the amount of power scattered in all directions [42].
The scattering events can be considered independent and single-scattering theory can be assumed if
the mean distance between scattering particles is greater than both scatterer size and the wavelength
[110]. In case of a homogeneous medium, the scattering can be described by its scattering coe�cient,
µs = σs ·Ns, where Ns is the number density of scatterers. Cells are the largest structures in tissue, 10
microns in size [110], the packing of which will greatly depend on the cellular soup in question. For the
sake of simplicity, biological materials are still in general assumed to be sparsely distributed materials
and single-scattering theory is assumed. Rayleigh and Mie theories can give measures of the scattering
cross section [110]. Rayleigh theory can be applied if the particles are much smaller than the wavelength,
and Mie theory will be valid regardless of the particle size, but is more di�cult to calculate [110].

The energy of a photon may be absorbed by a particle and re-emitted as a new photon, or in part cause
the particle to enter a vibrational state. This process can similarly be described by an absorption cross
section σa and an absorption coe�cient µa, but with no reservations about sparse distributions [110].
If the medium in question is a non-scattering medium, the transmittance through the medium can be
expressed as

T (x) = e−µax, (2.1)

but this will generally not be valid if the medium is a scattering medium. Absorbing materials will
be referred to as chromophores, or in the case of the more hyperspectral application, endmembers,
throughout this thesis.

Light will lose coherence and polarization can be neglected when the light undergoes many scattering
events. Taking the above properties into account and accounting for all scattering and absorption losses,
the situation may be summed up in the Boltzmann equation for photon transport, alternatively known
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as the radiative transfer equation. Its derivation can be found in [110], only the time-independent result
will be presented here:

ŝ · ∇L(~r, ŝ) = µs ·
∫
4π

L(~r, ŝ′)p(ŝ′ · ŝ)dΩ′ − µtL(~r, ŝ) + S(~r, ŝ) (2.2)

The radiance L is the energy �ow per unit normal area per unit solid angle directed in direction ŝ at the
position ~r. The probability of scattering in the direction ŝ′ when the photon originally had the direction
ŝ is described by p, the phase function. The extinction coe�cient µt is equal to µa + µs, and the last
term, S, is the source term.

The left-hand side is loss due to divergence of the beam. The integration involving L and p is the main
scattering term, wherein photons are scattered in some direction as according to the phase function. The
extinction coe�cient µt is loss due to extinction, and the source term represents new photons entering
the position ~r in the direction ŝ.

The Henyey-Greenstein phase function is often used for biological materials to describe the phase function
p. This was originally used by Henyey and Greenstein [40] to describe di�use radiation in galaxies. It
was found by Jacques et al. [43] to be a good �t also for the angular dependence of the scattering in
biological tissues, at least at the wavelength 632 nm. This phase function is given as

p(ŝ′ · ŝ) = p(cos θ) =
1− g2

2(1 + g2 − 2g cos θ)3/2
. (2.3)

θ is the angle between the original photon direction and the scattered photon direction, while g is the
anisotropy factor, de�ned as

g =

∫
cos θp(cos θ)d(cos θ), (2.4)

i.e. the average of the cosine of the scattering angle.

The two most popular solutions to (2.2) are Monte Carlo and di�usion theory. Monte Carlo will rely on
the phase function, while whether or not it will be used in the di�usion model depends on the chosen
source function.

2.1.2 Monte Carlo

The derivation of the Monte Carlo program is best described by referring to other sources like [109, 110],
but it will be summarized.

In essence, a Monte Carlo-implementation of (2.2) will involve tracking each photon packet and account-
ing for absorption and scattering losses as according to the mechanisms described by equation (2.2),
using probabilistic methods. A �gure displaying the program �ow for the Monte Carlo package MCML
is shown in �gure 2.1. The step size is represented by s. This is sampled from a random distribution
which describes the likelihood of encountering an absorption or scattering event, hence the logarithm of
an uniformly distributed number ξ between 0 and 1. Fresnel's equations will be used to describe the
re�ection and transmission if the particles hit the boundary between two layers. Otherwise are they
moved according to the step size. The weight of the photon packet is reduced as according to absorption
and back-scattering determined by µt, and the new scattering direction is determined by sampling a
random variable from (2.3). Following photons with small weights yields little interest and such photons
are terminated early. The most of the photons are eliminated from the simulation once the photon weight
becomes small, and a Russian roulette keeps a few of them alive to ensure energy conservation.

If the photons come back up through the �rst layer, they are registered in a re�ection array. If they are
absorbed, they are registered in an absorption array. If they end up at the other side of the simulated
slab, they are registered in a transmission array. At the end of the day, these arrays are summed up to
yield di�use re�ectance, absorbance and transmittance of the simulated light.
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Figure 2.1: The program �ow in MCML. From [10], where it was reproduced from Wang et al. [109].
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2.1.3 Di�usion model

The derivation of the di�usion model will be shown here, for both the Delta-Eddington source function
and the isotropic source function.

Isotropic source function

Equation (2.2) can be integrated over all solid angles in order to yield a continuity equation which may
be used later on. The integrated L in the phase function integral will be independent of Ω since it will
become the isotropic φ after integration, and the phase function will be integrated away to 1 as φ can
be taken outside of the integral [38]:

∇~j(~r) = −µaφ(~r) + q(~r) (2.5)

The integrated L and Lŝ have respectively been replaced by the �uence rate φ and the di�use photon
�ux vector ~j, while the integrated source function S has been replaced by q [100].

Equation (2.2) has no analytical solutions, but approximations can be made. The radiance L can be
assumed to be almost isotropic if µs is much larger than µa, and the radiance can then be written as the
�rst two terms of a Legendre polynomial expansion [100]:

L =
φ

4π
+

3

4π
~j · ŝ. (2.6)

The �rst term represents the isotropic part while the second term is the deviation from isotropy in the
direction given by the unit directional vector ŝ [100]. One main assumption is that the deviation from
isotropy is not too large, or else higher order terms would have to be included. The photon �ux j should
therefore not be too large when compared to φ.

If this is inserted into (2.2), the resulting equation multiplied by ŝ and integrated over all solid angles
will be [38]

~j(~r) = −D∇φ(~r, t), (2.7)

where D is de�ned as 1
3[(1−g)µs+µa] . The source term disappears from (2.2) when multiplied by ŝ and

integrated over all solid angles if it is assumed to be isotropic, which is why it no longer is a part of the
equation.

Equations (2.7) and (2.5) can be combined to yield [100]

∇2φ− φ

δ2
= − q

D
, (2.8)

where δ =
√

D
µa
, also known as the optical penetration depth. This equation can be applied for each

layer in the skin model, each with its own depth-varying source function. The solution will depend on
some boundary conditions at the skin-air surface:

When L from earlier on is integrated over half the solid angle, the result is the irradiance E, the power
passing through an unit area. Integrating (2.6) results in [100]

E =
φ

4
± j

2
. (2.9)

The plus or minus sign depends on whether the photon �ux ~j is pointing along or opposite of the surface
normal for the surface over which the irradiance is passing through. This can be used for constructing
boundary conditions between di�erently scattering layers, since the irradiance must be the same on both
sides of the layer boundary [100]:

φ1
4

+
j1
2

=
φ2
4

+
j2
2

(2.10)

φ1
4
− j1

2
=
φ2
4
− j2

2
(2.11)
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The �ux and �uence rate in layer one are respectively denoted by j1 and φ1, and j2 and φ2 are the �ux
and �uence rate in layer 2. The irradiance should be continuous regardless of which way the surface
normal is pointing, which is why there are two boundary conditions, one for the case where the surface
normal has the same direction as ~j, and one for the case where the surface normal points in the opposite
direction. These boundary conditions can also be simpli�ed into the simple criterion that each quantity
must be continuous across the surface.

The start boundary condition coupling everything together is the boundary condition at the air-skin
interface. By integrating the Fresnel re�ection coe�cient over all angles of incidence, an Rφ and Rj
can be found [38]. The re�ected part of the irradiance at the air-skin interface must be related to the
irradiation propagating back into the skin by [100]

Rφ
φ

4
−Rj

j

2
=
φ

4
+
j

2
(2.12)

This can be summed up in a boundary condition j = −Aφ, where A depends on Rφ and Rj . By using
the formulas for R present in [38], A can be calculated to be 0.14 for a refraction index of n = 1.4 for
the tissue. The criterion that the �ux should be much smaller than the �uence rate is therefore ful�lled
only to a limited degree at the skin surface [100], but it can be argued that it still will work nicely out
[100].

All boundary conditions are summed up as

j1 = j2 (2.13)

φ1 = φ2 (2.14)

j(x = 0) = −A · φ(x = 0). (2.15)

One important concern is the source function, describing the photons arriving at a given point. If
isotropic source functions throughout the layers is assumed, it may be expressed, for a three-layered
model, as [100]

q1 = P0µ
′
s,1e
−µtr,1x (2.16)

q2 = P0µ
′
s,2e
−µtr,1d1e−µtr,2(x−d1) (2.17)

q3 = P0µ
′
s,3e
−µtr,1d1e−µtr,2(d2−d1)e−µtr,3(x−d2) (2.18)

Each source function is applied to a di�erent layer, within the boundaries x ≤ d1, d1 ≤ x ≤ d2 and
d2 ≤ x ≤ ∞. The depth of each layer is denoted by di, with the last being semi-in�nite. The isotropic
source function radiates equal power in all directions. The combination µs(1 − g) is often abbreviated
as µ′s, the reduced scattering coe�cient. After enough scattering events and little to no absorption, this
will be the e�ective scattering coe�cient and can in such cases be used instead of the actual scattering
coe�cient and complex scattering mechanisms. The combination µs(1 − g) + µa is abbreviated as µtr,
the transport coe�cient. Indices 1, 2 and 3 refer to the upper skin layer and the two lower skin layers,
respectively. The parameter P0 is the incident intensity after specular re�ection at the air-skin surface.

The di�use re�ection coe�cient will be expressed by

γ =
−j(x = 0)

P0
. (2.19)

This is the quantity which will be used throughout this thesis.

The solutions to (2.8) will be of the form

φ = f(x) +Aex/δ +Be−x/δ, (2.20)

where f(x) depends on the source function and will follow the same shape, albeit with a di�erent constant.
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By inserting the solution and source functions into (2.8) for each layer, the solutions will be found [100]

φ1 =
P0δ

2
1µ
′
s,1

ζ1(1− µ2
tr,1δ

2
1)
e−µtr,1x +A1e

− x
δ1 +A2e

x
δ1 (2.21)

φ2 =
P0δ

2
2µ
′
s,2

ζ2(1− µ2
tr,2δ

2
2)
e−µtr,1d1e−µtr,2(x−d1) +A3e

− x
δ2 +A4e

x
δ2 (2.22)

φ3 =
P0δ

2
3µ
′
s,3

ζ3(1− µ2
tr,3δ

2
3)
e−µtr,1d1e−µtr,2(d2−d1)e−µtr,3(x−d2) +A5e

− x
δ3 (2.23)

The constants are found by calculating ji from each φi and applying the boundary conditions in (2.15).
For A4 and A5 equal to zero, the model is reduced to the two-layered di�usion model. The di�use
re�ectance is then found by applying (2.19). The full solution for the two-layered case can be found in
[100]. The full three-layered solution has been implemented as C++-code.

Delta-Eddington

There are also alternatives to using the isotropic source functions. One alternative is the Delta-Eddington
source function, presented by Spott and Svaasand [92]. The di�usion approximation is to neglect the
higher orders of non-isotropy, which when µs is no longer much larger than µa will no longer be valid.
The Delta-Eddington source function seek to remedy this by keeping some of its non-isotropy. It is
derived using the Henyey-Greenstein phase function, shown in [92]. It is also shown to have better
correspondence with MCML [92, 77, 10].

The derivation of the solutions is mostly the same as for the isotropic case, although with some di�erences.
The step right before equation 2.8, in the integration of S, was in reality to assume the isotropy of the
source function, which is no longer valid. Instead, assuming a one-dimensional situation, this will be
expressed as [91]

µaφ+
d

dx
j = q0 (2.24)

1

3

d

dx
φ+ µtrj = q1. (2.25)

The terms q0 and q1 are respectively the �rst and second moments of the source function. The term q0 is
the isotropic term, while q1 is the next moment in the deviation from isotropy. For the isotropic source
function, q1 is set to 0 and the situation reduces itself to equation (2.8). The �rst and second moments
of the Delta-Eddington source function are given by Spott and Svaasand [92] to be

q0 = P0µs(1− g2)e−(µs(1−g)+µa)x (2.26)

q1 = P0µs(1− g2)
g

1 + g
e−(µs(1−g)+µa)x. (2.27)

The combination µs(1 − g2) + µa will be referred to as µ′tr. These can be applied to each layer by
exchanging µa, µs and g for the appropriate coe�cients and factors for the particular layer. Eliminating
j in (2.25), inserting the solution outlined in (2.20) and the source functions above will yield the solutions

φ1 =
P0δ

2
1µs,1(1− g2)

(1− µ′2tr,1δ21)
(

1

ζ1
+ 3

gµ′tr,1
1 + g

)e−µ
′
tr,1x +A1e

− x
δ1 +A2e

x
δ1 (2.28)

φ2 =
P0δ

2
2µs,2(1− g2)

(1− µ′2tr,2δ22)
(

1

ζ2
+ 3

gµ′tr,2
1 + g

)e−µ
′
tr,1d1e−µ

′
tr,2(x−d1) +A3e

− x
δ2 +A4e

x
δ2 (2.29)

φ3 =
P0δ

2
3µs,3(1− g2)

(1− µ′2tr,3δ23)
(

1

ζ3
+ 3

gµ′tr,3
1 + g

)e−µ
′
tr,1d1e−µ

′
tr,2(d2−d1)e−µ

′
tr,3(x−d2) +A5e

− x
δ3 (2.30)

The de�nition of j will be slightly di�erent with these higher order source terms present, as obtained
from equation (2.25):

j = −1

ζ

d

dx
φ+

1

µtr
q1. (2.31)
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Using the solutions for φi shown in (2.30) to obtain j, the boundary conditions in (2.15) can be satis�ed
to yield the unknown constants A1, A2, A3, A4 and A5. This is reduced to the two-layered di�usion
model when A4 and A5 are equal to zero. The solution is implemented as C++-code both for the
three- and two-layered cases. Delta-eddington was not implemented for the GPU due to its complicated
structure, but it was still used for comparison.

Solutions

The one-layered solution to both the Delta-Eddington and isotropic source function will be shown for
demonstration purposes.

The isotropic solution:

γ =
µ′s ·A · δ2

( δ
3D + 1)(D + δ ·A)

(2.32)

The Delta-Eddington solution:

γ = 3 · (µ′trδ − 1)µsA
((−µ

′
trg

3

3 + ((Dµ′tr + 1
3 )(g + 1)(g − 1)µtr +

µ′tr
3 )g + ( g

2

3 −
1
3 )µtr)δ + 1

3 (g − g3))δ

(1 + g)(−1 + µ′2trδ2)µtr(D + δ ·A)
(2.33)

The solutions will become more complicated for each layer added.

2.1.4 Skin model

The two-layered skin model employed is described by Spott et al. [91], Randeberg et al. [77, 53] and
Svaasand et al. [100]. The three-layered skin model has been described by Randeberg et al. [75, 77].

Two or three-layered skin models are usually deemed su�cient, even if the skin models used for simulating
di�use re�ectance might sometimes have as many as seven layers [4, 60]. Due to errors in the simulation
methods and many shortcuts in the description of the scattering and absorption mechanisms, the extra
amount of layers will only cause unnecessary complications and not extra realism. The number of param-
eters will increase sevenfold for each layer added, and detecting mis�tting will become more di�cult since
the added number of parameters will be able to shield any apparent mis�tting with overdetermination.

Three layers is needed for good �ts all throughout the spectrum due to the inhomogeneity of skin. Only
two layers were used in the inverse models presented in this thesis, though three-layered models are used
in some forward calculations.

The two layers in question are epidermis and dermis. In case of a three-layered model, dermis is subdi-
vided into two new layers to account for the di�erence in blood volume and blood oxygenation across
dermis. Hypodermis is never taken into account as photons scattered back from such depths is negligible
[53].

In reality, both epidermis and dermis will be sub-divided into di�erent layers with di�erent properties.
These properties are as an approximation assumed uniformly distributed in each layer. Each layer is �at
and uniform, but the epidermis will in reality reach partially into the dermis through the papillae [85].
A small fraction of blood, 0.2%, is therefore included in the epidermis even if epidermis does not contain
blood.

Scattering

Scattering will predominantly rise from the presence of collagen �bers in the skin, which will induce both
Rayleigh and Mie scattering. The wavelength dependency was found by Saidi et al. [82] to be

µ′s,t = CMie(1− 1.745 · 10−3λ+ 9.843 · 10−7λ2) + CRayleighλ
−4. (2.34)
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This is the reduced scattering coe�cient. CMie and CRayleigh are some constants. In order to get the
non-reduced scattering coe�cient, one will have to divide the Mie-part of the scattering by 1 − g and
the Rayleigh-part by 1.0, since Rayleigh scattering is isotropic and will not be reduced when considering
the e�ective scattering coe�cient. The anisotropy factor was for skin found by van Gemert et al. [106]
to be

g = 0.62 + 29 · 10−5λ. (2.35)

Age-dependencies of CMie and CRayleigh are determined by Saidi et al. [82] for newborns. The reported
curves were extrapolated into adulthood by Randeberg and the values respectively found to be 10500
m−1 and 1.05·1014 nm4m−1. There exists other variants of the scattering function, but these were not
used.

There will also be scattering from red blood cells, as presented by Ishimaru [42]. The scattering coe�cient
may be written as [42, 98, 97]

µs,b = σs,b
H(1−H)(1.4−H)

ve

(
685

λ

)0.37

. (2.36)

The scattering cross section σs,b was reported by [42] to be 55.09 · 10−12. The volume of the red blood
cells, ve, is claimed to be 1.26·10−16 m2 by Spott et al. [93]. H is the haematocrit, the fraction of red
blood cells to the total volume of blood. The haematocrit will be 40-52% for males and 38-48% for
females [85]. Blood is reported to have an anisotropy factor of g = 0.9937 [48], which is duly multiplied
against (2.36) to yield the reduced blood scattering coe�cient.

The total scattering coe�cient for each layer will be

µs,e = Beµs,b + (1−Be)µs,t (2.37)

µs,d = Bdµs,b + (1−Bd)µs,t. (2.38)

Bd and Be are the blood volume fractions (bvf) for dermis and epidermis respectively. Bd will later be
referred to as the bvf. The scattering functions are extended to a third layer by subdividing the d layer
into d1 and d2, with similar properties although with di�erent Bd parameters.

Only scattering from collagen and blood were implemented. Some will also report a signi�cant melanin
scattering [7], while others will report a negligible melanin scattering [79, 117]. Seemingly a controversial
issue, implementing a melanin scattering was not attempted.

Absorption

Light will be absorbed in skin mainly due to deoxygenated (deoxy) hemoglobin, oxygenated (oxy)
hemoglobin, methemoglobin, melanin, bilirubin, betacarotene and water. The absorption coe�cients
of these are displayed in �gure 2.2. CO-Hb [115], present in smokers, will also absorb light. CO-Hb will
be similar to the other blood absorption spectra, but slightly wavelength-shifted.

The ratio of oxy hemoglobin to deoxy hemoglobin is called the oxygen saturation and will be denoted as
O or oxy. The absorption of blood will be written as

µa,b = µa,Hb · (1−O) + µa,HbO2
·O, (2.39)

where µa,Hb is the absorption coe�cient for deoxygenated blood and µa,HbO2
the absorption coe�cient for

oxygenated blood. Zijlstra's blood absorption values were plotted in �gure 2.2 for more easy comparison
with the other chromophores, but Spott's values were used in calculations due to encompassing more
wavelengths. Spott's blood absorption values are shown in �gure 2.3.

The scaling of the blood absorption maxima is plotted as a function of blood oxygenation in �gure 2.4.
The scaling can potentially be higher than the maximum at 100% deoxy hemoglobin due to underesti-
mation of melanin or the presence of methemoglobin, although a scaling less than the minimum at 100%
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Figure 2.2: Wavelength-dependency of the absorption coe�cients of di�erent chromophores present in
skin. Note di�erences in scale.
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Figure 2.5: Comparison of di�erent melanin types and Svaasand's melanin model for µa,m,694 = 225
m−1.

oxygenated hemoglobin should not be expected other than when the scattering assumption is wrong or
the melanin absorption has been overestimated.

According to the model in use, melanin is the main absorber in epidermis. The melanin content will
be quanti�ed by the melanin absorption coe�cient at 694 nm. Some will report melanin contents by
using fractions, but since the melanin will not be evenly distributed, going from fractions to the actual
melanin absorption will be di�cult. Instead, the melanin absorption at 694 nm is by itself used to
indicate the amount of melanin present in the epidermis. Sun-protected European skin will, for example,
have a melanin absorption coe�cient at 694 nm in the range of 280 to 325 m−1 [100]. The wavelength
dependence of melanin absorption in skin was investigated by Wolbarsht et al. [111], and again observed
by Spott et al. [93] to be

µa,m = µa,m,694 ·
(

694

λ

)3.46

. (2.40)

This will be referred to as Svaasand's melanin model. Using 694 nm as a reference point for melanin is a
common measure in some parts of the literature [61, 62, 100, 112, 21], making way for easy comparisons.
Melanin will also be present in hair [56] and absorb light before the light penetrates the tissue.

There will be two types of melanin present in skin, pheomelanin and eumelanin [56]. Pheomelanin is
described to be yellow-red and eumelanin brown-black [56]. The above expression can be seen as a mix of
the two. Zonios et al. [117] gave exponential �ts for the pheomelanin and eumelanin absorption curves:

µa,m = µa,m,694 · e−k·(
λ−694
694 ) (2.41)

This has been modi�ed to use 694 nm as its reference wavelength. Zonios et al. used 400 nm. The
coe�cient k is given to be 4.780 for pheomelanin and 2.429 for eumelanin, appropriately recalculated for
the reference wavelength shift. These are displayed in �gure 2.5 along with Svaasand's melanin curve.

The melanin absorption mechanisms are disputed. The melanin is assumed to be highly scattering in
[111], the paper used to derive (2.40). The explanation model is that light is scattered back and forth
until the melanin has the appearance of being highly absorbing. Bashkatov et al. [7] have claimed to
measure the melanin scattering ex vivo, and have precise data for the absorption and scattering parts.
Zonios et al. [117] and Riesz [79] will on the other hand claim the scattering to be negligible. Riesz found
the melanin to be absorbing only. Zonios et al. claim they have measured the melanin absorption in
vivo as opposed to the usual ex vivo measurements, as they are �tting a model to the re�ectance spectra
and deriving the required melanin curves using an exponential model for the melanin curve. They found
the in vivo melanin absorption to di�er from the absorption curves measured ex vivo, and they found no
contributions from scattering. However, they also used a one-layered model and it will become apparent
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in this thesis that this introduces errors both for the melanin level itself and the wavelength-dependency
of the melanin curve.

A constant background absorption of µa,o = 25 m−1 will be assumed, as Spott et al. [93] did. Some will
incorporate a wavelength-dependency for this baseline absorption, but this was not implemented for this
thesis.

The absorption properties of each layer can be summed up as

µa,e = µa,b ·Be + µa,m + µa,o · (1−Be) (2.42)

µa,d = µa,b ·Bd + µa,o · (1−Bd) (2.43)

Other chromophores will be located in dermis, linearly mixed. The above properties are similarly ex-
tended to a third layer. Some chromophores, like beta-carotene, will be more pronounced in epidermis
[9], but also be present in the other layers [3] and especially in the lower ones since it is fat-soluble [3].
It will still only be included in dermis for simplicity.

2.2 GPU-architecture

The problem of rendering and displaying graphics is in its nature a problem which, if to be done e�ciently,
requires parallelization and hyperthreading [101]. Due to this fact, Graphics Processing Units (GPUs)
are designed to handle multiple calculations at the same time, not only by employing multiple processor
cores but also by enabling the di�erent cores to process multiple threads at the same time. GPUs are
therefore commonly put to use to other, parallelizable problems than graphics rendering [4, 35, 84, 90].
The GPUs are used as General-purpose graphics processing units (GPGPU). NVIDIA has a C framework
called CUDA [2] for easier programming for their GPU devices, but will also have a slightly less advertised
support for OpenCL [63], a similar but more �exible framework for parallelization on di�erent devices
[64]. AMD's graphics cards support OpenCL [6]. The GPU architecture as exposed by the CUDA
framework will be presented, and some major optimization possibilities will be pointed out.

The GPU follows a SIMD (Single instruction, multiple data) principle. The GPU is targeted towards
employing the same processor instruction on di�erent datasets [2]. Each processing core on the GPU can
handle 32 threads at once. This handling is referred to as a warp . A warp can happen only provided
each thread performs the same instruction in the same sequence on di�erent data. There are therefore
some limits to how well a GPU may parallelize a given problem. All threads need also be independent,
so that the GPU may switch between threads at any given time to make up for thread lag in memory
access. [2]

CUDA will organize its threads in blocks, as shown in �gure 2.6. Each block is assigned to an available
GPU multiprocessor, as is shown in �gure 2.7.

Each multiprocessor will run the threads of its assigned block until completion, in warps of 32 threads
each [2]. A necessary requirement for maximum multiprocessor utilization will hence be to have a number
of threads per block divisible by 32. The blocks will be organized in a larger grid. Both the blocks and
the grid can be one- or two-dimensional, but this has no performance bene�ts and is for convenience
when accessing any array data [2].

Each thread will run its own instance of a kernel [2]. This is a C-like function with some CUDA extensions,
compiled for the GPU processor. The kernel is instantiated for a grid of blocks, and each thread in each
block of threads will process the instructions in the kernel, on di�erent data accessed by using thread-
and block indices. Should any of the threads try to process di�erent instructions, the warp will break
down and the multiprocessor will run the threads sequentially instead of in parallel in groups of 32 [2].

GPUs have di�erent kinds of memory [2]. The GPU has some DRAM, called global memory, and some
multiprocessor-associated caches, a registry and shared memory. Compared to the last three, the DRAM
is slow and transfers to and from this will be the bottleneck [1]. Each multiprocessor has a scarce registry
into which local variables within the scope of each thread will be allocated. Any intermediate results in
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Figure 2.6: The relation between CUDA blocks, the grid and each thread. The �gure is taken from [2].

Figure 2.7: Distribution of blocks over the multiprocessors. Here, they are called streaming multiproces-
sors. The �gure is taken from [2].

a larger calculation will also temporarily be saved here. This will put an upper limit on the allowable
number of threads per block, depending on the number of local variables needed per thread. In addition
to the registry is there shared memory. CUDA may allocate arrays or variables in shared memory which
will be shared across threads inside a given block. There are some limits to how this shared memory
may be accessed. It is divided into banks . If two threads access the same bank (but not the exact same
memory position), there will be a bank con�ict requiring the GPU to perform each memory access in
sequence [2].

There are some requirements for optimal memory access [1]. Each multiprocessor has a cache that may
load a given amount of bytes. When one thread tries to read four bytes from memory into a �oating
point variable, the cache will also load the subsequent bytes from memory in one chunk as far as there
is space left in the cache (principle of spatial locality [69]). The threads in a warp will all bene�t from
the same chunk of cache given that subsequent threads must access subsequent memory locations. Thus
will the number of cache requests to the slow global memory be lessened. The warps will on the other
hand break down if data from subsequent memory locations is not needed or if the needed memory is
not properly aligned with the cache reading lines. Reading memory into the cache will in these cases be
have to made sequentially, once for each thread [1]. Memory access is said to be coalesced when memory
access can be done in parallel [2].
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The computer to which the graphics card is hooked up to will be referred to as the host .

Some di�erence in the results produced from similar GPU and CPU code is to be expected [2]. The
GPU can decide to truncate small numbers to zero in speci�c settings. The order of the operations will
decide the correctness of the results, and it will be important to perform the calculations in the correct
sequence in order to produce similar results for CPU and GPU.

Each NVIDIA GPU has a designated compute capability, which describes which features the GPU can
use. A GPU program must be compiled for a speci�c compute capability [2].

2.3 Real-time systems and general concurrency

Some real-time terms will be de�ned.

There are multiple de�nitions of a real-time system. One de�nition is a system where both output and
the time at which the output is delivered are equally important [14]. It is distinguished between hard
and soft real-time systems. A hard real-time system will require that the results must be output within
a speci�c deadline, otherwise all value is lost, while a soft real-time system can allow for some slack in
when the results are output [14]. In a hard real-time system, it must be known that the results always
will be delivered within the speci�ed deadline. There must be a timing guarantee in place. The deadline
is at which time the results should be ready [14]. Deadline requirements should be known to be ful�lled
by mathematical calculation of scheduling, not by running tests.

Tasks to be run, each which its own deadline, can be triggered by di�erent mechanisms [14]. They
can be event-triggered, triggered by some external event, or periodic, triggered every other n ms. For
event-triggered events in a real-time system, it will be necessary to have bounds on how often the tasks
will be released for proper scheduling. Variability in input and output times will be termed by jitter [14].

There are mechanisms in place in operating systems to ensure some extent of real-time behavior [94]. A
priority system will be in place to ensure that task needing it are properly prioritized above all others.
Preemption will typically be implemented to ensure that lower-priority tasks, either other programs or
the operating system itself, is stalled for the bene�t of the task in question. Not all of these mechanisms
will be implemented in operating systems typically being in use [94].

All common operating systems will have support for threads [94]. Independent programs will be run as
threads, and individual programs can implement speci�c program routines as threads to be run internally
in the program, independently. Threads will be scheduled to run concurrently on a single CPU core,
with CPU time being given to each thread in turn according to some scheduling system, or the threads
may be run in parallel on separate CPU cores. Though only a single CPU core is used, concurrency can
still ensure proper utilization as another thread can be run while one thread is waiting for the hard drive
or similar [94].

2.4 Image processing

Some image processing techniques have been used.

� Morphology. Structures in binary images can be eroded or dilated using set operations [33]. This
can be used to remove artifacts or close holes in binary images.

� Histogram thresholding. An image histogram is a plot over the pixel intensity count of an image.
The image can be segmented based on grouping of intensity values either by visual inspection or
using mathematical methods [33].

� Smoothing. An image can be smoothed to remove spatial noise through blurring mechanisms. The
image may be transformed into Fourier space and �ltered using some spectral �lter like a Gaussian
�lter [33].
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All above image processing was performed using OpenCV, a C/C++ library for real-time image process-
ing. The above approaches are the simplest approaches possible, and no more advanced methods were
looked into as it was beyond the scope of this thesis.

A hyperspectral speci�c processing tool will be used. Each pixel in the hyperspectral image may be
assumed to be a vector in a space spanned by hyperspectral pixels [47]. An inner product can be de�ned
as

~x · ~y =
∑
i

xiyi, (2.44)

where ~x and ~y are two hyperspectral pixel vectors and xi and yi their components. Using this de�nition
of the inner product, the length of a pixel vector may be de�ned as

||~x|| =
√∑

i

x2i , (2.45)

and the cosine of the angle between two pixel vectors as

cosα =
~x · ~y

||x|| · ||y||
=

∑
i xiyi√∑
i x

2
i

∑
i y

2
i

. (2.46)

This can be used as a measure of the similarity of between two hyperspectral pixels. This will incidentally
be equivalent to some measure of covariance.

2.5 Least squares methods

A mixture may in a linear mixture model be written as

~x =
∑

ai~si + ~w = S~a+ ~w, (2.47)

where ~x is a mixture (for example an hyperspectral pixel vector, each entry corresponding to the intensity
value of a band), ai is the abundance of material i, ~si the signature spectrum of material i and ~w some
noise. This equation may, as shown above, be written in matrix notation with S corresponding to the
matrix consisting of the signature spectra. Given ~x and the mixture model S and that ~x must follow the
linear mixture model, ~a can be inverted using linear least squares. The least squares error

J =
1

2
(S~a− ~x)T (S~a− ~x) (2.48)

can be minimized to yield the solution [46]

~a = (STS)−1ST~x. (2.49)

The term (STS)−1ST will be referred to as the pseudo-inverse. For unmixing using a single signature
spectrum, i.e. that S contains only a single vector ~s, the solution can be expressed as

a =
1

~s · ~s
~s · ~x. (2.50)

The solution in (2.49) is unconstrained. Negative abundances in a mixture have no physical meaning,
and the solution must be constrained to non-negativity.

The usual way to handle an optimization problem like this with additional constraints is to use Lagrange
multipliers, but the non-negativity constraint will not allow for the Lagrangian to be used directly. The
non-negativity constraint is instead included as an extra term [39]

J =
1

2
(S~a− ~x)T (S~a− ~x) + λ(~a− ~c), (2.51)
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with ~a = ~c. This will lead to two equations for which there is no closed form solution [39]. The Lagrangian

multiplication vector ~λ must satisfy the Kuhn-Tucker conditions in order to yield a valid solution at all
[39]

λj = 0, j ∈ P (2.52)

λj < 0, j ∈ R, (2.53)

where P and R are the so-called passive and active sets. Using the equations presented in [39], these
conditions can be transformed to the equivalent conditions

ai > 0, j ∈ P (2.54)

ai = 0, j ∈ R. (2.55)

The passive set does therefore represent the solution for which the abundances are greater than zero,
while the rest of the solutions must be constrained to be exactly zero. As will be seen is one of the
solutions to this problem to �x some of the parameters to 0 and run an unconstrained ordinary least
squares on the rest, repeatedly until all conditions are ful�lled.

2.6 Spectral unmixing

The spectral unmixing problem and some potential solutions will here be presented.

2.6.1 The common remote viewing problem

A hyperspectral pixel is in remote viewing commonly assumed to be linearly mixed of signature spectra
from di�erent materials, as described by equation (2.47).

An endmember is a material present in the scene with a speci�c signature re�ectance spectrum. This
can for example be a type of stone present in a hyperspectral image of a landscape [47]. The abundance
is the amount of the material present in each pixel in the image [47]. These terms will commonly be
used throughout this thesis, but "chromophore" will also be used interchangeably for endmember.

Conventional hyperspectral imaging aims to extract abundance maps for each endmember present in
the scene directly from the hyperspectral re�ectance data. The linear model is often assumed [47]. The
unmixing may also be non-linear, where scattering e�ects between endmembers are taken into account.

The remote viewing community will generally compare re�ectances from di�erent materials against the
re�ectance of the scene instead of attempting a conversion to absorption data. The re�ectance level and
in�uence from surrounding materials and even the light source will be varying from image to image,
reducing the valuability of endmembers collected on a di�erent day [70].

Most advanced hyperspectral unmixing papers focus on the problem of extracting the material re�ectance
spectra directly from the hyperspectral image. This is also known as the non-negative matrix factorization
problem [16] in other communities. The unmixing problem for the full scene can be written as

X = S ·A+W, (2.56)

where A is the abundance map across the entire image andX is the image. When S, the matrix consisting
of the endmember spectra, is unknown, the task at hand is to determine both S and A at the same time.
Some [84] will only concern themselves with �nding a good estimate of S and estimate A using ordinary
least squares, while others [39] will in addition attempt to constrain the abundances to be non-negative.

2.6.2 Abundance estimation

One proposed abundance estimation method is ordinary linear least squares. It will concern itself with
�nding the best possible mixture without constraints, and the solution will be non-physical.
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The algorithm presented by Lawson and Hanson [54] represents the most basic and intuitive algorithm
for the non-negative least squares problem, and is a so-called active set method [16].

The Lawson-Hanson algorithm solves this problem in a series of unconstrained, ordinary linear least
squares solutions, where endmembers are included into either P or R. The set P contains the end-
members which can be freely varied in a unconstrained, ordinary linear least squares solution, while the
endmembers in R are �xed to zero [11]. The Lagrangian vector ~λ is calculated for each iteration, where
all components will be negative. The endmember corresponding to the maximum component is included
in the passive set as it will be closest to zero and likely a good candidate. The endmembers currently
in the passive set are set to be a part of an unconstrained linear least squares. Given that some of the
components in the solution vector suddenly turn negative, the solution vector is moved linearly through
the solution space until all the components turn non-negative [11]. This is continued until the constraints
are satis�ed, and the next endmember may be moved into the passive set [11]. The iteration is �nished
when the Kuhn-Tucker conditions are satis�ed for the Lagrangian vector. Convergence is proven in [54].

The algorithm will always converge, and convergence is ensured within a number of iterations less or
equal to the number of endmembers [54]. The main problem is the computation overload in each
iteration. At least one full matrix inversion is needed. The matrix inversion cannot be pre-computed,
as the matrix to invert will change every time due to the ever-changing �ow of endmember in and out
of the active and passive sets. There have been some changes to the main algorithm to alleviate the
computation overload somewhat. Bro and Jong [11] restructured the endmember matrix to be able to
precompute some parts of the inverse. Benthem et al. [105] does similar operations on the pseudoinverse
to optimize and precompute parts of the pseudoinverse before the algorithm is applied, optimized for
solving multiple systems at the same time (i.e. for hyperspectral applications). Still, calculating the rest
of the pseudoinverse will be required for each individual least squares system, that is, each individual
pixel, and not only each individual iteration. Luo and Duraiswami [57] have implemented this for CUDA
and released code.

Roberts et al. [80] tried to work themselves upwards by �nding the endmembers from an endmember
library best �tting the spectra and always adding the endmember that does not lead to any negative
coe�cients. It will yield a non-negative solution, but not in the least squares sense. Ramsey and
Christensen [73] chose to use an ordinary least squares algorithm, but exclude any endmembers leading
to negative values. They admit that the residual error will be larger, but they also claim that the solution
at least will be physically plausible and that the endmembers leading to negative values generally are
not present in the spectra. Franke et al. [27] has a similar strategy by choosing the best endmember
to match each pixel. Kim et al. [50] will discuss that equivalent algorithms to the above are unoptimal
solutions with no convergence guarantees. None of the above approaches enforces non-negativity in the
least squares sense and do not represent good solutions to the problem.

Hyperspectral applications will also often try to enforce a sum-to-one-constraint. This has closed form
solutions using ordinary least squares [46], but is more di�cult using non-negative least squares. Heinz
and Chang [39] presents an algorithm for both extracting endmembers and estimating their abundances
using a linear least squares algorithm constrained both to be non-negative and sum to one. This is
based on an linear least squares algorithm presented in Chang and Heinz [15], which only constrains
the abundances to be non-negative. The algorithm presented here is more or less the Lawson-Hanson
algorithm.

Gonzaléz et. al [35, 32] implements the Image Space Reconstruction Algorithm (ISRA) in CUDA for
parallelization of the abundance estimation part of spectral unmixing. They had some con�icting require-
ments for the choice of algorithm, as they chose the algorithm based on its computational complexity
to prove the e�ciency of the GPU implementation. Vélez-Reyes et al. [107] proves that ISRA is a
gradient descent algorithm. Algorithms based on gradient descent are known to be slow to converge
[71]. Gonzalez et al. [35] required a large number of iterations. ISRA has been proven to converge to a
NNLS solution ful�lling the Kuhn-Tucker conditions [19]. Finding the pseudo-inverse is avoided, but the
computational burden associated with the matrix inversion is exchanged for the computational burden
of an extreme number of iterations. A large number of iterations is needed, in the order of 2000. Using
big O-notation [17], each iteration necessitates O(e2o) operations, where e is the number of endmembers
and o the number of observations.
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The algorithm for projective quasi-newton NNLS (PQN-NNLS) is presented by Kim et al. [49]. Their
method outperform other alternatives for large problems. This is equivalent to gradient descent, but
with some preconditioning and measures to ensure faster convergence. Some endmembers are �xed to
zero. Convergence of this algorithm is proven in the same paper.

Franc et al. [26] present the sequential coordinate-wise algorithm for non-negative least squares problems
(SCA). All variables except for one are �xed. The optimal solution for this speci�c coordinate with the
respect to the problem is found very e�ciently as an analytic solution may be found for this problem. The
Lagrangian must be updated for every coordinate update, which requires in the order of O(e) updates.
The computational burden will therefore be O(e2) for each iteration. The convergence of the algorithm
is not proven. It has been proven that once the algorithm reaches a �xed point, the solution satis�es the
Kuhn-Tucker conditions. The monotonic decrease of the objective function is only remarked as being
"obvious" [26].
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Chapter 3

Materials and methods

3.1 GPU-MCML

GPU-MCML [4] was used for Monte Carlo simulations, parallelized using CUDA. The implementation
was slightly modi�ed in [10]. In the project work [10] an inverse model using the same inverse strategy
and GPU-MCML was developed, but this was not used in this thesis. Here, GPU-MCML is used only
for forward simulations.

3.2 Camera and computer hardware

The hyperspectral camera the inverse model will be developed for is a HySpex VINIR-1600 camera [41],
developed and manufactured by Norsk Elektro Optikk. This is a line-scanning camera using a push-broom
technique. Including autofocusing [86], the camera will use 30 ms per line. Each line consist of 1600
pixels (samples) and 160 wavelengths (bands). Camera data is transferred over the TCP/IP-protocol.

The GPU programs were tested on two di�erent computer setups. These are shown in table 3.1. The

Table 3.1: Computer setup

RAM CPU GPU
HP EliteBook 8730w 4 GB Intel Core 2 Extreme (4 cores) NVIDIA Quadro FX 3700M
Unbranded computer 6 GB Intel Core i7 (8 cores) GeForce GTX 670

operating system used was 64-bit GNU/Linux. The code was not tested in Windows, though compilation
for Windows should be possible as only cross-platform libraries were used.

Any single di�use spectrum measurements of skin presented in this thesis are measured using an USB4000
�ber optic spectrometer (Ocean Optics) [68] and an ISP-REF integrating sphere (Ocean Optics) [67].

3.3 Inversion strategy

The inversion scheme employed for both models is based on previous inversion strategies applied on the
di�usion model [93, 53, 77, 10]. The main idea will be to invert the required melanin content and dermal
absorption coe�cient separately and apply some spectral unmixing on the dermal absorption coe�cient
to yield the required properties, thus unmixing absorption data buried within scattering.
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Figure 3.1: Illustration of the two-layered skin model applied to a three-layered situation. The two-
layered skin model will approximate multiple, inhomogeneous layers to a single, homogeneous and semi-
in�nite layer with the derived properties distributed evenly in the layer. Di�erent parts of the di�use
re�ectance spectrum will represent di�erent penetration depths. The chromophores taken into account
in the di�erent parts is shown above the example spectrum. Typical depths assumed in the three-layer
model is shown to the right.

It is desired to keep the number of possible parameters low in order to make the optimization as simple
as possible. Within the chosen skin model, the unknown parameters are:

� Melanin absorption in epidermis

� Oxygen saturation in the blood

� Blood volume fraction in dermis

� Depth of the layers

� Additional chromophores

The scattering coe�cients are assumed to be known and dependent on the blood volume fraction. They
are not mentioned as unknown parameters, though they should strictly also be allowed to vary.

A two-layered model is used in homogeneous parts of the spectrum to yield properties down to some
penetration depth, as is done in [53]. See �gure 3.1 for an illustration.

Within the two-layer model, the depth of dermis is irrelevant as the dermis is semi-in�nite, and it will
be applied to di�erent parts of the spectrum to scan the skin down to some penetration depth. The
depth of epidermis will be assumed to be known. The justi�cation for this is that this property generally
will stay the same within the same area of skin, and any variations can be corrected by correcting the
absorption contained therein. Within the model presented by Randeberg et al. [77], it was set between
100 and 200 microns. In this model, 100 microns will be used. The thickness of the upper dermis would
have been set to 20% of the total thickness for the three-layered model [75], but total thickness will vary
[75].

Only the melanin absorption will be unknown in epidermis, since here the blood volume fraction is a
skin model quirk known beforehand. The arti�cial blood volume fraction in epidermis is so low that it
is unlikely that the oxygen saturation here does matter much. Thus, provided the scattering functions
can be trusted, the unknown parameters will be the melanin absorption in epidermis, the blood volume
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fraction in dermis, the associated oxygen saturation and any additional chromophores.

When the melanin absorption and the blood volume fraction are known, the rest of the unknown pa-
rameters can be summed up as the dermal absorption coe�cient. The dermal absorption coe�cient will
for each wavelength remain the single unknown parameter that can be inverted from the spectrum by
iteration of the forward model. The constituents of the skin can be recognized by �tting the di�erent
absorption spectras against the acquired dermal absorption spectrum. Discrepancies and maladjusted
�tting can be controlled and evaluated at leisure.

A di�erent inversion strategy is to assume all parameters unknown and �t them all at once, but this was
not used since all chromophores will have to be accounted for beforehand. This approach is also less
feasible in a GPU approach, since its increased complexity will cause the approach to be less deterministic.
This will later be discussed.

The two-layered model is used for simplicity and for lessened computational complexity, but it cannot
be used for the whole spectrum all at once since the skin is not homogeneous. However, the di�erent
layers will generally in�uence di�erent parts of the spectrum due to large di�erences in absorption and
scattering across the spectrum, leading to the spectrum at di�erent wavelengths being in�uenced mainly
by the properties down to some penetration depth. The thought is that the two-layered model can be
�tted to di�erent parts of the spectrum having an uniform penetration depth to �nd the properties down
to some penetration depth.

The dermal absorption coe�cient µa,d and epidermal absorption coe�cient µa,e can each in turn be in-
verted using the analytic function for the di�usion model, its analytic derivatives and Newton-Rhapson's
method in less than 15 iterations [10], independently of wavelength and pixel. The re�ectance is well-
behaved with respect to each absorption coe�cient, suitable for use of Newton's method [10].

3.3.1 Melanin absorption

The melanin absorption in epidermis must be inverted before the dermal absorption may be found.

Fitting the melanin is problematic. If the skin model in use had been one-layered, could the absorption
be extracted and the melanin been separated from the other chromophores using simple unmixing, but
the reality is more complex. The melanin is disassociated from the rest of the chromophores by lying in
its own layer only containing melanin, and �nding the exact, needed melanin absorption will therefore
be slightly more di�cult as it must be placed in a di�erent layer. Three di�erent methods have been
proposed. Only the �rst was investigated in the project work [10].

� Looking at the general characteristics of the re�ectance spectrum to determine how much melanin
is present

� Force all the absorption into a one-layered model and somehow extract the correct melanin absorp-
tion

� Multi-dimensional �tting

Methods consisting of using the general features of the re�ectance spectrum has long been the main
method for quantifying the melanin content, and has been used by others [75, 62, 53] to iteratively �nd
the melanin content. Dawson [18] assume the logarithm of the di�use re�ectance to be written as a sum
of the absorption and scattering coe�cients of each layer of the skin, and develops two indices using this
fact to quantify melanin and blood using di�erent parts of the spectrum (melanin and erythema indices,
respectively). Melanin is quanti�ed using some re�ectance values from 730-800 nm. Dawson's melanin
index is given as

MI = (log

(
R(695) ·R(700) ·R(705)

R(645) ·R(650) ·R(655)

)
+ α) · 100. (3.1)

The quantity R(λ) is the re�ectance at wavelength λ. The constant α was chosen by Dawson to be 0.01.
Dawson's erythema index is given as

EI = (− log(R(560))− 1.5(log(R(543) ·R(576)))− 2.0(log(R(510) ·R(610)))) · 100, (3.2)
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and he corrects it against the melanin index by

EIc = EI · (1 + γ ·MI), (3.3)

where γ is de�ned as 0.04 by Dawson [18].

Kollias and Baqer [51, 52] presented a method where melanin content is quanti�ed by �tting a straight
line from 630 to 720 nm and taking the slope to be the melanin content, similar to Dawson, only using
more wavelengths. Stamatas and Kollias [95] will also �nd a blood quanti�cator from the blood maxima
around 530-590 nm after subtracting the melanin line from the spectrum, and Stamatas et al. [96] will
use the blood estimate to correct the melanin estimate by subtraction. It was shown in the project work
[10] that such methods will be too in�uenced by the deoxy hemoglobin to be able to give good estimates,
it was too di�cult to decouple the e�ects of blood and the e�ects of melanin su�ciently. This is also
investigated in [95], but the methods proposed to rectify the behavior was not found to be su�cient in
the project report.

The second method, forcing the absorption into a one-layered model, will be rife with errors even if the
e�ects of melanin in theory are more readily separateable from the e�ects of other chromophores. The
absorption need only be inverted and unmixed into blood and melanin components. Three di�erent
variants are proposed:

� Fit all absorption in a one-layered model

� Fit all absorption in the epidermis of a two-layered model, unmix to yield melanin

� Fit all absorption in the dermis of a two-layered model, unmix, remove derived melanin from
dermis, �t melanin to epidermis

These are to be used on wavelength intervals being relatively free of the crosstalk mentioned above.
It will be seen that the last one-layered method will be most optimal. The method will be run twice.
Initially is the melanin in epidermis set to 100 m−1. This is in the second iteration set to the melanin
estimate obtained in the �rst iteration to gradually make the situation more physical.

There is a choice for how the dermal absorption is set when the melanin is moved from dermis to
epidermis. The dermal absorption can either be set to the absorption represented by the extracted
parameters except for melanin, or it can be set to the original, derived dermal absorption with the
extracted melanin content subtracted. The last alternative will be referred to as "forcing" the melanin
from dermis to epidermis, and will only be tested in inverse modelling of simulations. After the epidermal
absorption is �t can the melanin be �tted to epidermis either using the melanin curve in (2.40) directly
or a straight line �t. The choices between the four alternatives will be investigated.

3.4 Choice of unmixing method

The algorithm for non-negative least squares developed by Franc et al. [26] was chosen for the unmixing
stage.

Spectral unmixing will be central to the success of the inversion chain two times during its processing.
After the re�ectance has been �tted to some absorption model, a spectral unmixing will have to be
applied in order to decouple the melanin from the blood. After the melanin is found and the dermal
absorption has been inverted, a spectral unmixing will �nd the components contained therein. Spectral
unmixing is central when �nding the melanin absorption, and thus important also for the inversion of
the dermal absorption coe�cient.

Using a linear approach with endmember extraction directly on the re�ectances will not yield the de-
sired results. The di�erent chromophores are buried within layers and hidden beneath high scattering.
Endmember extraction methods will likely segregate di�erent kinds of skin rather than �nding the exact
properties.

The previously described skin inversion approach can be seen as a non-linear unmixing problem which
in the end leads to a linear mixing problem. The absorption is segregated from the scattering, and
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the absorption mechanisms can be seen as independent. The re�ectances are obtained in a laboratory
situation, and endmember variance is not to be expected. The endmember extraction stage can therefore
be skipped, as the chromophore absorption spectra will be known a priori. Only abundance estimation
will be needed.

There are two requirements for a good abundance estimation algorithm.

� Should give a non-negative estimate for the coe�cients in the least squares sense

� Should be e�cient for GPU implementation

Active-passive set methods are passed over. CUDA implementations do exist, but the desired real-time
performance will not be possible due to the matrix inversion stage.

Sum-to-one constraints are not interesting. It will be di�cult to enforce a sum-to-one constraint on the
parameters extracted from the skin in the two-layered model, as it scans down into some penetration
depth, though they should have some kind of sum-to-one constraint in the more real, three-layered model.

Gonzaléz et al. did provide code for a CUDA kernel implementing ISRA for BIL-interleaved hyperspectral
images, but the code was in their case tested on a higher end Tesla GPU. The hyperspectral image has
been allocated in the registry of the GPU, which is not possible for a lower-end GPU as the registry is
too scarce. The results obtained will therefore be worse than the running time they obtained.

The PQN-NNLS algorithm has some computational burden in each iteration. Some larger matrix mul-
tiplications are needed per system and a prohibitive line search must be done di�erently for each pixel
and iteration. This will cause GPU warp breakdown.

The only matrix needed in SCA's computations is STS. This can be precomputed once at the very
beginning of the full hyperspectral inversion. This will be small enough for storage in shared memory.
ISRA, on the other hand, will require matrices so large that they must be swapped in and out of shared
memory, increasing memory lag. This can be avoided for SCA, increasing the performance.

SCA, opposing most other algorithms, had no proven convergence. There is signi�cant risk associated
with using such an unproved algorithm should it give unpredictable results. France et al. found SCA to
converge within 60 iterations. The author of this thesis found it wise to increase this to 300. It can be
used for demonstration purposes until better algorithms with the same advantages are found. Especially
will it be seen that using classical algorithms like these on the problem can be ill-posed as the absorptions
found are not necessarily correct and some leniency should have been allowed. Using this algorithm, easy
to implement and seemingly being able to converge to the correct solution, will be a good demonstrator
and a benchmark to compare other algorithms against should this become necessary.

SCA has therefore been chosen as the main unmixing algorithm to implement. Comparing di�erent
unmixing algorithms is beyond the scope of this thesis.

3.5 Implementation

The implementation of the hyperspectral inversion framework will here be described. First are some
general notes about the GPU memory and data structures presented. Then are the CUDA kernels
described, after which the processing blocks encapsulating the CUDA kernels are described. An overview
is shown in �gure 3.2.

3.5.1 GPU allocation

Recapping, the CUDA functions will be run as blocks of threads. Each block will contain a pre-de�ned
amount of threads, and each thread will access a given position in a given array at a given line of
instruction. When neighboring threads access data, the subsequent 32 memory positions in the array
will be read into the cache. Given that the subsequent memory positions are the memory addresses the
subsequent threads should access at the same time, optimality of the memory accesses will be ensured.
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Figure 3.2: Overview over the relation between processing blocks, helper classes, member functions and
CUDA kernels.

As long as the most signi�cant thread index match the least signi�cant memory index, this is automat-
ically ensured. However, the memory must also be aligned as the cache will only start its reading at
memory addresses being a multiple of 128. The data can for the most part be copied directly from the
host to the GPU and the memory access and thread distribution altered accordingly, but to ensure that
the �rst thread also accesses a memory address being a multiple of 128, the arrays are divided in smaller
chunks. Each chunk corresponds to a block of threads, and each chunk is allocated with a slightly larger
space of memory than is necessary to ensure that the total space used is a multiple of 128 bytes. Memory
allocations are therefore rife with the variable threadsPerBlock being used to calculate the necessary
bytes and the number of necessary memory chunks, referred to as pitch .

GPU allocation is done once at the beginning of the program, and arrays are reused.

3.5.2 Data structures

Here, the data structures present will be presented.

Hyperspectral data

With the hyperspectral data arranged in pixels, lines and bands, the natural representation is three-
dimensional arrays. However, the three-dimensionality of data arrays allocated on any memory structure
is a mere illusion as it is in reality a one-dimensional array arranged in blocks. CUDA needs coalesced
memory reads to be e�cient, and this requires a control over the memory positions of the arrays beyond
three-dimensional handling. The arrays are therefore treated as one-dimensional arrays both throughout
the program and throughout this report, with no abstraction into multi-dimensional arrays.

There are three common ways of representing hyperspectral data as one-dimensional data arrays: BIL
interleave, BSQ interleave and BIP interleave. These are shown in �gure 3.3. A one-dimensional array
will start at the zeroth position, and once reaching the end of one row, it will continue at the next row,
and when reaching the end of all rows, it will continue in the next "page".

The BSQ (band-sequential) interleave is perhaps the most intuitive interleave when posed by the concept
of hyperspectral pictures, as it will arrange the data as one, giant contiguous memory slot per band,
with pixel access within each band being the most optimized. Accessing the spectrum associated with
each pixel will be less optimal as each band value will be scattered across the memory. BSQ is also not
optimal for streaming, as incoming data on a per-line basis will have to be saved at positions far apart
in memory space and the full length must be known in advance.
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(a) BSQ interleave (b) BIP interleave (c) BIL interleave

Figure 3.3: The di�erent interleaving possibilities for m bands, n pixels and l lines. Starting index 1 is
used for convenience in the �gure, though starting index 0 will be used in the code and elsewhere.

BIP (band-interleaved-by-pixel) interleave lessens the memory space scattering by grouping the band
values associated with each pixel. This will apparently be the most optimal when working on single pixel
spectra, but it will later be seen that this is not necessarily the best interleave when working in CUDA.

BIL (band-interleaved-by-line) interleave will group all pixels on a speci�c line associated with a single
band in contiguous memory space. This will be a compromise between BIP's single spectra access and
BSQ's intuitive pixel access. Both BIP and BIL are usable for hyperspectral streaming from a push-
broom camera as each line can be disassociated from the other. The current hyperspectral camera in use
as of this thesis' writing will deliver its data as BIL interleave, although future cameras may use BIP. C
code for accessing pixel p, band b and line l in a BSQ, BIL and BIP interleaved array is shown below.

Code 3.1:

1 bsq_array[b*numSamples*numLines + l*numSamples + p] = 0;

2 bip_array[l*numSamples*numBands + p*numBands + b] = 0;

3 bil_array[l*numSamples*numBands + b*numSamples + p] = 0;

Which interleave is the most e�cient depends on the application. For sequential code accessing single
pixel spectra, BIP may be the most e�cient. BIL will be more e�cient if the code is parallellized
across pixels, multiple threads should read values at the same time and each thread needs access to all
subsequent band values. This will be more clear further below.

BIL, BSQ and BIP interleave can all be converted into each other by a simple matrix transpose along
some axis.

Arrays containing chromophore values will be structured in a similar way to the BIL-interleaved hyper-
spectral data, although with the number of chromophores along the band axis. Arrays with one value
assigned to each pixel will also be stored in the same way.

Convenience structs

The CUDA functions will require several arrays for storing optical properties, speci�c chromophore values
and more. These are grouped within structs de�ned in base.h.

� GPUSkinBase contains base arrays for the wavelength-dependencies of di�erent absorption and
scattering spectra. Its arrays is used by calcSkinData to calculate the optical properties resident
in GPUOpticalProps.

� GPUOpticalProps contains the spectral and spatial dependencies of the calculated absorption
and scattering spectra associated with each pixel in the hyperspectral image. Its allocation and
interleave matches the hyperspectral image exactly.
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� GPUSkinData contains the basic skin data associated with the skin present in each pixel: The
melanin content, oxygenation, blood volume fraction and melanin type. It is input into calc-
SkinData to calculate the GPUOpticalProps described above, and decided through some other
means before calcSkinData is called.

Each of these data structures have an allocate() function used to allocate the arrays on the GPU using
the correct sizes and pitch. The input parameters common to all is the number of bytes associated with
data that should be accessed by one block of CUDA threads, and the total number of these blocks (the
multiplication of these two numbers will yield the number of bytes associated with one line of data and
one band). This approach is low-level and not fail-safe, but more sophisticated methods of inputting the
desired sizes and automatizing the process was not implemented as these arrays are at most only used
once and mucking about with them should not be necessary.

Chromophore arrays

Arrays containing the wavelength-dependencies of the absorption spectra of the di�erent, possible chro-
mophores are input as a matrix into the functions dealing with spectral unmixing. The output is a
nameless chromophore array containing the abundances of each chromophore at every position in the
hyperspectral line of data, in the sequence de�ned by the input chromophore absorption matrix.

In order to overcome the namelessness, the sequence of the chromophores in the chromophore matrix is
assigned in a given, well-de�ned order through the class Chromophores, de�ned in chromophores.h.
For example will oxy hemoglobin always be located at the �rst position and deoxy hemoglobin at the
second.

After a Chromophores instance is created, the di�erent chromophores may be set using set*() and
unset*() functions, for instance setMethb() for including methemoglobin. The chromophore absorp-
tion values at a speci�c wavelength can be output as a array containing the data in a well-de�ned order
using getAbs() and getAbsArray(). Given that the Chromophores instance is unchanged, it can
be used to trace back what chromophore a given, derived chromophore value belongs to. Should any
absorption spectra be changed or any new chromophores be added, this is the class to change.

3.5.3 CUDA kernels

The main part of the program is the CUDA kernels. Most of the other parts of the code are wrappers,
convenience functions and access functions to ease the cumbersome parameter choices for the CUDA
kernels.

Overview and choice of interleave

There are mainly two di�erent tasks at hand in the inversion chain which each require di�erent paral-
lelization strategies.

� The inversion of the absorption coe�cient µa for each wavelength and pixel

� Spectral unmixing of the absorption spectra across all pixels

Spectral unmixing, if done on a pixel basis and making no special use of any spatial information, will
only require that the spectral information associated with each pixel is readily available. The simplest
possible spectral unmixing will be to use ordinary least squares, which requires that the pseudoinverse
of the matrix containing the chromophore absorption arrays is multiplied by each spectral vector. There
are mainly two ways to parallelize this.

1. Assign one thread for every pixel and band

2. Assign one thread for every pixel
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Figure 3.4: Spectral unmixing as parallelized in CUDA for BIL interleave. Threads are assigned in blocks
of 160, each dealing with the unmixing of an independent pixel. At each step where values are read in
from the hyperspectral data array at a speci�c band, the memory reads are coalesced across threads.
Any matrices dealing with chromophore absorption values are read into shared memory and broadcast
across the threads within a speci�c block.

The latter possibility is less cumbersome to develop and maintain. Each thread will take care of its own
spectrum and unmix it. For neighboring threads to read neighboring memory addresses, BIL interleave
must be used for reasons illustrated in �gure 3.4. The unmixing algorithm must, in some way, loop
through the band values associated with each pixel. In each instruction of the necessary for loop, data
will be loaded from and saved into data arrays across threads. For this to be done in a coalesced way must
each thread access neighboring pixels for a speci�c thread, which is only possible for the BIL interleave.

On the other hand, BIP interleave must be used if parallelization also is applied across bands. The
reasoning is that the resulting chromophore variables must be written to shared variables as the threads
now will cooperate to calculate the chromophore values, and sharing of variables can only be done in a
fast way within a block of threads. One block of threads must therefore deal with one or more spectra,
and each thread will read one band value associated with a speci�c pixel. Neighboring threads will
require neighboring band values in memory space, and BIP is therefore the most optimal interleave for
this situation. For linear least squares, the latter, completely parallelized approach is feasible as the
order of the matrix multiplication is irrelevant and race conditions are avoided.

It has been clear that ordinary linear least squares is not suitable, and a more convoluted non-negative
least squares is warranted. SCA, the algorithm which primarily will be used, requires at �rst a least
squares-like matrix multiplication which technically could have been implemented using the above strat-
egy. Once this is �nished, it will run through some matrix multiplications where the matrices only are of
size numEndmembers × numEndmembers and with no potential parallelization across wavelengths,
only pixels. Therefore, BIL interleave is required for this particular algorithm, and BIL interleave has
been used throughout the program. BIP will be warranted if spectral parallelism is required.

No such measures regarding interleave are required for the inversion of the absorption coe�cient for each
layer, as the inversion at each pixel and band is completely independent. Only at the unmixing stage
are the bands no longer independent as the wavelength-dependencies become important. The inversion
functions themselves can therefore be used regardless of the interleave, as long as the calcSkinData()
function and associated GPUSkinBase arrays have the correct behavior with regards to the interleave
and the kernel is correctly called from the host.

There is also another caveat in BIP interleave, namely the free wavelength choice. The two-layered
di�usion model is used to �t the spectra, and the unmixing can only �t parts of the spectra at the
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Figure 3.5: Inversion of absorption coe�cients for one hyperspectral line of data: CUDA block and
thread distribution across wavelengths and pixels for BIL-interleave. For this particular GPU, threads
are assigned in blocks of 160 subsequent pixels in a particular band to ensure memory coalescing. Blocks
are arranged according to band. Each thread inverts its own absorption coe�cient independently of the
others, one for each pixel and band. Figure is modi�ed from [10].

same time due to it requiring an uniform penetration depth. The melanin determining stage will also
use unmixing and absorption inversion only at a speci�c wavelength range, for which inversion at any
other wavelengths will be a waste. Choosing wavelength ranges for BIL interleave is convenient, as the
pixels associated with a speci�c wavelength are grouped, and the pixels associated with the undesired
wavelengths can be dropped with no repercussions for the coalescing of the memory reads. See �gure
3.5 for thread distribution for this case.

The dropping of wavelengths will for BIP interleave lead to holes in the memory array. For coalescing to
still be in place, the size of the wavelength interval must be a multiple of 32, and to ensure memory align-
ment, each interval must start at a multiple of 32. This severely limits the �exibility of the wavelength
ranges, which will cause problems when the penetration depths for these possible choices is not uniform
enough for good �ts and parameter extractions. The goodness of �t will also be heavily dependent on
the calibration of the camera as the speci�c wavelength associated with the possible wavelength index
can be subject to change.

BIL interleave has similar problems when the free pixel range choice is desired, but this is less of a
problem. It will be desired to drop outlying pixels to speed up computations, but here can entire blocks
of pixels be dropped since a �ne-grainedness is not desired. Dropping pixels in this way will also have
no repercussions on the index calculations, as this is only dependent on how the CUDA kernel is called
from the host and automatically propagated to the built-in gridDim variables.

Due to all this, BIL interleave is therefore the desired interleave for this particular application.

Model routines

Routines related to the di�usion model and the transformation from skin data to optical properties are

� __global__ void calcSkinData() - inputting skin data, optical properties are calculated

� __global__ void Re�IsoL2InvertMuae() - inversion of µa,e with respect to the input re-
�ectance
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� __global__ void Re�IsoL2InvertMuad() - inversion of µa,d with respect to the input re-
�ectance

, and all de�ned in inv.cu and inv.h.

The function calcSkinData() uses the base arrays for the wavelength dependencies of the absorption
and scattering functions of di�erent chromophores to calculate the optical properties based on input
oxygenation, blood volume fraction and melanin absorption at 694 nm. The melanin type may also be
chosen, and the exact melanin absorption is calculated based on the value of the melanin type array,
containing one of the values in

Code 3.2:

1 enum MelaninType{PHEOMELANIN , EUMELANIN , SVAASAND };

To avoid any if statements, the melanin calculation stage is written as

Code 3.3:

1 MelaninType melanintype = melanintype_arr[index];

2 f loat mua_melanin = \

3 muam694 *(( melanintype == SVAASAND)*powf(fdividef (694.0f,wlen), 3.46) + \

4 (melanintype == EUMELANIN)*expf(-kEu*fdividef(wlen -694.0f ,694.0f)) + \

5 (melanintype == PHEOMELANIN)*expf(-kPheo*fdividef(wlen -694.0f ,694.0f)));

This ensures maximum parallellization, warps are ensured since no thread-dependent if statements are
used. The extra calculations will also not be evaluated when the statements evaluate to false. The
current wavelength is read in as a shared variable across all the threads in the current block through

Code 3.4:

1 f loat wlen;

2 i f (threadIdx.x == 0){

3 wlen = wlens[blockIdx.y+startblockind ];

4 }

5 __syncthreads ();

The alternative would be to let all the threads read their own copy of the current wavelength from an
array containing multiple copies of the wavelength array as to ensure memory coalescing, but as it turns
out, the above approach with a warp breakdown and a broadcasting of the current wavelength across all
threads is a faster approach. The scattering functions are calculated using the same wavelength variable.

The function Re�IsoL2InvertMuad() uses the above calculated optical properties to invert the input
di�use re�ectance. Originally, in [10], this function was split into two parts - one function calculating
the di�use re�ectance and its derivative based on the optical properties, and one function calculating
the next required dermal absorption based on the derivative and re�ectance value. These kernels were
repeatedly called from the host for a given amount of iterations. It became clear that this caused a time
lag as the functions needed to read and write to global arrays to be able to communicate. The functions
was instead combined in one function to do the iterations in a self-contained way and only read from the
global arrays in the initialization, and write to a global array containing the dermal absorption values at
the very end. Meanwhile are values read from and written to registers, which gives a performance boost.

To increase readability and reuse of the code, the re�ectance calculation itself could have been moved
to a device function, for example __device__ �oat Re�IsoL2Calc(), but optimizing calculation
times was prioritized over readability. One inversion is compute bound, and register usage is maximized.
Derivative calculations are especially �erce, and values are therefore reused between re�ectance- and
derivative calculations. It did in addition become clear that calculating the di�use re�ectance as a
single code line into a variable made the numerical inaccuracies large due to truncation to zero, and the
calculations had to be split into di�erent variables to keep control over this zero truncation. Calculations
related to the epidermal absorption coe�cient were also placed outside of the iteration for loop.
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Figure 3.6: Pitch problems when moving from one threads per block size to another while optimizing
the memory arrangement only for the �rst block size. Above is how the memory will be divided for
the situation for which it is optimized for, below is the situation when the block size is smaller, say, 64
threads per block. Block 3 will be split across one pitch.

Similar optimizations are done also for Re�IsoL2InvertMuae(), the CUDA function for inverting the
epidermal absorption coe�cient with respect to the di�use re�ectance.

Calculating the derivative of the di�use re�ectance with respect to the epidermal absorption is more
complicated than the dermal absorption, and requires a higher register usage still. The default threads
per block was set to 160, but Re�IsoL2InvertMuae() required 64 to avoid register spilling. This
would split a pitched chunk of memory in multiple parts, and one block of threads will necessarily have
to access memory from two di�erent blocks with the non-allocated pitch in-between. Some creativity
was therefore applied in the index calculations. The situation is shown in �gure 3.6, and the solution
below.

Code 3.5:

1 int egBlockInd = (blockIdx.x*64 + threadIdx.x)/160;

2 int ind = (( gridDim.x*( blockIdx.y+startblockInd))*pitch *2)/5 + egBlockInd*pitch

+ blockIdx.x*64- egBlockInd *32*5 + threadIdx.x;

This particular solution is not applicable for any other threads per block combinations than 160 and
64. This is, as such, not a very dynamic solution. On the other hand would a "dynamic" solution be
complicated as this type of solution would work only when the threads per block sizes are divisible and
ful�ll the alignment and coalescing requirements. It is also possible to convert arrays from one pitch
optimization to another, but this was not tested as it was known that some milliseconds would be wasted
on such an operation. It would however only have to be done once at the start every line processing.

Both inversion functions and calcSkinData() takes startblockInd as an input argument, which is used
to specify at which memory block the calculations should start. This is used to specify the �rst wavelength
in the wavelength range, and the size of the wavelength range is speci�ed by the grid dimensions. The
situation is shown in �gure 3.7.

There are in addition two more functions, __device__ �oat Re�IsoL2Calc() and __global__
void Re�IsoL2ErrorCheck(). Though it was argued above that having a device function for calcu-
lating the di�use re�ectance is unnecessary, it still is implemented for use where appropriate to reduce
the duplication of code. However, there is only one function where it is used, Re�IsoL2ErrorCheck().
This works on a block grid similar to the grids used for the unmixing routines, that is, it is initialized
only across pixels and wavelengths are covered through for loops. It calculates the root squared mean
error of the calculated di�use re�ectance as compared to the input, measured di�use re�ectance for a
speci�ed wavelength interval.

When other chromophores than blood and melanin are used, calcSkinData() is only used to calculate
the scattering coe�cients and epidermal absorption. For the dermal absorption, the values are calculated
manually by multiplying the required chromophore coe�cients by the chromophore absorption values and
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Figure 3.7: How the wavelength ranges are chosen within the larger memory grid. Grid sizes for CUDA
are chosen to match the wavelength range, and an input variable startBlockInd is chosen to denote the
grid displacement with relation to the memory blocks.

summed, either on the host or the GPU if the chromophore arrays are available. This will be described
in detail below.

Unmixing

In the initial creation throes of this implementation was ordinary least squares used to unmix the ab-
sorption spectra, in particular through the use of the CUDA kernel GPUlseunoptim(). It takes as
input argument the pseudo inverse of the chromophore matrix, (STS)−1ST , needing only a matrix mul-
tiplication for calculating the results. As matrix multiplication is a rather well-known problem for which
optimizations extensively has been reviewed by others [2], no special optimizations using shared memory
or the like were implemented for this function since it only was used for initial testing. It also uses the
linearly interpolated absorption spectra, since it was thought that the spectra had to be interpolated to
give out meaningful results, but this was only due to noise. Interpolation wavelengths and indices were
determined beforehand.

Non-negative least squares �tting was implemented in

� __global__ void ISRA()

� __global__ void SCA()

� __global__ void SCAFast()

The ISRA is a modi�ed version of the implementation presented in [34]. It was modi�ed to use global
memory instead of the registers for the hyperspectral data arrays, since the heavy register usage would
only be possible for the Tesla GPU they used. Some indexing was also changed to match the implemen-
tation choices.

More resources were put into the development of SCA() and SCAFast(). The kernel SCA() is an
implementation of the SCA algorithm for non-negative least squares. SCA's selling point is that each
iteration of the algorithm requires few computations,. The matrices in use are of numChromophores ×
numChromophores size instead of the full numBands × numChromophores variant. To increase
these selling points, the matrices and arrays are saved as shared memory arrays to throw away excess
global memory access.

Code 3.6:
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1 __shared__ f loat sh_x[MAX_ENDMEMBERS ][ MAX_BLOCKDIM ];

2 __shared__ f loat sh_mu[MAX_ENDMEMBERS ][ MAX_BLOCKDIM ];

3 __shared__ f loat sh_H[MAX_ENDMEMBERS ][ MAX_ENDMEMBERS ];

The constant MAX_ENDMEMBERS is initialized as according to the upper limit of allowable
shared memory on the device. Since every thread operates on a single pixel, each thread needs its own
chromophore array, and therefore there areMAX_BLOCKDIM number of chromophore arrays. Both
of these values are input as template arguments, for just in time compilation of the CUDA kernel. Three
10× 160 �oat arrays will approximately be equivalent to 12 KB, which is 12 of the 14 allowable KBs of
shared memory in the GPU. The GPU will be unable to assign a di�erent block to a given multiprocessor
when one block already has been assigned and had its shared memory allocated. The GPU will hence
not be able to switch blocks in and out of the multiprocessor to reduce memory lag. Still, this solution
is faster than reading from and writing to global memory arrays for a given number of iterations, as will
be seen.

The arrays x and µ are initialized according to the SCA algorithm in the start of the kernel. Common
matrix values across threads is loaded into shared variables before multiplication.

The STS is read into the shared array sh_H, which is commonly used across all threads, and sh_x and
sh_mu are iterated as according to the SCA algorithm for a given number of iterationsNUM_ITERATIONS.
The results are after this written to global memory.

As it goes, this solution does not scale well with GPU computing power since the amount of shared
memory does not change much from GPU to GPU. A new CUDA kernel, SCAFast(), was therefore
developed to use the registers instead of the shared memory for sh_x and sh_mu. The registers scale
better with GPU power even if the registers also are a scarce resource. CUDA is not allowed to create
arrays in register space unless all register use can be predicted at compile time. Otherwise, the arrays
are allocated in shared memory space, with no unique array for each thread. It is possible to do this by
for looping over constants and unrolling the loops, but the behavior was found too unpredictable. Each
position in the array is instead named explicitly by x1, x2, etc. This would also imply an unmaintainable
mess of copy-pasting of code instead of using for loops, but this was alleviated by encapsulating some of
the redundant code within macros. For example is the calculation of µ in a given iteration given by the
macro

Code 3.7:

1 #define CalcMu(Arg) k=Arg;\

2 addition = (temp - xprev)*sh_H[k][j];\

3 mu##Arg += addition

, which is called whenever the copying and pasting of the same code would be warranted. This is not
a very maintainable solution, but the extra milliseconds gained on a powerful GPU with many registers
warrant the hairy optimizations.

The kernel is de�ned to handle up till 7 endmembers by manually checking the supplied
MAX_ENDMEMBERS template constant. The used if statement will have a common outcome on
all the threads in the warp. When the kernel is called, the unnecessary register variables are optimized
away in the just-in-time compilation. Several copies of the same kernel is compiled and used, each with
a di�erent register usage based on the number of endmembers in use.

There is one change in the algorithm compared to the generic algorithm. Methemoglobin is either
included or dropped based on whether a supplied, previous methemoglobin value lies above a threshold,
for the cases where it is to be a part of the �tting. The thought is that methemoglobin can be �tted at a
wavelength range where methemoglobin has distinct spectral features, and included in the �tting where
methemoglobin has severe crosstalk with melanin only when the presence of methemoglobin is certain.
For the wavelength ranges where methemoglobin has distinct features, the function is initialized with a
dummy methemoglobin array always evaluating above the threshold. The methemoglobin index of the
previous array is supplied, since it is di�cult to split the chromophore arrays into separate arrays for
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the di�erent chromophores. The exact, previous methemoglobin value is looked up in the previous array
based on this in a coalesced way.

Code 3.8:

1 bool hasMethb = prevChrom[prevMethbind*gridDim.x*pitch + pixind] > METHB_TRESH;

The corresponding initial µ is either set to the correct value or zero according to this boolean value when
the index matches the position which represents the methemoglobin value. This index is set to -1 and
the below statements evaluates to true regardless, if methemoglobin is not a part of the chromophores
to be unmixed.

Code 3.9:

1 f loat mustart = ((i != currMethbind) || (hasMethb))*(-1* temp);

Other chromophores were not treated the same way as they either were spectrally distinct or otherwise
necessary and always present in normal skin.

Other CUDA kernels are used to �t the epidermal absorption coe�cient to the melanin. The kernel
StraightLine() is used to �t a straight line to the input absorption. It must be initialized across pixels,
and will go through the wavelength interval in a for loop and calculate the straight line coe�cients as
according to well-known formulas [108]. The speci�c wavelength is needed, read in from a wavelength
array and broadcast to all threads in a shared variable. The melanin coe�cient is written to a result
array as the straight line value at the supplied wavelength, usually 694.0f.

The kernelMultVector() is used to calculate the necessary melanin coe�cient when the melanin curve
is �tted to the epidermal absorption, as according to the formula in equation 2.50.

The kernel calcOxyBvf() is used to calculate oxygenation and blood volume fraction values from input
derived chromophore arrays. It is assumed that oxygenated and deoxygenated must, respectively, be
placed in the �rst and second array position of the chromophore array pointed to at the current pixel,
which is ensured by the Chromophores class. The blood volume fraction is not divided by H

H0
to ensure

the correct physical meaning of the blood volume fraction as the di�erence is minimal and it is only used
for the scattering calculation.

A typical work-�ow for the inversion of a single hyperspectral data line using these CUDA functions is
shown in �gure 3.8.

Others

There are other CUDA kernels not strictly related to the inversions.

� skindataDeinit()

� CheckRe�ectanceScaling()

� SetMelaninType()

� removeMuam()

The kernel removeMuam() is used to combine absorption coe�cients multiplied with their absorption
values after an unmixing has been run, all the while removing one of the chromophores which originally
was a part of the unmixing process (i.e. melanin). This is used after a dermal unmixing in the melanin
inversion process to yield a dermal absorption which may be held constant while the epidermis is iterated.
This is initialized across pixels and wavelength like the inversion kernels, and loops over all endmembers
to sum the absorption coe�cients. Wavelength dependencies of the chromophore absorption coe�cients
are read in from a chromophore matrix allocated in the same way as for the unmixing functions. This
function is implemented in order to have a more �exible way of including other chromophores than having
to reimplement calcSkinData() every time and gradually make it slower and slower due to increased
register use, and also complicate the input arguments.
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Figure 3.8: The sequence of CUDA operations for the inversion of a hyperspectral line.
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Some preliminary support for changing the melanin type on the go is implemented, which will be discussed
later. The kernel SetMelaninType() is used to set all the pixels to have the same, initial melanin type.
The kernel CheckRe�ectanceScaling() calculates the scaling of the absorption at two wavelengths and
increments the melanin type based on some threshold, as determined from the �gure presented earlier
in 2.4.

All arrays are meant to be reused for each line of hyperspectral data since the allocation stage is time-
consuming. The kernel skindataDeinit() is therefore used to deinitialize the used arrays to the standard
values. The melanin coe�cient is set to 100 m−1, the bvf and oxy to 0.01 and 0.8 and the melanin type
to the Svaasand model.

3.5.4 Processing stages

Instead of calling the CUDA kernels manually, they are embedded in a hyperspectral streaming framework
developed by FFI to ensure modularity and reuse of code. A non-disclosure agreement has been signed
with FFI, and speci�c details around the implementation cannot be disclosed. The framework will have
processing blocks. Data is streamed in and out of the processing blocks through input and output ports.

The inversion of the re�ectance with respect to the chromophores is structured around a self-contained
processing block. This takes the hyperspectral re�ectance data as input and outputs either the unmixed
result or the dermal absorption coe�cient after a full inversion chain. Because of this, some of the
methods contained within are not reusable as new processing blocks. The individual �tting routines are
however implemented as self-contained classes which can, theoretically, be split o� as separate processing
blocks if desirable. The alternative was to split all sub-stages within the processing block as separate
processing block and let GPU data be streamed between the blocks, however

1. it would become needlessly complicated and require much redundant framework code

2. as the GPU memory allocation takes too much time, it would need to pre-allocate GPU memory
for the hyperspectral transferral between blocks, and this would cause potential deadlocks or the
like when handling when to terminate a piece of memory or not

3. the individual stages required a speci�c order of calculation, not requiring the �exibility served by
having individual processing blocks

4. the GPU would not be able to run any of the GPU-speci�c code in parallel, and as all the stages
encapsulate GPU code, having separate blocks becomes less meaningful

The individual stages within the processing block were therefore written as �exible as possible for po-
tential later breaking o� into separate processing blocks instead of writing it all as individual processing
blocks from the get-go. The latest CUDA compute capability has possibilities for running multiple
streams in parallel. It will in the future be feasible to invert multiple lines in parallel even if the individ-
ual stages depend on the former stage. Still, it does not warrant for the processing stage to be split up
in several processing stages yet and it is as such kept in one piece.

The processing block containing the inversion stage, from now on referred to as GPU-DM, is a C++
class derived from several classes in FFI's framework. There are some functions handling the framework
business dealing with input and output ports, but the important parts are the member functions handling
the inversions and the member classes handling the �tting routines.

There are also other processing stages for calibration, sample size massaging and visualization, shown
in �gure 3.9. These will in due course be presented. Noise removal is mentioned in the �gure, but
was beyond the scope of this thesis and never implemented. This particular processing stage will be
implemented by others after this thesis' work is over. Noise removal was instead performed in advance
on calibrated data.
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Figure 3.9: Real-time inversion chain from data source to visualization.

GPU-DM

GPU-DM is the only processing stage calling CUDA kernels. Its constructor therefore deals with much
of the GPU memory allocation. Here, the wavelength ranges for which unmixing is to be performed
are de�ned as input arguments into the class doing the unmixing itself, along with a de�nition of the
chromophores to be used in the unmixing of each wavelength range.

The processing block functions and associated, although separate, helper classes will be considered
together.

Inversion The di�erent parts of the inversion chain are implemented as separate member functions.

� invertRe�ectance() - called from execute() to invert the re�ectance into the dermal absorption
coe�cient

� invertMuad() - given the current optical properties, invert the dermal absorption coe�cient. This
calls the corresponding CUDA kernel, and the member function is mostly for encapsulating some
grid initialization and the call to calcSkinData(), avoiding code redundancy.

� invertMuae() - same as the above, only for the epidermal absorption coe�cient.

� detectMelaninType() - calls the CheckRe�ectanceScaling() kernel to decide melanin type.

� invertMuam694() - calls the combination of the above in the correct sequence to invert the melanin
content.

The execute() function, upon receiving hyperspectral data, calls invertRe�ectance(). This function
takes the re�ectance to be inverted as an input argument, which makes it able to invert a given re�ectance
array also outside the execute() function. This is used to display the spectrum along with the �t
when clicking on the ImageViewer widgets, to be later discussed. The invertRe�ectance() function
uploads the data to the appropriate GPU allocated array, and calls invertMuam694() to �nd the
melanin content. After this, detectMelaninType() is optionally called to detect the melanin type, and
subsequently invertMuad() called to invert the dermal absorption, before the �tting function of each
SCAFitting instance is called to unmix each desired wavelength interval.

The melanin inversion function calls invertMuad(), the SCA �tting function doFitting(), invert-
Muae() and single spectrum unmixing doOneChromUnmixing(). This is all done for a prede�ned
amount of iterations. If a printing �ag is set, for when the inversion function is called from outside the
execution loop, are di�erent properties printed to �le in-between inversions.
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Figure 3.10: Input and output ports of the GPU-DM stage.

SCA is applied on each prede�ned wavelength interval when the dermal absorption coe�cient has been
found, and the output is downloaded to the host and sent through the output ports. The sequence of
operations is the exact same one as previously described in �gure 3.8, although now the various CUDA
kernels are called from di�erent member functions of the class, for code reuse in the initialization of the
CUDA kernels.

Some potential for concurrency between the host and GPU is erased, since the CUDA kernels are not
called from the main thread but from separate member functions. If this had not been done, the host
could have prepared the initialization of the next CUDA function while the current CUDA function was
running. It will now have to wait for the CUDA kernel to end before exiting the calling member function
and moving on to the next, potentially creating some overhead between each CUDA kernel. However,
the potential lag is small enough to be negligible as there is no major CPU work to be done other than
the initialization. Readability can thus be prioritized over optimality.

SCAFitting Fitting using SCA is something which could have been implemented as a member function
in GPU-DM. However, it needed a larger set of GPU arrays and one set for each wavelength range to
be unmixed, warranting separation into a di�erent class, SCAFitting. It takes care of allocating its
GPU arrays as according to the space needed by the wavelength range to be unmixed, and creates the
chromophore array as according to the suppliedChromophores class instance. It needs some knowledge
of the pitch and threads per block used elsewhere, given as input arguments in the constructor.

The doFitting() function is used to call either of the CUDA kernels SCA() or SCAFast(), their
template arguments correctly initialized based on the number of chromophores present. Based on some
input �ags is the result of the unmixing combined to a dermal absorption coe�cient (minus melanin)
using the kernel removeMuam(), used for later inversion of epidermis, and it may also call the kernel
calcOxyBvf() to update the oxygen saturation and blood volume fraction in the input GPUSkinData
struct based on the unmixed results. This behavior does not strictly belong in this class, but it was the
most convenient with the chromophore absorption arrays being readily available in this class.

The member function re�error() may, based on the presently unmixed results, calculate the re�ectance
error using the kernel Re�IsoL2ErrorCheck(). This does not strictly belong to such a class either,
but as before, the chromophore arrays are readily available.

Framework sanity GPU-DM has quite a number of outputs, since unmixing is done at three separate
wavelength ranges, in addition to the dermal absorption being a valid output by itself along with the
melanin absorption and the melanin type. The input- and output ports are shown in �gure 3.10.

All the other stages are rather rudimentary, but will still be presented. None of these were optimized
much, as the focus point of this master's thesis was thought to be the above GPUDM class and the
rest only for convenience when investigating the results. Ideas and code will can still be used for further
work.

VisualizeStage

The class VisualizeStage is a stage for visualizing the results from GPUDM. This uses Qt [72], a
graphical toolkit, for handling a graphical user interface. Classes with a name beginning with a Q are
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standard Qt widget classes, for these, refer to the Qt documentation [72].

TheVisualizeStage::execute() function sends hyperspectral data to theVisualizeStage::imageStream()
function, which goes through the input data array, and assuming BIL interleave, writes the band values
to band arrays. These are sent to the Qt widget ImageViewer. The class ImageViewer displays the
input data as a QImage within a scrollbar area. The QWidget::paintEvent() function is reimple-
mented to zoom the image when the widget is resized. The eventFilter() function is installed as an
event �lter for the QLabel containing the displayed image. This catches mouse events. The mouse
cursor position is translated into image pixel coordinates and displayed in a QStatusBar below, while
mouse clicks trigger the mouseClicked() signal.

One of the ImageViewer instances across all VisualizeStage instances is chosen as the "main" image
viewer, usually the ImageViewer displaying the RGB image reconstructed from the hyperspectral data.
The mouseClicked() signals from all the possible image viewers are connected to the forwardSimu-
lation() slot of this instance, which has, as opposed to the others, kept all the previous hyperspectral
data saved. This tells the GPU-DM instance to reinvert the chosen hyperspectral line of data and plot
the chosen pixel to a pdf �le using gnuplot [31]. Keeping track of all previous hyperspectral data is not
something which belongs in a pure image viewing class and the behavior is not optimal. Possibly should
a new QObject derived class be created to receive all hyperspectral data and signals triggered by mouse
click events.

The class VisualizeStage was developed to handle both full RGB images and chromophore maps. This
is switched by a �ag in the constructor, along with some vectors de�ning which bands to display within
the chromophore arrays (i.e. which chromophores) and the maximum and minimum values which should
be used to normalize the incoming values to unity. The RGB option can be used to display three di�erent
chromophores in the same image by assigning a di�erent color to each. Monochromatic intensity values
are transformed to RGB colors linearly. 0 to 0.5 is mapped to blue, 0.25 to 0.75 is mapped to green, 0.5
to 1.0 is mapped to red. Applications like gnuplot have been used in this thesis to display chromophore
maps, not the visualization stage.

Some subclasses derived from the VisualizeStage class have been de�ned, RGBVisualize and Four-
TypeVisualize. The class RGBVisualize is used for showing the RGB image derived from raw hy-
perspectral data by setting the RGB value to be the square root of the corresponding band values, but
this is by large obsolete as Visualize can show a good enough RGB image by using unity normalization
on data output from the calibration stage. The FourTypeVisualize stage is used to assign an unique
color to 0,1,2,3 from a given array. This is used to visualize the melanin types.

The basic logic in the VisualizeStage::imageStream() function is adapted from code shared by Norsk
Elektro Optikk, as is parts of the QImage conversion in the ImageViewer class.

CalibrationStage

The class CalibrationStage is used to detect the re�ectance standard present in the scene and calibrate
the incoming hyperspectral data. Hyperspectral data is �rst collected in a bu�er for a certain amount
of lines, with the assumption that the calibration slab should be located within the area enclosed by the
lines. Choosing some bands, are the images contained within each band segmented according to some
chosen threshold values. The resulting binary images should in principle contain the calibration disc and
the sheet containing the light source variation for calculation of both.

There are, however, some changes which will be made to the setup in the future. The images which
were available used a paper sheet for light source variation calibration and a calibration disc for the �at
�eld calibration, but these two will in the future be exchanged for a re�ectance standard which is wide
enough to encompass the whole �eld of view so that calibration and light source variation calibration is
applied at the same time. Much e�ort was therefore not made to get the segmentation 100% correct,
only something rudimentary enough to locate the positions of the calibration elements well enough with
some tweaking of the threshold values.

A noise removal stage was not implemented. The images had to be de-noised before they could be
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analyzed. This calibration stage was therefore used only for calibration of raw data before writing the
calibrated, noisy data to �le. These �les were de-noised using other processing tools like ENVI, and the
calibration stage was dropped altogether in the later processing of the de-noised data.

In the future may the calibration slab be detected as a square object using the Hough transform. The
rudimentary methods for thresholding the image are discussed later.

The skin parts of the image are in addition segmented from the rest in theCalibrationStage::skinThresh()
function. This is needed to clean away the spectra not being skin so that the MNF transform will not
reconstruct the skin parts of the image from non-skin parts. It is di�cult to segment the skin from the
rest of the image purely based on the thresholding of some bands. This can, to a certain extent, be done
by knowing that the skin will absorb the most of the light at the lower wavelengths due to the high
melanin and blood absorption, but the light source used has a low signal to noise ratio here and areas
close to the skin might lie partially in shadow. Misinterpretation will occur.

The pixels in the middle parts of the line was instead meaned to yield a spectrum theoretically rep-
resentative of the whole line. Equation (2.46) was after this applied for each pixel using the obtained
spectrum. The resulting binary image was used to either include or exclude pixels in the image output
from the calibration stage.

The calibration itself is applied by dividing each radiance spectrum by the radiance spectrum obtained
from the re�ectance standard, divided by an appropriate factor de�ned by the re�ectance standard.

ChangeSampleSizeStage

GPU-DM will assume that all images have a sample size that is a multiple of the block size. Technically,
GPU-DM could take care of the up-sampling itself since it is presently the only processing stage calling
any CUDA functions, but this would require some CPU-based memory shu�ing before the CUDA kernels
are called. For a processing stage consisting mainly of CUDA functions, it is desired that the sequential,
CPU-based code takes as little time as possible and hinder the CUDA calling as little as possible. This
was therefore moved to a di�erent processing stage. More processing stages may be using CUDA in the
future, which would require that these processing stages also receive appropriately up-sampled images.

The hyperspectral image array is moved into an array containing a sample size being a multiple of the
block size. The parts of the memory now not containing any data is left uninitialized. In the real-
time production scenario, the sample size will always be appropriate, this was mainly implemented to
processed hyperspectral images saved on the hard drive.

PrintToFile

The PrintToFile stage is for saving the output from GPU-DM to disk. The chromophore values are
saved to a plain ASCII �le in a matrix format only for the convenience of this master thesis. There is
no bu�ering of the data before writing it to the hard drive.

3.5.5 CPU-DM

An implementation of the algorithms for the host was implemented early on, for testing the algorithms on
single spectra. The algorithms are more or less the exact same as for GPU-DM. This is used throughout
this thesis for single spectra �ts not extracted from GPU-DM. It also has a Qt GUI for �tting the
di�use re�ectance manually. CPU-DM's automatic two-layered inversion facilities were used to invert a
huge collection of di�use re�ectance spectra obtained from a psoriasis trial. These results will not be
presented here, as the hyperspectral images presented served as a similar performance demonstrator for
the inversion methods.
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3.5.6 Libraries and compilation

Libraries in use are

� GSL [55]

� Qt [72]

� CUDA [2]

� FFI's hyperspectral streaming framework

The hyperspectral inversion framework is compiled through Qt's qmake system by employing some hacks
to make the CUDA parts compile correctly against NVIDIA's nvcc utility and the other parts against
gcc. There are some incompatibility issues between Qt and CUDA that warranted an "abstraction layer"
between CUDA and Qt: A di�erent function is called to hook the CUDA processing stages to the rest
of the stages by inputting the input ports as input arguments and outputting the output port as the
output argument. Signals from Qt are piped through functions calls with no Qt awareness. It is likely
possible to mix Qt and CUDA in a better way.

3.6 Noise removal

Noise removal was applied using the MNF transform [36], with the noise being estimated by comparing
neighboring pixel values. For the most of the hyperspectral images in this thesis, ENVI [24] was used for
the forward and inverse MNF transform. The 12 �rst bands were selected for the inverse MNF transform
as bands beyond that was seen to contain too much noise. Only a subset of the image was chosen for the
MNF transform, if the image was not masked. Noise was estimated using the entire region of interest.
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Chapter 4

Results and discussion

A fast skin inverse modelling routine is necessary for the derivation of skin parameters to be viable for
real-time diagnostic instruments based on hyperspectral imaging. The results of the proposed method,
timing results through veri�cation on both real data and simulations, will here be presented.

4.1 General �tting results and choice of inverse model

Before the main results are presented, some intermediate results with regards to �tting will be presented.

4.1.1 Choice of melanin inverse model

The chosen melanin method is to �t dermis before �tting epidermis, and do this for two iterations. Here
the results leading up to this choice will be presented.

Indices

The fact that any method involving the iteration with respect to the melanin index or slope of the
re�ectance spectrum will surely fail has extensively been investigated in [10]. One thing is deoxy crosstalk,
another is the lack of one-to-one correspondence. An example of a potential mis-estimation is shown in
�gure 4.1. The two- and three-layered isotropic di�usion model has here been �tted to the measured
spectrum manually. The measurement has an erythema index of 35.76 and a melanin index of 7.78.
The "perfect �t" has an erythema index of 38.87 and a melanin index of 7.44. The less perfect �t has
an erythema index of 37.37 and a melanin index of 7.83. The melanin- and erythema indices match
for the both cases, but only one of the �tted spectra has an acceptable melanin absorption leading to
�ttable parameters. Even here is it slightly too large. In particular, the two-layered model will not be
able to output the correct melanin using this method. The three-layered model can potentially output
the correct parameters using the method, but seeing as the two-layered model is a possible solution for
the three-layered model when the parameters are set equal, there will be multiple solutions. The fact
that the indices match for the "perfect �t" is also no surprise as the spectra are the same in the relevant
wavelength ranges. Iterating with respect to the indices will therefore at best be unpredictable.

It will later be seen (and has previously been stated) that the properties at the di�erent layers will in�u-
ence di�erent parts of the spectrum. Stamatas and Kollias' method uses the linear �t of the re�ectance
spectrum to quantify the melanin, and corrects this melanin using a blood quanti�cator gained from
the shorter wavelengths. Seeing as the properties will be gained from two di�erent penetration depths,
this should be di�cult when the properties down to each penetration depth are not the same. Kollias'
methods were also seen to not fare better in [10].
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Figure 4.1: The inversion using melanin and erythema indices of a measured spectrum obtained from
the back of the hand of an individual with Fitzpatrick skin type IV. The three-layered �t was simulated
using oxy1 = 0.2, oxy2 = 0.55, bvf1 = 0.025, bvf2 = 0.06, µa,m,694 = 700 m−1 and the thickness of the
upper dermis layer set to 390 µm. The two-layered �t was simulated using oxy = 0.95, bvf = 0.02 and
µa,m,694 = 1350 m−1. Both simulations were done using the isotropic di�usion model.

The index methods may therefore safely be laid aside for the advantage of other methods.

One-layered method

Just as the two-layered model may �t subranges of the spectrum, a one-layered model may also achieve
the same. This method has the advantage of using a mathematically far simpler model. The melanin
may be decoupled from the blood e�ects by inverting µa and performing a spectral unmixing. Instead
of being contained in a thin slice at the top of a skin model the melanin will now be smeared across a
semi-in�nite layer and thus be severely underestimated. This method cannot be used for much else than
providing a �rst, low estimate for the melanin absorption, if used at all.

Epidermis method

The next step is to �t only epidermis in a similar way to the one-layered method. This will ensure a
decoupling of the blood from melanin in a similar way, although with the resulting melanin having the
correct order of magnitude. The properties are now not �tted inside a semi-in�nite layer, but in the thin
slice at the top of the skin model. The problem with this method is that all the properties are �tted
inside a thin slice at the top of the skin model, calling for a highly unphysical situation. It will be seen
that the situation will be unphysical even when the �tting is done at the longer wavelengths where the
absorption of the other chromophores is low.

In �gure 4.2, the correct melanin absorption is subtracted from the derived, epidermal absorption and
compared to a blood composition matching what should be present.

The required blood absorption when placed in epidermis instead of dermis is o�, slightly sloped in
the opposite direction of the slope of melanin. The method should in theory therefore consistently
underestimate the melanin, as is seen in �gure 4.3, since the melanin will be forced to be lowered in order
to �t the blood absorption coe�cients. However, for real data, the melanin would be overestimated using
this method. This would happen in the presence of a di�erent scattering than the assumed scattering, but
also with no obvious telltale signs of anything being wrong. It did in particular fail for spectra obtained
from psoriasis-a�icted skin. The method was therefore abandoned due to instability and uncertainty.
The di�usion model will also be less than valid when this much absorption is placed within a thin slice.
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Figure 4.2: Resulting absorption spectrum when all absorption is �tted to epidermis. The epidermal
absorption coe�cient is �tted to a simulated di�use re�ectance spectrum from the isotropic two-layered
di�usion model, oxy = 0.8, bvf = 0.04 and µa,m,694 = 300 m−1. The dermal absorption was set to
25 m−1 in the inverse model. The melanin absorption has been subtracted from the derived epidermal
absorption coe�cient, and the blood mixture represents a typical blood absorption.
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Figure 4.3: Melanin output results using the epidermal �tting method. All chromophores are �tted to
the derived epidermal absorption. The forward model to be inverted was simulated using the three-
layered isotropic di�usion model by varying the oxygenation at the �rst and second dermis layer between
0.40 and 0.80, the blood volume fractions between 0.01 and 0.06 and the thickness of the �rst dermal
layer between 200 and 500 µm. Fitted at 700-800 nm. The dermal absorption was set to 25 m−1. The
maximum and minimum is plotted to show the stability of the inverse approach for a set of di�erent
blood parameters for the same input melanin.
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Apparently, these results will seem to be better than the later presented dermal method results, but this
will partially be due to the varied parameters being far less extreme in �gure 4.3.

Dermis method

The next ad-hoc upgrade of the method must

1. Decouple the melanin and blood using spectral characteristics where deoxy crosstalk is avoided
(solved by the one-layered approach)

2. Place the melanin in a thin slice at the top to ensure a valid order of magnitude (solved by the
epidermal method)

3. Place other chromophores in a semi-in�nite layer to ensure a valid order of magnitude

The next proposal is to use the two-layered model and �t melanin and other to chromophores to dermis
before moving the melanin to epidermis. This will theoretically ensure that each individual chromophore
will be placed in the correct layer and have the correct order of magnitude during the �tting.

The epidermis method will, as indicated above, have problems due to the strong presence of other
chromophores in the wrong layer. The dermis method will, on the other hand, not experience a strong
presence of the dermal chromophores in the wrong layer but initially instead experience the missing
presence of melanin in the upper layer. Melanin is essential for the situation to become physical. Melanin
will block light from reaching down into the layers and will cause less light to be scattered and absorbed
down in the lower layers. With the melanin initially set to a low value, the dermal absorption coe�cients
will represent a less physical situation in which absorption coe�cients of the di�erent chromophores may
not be �tted in a meaningful way. Melanin is �tted along with the rest and then removed before the
epidermis is �tted, but the melanin may be mistaken as something else and thus lead to a too-high
estimate of the melanin for which the algorithm easily may not escape.

There are mainly two concerns:

� Too much light is let through epidermis, causing the absorption curves to be a�ected by a higher
scattering

� The melanin curve is corrupted by being placed in the wrong layer and a simple least squares
approach is no longer viable

These concerns were mitigated by performing two iterations of the method, using the obtained, increased
melanin estimate in the next iteration. The problem is to correct for the erroneous chromophore curves
in dermis, likely to not be as bad as when placed in the wrong layer, and correcting for the corrupted
melanin curve. The problem is reduced to correcting for the corrupted melanin curve, given that the
other chromophore curves are not too corrupted by the scattering errors. This is an easier problem
than correcting for all the chromophores placed wrongly in epidermis. Using this method, only one
chromophore has to be corrected, and it may be that the corruptions of the other chromophores can be
moved into an accumulated corruption of the melanin curve.

Figures 4.4 and 4.5 show the derived dermal absorption for simulated data when less melanin is assumed
in epidermis and the correct blood volume fraction is assumed for scattering. The derived absorption
is higher than the actual absorption input into the model. This is expected since the absorption in
epidermis is set lower. The di�erence, on the other hand, is not the simple melanin curve (refer to �gure
2.5) but something that seems to be convolved with the blood absorption curves. The bump reminiscent
of deoxy hemoglobin is present in what should be the melanin contribution to the absorption spectrum
(refer to �gure 2.2). It is also seen that dividing the di�erence by the wavelength-dependency of the
melanin curve results in a wavelength-dependent melanin coe�cient. This is strongly in favour of the
melanin curve being convolved with the blood absorption curves when placed in the wrong layer.

It is likely that the blood will be over-compensated in the �rst iteration because of the presence of deoxy
hemoglobin in the absorption curve, and the melanin likewise under-compensated when placed in the
top layer. The resulting wavelength-dependencies of the melanin coe�cient is shown in �gure 4.6 when
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Figure 4.4: Derived dermal absorption when initial melanin content is low, low oxygenation. Input
re�ectance spectrum was simulated using the isotropic di�usion model from the two-layered skin model
using oxy = 0.4, bvf = 0.10, µa,m,694 = 300 m−1. The melanin coe�cient µa,m,694 is initially assumed
to be 100 m−1 in the epidermal layer of the inversion model.
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Figure 4.5: Derived dermal absorption when initial melanin content is low, high oxygenation. Input
re�ectance spectrum was simulated using the isotropic di�usion model from the two-layered skin model
using oxy = 0.8, bvf = 0.10, µa,m,694 = 300 m−1. The melanin coe�cient µa,m,694 is initially assumed
to be 100 m−1.
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Figure 4.6: The wavelength-dependency of the required melanin coe�cient when parts of the melanin is
placed in the dermis instead of the epidermis for di�erent melanin coe�cients for epidermis. Simulated
using an input re�ectance derived from the isotropic di�usion model, oxy = 0.5, bvf = 0.10, µa,m,694 =
700 m−1.

the actual absorption is subtracted from the derived absorption, after the epidermal absorption is set to
be less than the actual epidermal absorption.

The required melanin coe�cient in dermis displays less similarities to the hemoglobin absorption curves
as the epidermal melanin absorption approaches the actual value. The �t should therefore become far
better after the �rst iteration of the method.

The melanin absorption curve placed in the wrong layer will mostly, at this wavelength interval, be
a�ected by the deoxy and oxy hemoglobin absorption. Each will in�uence the melanin to be underesti-
mated: the oxy absorption will in�uence it to be lower, as the oxy hemoglobin absorption curve slopes in
the opposite direction of the melanin absorption curve, while the deoxy absorption curve technically can
in�uence the melanin to be higher than it actually is. However, the deoxy absorption curve has a distinct
peak at 760 nm which should in�uence the �tting algorithm to compensate with deoxy hemoglobin rather
than melanin, although they both slope in the same direction.

In the �tting, the erroneous dermal absorption is assumed to follow a linear scheme, µa,d(λ) = µa,oxy(λ)foxy+
µa,deoxy(λ)fdeoxy + µa,mel(λ)fmel, but it is clear that µa,mel(λ) must be exchanged for a convolution
µa,mel(λ)∗h(λ) for it to be strictly correct. The function for which the melanin has to be convolved with
is not known, although the simulations above indicate that it should be some combination of the deoxy
and oxy absorption curves. The simplest solution will be to multiply the absorption curves against each
other to generate two "new" chromophores to be �tted instead of the pure melanin curve.

This did not work, the dermal absorption was �tted as 100% melanin, and simple unmixing was therefore
used.

For the choice of wavelength ranges, it is clear that 730 to 830 nm is the best choice. This is among the
only wavelength ranges with no obvious crosstalk potential between the parameters, as seen in �gure
2.2. The wavelength range above 600 nm is better than the shorter wavelengths since the absorption
of all other chromophores except for melanin is uniform and low enough for the presence of melanin to
be noted. It will be seen that 730 and 830 is problematic due to an erroneous scattering assumption
or other errors. The other choice, 620-700 nm is documented to have too severe crosstalk between
melanin and deoxy hemoglobin and is no better. Given that the error someday is resolved, 730-830 nm
will also represent the range for which the di�usion model is the most valid due to the low absorption.
On the other hand does this wavelength range represent a high penetration depth. The two-layered
model will have di�culty �tting the parameters here when the properties at the di�erent layers the
light penetrates are extremely di�erent. The range 530-590 nm has a very distinct spectral di�erence
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Figure 4.7: The root mean square error between the measured spectrum and simulated two-layered,
isotropic re�ectance spectrum as a function of Bd and µa,m,694 for the spectrum shown in �gure 4.1.
Oxygen saturation is set to 60%.

between the blood absorption spectra and the melanin absorption in addition to a lower penetration
depth, but methemoglobin is on the other hand too similar to melanin for those cases where there is a
methemoglobin presence. 450-530 nm does seemingly have spectral features for all chromophores being
distinct enough for melanin decoupling, but with betacarotene and bilirubin being present and the fact
that the melanin presence in dermis will be convolved by the other chromophores is it uncertain how
much better this wavelength interval would fare. The di�usion model will also be less valid here.

The wavelength 730 nm is chosen as the lower wavelength as an even lower wavelength would give more
emphasis on the parts of the deoxy absorption curve being similar to the melanin absorption curve instead
of the deoxy maximum. Crosstalk resulting in melanin overestimation was seen for a slightly lower start
wavelength, eliminated when the deoxy maximum was given higher emphasis. The wavelength 830 nm
is chosen as the upper wavelength to keep the interval large enough. For this wavelength range is the
water absorption also constant enough to be included in a freely varying constant.

The performance of the chosen melanin method will be evaluated later in this thesis.

Summed up, this method will still have deoxy hemoglobin crosstalk, although in the opposite direction.
Melanin will be underestimated instead of being overestimated. This should be easier to control as such
cases can be detected by the prominent deoxy hemoglobin absorption maximum.

Multidimensional �tting

With the ad-hoc methods above and their obvious and noted problems, the question remains why one
does not use some multidimensional �tting scheme to �t both blood and melanin at the same time in
their respective layers.

In �gure 4.7 is the root mean square error between the simulated and a measured re�ectance plotted as a
function of the blood volume fraction in dermis and melanin absorption in epidermis. The oxygenation is
not varied, which it would in a multidimensional �tting setting, making the above plot slightly misleading.
On the other hand is the chosen oxygenation likely close to the value it must attain. Seemingly are
there multiple solution in a sadle point, but minute di�erences along the sadle point will make a �tting
algorithm converge to around 500 m−1 for the melanin absorption, provided the error surface as a function
of the oxygen saturation is well-behaved. Judging from this is such a multidimensional �tting entirely
possible and even "easy" as there are many extensively researched solutions to the multidimensional
�tting problem and even entire �tting libraries. For instance may Levenberg-Marquardt optimization
[71], conjugate gradient methods [71], simplex methods [71], simulated annealing [71], genetic algorithms
[71, 112] or similar be used. There is no question that such methods will be able to �nd good results,
especially if box constraints can be implemented. Such methods may fare less well when implemented for
the three-layered model since there are too many parameters to vary, and the root mean square error is
not a good enough objective function. However, for a smaller interval and using the two-layered model,
the best �t for the melanin can be found.

63



The main reason is the implementability in CUDA and real-time requirements. Most methods with
fast convergence will require the calculation of the derivative with respect to all parameters. For every
iteration and for every wavelength, the derivative of the di�use re�ectance with respect to both the
scattering in dermis, the absorption in epidermis and the absorption in dermis must be calculated,
in addition to the re�ectance itself. It is known that these operations require much register space,
warranting that each operation is implemented as a global kernel. Data must therefore be read in and
out of global arrays several times for each iteration. The iterations must be parallelized across pixels,
since the iteration will be done with respect to the accumulated error. This will increase either the
number of derivatives that must be calculated within each kernel or increase the global memory reads.
The number of iterations must hence be initialized from the host. The number of iterations required for
a good estimate will depend on the starting point. Some of the methods will also require line searches
for each iteration, which will be done di�erently for each pixel. The most of the gradient based methods
will require large matrix multiplications or even matrix inverses [71], though matrix inverses can be
approximated using other methods [71].

In short, multidimensional �tting will be di�cult to implement for this particular problem, and therefore
has ad-hoc methods been used. If something is wrong or something is under- or overestimated may
this also be detected midway through the proposed methods by evaluating the dermal and epidermal
�ts. This would not be as possible for a multidimensional �tting. Though this has not been used for the
chosen method as it stands, the method can potentially be modi�ed to use spatial information in addition
to the spectral information in the individual, intermediate spectral unmixings using common methods
present in the hyperspectral community. This is far more di�cult to achieve for the multidimensional
�tting.

The ad-hoc methods are chosen not because they necessarily are better methods giving better answers,
but rather because of performance issues. Tests were also run using the three-layered model in a �t-
ting algorithm using the root mean square error as an objective function (not shown here), and while
the spectra seemingly matched, there were tell-tale signs that some parameters either were under- or
overestimated.

4.1.2 E�ects of too high/too low melanin

In �gure 4.8 are two-layered �ts for the spectrum seen in �gure 4.1 shown for a too low melanin estimate,
the approximately correct melanin estimate and a too high melanin estimate. The overestimation- or
underestimation will have a discernible impact on the simulated spectrum. It is most easily spotted for
the shorter wavelengths, where the simulated spectrum has to intersect the measured spectrum due to the
scaling of the absorption maxima not being �ttable. For the longer wavelenghts, the discrepancy cannot
be spotted within the �tting range, although the extrapolation towards the even longer wavelengths will
show whether the �t is good or not. For the lower melanin estimate is deoxy hemoglobin overcompensated
to rectify the missing absorption. For the higher melanin estimate is deoxy similarly underestimated in
order to �t the absorption to the reduced dermal absorption, as oxy hemoglobin has a lower absorption
than the deoxy absorption. It should be noted that apart from the di�erences in blood volume fraction
are the oxygen saturation values comparable, but it has been seen for other spectrum �ts that the
oxygenation would attain extremely (close to 1) large values for melanin overestimation, and extremely
small (close to 0) for too low melanin underestimation.

4.1.3 Three-layered �tting

In �gure 4.9, the isotropic, three-layered di�usion model is run for di�erent oxygen saturations while
keeping all other parameters constant. The di�erent oxygenation values at the di�erent layers are
a�ecting di�erent parts of the spectrum due to the penetration depth in each part, as was expected.
It must however be noted that the depth of upper dermis is set exceedingly large for demonstration
purposes. The oxygen saturation values are also extreme. Such a clear divide between the parts of the
spectrum representing di�erent penetration depths will not be seen for other spectra with a more shallow
depth of the upper dermis.
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Figure 4.8: The e�ect of having a wrong melanin estimate on the rest of the two-layered re�ectance
�tting. The input spectrum is the same as the one presented in 4.1, Fitzpatrick skin type IV.
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d2 = 840 µm.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

400 450 500 550 600 650 700 750 800 850

R
e�
ec
ta
n
ce

λ (nm)

Measurement
Three-layered model �t

Figure 4.10: Manual isotropic di�use re�ectance model �t to a spectrum from the palm of the hand of
an individual with Fitzpatrick skin type IV. Parameters are µa,m,694 = 350 m−1, oxy1 = 0.71, oxy2 =
0.83, bvf1 = 0.035, bvf2 = 0.13, d2 = 230 µm.
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A typical three-layered model �t is shown in �gure 4.10. It must be stressed that this is �tted manually.
The �t is not the objectively best �t possible as the re�ectance curves intersect at 650 nm, but it can
be used for demonstration purposes. It is possible to get a good �t at the shorter wavelengths, but at
the longer wavelengths is the �t far worse. Neither is it possible the bridge the remaining gap. This is
a paradox as the di�usion model is more accurate at the longer wavelengths. Water absorption is not
included, but had it been included would the �t have become even worse as the wavelength-dependency
of water absorption does not match the remaining absorption exactly. This can be due to the water
absorption being very low at this wavelength range and the exact spectral characteristics being di�cult
to measure, but as the water absorption is low should it not have much impact on the re�ectance
spectrum.

A more likely explanation is the scattering. The scattering model is the one presented by Saidi et al.
[82]. This scattering function was mainly found by �tting an experimentally found scattering function
to a model from around 400 nm to 700 nm - exactly in the area where the �t is optimal. Above 700 nm,
the �t becomes worse. In addition, the Saidi scattering follows a parabolic function, but several sources
[116, 83, 58, 103, 8] will report the reduced scattering coe�cient to be monotonically decreasing with
increasing wavelength from 400 to 1400 nm. Saidi's reduced scattering coe�cient will, too, exhibit this
behavior for the chosen Rayleigh and Mie coe�cients, but above a certain wavelength this is no longer
valid. When converting to unreduced scattering coe�cients, they will also no longer be monotonically
decreasing. There is less literature available with regards to whether or not the non-reduced scattering
coe�cient should be monotonically decreasing.

Similar behavior will be seen when using the two-layered model to �t the measured spectrum across this
entire wavelength range. Is the wavelength range split in two parts are the �ts apparently better, but
this will not necessarily be due to the situation being more physical. The point being, the success of the
two-layered inverse model cannot be evaluated only by comparing the �t against the measurement for
the speci�c wavelength range, but it should also be extrapolated to the neighboring wavelength ranges
to see how well the model fares outside of the �tting range. Anything can be �tted to a short wavelength
range.

4.1.4 Wavelength ranges for two-layered �tting

The chosen wavelength ranges for the two-layered absorption �tting were 500-590 nm and 620-730 nm,
alternatively 690-820 nm. In addition was 460-530 nm used for comparison with 500-590 nm and for
betacarotene- and bilirubin determination.

The wavelength range 620-730 nm was chosen primarily because the wavelengths above this range will
have the problems noted above, even though it is a paradox that this wavelength range still is used for
the melanin determination due to it being the only relatively crosstalk-free range. The wavelength ranges
were elsewise chosen purely based on how well the data was �tted by inspecting several spectra. A plot
of the penetration depths for two typical spectra is shown in �gure 4.11.

For the interval 500-590 nm, the spanned penetration depth from maximum to minimum penetration
depth will respectively be 95.1 µm and 68.9 µm for spectrum 1 and 2 displayed in the above �gure. For
the interval 620-730 nm for spectrum 1 and 2 respectively, this is 194 and 168 µm. For the interval
690-820 nm, the penetration depth range for spectrum 1 and 2 is respectively 152 and 160 µm. Fitting
within a wavelength range across a penetration depth range of 200 µm should generally give a good �t,
and can serve as an explanation why it is not possible to �t the entire wavelength range for the longer
wavelengths, in addition to apparent scattering problems. This penetration depth range will be far above
200 µm, and apparently not be uniform enough.

Each wavelength range has several �tting problems. 620-730 nm has severe crosstalk with melanin, and
when melanin is slightly underestimated, the deoxy hemoglobin will be severely overestimated, as was
seen. With one of the methemoglobin peaks being within the wavelength range should methemoglobin
have been easily detectable, but it seems to be that methemoglobin even here will overcompensate
for something. The shorter wavelength ranges will experience crosstalk between methemoglobin and
melanin when melanin is underestimated, and the spectrum �ts will apparently be "good" due to the
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Figure 4.11: The penetration depth as a function of wavelength for the measured spectra shown in �gure
4.10 (spectrum 1) and 4.1 (spectrum 2).

mis-compensation of methemoglobin. The constant, otherwise set to 25 m−1 in the forward model, was
allowed to vary freely, and would vary from wavelength range to wavelength range in a non-consistent
manner. This may be a way for the two-layered model to approximate the semi-in�nite layer which
should have been present beneath the properties down to the penetration depth. For example may
betacarotene only be �tted to the spectrum when the constant is set to something else than 25, and
betacarotene will generally be have the largest impact while being present in epidermis.

Lastly, the scattering is not allowed to vary, and this will introduce errors in the �tting which may
be mistaken as something else. How this should be recti�ed when this method and not a multi�tting
approach is used is not clear. The derived parameters will be in�uenced by the erroneous scattering and
cannot be used to rectify the scattering. In addition, the refraction index at the di�erent layers will vary
spatially and from skin sample to skin sample. In the di�usion model is this assumed to be constant
throughout all layers for simplicity in the boundary conditions, and this will introduce �tting errors.
This will be investigated in more detail later on.

4.2 Time analysis

Here are the timing results presented.

4.2.1 Optimization

The running times for some CUDA kernel calls for the two GPUs in use are presented in table 4.1. The
time reduction is given as the di�erence between the new and old running times as percentages of the old
running time, in order to have a common number of merit for all kernels regardless of original running
time. This is not a very good �gure of merit, but can be used for comparisons.

As is seen, the running time, not unexpectedly, is lower on the newer graphics card but not by a large
amount. The total running time on the older GPU was 25 ms, while the higher-end graphics card has a
running time of 7 ms. The age gap between the two graphics cards is about 2 years, and though they
are developed for di�erent applications, for such a large upgrade the di�erences in running time should
be far more.

The new graphics card has a larger amount of registers. This is well received by Re�InvMuad and
Re�InvMuae as these have a performance boost of around 80% as seen in the table. The limiting
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Table 4.1: Comparison of running times for some CUDA kernels across graphics cards.

Operation Quadro FX 3700M GeForce GTX 670 Time reduction
(ms) (ms) (%)

Invert µa,d, 28 bands 0.68 0.10 85
SCA, 28 bands, 4 endmembers 1.10 0.51 54
Invert µa,e, 28 bands 2.51 0.64 75
Monochrom. unmixing, 28 bands 0.02 0.02 0
Invert µa,d, 160 bands 3.74 0.50 87
SCA, 31 bands, 5 endmembers 1.52 1.09 28
SCA, 20 bands, 7 endmembers 2.42 1.83 24
SCA, 26 bands, 5 endmembers 1.49 1.08 28

factor for these two were the reuse of computations and temporary saving of variables and the register
overhead, which is lessened on the new GPU. There are not many ways to optimize this further as all
the computations are needed. The only way to optimize is to rearrange and try to reuse as much of the
calculations as possible, but major optimizations have already been put through.

Performance was not found to increase by increasing the number of threads per block. This is due to
the amount of registers in use compared to the amount of registers being available still being high.

SCA, however, does not have the same performance boost. The amount of shared memory has not
changed much for the newer GPU [2]. All of the arrays are saved in shared memory for faster memory
access, but evidently, this strategy is not scalable. Saving the matrix multiplication STS to shared
memory is reasonable as this is used often and across threads. Saving the fractions to shared memory is
dubious. This is used to reduce overhead across iterations, but the global memory lag it is supposed to
hide will be exchanged with a shared memory lag that cannot be hidden away. Too much shared memory
is used on a per-block basis for the GPU to be able to exchange one block with another to hide away the
memory lag. It is possible that the GPU, on the other hand, would be able to reduce global memory lag
with a higher thread occupancy when the shared memory strain is reduced. The investigation of this is
shown in table 4.2.

Table 4.2: Comparison of running times for di�erent variants of SCA either allocating all arrays in shared
memory or using the global memory. 20 bands and 7 endmembers.

Variant Running time per line Theor. occupancy Occupancy Shared memory/block
(ms) (%) (%) (kB)

w/ shared memory 1.83 23.4 11.1 12.9
w/ global memory 4.81 93.8 11.2 0.40
300 threads/block 4.82 93.8 15.6 0.40
800 threads/block 5.11 78.1 38.7 0.40
800 threads/block, 4 lines 1.53 78.1 44.6 0.20

Less use of shared memory increases the occupancy, but the running time increases. This will be due
to the global memory being far slower. Are the number of threads per block increased is the running
time not readily decreased, but this is due to lower multiprocessor utilization, as the number of blocks
will not match the number of multiprocessors. Are multiple lines inverted, in order to have a number of
blocks matching the number of multiprocessors, is the running time actually decreased compared to the
version using shared memory.

The above results were run for compute capability 1.1. The newer GPU also has support for compute
capability up till 3.0. The running times for the di�erent compute capabilities is shown in �gure 4.3.
The main thing that is the most apparent here is that the thread- and block distribution is no longer
optimal, and the running times are higher with increasing compute capability.
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Table 4.3: Comparison of running times for SCA (20 bands and 7 endmembers), Re�IsoL2InvMuad (160
bands) and Re�IsoL2InvertMuae (28 bands) for di�erent compute capabilities.

sm *InvMuad *InvMuae SCA
1.1 0.644 0.503 1.827
1.2 0.644 0.503 1.827
1.3 0.644 0.503 1.827
2.0 1.351 3.803 3.191
2.1 1.357 3.809 3.177
3.0 1.611 3.780 3.075

For now has there been no need for features available from higher compute capabilities, and the program
has been kept to 1.x regardless that the GPU in use has support for a higher compute capability.

A version of SCA using the registers instead of shared memory was proposed. The result is shown in
table 4.4.

Table 4.4: Comparison between SCA and SCAFast, 20 bands and 7 endmembers

Function Time Shmem Registers Occ. Theor. occ.
(ms) (kB) (%) (%)

SCA 1.824 12.9 18 11.1 23.4
SCAFast 0.321 0.43 63 10.9 46.9

The register usage becomes very large with this change, comparable to the register usage of InvMuae.
The performance boost is on the other hand huge, but the maintainability of the code becomes worse.

There are two di�erent extremities present - one of the methods uses excruciatingly much shared memory,
while the other method puts a huge strain on the registers. Straining the registers seem to result in a
more optimal function than straining the shared memory. This will partially be due to the fact that the
registers are far faster than the shared memory.

Some concern may also be directed towards the fact that the thread distribution might not be optimal.
The performance boost of the monochromatic unmixing (MultVector()) will for example be negligible
since the workload in each kernel is low and the most of the computation time will be due to global
memory access. This would scale better with hardware if there was a higher threads per block, as was
seen in table 4.2.

ISRA was found to use 2.5 s for the unmixing of one line at all three intervals, using 1000 iterations.

4.2.2 Real-time analysis

The total running times, after optimization and on the newer GPU is shown in table 4.5.

The total running time is 3.5 ms, leaving 26.5 of GPU time for other use.

Total timing results as measured from the host are shown in �gure 4.12. The inversion by itself is
apparently stable, being able to invert the hyperspectral line of data well within 10 ms every time, as
seen in �gure 4.12a. Posed by some interference from other application does the inversion itself stay
constant, but the pull requests for data from the input port becomes unstable, see �gure 4.12c. With
this many cores is it unlikely that the interference is due to CPU usage, especially as the total inversion
time stays constant as if it does not have to wait for kernel launches. It will rather be due to hard drive
interference as the setup reads data directly from the hard drive instead of pulling it over the TCP/IP
protocol from a di�erent computer. This causes interference and lags in the data streaming from the
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Figure 4.12: Timing results, time di�erence measured from the start to the end end of the inversion
block for each line.
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reading block to the inversion block. Memory usage is almost maximized and swap is likely to be used,
straining the hard drive even more when posed by interference.

This behavior is also seen in 4.12d. Here, the data is saved to hard drive in addition to being visualized.
The data saving is ine�cient since it goes through the arrays one by one position as it writes them to
separate �les. This strains the CPU. There will be a lot of hard drive read/write requests when data
thus is written from separate threads all the while being read from the same hard drive. The �le writers
will have to wait for the hard drive, the hyperspectral reader will have to wait for the hard drive, and
all the while must the inversion block wait for data to appear in the bu�er of the hyperspectral reading
block and wait for the �le reader to eat away at the inversion block's output bu�er. Some of this will
be alleviated when data is streamed from TCP/IP instead of being read from the same hard drive some
block also is writing to, but some kind of bu�ering will still be necessary.

The times are slightly more stable with no �le writing in place, seen in �gure 4.12b. There is one
spike, due to a switch between the accumulated bu�er of the calibration block to pulling data from the
hyperspectral �le reader. Push requests are far smaller than pull requests. This will also be due to the
implementation of the calibration block. It runs through some slow for-loops. This is handled by at most
one CPU core. The CPU core will lag behind the speed of the inversion block, and pull request times
become signi�cant.

The CUDA inversion implementation is, even with uploading and downloading to and from the GPU,
well within the deadline. The problems are the other processing blocks as they are unstable and some
of them too easily dependable on the response times of the hard drive. The implementations were
mainly developed for demonstration purposes and convenience, but before they can be included in a
real-time environment, they must be optimized in better ways. Either may some of the nested for loops
be exchanged by non-nested for-loops, or the for-loops may be exchanged by other strategies altogether
like multi-threading on the CPU using openMP [66] or even using the GPU. CUDA should in principle
be reserved for the heavier activities like inversion, but as is seen is the inversion �nished well within 4
or 5 ms, and this is one of the most heavy operations possible. Any other operation will be far faster.
Most of the unpredictability is also due to hard drive response times, alleviated when data is streamed
over the TCP/IP protocol and memory use is more optimized.

A similar implementation on the host, though using Lawson-Hanson for �tting instead of SCA and with
other di�erences enough to not make the situation comparable, uses 172 ms for the inversion of exactly
one spectrum. For the inversion of 1600 spectra would the CPU version use about 4 minutes. Even if
the implementation somehow was optimized down to 10 ms, it still would use 16 s per hyperspectral line
of data.

It should be apparent that this is no real-time system, it is far too unpredictable in its behavior. The
framework is partially at fault since it is no real-time system for ensuring real-time behavior, but the
implementations are also at fault since they are not warded against hard drive interference. The in-
terference on the CUDA kernel launches is minimal, although it does exist. This is to be expected, as
the CUDA kernels are called from a non-real-time host where kernel launches must wait for scheduling
even though the GPU is free for computation. There does exist implementations [45, 23, 81] for ensuring
proper real-time behavior for CUDA, as such behavior is not inherent in any operating system, but as the
framework itself is not real-time will not this help. With an arbitrary number of processing blocks can
real-time behavior never be ensured, as the speed of each processing block will be limited by the slowest
processing block due to the processing blocks being chained together. Using hard real-time behavior will
also be di�cult as long as visualization and hard drive writing is performed on the same computer as
the computations itself. Hard real-time behavior will make the computer prioritize the processing blocks
over trivial matters like graphics processing.

The framework can on the other hand easily be made to forward the data to and from a TCP/IP pro-
tocol, and visualization and hard drive saving need not be done on the same computer as the processing
computer. Provided that more proper real-time behavior is desired, is this the only way to go other
than employing gigantic bu�ers to alleviate the hard drive stress. Other than this is the processing
requirements far within the power of 8 CPU cores, even in its unoptimized form. Of course, even if the
processing is moved to a di�erent computer are the hard real-time requirements not ful�lled automati-
cally, but the hard real-time requirements can be ful�lled provided that hard real-time functionality is
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implemented in the framework and the work described in [45, 23, 81] is used.

While all tasks technically are event-triggered, they will in reality be periodic, which should make them
schedulable. All tasks will, however, have the same deadline, as each task is dependent on the former
and all will have the same release times. The deadline requirements are with respect to the visualization
results, which is dependent on all former stages. The problems described above will mainly be due to
input jitter, as a new line of data will not necessarily arrive consistently at every 30 ms interval. This
will, as already mentioned, be alleviated when data is delivered directly from the data over TCP/IP. The
task at hand is schedulable, but the real-time framework is not able to give any real-time guarantees
other than guaranteeing that the slowest processing block will slow down the entire chain. Generally
will no operating system guarantee hard real-time behavior in any case. Such operating systems will
generally be designed for embedded systems which cannot be allowed to fail, not hard hyperspectral
applications like this.

Still, hard real-time is not a requirement. The requirement is a fast computing requirement. The lines
will only be bu�ered if the deadline is missed. The visualized results will still be shown to the medical
personnel and experienced as being as fast as the camera is scanning. The behavior seen above is
therefore well within the requirements, even if it is hairy and not strictly real-time. The methods in use
are deterministic and the total GPU time will stay the same regardless of image di�culty.

73



Table 4.5: Total running times for the inversion of one hyperspectral line of data

Function Time Accumulated time
(µs) (µs) )

C
a
lc
u
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te

m
el
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n
in

co
e�

ci
en
t calcSkinData 20 20

InvMuad 97 118
SCAFast 198 316
RemoveMuam 13 328
InvMuae 643 972
MultVector/StraighLine 19 991
calcSkinData 17 1007
InvMuad 98 1105
SCAFast 198 1303
RemoveMuam 13 1962
InvMuae 647 1962
MultVector/StraightLine 17 1979

D
et
ec
t
m
el
a
n
in

ty
p
e

setMelaninType 3 1982
calcSkinData 7 1989
InvMuad 13 2002
calcSkinData 6 2008
InvMuad 12 2020
CheckRe�ectanceScaling 4 2024
calcSkinData 5 2030
InvMuad 12 2042
calcSkinData 5 2047
InvMuad 12 2059
CheckRe�ectanceScaling 3 2063
calcSkinData 5 2068
InvMuad 12 2080
calcSkinData 5 2086
InvMuad 12 2098

In
ve
rt
µ
a
,d
,
u
n
m
ix CheckRe�ectanceScaling 3 2101

calcSkinData 75 2176
InvMuad 503 2679
SCAFast 253 2932
SCAFast 349 3281
SCAFast 233 3513
skindataDeinit 3 3516
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4.3 Numerical accuracy

4.3.1 Singularities

A potential singularity in the denominator of the expression for the isotropic di�usion model function
will pose problems when numerical accuracy is low. The singularity lies at δ1 = 3ξ2, countered by a
numerator which approaches zero when δ1 approaches 3ξ1. This has no repercussions for the calculation
of the re�ectance or the variation of dermal absorption coe�cient with respect to the re�ectance as this
happens only for one exact value governed by the epidermal absorption coe�cient. Analytically, the
singularity does not exist since it is countered by the numerator, but numerically, it can pose problems
when the epidermal absorption coe�cient is varied in the region of the potential singularity. Additionally,
as the expression for the analytical derivative is complicated, the numerical errors will accumulate and
result in a worse singularity-like phenomenon around the potential singularity if the numerical accuracy
is unsatisfactory.
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Figure 4.13: The re�ectance of the isotropic di�usion model as a function of the epidermal absorption
coe�cient. 80% oxygenation, 1% blood in dermis.
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Figure 4.14: The numerical derivative of the re�ectance shown in �gure 4.13 with respect to the epidermal
absorption coe�cient.
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Figure 4.15: The faulty analytical derivative of the isotropic di�usion model as a function of the epidermal
absorption coe�cient. 80% oxygenation, 1% blood in dermis. When the sequence of the arithmetic
operations increases the error.

The re�ectance calculation itself is apparently safe, as shown in �gure 4.13, although the numerical
derivative in �gure 4.14 will show that there are some discrepancies around the potential singularity.
The analytical derivative does, however, have an obvious singularity at the absorption coe�cient in
question, as shown in �gure 4.15. This is for a naive implementation. A less naive implementation will
lessen the singularity, as shown in �gure 4.16. The singularity is still present, but it is far lessened.

4.3.2 GPU versus host computing

GPU and host was found to not vary signi�cantly with respect to the numerical accuracy. In �gure 4.17,
the epidermal and dermal absorption coe�cients derived from the same re�ectance spectrum and using
the same initial parameters are displayed. While there is a di�erence, this di�erence is negligible for this
application. The inversion is a stress test as any errors will be accumulated, and a sequence of derivative
and re�ectance calculations are done for a wide array of scattering and absorption coe�cients. The
numerical accuracy is made possible by the sequence in which the re�ectance and derivative calculations
are performed. A naive implementation caused far larger numerical inaccuracies for the GPU compared
to the CPU for the exact same sequence of arithmetic operations, where calculations particularly for small
absorption coe�cients were truncated to zero. Derivative calculations were also quite o� as compared
to the CPU even for higher absorption coe�cients. The potential singularity presented in the previous
subsection has no repercussions.

4.3.3 The performance of SCA

While numerical accuracy is good enough for the inversion, does the unmixing fare rather worse using
SCA. In �gure 4.18 is the convergence of SCA compared against the root mean squared error of the result
output by the Lawson-Hanson algorithm. For a low number of endmembers or low amount of bands
to unmix does the algorithm fare almost as good as Lawson-Hanson with respect to the residual error,
although the performance decreases for an increasing number of endmembers and bands. Convergence is
very slow after the initial 50 iterations. For the hyperspectral application with the two-layered approach
are the wavelength intervals small, consisting of 30 bands. Especially for the melanin determination
is the number of endmembers small, typically 3 (two types of blood plus melanin). For the melanin
determination stage should SCA therefore serve as a good approximation to the non-negative least
squares problem, but the subsequent unmixing would su�er from the use of SCA. Apparently has the
error been decreased, but closer investigation of the unmixed parameters will show that there is a large
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Figure 4.16: The analytical derivative of the isotropic di�usion model as a function of the epidermal
absorption coe�cient. 80% oxygenation, 1% blood in dermis. The arithmetic operations have been
rearranged to minimize the propagation of precision errors.

di�erence between Lawson-Hanson and SCA. For a low number of bands and endmembers are the results
equivalent down to 2 or 3 signi�cant si�ers. For 6 endmembers and the same number of bands, Lawson-
Hanson can for instance output a dermal melanin coe�cient of 0, while SCA would likewise output 182.
The discrepancy is too large.

Once the initial iterations are �nished does SCA seem to be caught in some kind of lock-in. The �rst
iterations will have established a non-negative estimate for all parameters, and SCA will not be able to
push back the parameter if some parameters in reality should be equal to zero. All other parameters
already have forced down the error. This is a weakness of varying only one parameter at the time.
Convergence was not proven for the algorithm, and it can be likely that there is no convergence proof as
the algorithm does not converge. On the other hand, the objective function was seen to decrease, albeit
slowly, and after a large amount of iterations may it be able to converge. To say that 300 is enough is
a stretch, however, though the error is close to the desired minimum error. The convergence would also
depend on the order of variables �tted.

In conclusion can SCA be used for the melanin determination stage as the number of endmembers is
low, but further unmixing would not necessarily output good estimates for the parameters.

PQN-NNLS has been shown to have a good performance, with convergence proofs. Still does this not
easily parallelize. The line search algorithm it uses will also cause the GPU warps to break down. Some
matrix inverses are approximated using numerical methods. The algorithm will quit once reaching a
pre-speci�ed numerical accuracy, but it is unknown whether it will diverge or continue to converge after
meeting a maximum numerical accuracy when run for a pre-de�ned number of iterations. Still does this
algorithm seem to be better than the alternatives, though whether statistical methods should be used
instead of these more classical, deterministic methods is still a question to be answered.
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4.4 Veri�cation on real data

The method was �rst developed for real data. The veri�cation using real data will be presented before
the veri�cation using simulated data. The reasoning is that any method may output the correct answer
for simulations due to the controlled nature and assumptions being present, but only a few methods will
be able to output correct results for real data. Even the melanin and erythema indices may be able to
output the correct melanin values for simulated data, and only for real data is the method able to fail.

The hyperspectral images analyzed are

� Image of a healed wound from a chronic ulcer trial [20], shown in �gure 4.19b.

� Image of a wound from the same trial, shown in �gure 4.48a.

� Image of a normal hand, shown in �gure 4.45a. Fitzpatrick skin type I or II.

� Image of the underside of an arm, shown in �gure 4.46a. Fitzpatrick skin type IV.

The patients with wounds in �gures 4.19b and 4.48a are hyperpigmented due to the healing process of the
wounds [12]. High pigmentation can therefore be expected to be seen in these areas. No pigmentation
is caused by sun exposure, and other areas should have a low melanin content as the patients were
North-European.

All inverse simulations have been done using the two-layered isotropic di�usion model applied on various
wavelength intervals in the spectrum.

4.4.1 Melanin veri�cation

The chosen melanin method will be veri�ed in this section. It will �rst be shown to overestimate the
melanin content without the proper modi�cations. The use of incorrect melanin type will be investigated
as the cause of remaining discrepancies, and lastly, the method is compared against the melanin index.

Overestimation

The melanin method, �tting the dermis before �tting epidermis in two iterations, is �rst veri�ed on a
di�cult hyperspectral image of a healed wound. The imaged area has spots of hyperpigmentation, and
spots within the hyperpigmentation representing healed tissue. Around the old wound will there be scar
tissue, with the scattering assumption not being correct. In the picture are there blood vessels present,
going in and out of the hyperpigmented spots. The reconstructed RGB image is shown in �gure 4.19b.
A map of the derived melanin coe�cient is shown in �gure 4.19a. Here, the epidermal melanin has in
each iteration been �tted using Svaasand's melanin curve. The melanin map corresponds well with the
places in the RGB image where a high melanin absorption is warranted due to the skin color. It also
corresponds well with the spots with less melanin content where wounds previously have been present.
The lower melanin values correspond with what is to be expected from this type of skin [61], while it is
unknown whether the high values in the hyperpigmentation is within a valid range. Norvang et al. [61]
will report tanned, white skin to be 800 m−1 and African skin to be 2500 m−1. From visual inspection
only should the hyperpigmentation be higher than normal, tanned skin but lower than African skin. Hair
can be seen as spots with a high melanin content. This is expected due to the anatomy of hair.

Some discrepancies are clearly present. At some blood vessels, the melanin is set too low compared to the
neighboring values. This is due to the blood vessels requiring di�erent boundary conditions than what
the di�usion model has to o�er, and the melanin is lowered as a result. This will be veri�ed through
simulations. There are also spots within the high melanin areas where the melanin is set to zero. Closer
investigation revealed these to likely be attributed to erroneous scattering assumptions.

The spectra from three di�erent pixels at line 1000 will �rst be presented, with an increasing, derived
melanin content with increasing pixel index. These are shown in �gures 4.26, 4.20 and 4.23, respectively
extracted from pixel 200, pixel 440 and pixel 840.
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(a) Derived µa,m,694 for the hyperspectral image repre-
sented by �gure 4.19b. Melanin has been derived from
730 nm to 830 nm using blood and water in the dermal
absorption �t and the melanin curve from equation 2.40.
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(b) RGB image reconstructed from a hyperspec-
tral image. RGB image was constructed using
band 55 (red), band 41 (green) and band 12 (blue)
after re�ectance calibration against the re�ectance
standard.

Figure 4.19: Melanin content and RGB image of a healed wound.

80



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

400 450 500 550 600 650 700 750 800 850 900

R
e�
ec
ta
n
ce

λ (nm)

Measured re�ectance
460-530 nm �t
490-590 nm �t
620-730 nm �t

Figure 4.20: Inverse simulation where too low melanin is set or penetration depths at the longer wave-
lengths are too steep. The spectrum is located in line 1000, pixel 440 of �gure 4.19b. Derived parameters
are shown in table A.1. Fitting ranges are indicated by arrows.
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Figure 4.21: Dermal absorption �t for �gure 4.20.

It was discussed earlier that deoxy hemoglobin would likely be overestimated, and melanin in turn
underestimated. Figure 4.20 shows a situation where deoxy apparently is overestimated and melanin
underestimated, but more likely a failed unmixing using SCA and a penetration depth error. The �t at
the shortest wavelengths does not display any mis�ts spectrum-wise, but the oxygenation does not match
the oxygenation obtained from 490-590 nm and is unphysical. In addition is the constant absorption
set very high, methemoglobin has been set to something non-zero and there is a high dermal melanin
coe�cient. Apparently has the melanin been underestimated and the �t is trying to compensate. This
can, however, be explained away by the fact that SCA has been used in the unmixing and SCA was in
the previous section proven to be unreliable in the presence of too many endmembers. Especially is this
proven by the next wavelength interval, where a lower amount of endmembers is used in the unmixing.
There is no obvious mis�tting which should have been present had the melanin been set too low. The
spectra match, and neither melanin nor methemoglobin are overcompensated in dermis. The �t from
630 nm and up is however far worse. The simulated re�ectance and measured re�ectance intersect. The
simulated re�ectance has a pronounced deoxy absorption dip around 750 nm which indicates that it is
trying to compensate for something with more deoxy hemoglobin and methemoglobin. There are no
obvious spectral characteristics present in the spectrum to indicate that methemoglobin is present.
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Figure 4.22: The melanin �tting procedure of the spectrum displayed in �gure 4.20. Dermal �tting is
omitted. Note the change in wavelength ranges.
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Figure 4.23: Inverse simulation where too much melanin is being set. Line 1000, pixel 840 of �gure 4.19b.
Derived parameters are shown in table A.1.

The melanin �tting of the required epidermal absorption is shown in �gure 4.22. Only the epidermal
absorption �t is shown as the dermal absorption �t shows no indication of any mis�tting and is therefore
uninteresting. The �rst iteration of the derived epidermal absorption shows a distinct dip where the deoxy
absorption maximum usually is located, indicating a deoxy hemoglobin overestimation and melanin
underestimation. This does seem to have been eliminated in the next iteration, verifying that two
iterations will rectify the underestimation. Still, something is wrong, and it may be that the wavelength
interval at the longer wavelengths vary across a too high penetration depth gap, leading to mis�tting.
Comparison of the derived dermal absorption in �gure 4.21 with later dermal absorptions in �gures 4.30
and 4.28 will show this to be far more sloped in the wavelength range in question.

Figure 4.25 shows the process of a melanin overcompensation. The dip in the derived epidermal ab-
sorption shows that the deoxy hemoglobin was overestimated in the corresponding dermal �t. In the
next iteration is the epidermal �t, as above, more or less perfect. Still, the melanin is obviously being
overestimated as is seen in the �nal spectral �t in �gure 4.23 and the absorption spectrum in 4.24. This
can be due to a circular loop. The �rst melanin estimate is so high that the subsequent dermal �tting will
mis-estimate, and the mis-estimation results in the same epidermal absorption as the input epidermal
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Figure 4.24: The dermal absorption �t for �gure 4.23.
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Figure 4.25: The melanin �tting of the spectrum displayed in �gure 4.23. Dermal �tting is omitted.
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Figure 4.26: Inverse simulation for approximately the correct melanin. Line 1000, pixel 200 of �gure
4.19b. Fitting parameters are shown in table A.1.
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Figure 4.27: The melanin �tting of the spectrum displayed in �gure 4.26

absorption. There may also be something wrong at the lower wavelengths, like the wrong melanin type
being used.

Moving back to �gure 4.20, it was seen that the melanin estimate above 620 nm was apparently too
low, although the same melanin estimate at the lower wavelengths resulted in no overestimation of other
parameters. The lower wavelengths would have su�ered, had the longer wavelengths been allowed for a
good melanin �t. This might be readily demonstrated by 4.23. Here is the �t for the lower wavelengths
indeed worse when the higher wavelengths are allowed for a good melanin �t. Given that the melanin
absorption is too high for the last presented spectrum, which it is, as will be seen, is this strongly in
favour of the penetration depth variance being the cause of discrepancies in �gure 4.20.

A better melanin �t is shown in �gure 4.26, with the melanin �ts present in �gure 4.27 and the full dermal
�t in �gure 4.28. Nothing is overcompensated to correct for a missing melanin at any wavelength. The
blood parameters derived for 450 nm and up and 490 nm and up match to a certain extent. The simulated
re�ectance does not match the measured re�ectance exactly above 700 nm, but this is expected as the
water absorption is not �tted along with the rest of the parameters. The general shape is the same, the
re�ectances do not intersect at any point, and most importantly does the simulated re�ectance lie above
the measured re�ectance. The di�erence will therefore be recti�ed by more absorption, not less.
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Figure 4.28: Dermal absorption �t for �gure 4.26.

This spectrum, however, represents a rather low melanin content. The �rst dermal �tting error is ex-
pected to be less when the di�erence between the actual melanin absorption and start melanin absorption
(100 m−1) is low, as was seen from simulations. The �rst derived epidermal absorption coe�cient has
certain spectral characteristics reminiscent of earlier �ts, suspecting a deoxy overcompensation also in
this case, but this has evidently no dire rami�cations. The next iteration is able to correct for this, as
was expected from the simulations.

The way other melanin methods previously behaved was that a high deoxy hemoglobin content was
mistaken as the presence of a high melanin content. In this case, the deoxy hemoglobin is evidently being
overcompensated but the melanin is in turn also overcompensated. It is apparent from the individual
melanin �ts that the �rst iteration of the melanin method can, in part, show when a discrepancy is
expected. Looking at �gure 4.25, the �rst melanin curve �t to the epidermal absorption is non-optimal.
The derivative is completely di�erent and the curves intersect. This behavior is not seen for �gure 4.27.

There are several possible explanations for this behavior.

� Oxy hemoglobin is rectifying the deoxy behavior. When deoxy hemoglobin is overcompensated is
oxy hemoglobin somehow overcompensated, and although the dermal, initial melanin is low is the
slope of the resulting epidermal absorption curve very o�. The melanin curve is not able to �t the
resulting curve, o�-shooting it.

� The melanin curve used is not representative of the melanin types present in this particular skin,
indicating that a di�erent melanin curve should be used in the �t.

� Numerical inaccuracies, especially in the context of SCA.

� General mis�tting. Although the dermal melanin is set in dermis is the dermal melanin not correct
since the curve should have been convolved, and the resulting epidermal absorption should not be
reminiscent of the melanin curve in any case.

� The pixel with a too high melanin estimate is right at the boundary of a high melanin region, and
the surrounding high melanin properties are bleeding into the pixel.

Numerical inaccuracies are likely to be small, SCA or no SCA. While the GPU version gave a melanin
absorption of 1188 m−1, the corresponding CPU version using the same wavelengths and chromophores
in the �tting gave a melanin absorption of 1192 m−1. The CPU version had the same mis�tting problems
as the GPU version around 530 to 590 nm. The discrepancy is small and can be attributed to other
di�erences in the implementations than the use of SCA versus Lawson-Hanson.

The used melanin curve from (2.40) is thought to be a combination of eumelanin and pheomelanin. This
will not always be correct, di�erent individuals will necessarily have di�erent combinations of melanin
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Figure 4.29: The same spectrum as in �gure 4.23, though now with a straight line being used in the
epidermal �tting. Fitting parameters are shown in �gure A.1.

types in their skin. Eumelanin was described to be brown and black, while pheomelanin is more yellow-
reddish. This obviously cannot be discerned from a reconstructed RGB image using only three bands
from a hyperspectral image, but purely by speculation does the hyperpigmented parts of 4.19b seem to
be mostly brown-black, indicating eumelanin. The hair is also black, more strongly indicating eumelanin.
There are however some lighter brown parts being more yellow than brown. Had the melanin type present
been eumelanin, would this have explained the good �t at the longer wavelengths and worse �t at the
shorter, as eumelanin has a lower absorption at the shorter wavelengths when compared to the longer
wavelengths and the behavior of pheomelanin and Svaasand's model.

On the other hand is it unlikely that the slope of the derived epidermis absorption in this case is a�ected
by the presence of pheo- or eumelanin. The absorptions are �tted to the re�ectance using the two-layered
model. The derived epidermal absorption is calculated after the dermal absorption coe�cient has been
derived and calculated. The epidermal absorption coe�cient will be in�uenced by the dermal absorption
coe�cient's wavelength-dependency. It was shown by trial of simulations that for a perfect match would
the melanin have to be convolved in the dermis �t, and when this is not done must the resulting epidermal
absorption be di�erent than the melanin curve. The wavelength-dependency at this stage can therefore
not be in�uenced by the presence of the di�erent melanin types.

The bleeding between pixels and melanin types will be important, but not in this case. This is purely a
mis�tting problem.

The general melanin level is a correct, lower estimate, but the wavelength-dependency is wrong and not
�ttable to any melanin curve. The result is a too high melanin estimate, as the curves must intersect. The
di�erence will become worse with increasing melanin absorption. The better way to �t this epidermal
curve will therefore be to �t it using a straight line and extrapolate it to 694 nm. The required melanin
level will be obtained without major overestimations, as the straight line may adjust its derivative, as
opposed to what the melanin curve is able to do. The result of the linear epidermal �t for the spectrum
in �gure 4.23 is shown in �gure 4.29. This is far better than the �rst proposed melanin estimate, though
a very close look will reveal that the �t is slightly, almost not noticeably, o� for 530-590 nm. At the
shorter wavelengths is the �t even more o�. From 400-450 nm is the signal to noise ratio low, and the
spectra here cannot be expected to be �ttable. Still should the dermal absorption not approach zero, as
is seen in the dermal absorption �t in �gure 4.30.

The melanin error is best discerned looking at the error at 530 to 590 nm. The squared error at this
interval is therefore used to indicate whether or not the melanin has been well �tted to the re�ectance.
A map of the error when the melanin curve has been used in the �tting is shown in �gure 4.32a, while
the error using the linear �t is shown in �gure 4.32b. As is seen is the error lessened, and in some places
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Figure 4.30: Derived dermal absorption for the spectrum in �gure 4.29.

removed entirely. At other places is it not. The error estimate is not a perfect, absolute estimate and
will only calculate the error within the �tting range, but it can used for comparison between areas. A
map of the melanin coe�cient using straight line �tting is shown in �gure 4.31.

The change of methods �xes some overestimation error, but the rest must be attributed to something
else.

Melanin type

The choice of melanin type will be investigated in this section. Investigating single spectra �ts, it is
apparent that using eumelanin is warranted for some pixels, and using pheomelanin is warranted for
others. Still can this also be attributed to other errors.

Figure 4.33 shows an ill �t using Svaasand's model. Eumelanin, on the other hand, is able to give
a better �t with no gross overestimation of melanin or methemoglobin in dermis. Pheomelanin gave
approximately the same results as Svaasand's model (not shown), which is not surprising as Svaasand's
model seem to be closer to pheomelanin than eumelanin.

Though Svaasand's model fails, the eumelanin model will not necessarily give a better estimate, as shown
in �gure 4.34. This is explained away by the fact that this pixel lies exactly in the middle of a hair straw
which will make the skin model incorrect.

Figure 4.35 shows a slight, not easily discernible mis�t for the Svaasand model case around 530-590
nm. The eumelanin model gives a far too low estimate, seen from the overestimation of dermal melanin
around 530-590 nm and the longer wavelength �t lying below the spectrum. The absorption spectra for
this particular case are shown in �gure 4.37. The scale of the blood absorption peaks around 530-590 nm
is wrong for the pheomelanin case. Pure pheomelanin is not warranted. Pure eumelanin is not warranted
either due to the scaling of the absorption peaks being sloped in the other direction and much melanin
being set in dermis. Either will this be due to a wrong scattering assumption, or a combination of the
two types is warranted.

Figure 4.36 shows a case where there is only a small di�erence between the goodness of �t of eumelanin
and pheomelanin. The explanation is that the melanin absorption is low, and the di�erence between
pheomelanin and eumelanin will also be low and the error in assuming either types is lessened.

The RGB image around the pixels displayed above is shown in �gure 4.38. The good eumelanin �ts
shown in �gures 4.33 and 4.34 are dominated by hair. The �tting here is done assuming independent
pixels, but there will be light pollution between pixels. The hairs are black, which would mean eumelanin.
The image representing the �t in �gure 4.35, which was an ill �t either way, shows hyperpigmented skin.
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Figure 4.31: Map of µa,m,694 after substituting the melanin curve �tting with a straight line �tting.

Referring back to the RGB image in its entirety in �gure 4.19b, it is seen that this is close by a small
area with low melanin content in a sea of hyperpigmentation. This is therefore expected to be an old
wound with scar tissue, and the scattering assumption will be incorrect.

For each chosen model, the model was used throughout all iterations and in both epidermis and dermis.
It is worth to note that all three models will output approximately the same melanin absorption at
694 nm, at least the same order of magnitude, and the subsequent goodness of �t is only due to the
wavelength-dependency of each melanin model. Detecting the correct type of melanin should therefore
not be dependent on what melanin curve was used in the melanin iteration itself, since the melanin
coe�cient is approximately the same regardless of the melanin curve used, but only be dependent on the
later choice of the melanin type. This should ease the melanin type detection.

A map of the necessary melanin types is shown in �gure 4.39, generated by thresholding the errors by
assuming di�erent melanin types. It can be seen that the spots representing where neither melanin type
is a good �t do largely appear where old wounds can be expected to be located, although the spots
around line 1000 do not seem to be so. The pheomelanin type does also appear only at places where
a high melanin content is expected, while eumelanin gives a good �t only where the melanin content is
low. This is strange, as the melanin in these parts is very dark. Eumelanin should be expected to be
found in the darker parts when eumelanin is found in the lighter parts.

This may be yet another overestimation error, since eumelanin has a lower absorption at the lower
wavelengths compared to pheomelanin and might be able to rectify overestimation errors. Figure 4.33,
however, showed that only eumelanin was able to give a good �t regardless of the absorption values at
the upper wavelengths. There was also no obvious underestimation errors for the eumelanin case. Any
underestimation errors have in �gure 4.39 been detected by using the error value obtained from the upper
wavelengths, as these would give a large error due to deoxy hemoglobin overestimation when melanin
was underestimated.

Eumelanin was able to give an apparent good �t at the lower wavelengths also for the apparent pheome-
lanin areas, but this was only due to overestimation of other parameters like methemoglobin and melanin
in dermis. This was detected from obvious deoxy hemoglobin overestimation at the upper wavelengths.
Only using eumelanin at these areas will therefore apparently not be correct.

One of the �ts at the apparent pheomelanin areas is seen in �gure 4.40. The �t itself is worse for the
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(a) Melanin curve.
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(b) Straight line.

�le matrix

0 200 400 600 800 1000

Pixel

0

500

1000

1500

2000

L
in
e

0

0.1

0.2

0.3

0.4

0.5

S
u
m

o
f
sq
u
a
re
d
er
ro
r

(c) Straight line, eumelanin.
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(d) Straight line, pheomelanin.

Figure 4.32: Comparison of sum of the squared error at 500-590 nm using the melanin curve and a
straight line to �t the epidermal absorption, and use of pheomelanin and eumelanin.
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(a) Fit using the eumelanin model.
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(b) Fit using the Svaasand melanin model.

Figure 4.33: Eumelanin giving a better �t. Comparison of Svaasand's melanin model and eumelanin for
an isotropic, two-layered di�usion model �t using the GPU on the spectrum located in line 1653, pixel
1029 of �gure 4.19b. Parameters in table A.1.
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(a) Fit using the eumelanin model.
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(b) Fit using the Svaasand melanin model.

Figure 4.34: Svaasand's model giving a non-optimal �t, eumelanin only slightly better. Spectrum from
a straw of hair. Comparison of Svaasand's melanin model and eumelanin for an isotropic, two-layered
di�usion model �t using the GPU on the spectrum located in line 2015, pixel 847 of �gure 4.19b.
Parameters in table A.1.
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(a) Fit using the eumelanin model.
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(b) Fit using the Svaasand melanin model.

Figure 4.35: Mis�t for Svaasand's model not easily discernible. Comparison of Svaasand's melanin model
and eumelanin for an isotropic, two-layered di�usion model �t using the GPU on the spectrum located
in line 2015, pixel 847 of �gure 4.19b. Fitting parameters in table A.1.
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(a) Fit using the eumelanin model.
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(b) Fit using the pheomelanin model.

Figure 4.36: Small di�erence between eumelanin and pheomelanin for a low absorption case. Comparison
of pheomelanin and eumelanin for an isotropic, two-layered di�usion model �t using the GPU on the
spectrum located in line 756, pixel 933 of �gure 4.19b.
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Figure 4.37: The derived dermal absorption using the two layered di�usion model for the spectrum shown
in �gure 4.35.

eumelanin case, where deoxy hemoglobin and other parameters have been overcompensated to compen-
sate for the lacking melanin absorption, and apparently better for pheomelanin. But a closer look yields
slightly unphysical values - for one thing has the melanin coe�cient at 694 nm been underestimated for
pheomelanin (600 m−1) as compared to eumelanin (800 m−1), but again compensated for using melanin
in dermis. The output parameters for oxygenation are also not physical. Using the two-layered di�usion
model, oxygenation values equal to 1 should never be possible due to being a mean value of di�erent lay-
ers. However, this can also be attributed to a slight scattering error causing the scaling of the absorption
maxima to crave a very low deoxy value. In any case, this particular pixel is inconclusive with regards
to the melanin type.

The spectra �ts from one of the larger black spots representing neither melanin type is shown in �gure
4.41. This shows an apparent bad �t using pheomelanin, but an underestimation using eumelanin. There
are no obvious scattering errors, pointing towards the conclusion that the melanin type is neither, but
rather a combination of the two.

Apparently, the presence of eumelanin and pheomelanin can be detected using the derived dermal absorp-
tion values around 530-590 nm, but it can only detect the extrema - where there is so much pheomelanin
present that eumelanin is negligible, or when the presence of pheomelanin is negligible and only eume-
lanin can be assumed. It will be more di�cult to detect how much should be present of each melanin type
without resorting to tiring iteration when both eumelanin and pheomelanin are present in non-negligible
amounts. Svaasand's model, a mix of the two, will not always be able to correct this as it represents a
di�erent ratio between eumelanin and pheomelanin than might be present in the skin at hand.

The result of deciding the melanin type from the blood absorption peaks is shown in �gure 4.42. Sample
spectra from each possible area is shown in �gure 4.44. The melanin type map does correspond to a
certain extent to the earlier melanin map composed from the error maps. Most notably, the spots in
the middle of the error-constructed image representing neither melanin type has not been recognized
as spots with erroneous scattering. Figure 4.44 shows that the spectrum matching none of the melanin
types is correctly identi�ed as erroneous scattering, but this is not as obvious for the spots which earlier
were identi�ed as having none of the melanin types. It is also seen in 4.44 that the melanin types are
switched with increasing melanin content.

The melanin being set too low is one likely explanation for the pheomelanin requirement as the method is
steering towards doing exactly that. The underestimation would be worse for increasing melanin content,
explaining the switch in melanin type for increasing melanin content. In �gure 4.43 is the melanin being
underestimated, and pheomelanin has been chosen to rectify it. Other pixels will not show such grossly
obvious underestimation, especially for the higher melanin contents. Other pixels where pheomelanin
is chosen will show behavior more reminiscent of the plots where the penetration depth is called into

94



1600

1650

1700

1750

950 1000 1050 1100

L
in
e

Pixel

�le binary �letype=png

(a) Subset 1

1950

2000

2050

2100

750 800 850 900

L
in
e

Pixel

�le binary �letype=png

(b) Subset 2

650

700

750

800

150 200 250 300

L
in
e

Pixel

�le binary �letype=png

(c) Subset 3

700

750

800

850

850 900 950 1000

L
in
e

Pixel

�le binary �letype=png

(d) Subset 4

Figure 4.38: Zoomed subsets of the RGB image shown in �gure 4.19b.
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Figure 4.39: Map of the necessary melanin types. Red is pheomelanin, blue is eumelanin, black is neither
and white is both. The map was generated comparing the root mean squared error at 530-590 nm and
620-720 nm of either �t against an arbitrary, low threshold value (0.02).
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(a) Fit using the eumelanin model.
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(b) Fit using the pheomelanin model.

Figure 4.40: Fits using pheomelanin and eumelanin in an area detected as pheomelanin. Comparison
of pheomelanin and eumelanin for an isotropic, two-layered di�usion model �t using the GPU on the
spectrum located in line 389, pixel 527 of �gure 4.19b. Parameters in table A.1.
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(a) Fit using the pheomelanin model.
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(b) Fit using the eumelanin model.

Figure 4.41: Overestimation using pheomelanin, underestimation using eumelanin. Comparison of
pheomelanin and eumelanin for an isotropic, two-layered di�usion model �t using the GPU on the
spectrum located in line 1163, pixel 719 of �gure 4.19b. Parameters in table A.1.
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Figure 4.42: The melanin type distribution as decided from the scaling of the blood absorption peaks
around 530-590 nm. Red is pheomelanin, white is Svaasand's model, blue is eumelanin, black is neither.
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Figure 4.43: The use of pheomelanin for a detected pheomelanin region. Isotropic di�usion model on
line 76, pixel 228. See table A.1 for parameters.
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Figure 4.44: Extracted spectra from di�erent melanin type regions.

question.

Whether pheomelanin actually is warranted is di�cult to say, as the image is di�cult. It is possible for
di�erent melanin types to be present in the same type of skin [102], but localization and heightening of
di�erent melanin types in di�erent situations does not seem to have been investigated much. Whether
this is the cause here is not veri�able.

In �gure 4.45 is the derived melanin coe�cient, melanin type and RGB image shown for a hyperspectral
image taken of the hand of a red-haired individual with freckles. This image was taken as part of an
arthritis trial. Only the �ngers and the upper parts of the hand were therefore in focus during the
image scan, as the autofocus system was not in use. The melanin type, where the image is in focus, is
correctly detected as pheomelanin. As the image gets more blurry is the melanin type switched over to
eumelanin. This is also seen at the boundaries of the �ngers and where the hand lies partially in shadow.
The melanin here seems to be overestimated. The eumelanin requirement can therefore be seen as a
measure to alleviate the too high melanin estimate due to the image not being in focus. It should also
be noted that the melanin is determined from the longer wavelengths. Here are the penetration depths
high enough for the light to penetrate all throughout the �ngers.
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(a) The RGB image reconstructed from a hyper-
spectral image.
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(b) The melanin type in �gure 4.45a. Red is
pheomelanin, white is Svaasand's model, blue is
eumelanin and black is neither.
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(c) The melanin absorption in �gure 4.45a. Note the dif-
ference in scaling as compared to earlier melanin images.

Figure 4.45: RGB image, associated melanin absorption values and apparent melanin types for an
individual with Fitzpatrick skin type I or II.

101



The eumelanin requirement for the former hyperspectral image was primarily at the edges of the image.
Mostly will only the central parts of the image be in focus as the leg is curved. The same explanation
can, technically, therefore be used for the former hyperspectral image. The melanin is overestimated
due to being out of focus, and the eumelanin is needed to compensate. This still does not verify why
pheomelanin is warranted for the hyperpigmented areas rather than the ordinary Svaasand model, but
Svaasand's model and the pheomelanin model are in any case close. Di�erentiating between the two will
be sensitive to other factors.

The reconstructed RGB image from a hyperspectral image of the underarm of an individual with Fitz-
patrick skin type IV is shown in �gure 4.46a, the melanin map in 4.46c and the melanin type in 4.46b.
The melanin coe�cient is correct for such an individual by comparing to tanned variants of white skin
[61], but the melanin type is not. When Svaasand's model is forced as the melanin type will the spectrum
give appearances of the melanin being underestimated. An example is shown in �gure 4.47. The method
will therefore try to use pheomelanin, though here it is obvious that this melanin type is not correct
at least in its pure form. On the other hand, the melanin is apparently underestimated at the shorter
wavelengths, while it for the longer wavelengths has a perfect match with no obvious overestimation of
any kind. The underestimation can also be discerned only at close examination.

Therefore may the pheomelanin misdetection be attributed to some calibration error, as the di�erent
wavelengths warrant di�erent melanin absorptions. It may also be that the threshold is too sensitive.

In conclusion can the results of the melanin type detection for the most cases be attributed to erroneous
calibration and to melanin underestimation. The chosen method of observing the scaling of the blood
absorption peaks will also be sensitive to errors in the scattering assumption. It just is not reliable. It
will however cause the spectra to be �ttable, but whether the parameters yielded are correct remains to
be seen.

Melanin index

The melanin method has problems, but it will characterize the relative variations of the melanin content
well enough. The melanin index has been said to do the same thing. Here will it be shown that despite
this will the developed melanin method still output a better estimate of the relative variations than the
melanin index once did.

In �gure 4.55 is the melanin map from a wound shown, along with the melanin index, RGB image and
melanin type. The method is able to correctly estimate the melanin to be low in the wound, although it
is not set to zero as it should. This is not because of any crosstalk but rather because the initial melanin
is set to 100 m−1 and to move further downwards will be di�cult.

The corresponding melanin index is shown in �gure 4.48d. This also characterizes the melanin variations
within the image well enough, but the index values themselves are o�. A melanin index map is shown
in �gure 4.49, for the hyperspectral image represented by �gure 4.45a. The melanin index values in the
wound should be comparable or less than the values in �gure 4.49. They are not. The absolute values
yielded by the proposed melanin method does therefore fare better than the melanin index ever would.
It should be noted that the melanin absorption at 694 nm and the melanin index are strictly not directly
comparable, but comparing melanin index against melanin index should be correct.

4.4.2 Parameter veri�cation

Here the other parameters than the melanin content are veri�ed.

The parameters extracted from the image shown in �gure 4.19b is shown in �gure 4.50. Some of the
parameters extracted when the melanin type is free to vary is shown in �gure 4.51.

When the melanin is free to vary is it apparent that there will be extra artifacts in the oxygenation and
blood volume fraction maps as compared to when the melanin type is constant, but other than the few
artifacts do the relative variations within each image correspond.
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(a) The reconstructed RGB image.
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(b) The apparent melanin type. Red is pheomelanin,
white is Svaasand's melanin model, blue is eumelanin
and black would be neither.
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(c) The melanin absorption.

Figure 4.46: Melanin absorption, apparent melanin type and RGB image from the hyperspectral image
taken from the under arm on an individual with Fitzpatrick skin type IV.
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Figure 4.47: The isotropic di�usion model �t for the spectrum located at line 344, pixel 260 in �gure
4.46a when Svaasand's melanin model is used. Parameters in table A.1.

The oxygenation values for the shorter wavelengths correlate somewhat with heightened melanin. This
can be due to underestimation of melanin, the di�usion model no longer being correct (similar behavior
will later be seen for simulations) or a high oxygenation being warranted due to the hyperpigmentation.
Other than the hyperpigmented parts are the oxygenation values mostly within the physical values,
with the oxygenation being somewhat lower for the shorter wavelengths and somewhat higher for the
longer wavelengths. This is to be expected due to di�erences in vascularization in the deeper and more
super�cial layers [53]. The parameters will be discussed more in a later section.

Above �ts were all done using SCA. SCA's accuracy has been called into question in an earlier section,
and the method was also run using the ordinary Lawson-Hanson algorithm. The results are shown
in �gure 4.52. It is easily seen that there is a di�erence, but both images characterize approximately
the same relative di�erences. SCA yields slightly higher values and Lawson-Hanson is more prone to
failure in infeasible areas. The di�erence is discernible, but not large. Still, there is a di�erence and an
uncertainty, and SCA should not be used for this unmixing later. The use of SCA can also explain some
of the discrepancies, but not all. SCA will still yield a relatively good �t with the error being set low.
Still is this no proof that SCA always will fare this well.

The parameters for the image shown in 4.45a are shown in �gure 4.53. The oxygenation values are very
high, but this is, after all, in the palm of a hand. High oxygenation is to be expected. The blood volume
fraction is overestimated when the image goes out of focus or lies partially in shadow. This correlates
with the melanin overestimation. Same behavior could also be seen earlier in �gure 4.50, with a very
high blood volume fraction at the edges. This is incidentally where the melanin type was chosen to be
eumelanin.

The parameters from the image shown in �gure 4.46a are shown in 4.54. The oxygenation is extremely
low in areas, likely because of the image being out of focus or lying partially in shadow. The image was
obtained before autofocus was developed. The bruise is detected correctly using the shorter wavelengths,
and the longer wavelengths detect the blood vessels lying beneath the more shallow bruise.

In �gure 4.55 are the parameters for the image shown in 4.48a shown. The oxygenation values for the
normal skin are within physicality. The blood volume fractions correlate, likely because of the penetration
depth not being deep enough, as is also seen for the other images. The blood volume fraction and the
oxygen saturation both have problems in the wound for the shorter wavelengths, which can be attributed
to either an erroneous scattering assumption or the melanin not being set to zero.
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(a) The reconstructed RGB image of a hyper-
spectral image of a wound.
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(b) The melanin type in 4.48a. Red is
pheomelanin, white is Svaasand's melanin,
blue is eumelanin and black is none.
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(c) The melanin absorption in 4.48a.
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(d) The melanin index for �gure 4.48a.

Figure 4.48: Comparison between the results of the chosen melanin method and the melanin index.
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Figure 4.49: The melanin index for �gure 4.45a.

4.4.3 Choice of wavelength interval

Referring back to the parameters displayed in �gure 4.50. The blood parameters for a longer wavelength
interval, 690-820 nm, is shown in �gure 4.56, in contrast to the earlier chosen interval. It has earlier been
mentioned that the original wavelength interval for the longer wavelengths might not be optimal. This
will now be investigated.

Two wavelength ranges have been tested for the longer wavelengths. For the upper interval are the
arteries more distinct than the lower interval. This will be because smaller details are washed away
by the meaning process throughout the penetration depth. The gross features like larger blood vessels
become more apparent. The oxygenation values between the two wavelength intervals match to a certain
extent, although some of the blood vessels for the 620-730 nm in 4.50 have a very low oxygenation as
compared to the surrounding tissue (see line 2500). This can be attributed to the melanin being set too
low, but at the same time is a corresponding high blood volume fraction not seen in the bvf map. Also
the upper wavelength range has a lower oxygenation in the blood vessels than the surrounding tissue in
�gure 4.56, though not as extreme. The question is whether this is warranted.

The deoxy dip is far more obvious in the spectrum warranting a low oxygenation (see �gure 4.57b) than
in the spectrum warranting a higher oxygenation (see �gure 4.57a), even though they have a di�erent
melanin absorption. There are also no obvious melanin underestimation signs, the model is able to
�t the spectrum with no overcompensation of other chromophores. Overall does the �t from the longer
wavelengths in �gure 4.57c seem to be able to �t more wavelengths outside its scope than the counterpart
�tting slightly shorter wavelengths in 4.57b. This can be a sign that the penetration depth is varying too
much. It is seen that the oxygenation at the even shorter wavelengths is very low as almost no spectral
characteristics from oxy hemoglobin is seen. This might be able to in�uence the �t at the intermediate
wavelengths more than at the longer wavelengths as the penetration depth is lower. Therefore will the
�t at the longer wavelengths represent a better estimate of the "second layer" since the other estimate
is too in�uenced by the upper layers to be of much use. In any case does a lower oxygenation in this
blood vessel seem to be warranted judging from the prominent deoxy absorption maximum.

Blood vessels are prominent in the blood volume fraction map for the longer wavelengths. They do
however vary in intensity. Especially can it be seen that the intensity is lowered as the blood vessel
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(a) The blood volume fraction derived from 500-
590 nm.
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(b) The oxygen saturation derived from 500-590
nm.
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(c) The blood volume fraction derived from 620-730
nm.
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(d) The oxygen saturation derived from 620-730
nm.

Figure 4.50: Blood parameters for the hyperspectral image represented by �gure 4.19b. Svaasand's
melanin model is used as the melanin model.
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(a) The blood volume fraction derived from 620-
730 nm.
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(b) The oxygen saturation derived from 620-730
nm.

Figure 4.51: Blood parameters for the hyperspectral image represented by �gure 4.19b when the melanin
type is free to vary spatially.
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(a) The blood volume fraction.
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(b) The oxygen saturation.

Figure 4.52: Blood parameters for the hyperspectral image represented by �gure 4.19b. Svaasand's
melanin model is used, and Lawson-Hanson is being used for the unmixing. The wavelength interval is
620-730 nm.
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(a) Blood volume fraction, 500-590 nm.
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(b) Blood volume fraction, 690-830 nm.
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(c) Oxygen saturation, 500-590 nm.
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(d) Oxygen saturation, 690-830 nm.

Figure 4.53: Blood parameters for �gure 4.45a. The melanin type is free to vary.
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(a) Blood volume fraction, 500-590 nm.
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(b) Blood volume fraction, 620-730 nm.
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(c) Oxygen saturation, 500-590 nm.
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(d) Oxygen saturation, 620-730 nm.

Figure 4.54: Blood parameters for �gure 4.46a. The melanin type was free to vary.
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(a) Blood volume fraction, 500-590 nm.
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(b) Blood volume fraction, 620-730 nm.
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(c) Oxygen saturation, 500-590 nm.
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(d) Oxygen saturation, 620-730 nm.

Figure 4.55: Parameters for �gure 4.48a.
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(a) Oxygen saturation.
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(b) Blood volume fraction.

Figure 4.56: Parameters for �gure 4.19b when a �tting range using slightly longer wavelengths is used,
690-820 nm instead of the usual 620-730 nm.

enters a hyperpigmented zone. This is no accident, when the melanin is high is the light blocked from
reaching down into the lower layers of the skin. The model is a two-layered model designed to "scan"
the skin down to two penetration depths, and the information gained will be reduced with an increased,
blocking melanin absorption. A map of the penetration depths is shown in 4.58.

As expected are the penetration depths higher for the higher wavelength interval than for the slightly
lower. The di�erence in the maximum and minimum penetration depths when melanin is not taken into
account is shown in the same �gure. This will show how well the chromophores may be �t to the dermal
absorption. It is seen that the dermal penetration depth will vary the least over the 690-820 nm interval,
in accordance with previous �ndings.
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(a) The �t of pixel 228, line 2117 using 620-730 nm for the upper
wavelength range. Apparent high oxygenation, oxy3 = 0.83, bvf3 =
0.013.
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(b) The �t of pixel 274, line 2172 using 620-730 nm for the upper
wavelength range. Apparent low oxygenation, oxy2 = 0.13, oxy3 =
0.25.
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(c) The �t of pixel 274, line 2172 using 690-820 nm as the upper
wavelength range. Bvf3 = 0.066, oxy3 = 0.62.

Figure 4.57: Comparison of �tting ranges in one spectrum, and comparison of one spectrum from an
apparent high oxygen saturation region and one from an apparent low oxygen saturation region. Figure
4.19b is �tted. Fitting parameters found in table A.1.
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(a) Mean penetration depth, 620-730 nm.
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(b) Mean penetration depth, 690-820 nm.
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(c) Di�erence between minimum and maximum
dermal penetration depth, 620-730 nm.
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(d) Di�erence between minimum and maximum
dermal penetration depth, 690-820 nm.

Figure 4.58: Comparison of penetration depths.
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4.5 Veri�cation on simulations

In this section will the inverse model be veri�ed on simulations. The simulations will be simple situations
of the three- or two-layered skin model. The success on real data cannot be evaluated by the simulations,
but it is still of some concern since an inverse method not giving back the same parameters as input into
the forward model will not be very useful.

In addition will the di�usion model inverse approach be veri�ed on Monte Carlo simulations, and the
two-layered approach as applied on a three-layered reality will be investigated. Some comparison between
the isotropic source function and Delta-Eddington will also be done.

4.5.1 Veri�cation using the two-layered di�usion model

Here is the inverse, two-layered di�usion approach veri�ed on spectra forward-modelled by the two-
layered di�usion model.

There are three di�erent ways of �tting the melanin to the epidermal absorption coe�cient. It has been
seen that if the melanin curve is used in the �tting can this lead to overestimation problems. In �gure
4.60 is the melanin curve used throughout the �tting, while it in �gure 4.61 is used only in the last
iteration. In �gure 4.59 is straight line �tting used throughout all iterations. For all of these were all
parameters �rst �tted to dermis, and all �tted parameters except for melanin set in dermis before deriving
the required epidermal absorption to bridge the missing dermal melanin gap. A di�erent approach to
the dermal �tting is to �t all parameters but not set the dermal absorption to the �tted parameters, only
remove the apparent dermal melanin component from dermis and then derive the epidermal absorption.
The result of using this approach on a third iteration of the method is seen in �gure 4.62.

The method was expected to and has been veri�ed on real data to underestimate the melanin in the
presence of deoxy hemoglobin. This is seen also here, far stronger for higher input melanin coe�cients.
Straight line �tting will consistently underestimate the results also for higher oxygenations. The results
are closer to the input values when the melanin curve is used either in the last or all iterations, though
there still is underestimation for low oxygenations and blood volume fractions above 0.05. For the best
case will the melanin at worst be underestimated by 150 m−1 at an input melanin coe�cient of 1500
m−1 and extreme input parameters. This will give an error of 10%. For the less extreme parameters
is the error far less. Force moving the melanin from dermis to epidermis in the model does apparently
lessen the underestimation, but overestimation also becomes more severe. The error here is, though, less
than 10%.

There is also some small overestimation even when a straight line is used in the epidermal �tting. There
are three reasons for this, none of which are deoxy crosstalk. The error is most easily spotted when the
input melanin absorption is 100 m−1, as this is the initial value for the melanin in the inverse model
and for which the parameters should be the most correct. The output melanin absorption is plotted as
a function of input oxygenation and input blood volume fraction in �gures 4.64 and 4.63, respectively.
The reasons for overestimation are

� A constant of µa,o = 25 m−1 is set in both dermis and epidermis, multiplied by 1−Bd or 1−Be.
This will lead to a slight melanin overestimation when either the blood volume fraction is not
absolutely correctly estimated or the constant is set freely in the �tting. The melanin must bridge
the remaining absorption gap, and an absorption in the order of 25 m−1 smeared across a semi-
in�nite layer will be far larger when con�ned to a thin slice at the top of the skin model.

� When the melanin is �tted to epidermis are no special measures taken to correct for the blood
and constant absorption set in epidermis in the simulation. These will therefore be �tted by the
melanin. Figure 4.64 shows a slight di�erence in the melanin with respect to the oxygenation set
in epidermis.

� Scattering errors. For these simulations were gery set to zero to be able to compare MCML
directly against the di�usion model. This will lead to a far higher blood scattering, and absorption
mis�tting when the scattering is not correctly estimated from the beginning on. Overestimation
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Figure 4.59: Derived melanin, using the isotropic di�usion inverse model on the isotropic di�usion forward
model, melanin method using the 730-830 nm interval and a straight line in the epidermal �tting. Lines
are titled by "oxy, bvf".
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Figure 4.60: Derived melanin, using the isotropic di�usion inverse model on the isotropic di�usion forward
model, melanin method using the 730-830 nm interval and the melanin curve in the epidermal �tting.
Lines are titled by "oxy, bvf".
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Figure 4.61: Derived melanin using the isotropic di�usion inverse model on the isotropic di�usion forward
model, melanin method using the 730-830 nm interval. Linear �tting was used at the �rst iteration, the
melanin curve in the second. Lines are titled by "oxy, bvf".
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Figure 4.62: Derived melanin, using the isotropic di�usion inverse model on the isotropic di�usion forward
model, output melanin as function of the input melanin. Three iterations of the melanin method, the
�tted melanin in dermis is forced to epidermis. Lines are titled by "oxy, bvf".
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Figure 4.64: The inverted µa,m,694 as a function of input oxygen saturation for input µa,m,694 = 100
m−1, using the isotropic di�usion model.
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will therefore become worse with increasing input blood volume fraction, as seen in �gure 4.63. In
all of these simulations were the �tted dermal melanin correctly set to 0. Due to the scattering
mis�tting is deoxy hemoglobin underestimated and carried over to epidermis, where the melanin
is overestimated. This happens even though the initial melanin is set to the correct melanin.

Even if the method seemingly fails for the simplest case, this is acceptable. The scattering is set far
lower for real data. Even if this should happen for real data will it be recognizable in the intermediate
epidermal �tting as it will display the deoxy hemoglobin maximum at 760 nm.

4.5.2 Veri�cation using the two-layered Monte Carlo model

Here is the di�usion inverse approach veri�ed in a similar way against simulated Monte Carlo spectra.

A comparison between the forward simulation of the isotropic di�usion model, Delta-Eddington di�usion
model and Monte Carlo model for a set of input parameters is shown in �gure 4.65. It has been seen
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Figure 4.65: Comparison of GPU-MCML and di�usion model for oxy = 0.8, bvf = 0.01, µa,m,694 = 700
m−1. The data used in this �gure is taken from [10].

earlier [77, 10, 92] that Monte Carlo and Delta-Eddington will correspond better than the isotropic
di�usion model for high absorption values, but this is a relation that will sometimes tend to break down.
The former �gure is an example of this. For low melanin coe�cients should Delta-Eddington and the
isotropic source function output the same melanin coe�cients. For higher melanin coe�cients is Delta-
Eddington expected to underestimate, since Delta-Eddington already lies below MCML for the same set
of input parameters.

It is seen in �gure 4.66 that the method will consistently underestimate the results when straight line
�tting is used, as it did earlier, though even worse. Now will the o�shoot be in the order of 300 m−1

for an input melanin coe�cient of 1500 m−1. The melanin curve is used instead of straight line �tting
in the last iteration in �gure 4.67, which helps on the underestimation. With much deoxy hemoglobin
present is the melanin still underestimated, however, but only with an undershoot of about 150 m−1 for
an input melanin coe�cient of 1500 m−1.

When Delta-Eddington is used in the inverse method in �gure 4.68, melanin curve used in the last �tting,
is the underestimation worse not only for low oxygenation, and in the same order of magnitude as for
the straight line �tting. This is expected, as was argued above.

When the dermal melanin is forced into epidermis as previously described will the result seen in �gure
4.69 be seen. This is evidently far more unstable, with high overestimation of the melanin parameter.
The overestimation is in the order of 300 m−1 even for low melanin absorptions at 300 m−1. Technically
can the full range of unpredictability be warranted since parts of the isotropic di�usion spectrum will
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Figure 4.66: The di�usion model melanin output of the Monte Carlo forward model. Straight line �tting
was used in the epidermal melanin extraction. Lines are titled by "bvf, oxy".
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Figure 4.67: The di�usion model melanin output of the Monte Carlo forward model. Fitting using the
melanin curve was used in the last epidermal iteration. Lines are titled by "bvf, oxy".
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Figure 4.68: The Delta-Eddington di�usion model melanin output of the Monte Carlo forward model.
Fitting using the melanin curve was used in the last epidermal iteration. Lines are titled by "bvf, oxy".
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Figure 4.69: The inversion of the two-layered MCML model using the isotropic di�usion model, output
melanin as function of the input melanin. Three iterations of the melanin method, the �tted melanin in
dermis is forced to epidermis. Lines are titled by "bvf, oxy".
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require a higher melanin absorption than the input melanin absorption in the forward model, as seen in
�gure 4.70. Still, for the wavelength range from which the melanin is extracted is the di�usion model
and MCML equal for these melanin absorption coe�cients, as seen in �gures 4.65 and 4.78, and the
behavior should not be seen.

Throughout this thesis has it been assumed that two iterations of the method is enough. In �gures 4.71,
4.72 and 4.73 is the convergence as a function of iterations of the full method shown. Using straight
line �tting in the �rst iteration before using the melanin curve in �gure 4.71 will be stable and converge
itself to an underestimated result about 30 m−1 under the desired result. The results are far more
unpredictable if the derived dermal melanin absorption is forced to epidermis. In �gure 4.73 is it seen
that the �rst iteration will yield an overestimated result, though the subsequent straight line �ttings will
move the result downwards. This will be due to the straight line �tting's nature of underestimating the
results. The results diverge if the melanin curve is used, as in 4.73.

From this will it be apparent that the strategy of force moving the melanin content to epidermis will
give unpredictable results. Two iterations of the method is enough, and �tting using straight line �tting
in the �rst iteration to avoid overestimation and �tting using the melanin curve in the next iterations to
avoid too much underestimation will give stable convergence.

4.5.3 Veri�cation using the three-layered Monte Carlo model

Here will the other parameters be investigated, when the two-layered di�usion model is applied on a
multi-layered reality.

The stability of the derived parameters for increasing melanin absorption coe�cients is shown in �gure
4.74 for the isotropic di�usion model and 4.75 for Delta-Eddington.

The parameters derived from 500-590 nm are more stable than the parameters derived from the longer
wavelength intervals. This is not surprising, since the longer wavelength intervals will use these parame-
ters to compensate for the lack of melanin when this is underestimated. The oxygenation at 530-590 nm
lies slightly higher than the input oxygenation in the Monte Carlo model, which is to be expected as it
will represent a mean of 0.5 at the upper layer and 0.9 at the lower layer along some penetration depth.
The same behavior is seen for the blood volume fraction.

The oxygenation at 500-590 increases with increasing melanin absorption. This is not physical. Increasing
melanin content should have shielded the two-layered model from seeing the oxygenation in the lower
layers, and made the derived oxygenation converge to 0.5. The same behavior was seen in the estimation
of blood parameters for high melanin contents in �gure 4.50. If Delta-Eddington instead is used will the
oxygenation be more stable, as seen in �gure 4.75, though the proper behavior still is not seen. The
discrepancy can therefore be explained to be more of a fault lying with the di�usion model.

Derived parameters as a function of the input parameters for the same melanin content is shown in �gure
4.76 for isotropic source functions and in �gure 4.76 for Delta-Eddington. The derived parameters are
seen with respect to the corresponding input parameter (the derived oxygenation at 500-590 nm against
the oxygenation of the upper layer), but the other parameters (blood volume fraction, oxygenation at
other layers) are varied to yield a standard deviation for the derived parameter. In addition is a mean
of the same parameter derived for a di�erent wavelength range (700 nm and up) calculated to show how
much this will be in�uenced.

The range 500-590 nm will be able to characterize the relative di�erences of the parameters set in the
uppermost dermal layer. Extracting the parameters from 690-800 nm or 620-730 nm will similarly
characterize the relative di�erences, though with a larger standard deviation especially for low input
oxygenation. This will be due to melanin underestimation. The range 620-730 outputs a larger standard
deviation than the range 690-800 nm. This will be due to its shorter penetration depth, being more
in�uenced by the parameters in the upper layer. Especially is it seen that the blood volume fraction here
is almost varying as much as the blood volume fraction derived from 530-590 nm with increasing blood
volume fraction in the upper layer, leading to large standard deviations in the derived blood volume
fraction. Judging from this is 690-800 nm the better choice.
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Figure 4.70: Fitting an MCML spectrum using the isotropic di�usion model with di�erent input melanin
contents. Input µa,m,694= 600 m−1, oxy = 0.3 and bvf = 0.05.
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Figure 4.71: Convergence of the melanin, �tting using straight line �tting in the �rst iteration and the
melanin curve in all subsequent iterations. The isotropic di�usion model applied on two-layered MCML
spectra. Input melanin was 900 m−1, input blood volume fraction 0.05.
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Figure 4.72: Divergence of the melanin. Melanin is forced from dermis to epidermis. Straight line �tting
in the �rst iteration, melanin curve �tting in all subsequent iterations. The isotropic di�usion model is
applied on two-layered MCML spectra. Input melanin was 900 m−1, input blood volume fraction 0.05.
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Figure 4.73: Convergence of the melanin. Melanin is forced from dermis to epidermis. Straight line
�tting in all iterations. The isotropic di�usion model is applied on two-layered MCML spectra. Input
melanin was 900 m−1, input blood volume fraction 0.05.

For Delta-Eddington are the behaviors more or less the same. It is seen, though, that the oxygenation
at 690-800 nm has a far larger standard deviation than for the isotropic case. Delta-Eddington had some
mis�tting with oxygenation values equal to zero, attributed to melanin underestimation.

In �gure 4.77 are the number of parameters varied reduced. The oxygenation derived from 690-730 nm
and 690-800 nm are plotted against the oxygenation at the upper and lower layer and blood volume
fraction at the lower layer with the other parameters set constant. Both will characterize the di�erences
in oxygenation in the lower layer well enough, though there is not much di�erence in the stability with
respect to the oxygenation in the upper layer. It is however seen that they both will be in�uenced by
the blood volume fraction in the lower layer, but 620-730 nm more than 690-800 nm.

4.5.4 The e�ect of blood vessels

A re�ectance spectrum from blood vessels have been approximated in �gure 4.78. Blood vessels were
simulated assuming a high blood volume fraction at the third layer and assuming a di�erent refraction
index of n = 1.35 for this layer (value from [114]). This is a crude approximation, as not only will
the refraction index be di�erent but also the scattering due to the packing of the red blood cells and
scattering from the blood vessel walls, but the change of refraction index should illustrate some of the
problems related to wrong boundary conditions.

As long as there is not much blood, the approximation using the di�usion model is expected to be
good. When there is much more blood, using the di�usion model to approximate the Monte Carlo
model will yield either a lower amount of blood or a lower amount of melanin depending on the spectral
features, since the di�usion model spectrum for the same parameters lie lower than the Monte Carlo
spectrum. When the boundary conditions are changed, using a refraction index more reminiscent of
blood vessels while ignoring the blood vessel walls, the Monte Carlo spectrum lies higher yet and the
melanin approximation will be expected to be worse.

Melanin underestimation in the presence of blood vessels is therefore to be expected.
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Figure 4.74: The derived oxygen saturation and blood volume fraction using the inverse isotropic di�usion
model on MCML spectra, as a function of the melanin absorption coe�cient input to MCML. MCML
spectra generated using oxygen saturation 0.5 and 0.9 at the �rst and second dermal layer respectively,
and 0.01 and 0.03 as the blood volume fraction at the same layers. The melanin curve is being used in
the epidermal �tting in the last iteration.
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Figure 4.75: The derived oxygen saturation and blood volume fraction using the inverse Delta-Eddington
di�usion model on MCML spectra, as a function of the melanin absorption coe�cient input to MCML.
MCML spectra generated using oxygen saturation 0.5 and 0.9 at the �rst and second dermal layer
respectively, and 0.01 and 0.03 as the blood volume fraction at the same layers. The melanin curve is
used in the last iteration of the epidermal �tting.
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Figure 4.76: The stability of the derived parameters using the inverse isotropic di�usion model. Input
re�ectance was simulated using MCML. µa,m,694 = 500 m−1, d2 = 350 µm. The bvfs on the respective
layers were varied between 0.01, 0.03, 0.05 and 0.07, the respective oxy were varied between 0.3, 0.5, 0.7
and 0.9. 128
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Figure 4.76: The stability of the derived parameters using the inverse Delta-Eddington di�usion model.
Input re�ectance was simulated using MCML. µa,m,694 = 500 m−1, d2 = 350 µm. The bvfs on the
respective layers were varied between 0.01, 0.03, 0.05 and 0.07, the respective oxy were varied between
0.3, 0.5, 0.7 and 0.9. 129
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Figure 4.77: A comparison between �tting ranges for a stable set of input parameters. µa,m,694 = 500
m−1, d2 = 350 µm.

130



0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

400 450 500 550 600 650 700 750 800 850

DM-Iso, bvf = 0.20
DM-Iso, bvf = 0.01
MCML, bvf = 0.01

MCML, bvf = 0.20, n = 1.40
MCML, bvf = 0.20, n = 1.35
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4.6 Feasibility

The results depend heavily on the correct calibration of the data. The correct focusing is in part enforced
by an autocalibration system, but the body samples will vary spatially across the �eld of view and go in
and out of focus. Some of the parameters become unphysical only with the slightest unfocusedness, and
with shadows and light source variation not being corrected by correcting the light source variation in
the �at �eld calibration.

It will be di�cult to get absolutely correctly calibrated data, which will make the model assumptions
rather misaligned with reality, even if the model already assumes assumptions at odds with reality.
The model should be made more robust to such discrepancies, either through preprocessing or in the
treatment of the dermal absorption coe�cient itself, after inversion. In the unmixing stage are �xed
endmembers assumed. Some slack should be given and some probability density functions assigned to
the individual levels, or the endmembers should be extracted directly from the image. But this will not
necessarily solve the problems, as the problems will vary spatially across the �eld of view. The problems
will also in�uence the melanin determination and lock the subsequent �tting into infeasibility, as both
blurring and shadowing seem to in�uence the melanin level to be higher. If anything should the unmixing
methods used in the melanin �tting be modi�ed.

It is not immediately clear how this should be done. The non-linear least squares methods are "classical"
methods [46]. The assumption is that the parameters to estimate are deterministic, just clouded by
convolutions inherent in the model. The other approach will be to assume the parameters random,
following a probability distribution, and leading to the Bayesian approach for estimation [46]. However,
this will neither be correct, as the parameters to estimate (blood volume fraction, oxygenation, etc.)
are in reality deterministic, but potentially can scene variability be implemented as more uncertainty in
the variables. Bayesian estimation theory's strength is the potential for incorporating prior knowledge
into the parameters [46], which is not more known when scene variability is taken into account. It can
however be used for incorporating spatial information [99]. Partial least squares is often used in chemical
spectroscopy community for unmixing absorption spectra [37]. This is a statistical approach, but its main
strength is not feasibility variability but to correct for co-linearity, given that multiple chromophores are
codependent. Zhang et al. [113] gave a method for allowing scene variability in ordinary, constrained
unmixing, but this was mainly to alleviate the sum-to-one-constraint, which is not a constraint present
in this problem. There does exist literature covering how to correct for scene variability and shadows
[78, 89], but these will normally assume that the terrain levels are known a priori.
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Still can it be assumed that the region of interest will be correctly focused, though the outlying parts
are not.

In addition will there be other problems. Specular re�ection is removed by applying crossed polarization
�lters, but the removal will hinge on the assumption that the imaged surface is �at. This will not be the
case. Light from the surroundings will be di�usively re�ected from the skin, which can in part cause some
spectral characteristics not reminiscent of skin. The model will assume boundary conditions to never
vary, which is especially not true in the blood vessels. The scattering is assumed to never vary, and this is
known to not be true, and will give errors accumulating in the melanin determination. In the derivation
of the model is the situation assumed to be one-dimensional, i.e. that light scattered and absorbed
can be accounted for along one axis, inside one, large slab of skin. This is an assumption which can be
assumed correct when dealing with spectrometers, but in the hyperspectral inversion will this assumption
be assumed correct in each pixel. In other words will light be assumed to not scatter in-between pixels.
Given the large penetration depths will this not be the case. If the pixels are integrated can this be more
correct, however, as the situation will be more reminiscent of when measuring using a spectrometer. In
this work has pixels been unmixed separately, but to make the independence assumption more correct
can the results be meaned over some neighbourhood.

Noise-free images have been assumed by taking MNF-de-noised images as input. In a real-time situation
can the noise removal of the images be less optimal.

4.7 Calibration and visualization

Some smaller parts of the task was to develop visualization for the results and real-time automatic
calibration of the hyperspectral data.

4.7.1 Visualization

An example of the visualization is shown in �gure 4.79. It is possible to see the relative changes, but
the visualization of the di�erent blood volume fractions is not good enough as it is not possible to
discern the exact oxygenation value. This will mean that the visualization class must be subclassed into
di�erent oxygenation and blood volume fraction visualization classes so that the blood volume fraction
and oxygenation can correctly be calculated, or the GPU-DM stage must output the oxygenation and
blood volume fraction instead of the deoxy and oxy absorption coe�cients. As all other data are output
as absorption coe�cients, would doing this go slightly against output expectations.

4.7.2 Calibration

Data containing the re�ectance standard that is to be used in the future with other objects present in
the �eld of view were not available, and much work was therefore not put into the development of the
calibration stage. Still, some general notes will be discussed.

The scene common in the present images is a leg lying on top of a pillow. At the start of the image is
there a paper strip to correct for light source variation and a circular re�ectance standard to convert
radiance data into re�ectance data.

The light source variation cannot be corrected using a sheet of paper. The paper will di�usively re�ect
di�erent intensities at the di�erent wavelengths due to the presence of chromophores in the paper, as
is shown in �gure 4.80. This is not good enough. The band having the best signal to noise ratio was
chosen as the band to correctify the image against, and this resulted in non-�ttable spectra. No images
only containing the paper strip as the light variation detection were therefore corrected for the variation
of the light source across the �eld of view. This is likely one major source of error. Only the image
in 4.45a was corrected against the variation of the light source as it had the calibration slab across the
entire �eld of view present.
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Figure 4.79: Visualization in GPU-DM
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Figure 4.80: The light source variation across the �eld of view for di�erent bands, as obtained from the
paper strip.
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Figure 4.81: Re�ectance standard extraction using simple thresholding. Band 20 is �rst thresholded
based on some arbitrary value, eroded by a square structure element of size 10 and �nally dilated by the
same structuring element. The image is successfully segmented.

Some preliminary results were found regarding the detection of the calibration slab using simple thresh-
olding operations. Even if the paper sheet will not be a correct re�ectance standard will it still have
the same intensity characteristics as the re�ectance standard to be used. Thresholding line by line was
found to be too unstable, and the stage will have to wait for a certain amount of lines before attempting
detection to achieve good and stable results.

If only one band is segmented based on thresholding may the paper strip be segmented from the rest, as
is seen in �gure 4.81. This method was not very stable, and for these cases was the circular disc in the
lower left corner desired, as this was a true re�ectance standard.

In �gure 4.82 are the uncalibrated spectra present in the scene shown. Based on this may optimal bands
be chosen for thresholding, as the di�erent materials to be removed from the scene will have di�erent
responses at di�erent bands. Skin exhibits, as is known due to the high absorption of blood and melanin
at the lower wavelengths, a lower image intensity than the rest of the materials at the �rst bands. The
intensity is low also for the other bands due to the low signal to noise ratio due to the Gaussian light
source, but still higher than the intensity for skin. In �gure 4.83 is the �rst band in the hyperspectral
image shown. The tissue is darker than the rest of the image. In the same �gure is the image histogram
shown, and in �gure 4.84 the image histogram after the image has been smoothed using a Gaussian
�lter. Using the minima present in the image histogram can the image be thresholded to yield each of
the binary images shown in �gure 4.85. This is not 100 percent successful in segmenting the di�erent,
desired parts of the image, and other bands must be used.

Looking back at �gure 4.82, all of the curves exhibit similar behavior due to light source contamination,
especially for wavelength bands higher than band 80. The materials are mainly di�erentiated based on
the �rst 80 bands. The pillow and the stripe are di�cult to separate as they display the same behavior,
and the pillow has a lower intensity only due to being partially in shadow. The disc also displays similar
behavior, but has a lower intensity that is guaranteed to be lower than the rest because of its speci�cation
of re�ecting only a fraction of 0.4 of the incoming light. The material surrounding the calibration slab
has, however, a pinkish color which is easy to see the e�ects of in the spectrum. Skin is also characteristic
up till the 80th band.

The important thing is to segment the middle parts of the stripe from the outlying pillow parts. Thus,
band 50, where the di�erence seemingly is the largest, can be used to segment pillow from stripe. Band
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Figure 4.82: Uncalibrated spectra of di�erent materials present in the calibration scene. These are
plucked from one individual pixel present in each of the materials.
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Figure 4.83: Band 0 of an image along with its image histogram
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Figure 4.84: Image histogram after smoothing using a Gaussian �lter of size 10. Arrows indicate the
positions for later segmentation in �gure 4.85.

Figure 4.85: Segmentation of band 0 using the image histogram in �gure 4.84.
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(a) Image thresholded
based on band 0

(b) Band 30 thresh-
olded after multiplica-
tion by binary image
from band 0.

(c) Band 50 thresh-
olded after multiplica-
tion by binary image
from band 30.

(d) Band 60 thresh-
olded after multiplica-
tion by binary image
from band 0.

Figure 4.86: The re�ectance standard routine used in the �nal version.

30 can be used to segment the disc-surrounding material from the stripe as it has a low image intensity
here due to the pinkish color, and band 60 can be used to enhance its contrast to skin and pillow alike.
While this does not neccessarily yield a good segmentation of the calibration disc, it will yield its edges,
which can be used in a Hough circle transform and segmented using some basic region growing technique.
The result is shown in �gure 4.86. In CalibrationStage was the disc detected by �ood �lling areas and
dilating and eroding away the remaining, small structures.

The main obstacle for thresholding operations is the pillow, as it has a similar spectral behavior as a
high intensity re�ectance standard. The thresholding operations are therefore not enough for much else
than what this calibration stage has been used for so far, namely the calibration of single hyperspectral
images before saving to disc and MNF-denoising. These techniques cannot be used in the future, real-
time setup, but then the calibration slab will also be square and easier to detect using i.e. the Hough
transform [33]. The OpenCV documentation shows through examples that this may be made easy [65].

There are still some general problems present either way.

� Dynamicity. The method waits for a certain amount of lines before attempting to extract the
calibration slab. If the calibration slab always is placed in approximately the same area, this poses
no problems, but variations can.

� Memory. The whole image up till the limit must be saved for possible calibration standard extrac-
tion.

� Time. The number of lines becomes large in order to account for the possible variation of the
slab placement. The integration space and time taken to properly integrate the calibration slabs
becomes huge and processing of subsequent lines is delayed.

� Information. The whole segment of the image in which the calibration slab might have been is
discarded, and information is lost, if no delay in processing is desired.

These procedures can be done every 100 lines and quit when the calibration slab surely has been detected
if the square detection may be done fast. An objective measure of when the re�ectance standard has
been detected will not be easier to develop, however.

Some methods have been proposed for real-time detection of the calibration objects in the scene. In
the future, a square re�ectance standard which follows the contour of the leg will be used instead of
a circular re�ectance standard together with paper. This makes the above methods obsolete, and the
methods were therefore not tested much in detail or enhanced. The methods were only developed to the
extent that it would make analysis for this master thesis slightly easier than manually hard coding the
pixel coordinates of the re�ectance standards.
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Figure 4.87: The spectra from the same pixel as obtained when using the entire image and a subset of
the image containing only skin in the forward and inverse MNF transform. An estimate of the noise was
obtained using the same subset of the image in both cases.

4.7.3 Skin masking

A concern which is a concern regardless of the re�ectance standard in use in the future is masking of skin
for MNF noise removal. MNF was used to segregate noise from the data. At �rst, the MNF transform
was calculated from the entire hyperspectral image, but this resulted in non-�ttable spectra. Foreign
objects with a high signal to noise ratio, like the pillow, were present in the scene. Each individual
spectrum is calculated as a linear combination of di�erent noise-free spectra when the inverse MNF
transform is applied. The spectra from the pillow and the like will in part be included in the spectra
supposed to represent skin if the MNF transform is applied on the entire scene. The noise is removed,
but wrong spectral properties are assigned to the wrong pixel to compensate. The di�erence between
the spectra from the same pixel when the whole image is used to calculate the MNF transform and when
a subset only containing skin is used to calculate the MNF transform is shown in �gure 4.87.

The di�erence is not large, but there are small spectral artifacts present in the spectrum obtained using
the whole image as input in the MNF transform. These are not present when a subset is used.

Segmenting based on thresholding was not found to be very successful, particularly of the presence of
pillows partially being in shadow. Instead was spectral matching used: The mean of the middle parts
of the image was compared against all the hyperspectral pixels in the image using equation (2.46). The
result is shown in �gure 4.88. Only the parts of the image being skin is distinct enough. The skin can
after this transform be segmented using simple thresholding. There will be holes in the image due to
parts of the skin not being similar to the central parts, but the boundaries may still be found by walking
across the thresholded image starting at the edges.
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Figure 4.88: Spectral matching of a hyperspectral image using the spectra in the middle parts of the
image and (2.46).
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Chapter 5

Conclusion and further work

A fast inverse light transport model using GPU parallelization has been developed and presented. The
method itself, from input re�ectance data to melanin coe�cients and unmixed results to three separate
penetration depths has been found to satisfy the deadline requirement of 30 ms by delivering its �nal
unmixing results within 3.5 ms across a hyperspectral data line of 160 bands × 1600 pixels.

An obstacle has been to segregate the melanin absorption in epidermis from the properties residing in
the separate dermis. By comparing di�erent possible approaches has this thesis landed on a method
which will avoid the problems present in other, commonly used methods. The approach used has been
to �rst ignore the epidermal melanin absorption, �t all chromophores to dermis using dermal inversion
and spectral unmixing, and then derive the required epidermal absorption by removing melanin from
dermis. This is run for two iterations to remove underestimation problems. The method will theoretically
and has been shown on real data to underestimate the melanin results, particularly for high melanin
absorptions and an extreme blood volume fraction and low oxygenation, by 10%. This is however seen
as less of a problem than overestimation. Underestimation of melanin can be compensated using more
absorption, and recti�ed. Overestimation is more di�cult to escape. A good estimate, close to the real
value although underestimated, will in any case be useful.

A two-layered approach has been used to estimate the properties down to some penetration depth
using di�erent, carefully chosen wavelength ranges. This approach has been veri�ed to be able to
characterize relative di�erences in the parameters both on real data and simulations. As an absolute
measure is the approach more uncertain. For pure visualization purposes will this be enough, but
further calculations using the parameters can prove to be di�cult as they will be too unreliable. Still,
the melanin absorption will not be far from the actual value. Both the melanin absorption and the
parameter estimates, corrected assuming a simple meaning process, can be used as a starting point for
a far more arithmetically complicated three-layered �t.

An approach to detecting the required melanin type has been tested using the scaling of absorption
values, but found inconclusive. It is certain that the presence of di�erent melanin types will in�uence
the spectrum dramatically as there are large di�erences in the absorption of the di�erent melanin types.
Testing di�erent melanin types on the available data would however produce results that could be
explained by calibration errors, light source variation errors, focusing errors, depth variations of the
imaged body samples or an erroneous scattering assumption.

The abundance estimation algorithm in use, SCA, has been found to be unreliable as it has no convergence
guarantees. Proper convergence was not seen in the presence of many chromophores, though it was
successful enough for a low number of chromophores. In addition will the unmixing after inversion, and
the unmixing used in the melanin determination stage, assume perfect data. This was seen to not be
the case. SCA should be exchanged for a di�erent algorithm, but the question is whether this should
be some statistical method to include spatial information and leniency due to data miscalibration, or it
just should be exhanged for a di�erent NNLS algorithm with proper convergence guarantees. Likely is
the last item not enough.
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Visualization and automatic calibration has been developed. Proper data with a proper re�ectance stan-
dard present was not available. The calibration was developed to the extent that it must be tweaked
for each image, and is not automatic enough for proper real-time use. More advanced image processing
methods are required, and should be tested once better data are available. The visualization will char-
acterize the relative di�erences well enough. Single pixel spectra can be investigated by clicking pixels
in the image.

GPGPU had its golden era in 2006-2010, with cheap GPUs being available for high performance com-
puting. With the introduction of Tesla GPUs are NVIDIA aiming to tailor speci�c GPUs for computing.
The amount of hyperspectral data and the resolution of hyperspectral data will scale with increasing
resources available, as will the real-time requirements. Using commodity graphics cards might no longer
be viable in the future, requiring the far more expensive high performance computing cards or a di�erent
strategy altogether. In any case can the parallelization strategies and inverse methods developed here
be used in the future. There is also some possibility for optimizing the running times by tweaking things
like the threads per block size and inverting multiple lines in parallel.
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Appendix A

Inverse parameters

Parameters for the inverse simulations seen in assorted re�ectance �gures are here presented.
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Appendix B

Code

B.1 CUDA kernels

Headers for the CUDA kernels are shown here. For full implementation, refer to attached code �les
(cudakernels.cu, inv.cu, base.cu) if available.

Code B.1: appendix/GPU�DM/cudakernels.h

1 // remove muam694 -component from input mua

2 __global__ void removeMuam( f loat *mua , f loat *endvalues , f loat *AT , int

startblockInd , int numBands , int endmembers , int muamInd , size_t pitch);

3
4 // perform moving average of size samples on the input array

5 template < int BLOCK_DIM >

6 __global__ void movingAverage( f loat *arr , f loat *outarr , int samplesdiv2 ,

size_t pitch);

7
8
9 // deinitializing muam

10 __global__ void muamDeinit( f loat *muam , size_t pitch);

11
12 __global__ void skindataDeinit( f loat *muam , f loat *bvf , f loat *oxy , f loat *

melanin_type , size_t pitch);

13
14 //check scaling of muad at wavelengths 1 and 2 and move the melanin type up one

step. PHEOMELANIN_GPU -> SVAASAND_MELANIN_GPU -> EUMELANIN_GPU -> ??? wrong

scattering

15 __global__ void CheckReflectanceScaling( f loat *muad , f loat *melanin_type , int

wlenind1 , int wlenind2 , size_t pitch , f loat scaling_thresh);

16
17 __global__ void SetMelaninType( f loat *melanin_type , int inputType , size_t pitch

);

18
19 // penetration depth calculations

20 __device__ f loat calcPenDepth( f loat muae , f loat muad , f loat musd , f loat gcol);

21 __global__ void PenDepths( f loat *muae , f loat *muad , f loat *muse , f loat *musd ,

f loat *gcol , int startwlenind , int endwlenind , size_t pitch , f loat *

pendepths , f loat *pendepthsstd);

22
23
24 // ordinary least squares. Both implementations are in reality unoptimized. Uses

interpolation. Uppers and downers contain indices for interpolation.

25 __global__ void GPUlseunoptim( f loat *lsemat , f loat *input , f loat *res , f loat

startWlen , f loat stepWlen , int antWlens , int *uppers , int *downers , f loat *
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upperwlens , f loat *downerwlens , size_t pitch , size_t intPitch);

26 __global__ void GPUlseOptim( f loat *lsemat , f loat *input , f loat *res , int

startind , int endind , int *numWlens , f loat *wlens , f loat *startwlens , int

antWlens , size_t pitch , size_t intPitch);

27
28 // calculate oxy and bvf based on absorption coefficients

29 __global__ void calcOxyBvf( f loat *inputRes , f loat *oxyOut , f loat *bvfOut ,

size_t pitch);

30
31 //NNLS using ISRA

32 template < int MAX_NUM_BANDS >

33 __global__ void ISRA( f loat *mua , f loat *endout , f loat *chromarr , size_t pitch ,

int startwlenInd , int numEndmembers , int numBands);

34
35 // implementation of SCA using shared memory

36 template < int MAX_ENDMEMBERS , int MAX_BLOCKDIM >

37 __global__ void SCA( f loat *AT , f loat *H, f loat *inputmua , f loat *x, f loat *mu ,

f loat *prevChrom , int prevMethbind , int currMethbind , int startind , int

numBands , int numEndmembers , size_t pitch);

38
39 // implementation of SCA using registers

40 template < int MAX_ENDMEMBERS >

41 __global__ void SCAFast( f loat *AT , f loat *H, f loat *inputmua , f loat *x, f loat *

mu , f loat *prevChrom , int prevMethbind , int currMethbind , int startind , int

numBands , int numEndmembers , size_t pitch);

Code B.2: appendix/GPU�DM/inv.h

1 // invert muae from input reflectance

2 __global__ void ReflIsoL2InvertMuae( f loat *muae , f loat *muse , f loat *muad ,

f loat *musd , f loat *gcol , f loat *lineData , size_t pitch , int startblockInd);

3
4 // invert muad from input reflectance

5 __global__ void ReflIsoL2InvertMuad( f loat *muae , f loat *muse , f loat *muad ,

f loat *musd , f loat *gcol , f loat *lineData , size_t pitch , int startblockind);

6
7
8 // calculate optical parameters given input skin data

9 __global__ void calcSkinData( f loat *wlens , f loat *oxy_arr , f loat *Bd_arr , f loat

*muam694_arr , f loat *melanintype_arr , f loat *muae , f loat *muse , f loat *muad

, f loat *musd ,

10 f loat *muh_oxy , f loat *muh_deoxy , f loat *melanin_base , f loat *

musm , f loat *musr , f loat *musb_base , size_t pitch , int

startblockind);

11
12 // monochromatic spectral unmixing

13 __global__ void MultVector( f loat *multVec , f loat *mua , f loat *res , f loat factor

, int startwlenind , int endwlenind , size_t pitch);

14 __global__ void StraightLine( f loat *wavelengths , f loat *mua , f loat wlen , f loat

*res , int startwlenInd , int endwlenInd , size_t inputPitch);

15
16
17 // calculate isotropic reflectance , forward only

18 __global__ void ReflIsoL2( f loat *muae , f loat *muse , f loat *muad , f loat *musd ,

f loat *gcol , f loat *res , size_t pitch , int startblockind);

19 __device__ f loat ReflIsoL2Calc( f loat mua1 , f loat musr1 , f loat mua2 , f loat musr2

);

20
21 // calculate error in reflectance

22 __global__ void ReflIsoL2ErrorCheck( f loat *muae , f loat *muse , f loat *musd ,

f loat *gcol , f loat *AT , f loat *x, int endmembers , int numbands , f loat *
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inputres , f loat *outputres , size_t pitch , int startblockind , int diff);

Code B.3: appendix/GPU�DM/base.h

1 #ifndef BASE_H_DEFINED

2 #define BASE_H_DEFINED

3
4 #include <vector >

5
6
7 //base spectral dependencies

8 struct GPUSkinBase{

9 f loat *muh_oxy;

10 f loat *muh_deoxy;

11 f loat *melanin_base; // contains (695/ lambda)^3.46

12 f loat *gcol; // anisotropy factor for collagen

13 f loat *musm; // unreduced mie scattering

14 f loat *musr; // unreduced rayleigh scattering coefficient

15 f loat *musb_base; // unreduced blood scattering coefficient

16 f loat *wavelengths; // wavelengths

17 void allocate( int samples , int bands , size_t byteWidthPerBlock , int

numberOfBlocks , const std::vector < f loat > &wavelengths);

18 };

19
20 //skin data

21 struct GPUSkinData{

22 f loat *muam694;

23 f loat *bvf;

24 f loat *oxy;

25 f loat *melanin_type; // SVAASAND_MELANIN_GPU , EUMELANIN_GPU or

PHEOMELANIN_GPU

26 void allocate(size_t byteWidthPerBlock , int numberOfBlocks , int thrPerBl);

27 f loat *download( int samples); // download all arrays to an host array

28 size_t pitch;

29 int height;

30 size_t byteWidth;

31 };

32
33 // optical properties

34 struct GPUOpticalProps{

35 f loat *muae;

36 f loat *muse;

37 f loat *muad;

38 f loat *musd;

39 void allocate(size_t byteWidthPerBlock , int numberOfBlocks);

40 };

41
42 #endif

B.2 Wrapper code

An NDA has been signed with FFI regarding their framework, and some parts of the code were very
framework-speci�c and disclosed too much of the inner workings of the hyperspectral framework. There-
fore are only some parts of the code included in this appendix, primarly those calling CUDA kernels,
and some other parts to demonstrate the system. With major parts missing will the code not be com-
pilable. Here are only the headers shown. For code/stubs, refer to attached code �les (gpudmblokk.cu,
calibration.cpp, �tting.cpp, melanin.cpp, visualize.cpp) if available. Some functionality has been cut.
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Code B.4: appendix/GPU�DM/gpudmblokk.h

1 //input: spectral image. Output: float image where each band corresponds to a

chromophore

2 class GPUDM{ // omitted inherited classes

3 public:

4 GPUDM( int bands , int samples , const std::vector < f loat > &wlens);

5
6 //

7 // omitted framework functions

8 //

9
10 // inversion

11 void invertReflectance( f loat *refl , bool printToFile , int pixel = -1);

//takes in a host allocated array , uploads it to the GPU , inverts it

using the isotropic diffusion model

12 void invertMuam694( int iterations , bool printToFile , int pixel = -1);

// clutterfunction for inverting muam694. Just to clean up execute ()

a bit

13 void invertMuad(GPUSkinData *skinData , f loat *simrefl , f loat *deriv ,

f loat *currRefl , int startwlenInd , int endwlenInd , cudaStream_t *

processingStream);

14 void invertMuae(GPUSkinData *skinData , f loat *simrefl , f loat *deriv ,

f loat *currRefl , int startwlenInd , int endwlenInd , cudaStream_t *

processingStream , bool shouldCalcSkinData);

15 void detectMelaninType( f loat *refl , GPUSkinData *skinData); // detect

correct melanin type based on the muad scaling at input wavelengths.

Will only be able to determine when there is "pure" pheomelanin and

"pure" eumelanin , but a mix is more likely.

16 void checkReflectanceScaling( f loat *refl , GPUSkinData *skinData , int

wlenind1 , int wlenind2 , dim3 gridDim , size_t pitch);

17
18 // spectral unmixing

19 void doOneChromSpectralUnmixing(GPUSkinData *skinData , f loat *gpuMua ,

int startwlenInd , int endwlenInd , cudaStream_t *processingStream ,

MelaninDetermination choice);

20
21 private:

22 int num_melanin_iterations;

23
24 // inversion arrays , all allocated on the GPU

25 GPUSkinData *_skinDataMuadInv;

26 GPUSkinData *_skinDataMuaeInv;

27 GPUOpticalProps *_optProps;

28 GPUSkinBase *_skinBase;

29 f loat *_calarray;

30 f loat *_simrefl;

31 f loat *_deriv;

32 f loat *_currRefl;

33 int _numIterations;

34
35 //image properties

36 int _bands;

37 int _samples;

38 std::vector < f loat > _wlens;

39 bool _shouldCal;

40
41 //GPU properties

42 size_t _byteWidth;

43 int _height;

44 size_t _pitch;
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45 int _threadsPerBlock;

46 dim3 _dimBlock;

47 dim3 _dimGrid;

48 cudaStream_t processingStream;

49 cudaStream_t transferStream;

50
51 // melanin fitting variables

52 f loat _factor;

53 f loat *_melcurve;

54 f loat *_gpumeltype; // melanin type. 0: svaasand , 1: pheomelanin , 2:

eumelanin

55 f loat *_gpureflscaling; // reflectance scaling calculated from some

wavelengths

56 int _scalewlenind1;

57 int _scalewlenind2;

58
59 // framework properties

60 //

61 // omitted

62 //

63
64 // wavelength range for melanin determination

65 int _startwlenInd;

66 int _endwlenInd;

67 f loat _startwlen;

68 f loat _endwlen;

69
70 SCAFitting *sca450;

71 SCAFitting *sca530;

72 SCAFitting *sca700;

73 SCAFitting *scabefore;

74
75 //to ensure methb inclusion in first SCA fitting

76 f loat *methbdummy;

77 int methbDummyInd;

78
79 // forward simulation

80 f loat *_gpumuad;

81 f loat *_gpures;

82 };

83
84
85 const f loat SCALE_WLEN_1 = 541;

86 const f loat SCALE_WLEN_2 = 576;

87
88
89 // fitting on the GPU using SCA

90 class SCAFitting : public LSEFitting{

91 public:

92 SCAFitting(Chromophores chrom , const std::vector < f loat > &wlens , f loat

startwlen , f loat endwlen , int samples , int bands , int

threadsPerBlock , size_t pitch);

93 void doFitting(GPUSkinData *skinData , f loat *gpuMua , bool shouldCopy ,

bool shouldUpdateSkindata , f loat *prevChrom , int prevMethbind);

94 f loat *getRes (){return _res ;}; // return current chromophore fitting

result

95 int getNumEndmembers (){return _endmembers ;};

96 Chromophores getChrom (){return _chrom ;};

97 int getMethbInd (){return _currMethbInd ;};

98 f loat *reflerror(GPUOpticalProps *optProps , GPUSkinBase *skinBase ,

f loat *measrefl); // calculate the error from forward reflectance
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99 int getFitStartInd (){return _startind ;};

100 int getFitEndInd (){return _endind ;};

101 protected:

102 void prepSCA (); // create arrays

103 f loat *_GPUATA; //H matrix on the GPU

104 f loat *_GPUA; // transpose of chromophore matrix on GPU

105 f loat *_mu; //den mu-greia i algoritmen anae rikke hva den heter

106 int _startind; //start index for fitting

107 int _endind;

108 int _currMethbInd;

109
110 f loat *_gpuerror; //for forward reflectance calculation , not really a

reasonable part of this class but whatever

111 };

112
113 // fitting using ISRA

114 class ISRAFitting : public SCAFitting{

115 public:

116 ISRAFitting(Chromophores chrom , const std::vector < f loat > &wlens , f loat

startwlen , f loat endwlen , int samples , int bands , int

threadsPerBlock , size_t pitch);

117 void doFitting(GPUSkinData *skinData , f loat *gpuMua);

118 };

Code B.5: appendix/GPU�DM/calibration.h

1 class CalibrationStage{ // inherited classes are omitted

2 public:

3 CalibrationStage( int bands , int samples , f loat *calarr , f loat calfact ,

std::vector < f loat > wlens); //bands , samples , wlens are propertes of

the incoming hyperspectral image , which should in reality be

detected at the first iteration of the execution loop.

4
5 //

6 // omitted framework functions

7 //

8
9 cv::Mat segment(cv::Mat inputImage , cv::Mat inputBinary , int threshold ,

bool shouldMult); // segment image based on some threshold , and

multiply it against some other image

10 f loat * detectan( f loat *inputImage , int height , int width); //full

calibration detection , old images with paper strip and circular

reflectance standard

11 f loat * easyDetect( f loat *inputImage , int height); //just something to

collect data from pre -defined calibration slab

12 bool *skinThresh( f loat *inputImage); // returns a binary cv::Mat object

containing 1 where there should be skin and 0 where there should be

not

13 private:

14 int _samples; // samples in the output image

15 int _imageInputSamples; // samples in the input image

16 int _lines; // lines per block of data

17 int _bands;

18 std::vector < f loat > _wlens;

19
20 f loat * _calarray; // contains calibration arrays after successful

detection

21 f loat _calfactor; // reflectance standard factor , usually 0.4, 0.5 or

0.99

22 f loat *_buffer;

23
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24 // omitted framework variables

25 };

Code B.6: appendix/GPU�DM/�tting.h

1 #ifndef FITTING_H_DEFINED

2 #define FITTING_H_DEFINED

3
4 // general fitting class , for generating interpolation tables and such

5 class Fitting{

6 public:

7 Fitting(Chromophores chrom , const std::vector < f loat > &wlens , f loat

startwlen , f loat endwlen , int samples , int bands);

8 void generateInterpolTables (); // creates interpolation tables for later

interpolation

9 stat ic f loat ** generateChromophoreMatrix(Chromophores chrom , f loat

startwlen , int antWlens , int endmembers); // generates chromophore

matrix for the specified wavelengths

10
11 protected:

12 //image properties

13 int _endmembers;

14 int _samples;

15 int _bands;

16
17 // interpolation properties

18 int _startwlen;

19 int _antWlens;

20
21 // interpolation arrays

22 f loat *_upperWlens;

23 f loat *_downerWlens;

24
25 // interpolation indices. Uppers are upper indices corresponding to

wavelength number i from _minWlen , downers are lower indices

26 f loat _minWlen;

27 f loat _maxWlen;

28 f loat _stepWlen;

29
30 std::vector < f loat > _wlens;

31
32 Chromophores _chrom;

33 void lseprep ();

34 int *_uppers;

35 int *_downers;

36 };

37
38 #endif

Code B.7: appendix/GPU�DM/hanson�tting.h

1 #ifndef HANSONFITTING_H_DEFINED

2 #define HANSONFITTING_H_DEFINED

3
4 #include "fitting.h"

5
6 //stage for unmixing muad output using the Lawson -Hanson algorithm

7 class HansonFitting { // inheritance classes omitted

8 public:

9 HansonFitting(Chromophores chrom , const std::vector < f loat > &wlens ,

f loat startwlen , f loat endwlen , int samples , int bands);
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10 void generateHansonMatrix (); // create gsl matrix containing the

chromophore matrix

11 f loat * doHansonFitting( f loat *mua); //do the actual fitting

12
13 // framework stuff

14 //

15 // omitted

16 //

17
18 private:

19 // chromophore matrix to be pseudoinverted

20 gsl_matrix *_chromMat;

21
22 // framework properties

23 //

24 // omitted

25 //

26 };

27
28 #endif

Code B.8: appendix/GPU�DM/melanin.h

1 #ifndef MELANIN_H_DEFINED

2 #define MELANIN_H_DEFINED

3 f loat melanin( f loat w);

4 enum MelaninType{PHEOMELANIN , EUMELANIN , SVAASAND };

5
6 const f loat MELANIN_REFERENCE_WAVELENGTH = 694.0f;

7
8 enum MelaninDetermination{USE_STRAIGHT_LINE , USE_MELANIN_CURVE };

9
10 #define PHEOMELANIN_GPU 0

11 #define SVAASAND_MELANIN_GPU 1

12 #define EUMELANIN_GPU 2

13 #define NONE_GPU 3

14
15 #define kPheo 4.780f

16 #define kEu 2.429f

17
18 const f loat SCALING_THRESHOLD_MELANINTYE_DETECTION = 0.90;

19
20 #endif

Code B.9: appendix/GPU�DM/chromophores.h

1 #ifndef CHROMOPHORES_H_DEFINED

2 #define CHROMOPHORES_H_DEFINED

3
4
5 class Chromophores{

6 public:

7 Chromophores (); // blood is set as standard

8 void checkAndSet(bool *val);

9 void checkAndUnset(bool *val);

10
11 void setWat (){checkAndSet (& haswat);};

12 void setKonst (){checkAndSet (& haskonst);};

13 void setMel (){checkAndSet (& hasmel);};

14 void setMethb (){checkAndSet (& hasmethb);};

15 void setBil (){checkAndSet (& hasbil);};
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16 void setBet (){checkAndSet (& hasbet);};

17 void setDeoxy (){checkAndSet (& hasdeoxy);};

18 void setOxy (){checkAndSet (& hasoxy);};

19 void setCOHb (){checkAndSet (& hascohb);};

20
21 void unsetWat (){checkAndUnset (& haswat);};

22 void unsetKonst (){checkAndUnset (& haskonst);};

23 void unsetMel (){checkAndUnset (& hasmel);};

24 void unsetMethb (){checkAndUnset (& hasmethb);};

25 void unsetBil (){checkAndUnset (& hasbil);};

26 void unsetBet (){checkAndUnset (& hasbet);};

27 void unsetDeoxy (){checkAndUnset (& hasdeoxy);};

28 void unsetOxy (){checkAndUnset (& hasoxy);};

29 void unsetCOHb (){checkAndUnset (& hascohb);};

30
31 int getNumEndmembers (){return numEnd ;};

32 f loat *getAbsArray( f loat w); // returns absorption array across all

chromophores

33 f loat getAbs( f loat w, int end); // returns absorption for specified

chromophore

34 int getMelInd (); // returns the index corresponding to melanin

35 int getMethbInd (); // returns the index corresponding to methemoglobin

36 private:

37 bool hasoxy;

38 bool hasdeoxy;

39 bool haswat;

40 bool haskonst;

41 bool hasmel;

42 bool hasmethb;

43 bool hasbil;

44 bool hasbet;

45 bool hascohb;

46
47
48
49 int numEnd;

50
51 };

52
53 #endif

Code B.10: appendix/GPU�DM/visualize.h

1 enum ShouldSave{DO_SAVE_SPECTRUM , DO_NOT_SAVE_SPECTRUM };

2
3 //image viewer. Parts of this is adapted from norsk elektro optikk

4 //for displaying physical images on input

5 class ImageViewer : public QWidget{

6 Q_OBJECT

7 public:

8 ImageViewer(QWidget *parent = NULL) : QWidget(parent){

9 QGridLayout *lay = new QGridLayout(this);

10 area = new QScrollArea;

11 lay ->addWidget(area);

12 image = new QLabel;

13 image ->setBackgroundRole(QPalette ::Base);

14 image ->setSizePolicy(QSizePolicy ::Ignored , QSizePolicy :: Ignored

);

15 area ->setWidget(image);

16 image ->setScaledContents(true);

17 bar = new QStatusBar;
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18 lay ->addWidget(bar);

19 bar ->showMessage("Ready");

20 image ->setMouseTracking(true);

21 image ->installEventFilter(this);

22 hyData = NULL;

23
24 };

25 void newImageArray(uchar *imgData , int numPixels , int k); //set QImage

to incoming image array

26 void setHyData( f loat *hyData){this ->hyData = hyData ;}; //save full

hyperspectral data in the image viewer it is set as the "main" image

viewer to catch all mouse click events and send data to

invertReflectance

27 protected:

28 void paintEvent(QPaintEvent *evt);

29 bool eventFilter(QObject *object , QEvent *event); // event filter for

catching mouse hover events and displaying pixel placements at

bottom

30 private:

31 QStatusBar *bar;

32 QScrollArea *area;

33 QLabel *image;

34 uchar *imgData;

35 int numPixels , k;

36 f loat heightScale;

37 f loat widthScale;

38 f loat *hyData;

39 signals:

40 void mouseClicked( int , int , ShouldSave);

41 public slots:

42 void forwardSimulation( int , int , ShouldSave);

43
44 };

45
46 //for inputting pixel number and line number and inverting the specific pixel

47 class PixelChooser : public QWidget{

48 Q_OBJECT

49 public:

50 PixelChooser(QWidget *parent = NULL);

51 private:

52 QLineEdit *line;

53 QLineEdit *pixel;

54 private slots:

55 void buttonTriggered ();

56 signals:

57 void pretendMouseClicked( int pixel , int line , ShouldSave);

58 };

59
60
61 // adapted from norsk elektro optikk

62 //stage for viewing chromophore images

63 // images are only sent to one or several imageviewer classes

64 class VisualizeStage{ // inheritance classes are omitted

65 public:

66 VisualizeStage( int numBands , int numPixels , int numLine , std::vector <

int > bands , std::vector < f loat > maxVals , std::vector < f loat > minVals ,

bool RGBimage , QStringList winTitles , bool canShowSpectra = false ,

QWidget *parent = NULL); // canshowspectra: for saving all

hyperspectral data to the image viewer. RGBImage: if set , will mix

the first bands to an RGB image. Otherwise display monochromatic

images
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67 void setWindowTitle(QString title){imView ->setWindowTitle(title);};

68
69 // framework

70 //

71 // omitted

72 //

73 protected:

74 bool canShowSpectra;

75
76 // indices for navigating the image

77 int k;

78 int c;

79 int t;

80
81 //image properties

82 int numBands , numPixels , interleave;

83
84 // received data

85 quint16* blockData;

86
87 // current line

88 int numLine;

89
90 //saved image data

91 uchar* imgDataRGB; //RGB

92 f loat * floatDataRGB; // grayscale

93
94 std::vector <uchar*> imgDataNonRGB; //the data that is to be displayed

as RGB images

95 std::vector < f loat *> floatDataNonRGB; //data to be displayed as

grayscale

96
97 // indices navigating the received images

98 std::vector < int > cs;

99
100 // framework

101 //

102 // omitted

103 //

104
105 bool RGBImage; // whether it is supposed to be an RGB image or not

106
107 std::vector < int > bands; //list of bands to be displayed (or

chromophores or whatever)

108 std::vector <ImageViewer*> imViews; // grayscale image views

109 std::vector < f loat > maxVals; //list of maximum values

110 std::vector < f loat > minVals; //list of minimum values

111
112 bool firstTime; // whether the line is the first line received

113
114 virtual void imageStream( f loat * blockData , int blockLine); // inputting

data to image

115 ImageViewer *imView; //RGB image view

116
117 f loat *hyData; // hyperspectral data , incoming data is saved if

canShowSpectra is set

118 };

119
120 // subclass of VisualizeStage for converting uncalibrated hyperspectral images

to RGB images

121 class RGBVisualize : public VisualizeStage{
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122 public:

123 RGBVisualize( int numBands , int numPixels , int numLine , std::vector < int >

bands , QWidget *parent = NULL);

124 protected:

125 virtual void imageStream( f loat *blockData , int blockLine);

126 };

127
128 //set 0, 1, 2, 3 in an incoming array to different colors.

129 class FourTypeVisualize : public VisualizeStage{

130 public:

131 FourTypeVisualize( int numPixels , int numLine , QWidget *parent = NULL);

132 protected:

133 virtual void imageStream( f loat *blockData , int blockLine);

134 };

B.3 CPU-DM

Parts of the CPU implementation of the skin models is shown here, with three-layered and two-layered
re�ectance calculations. Omitted parts are the GUI and the functions doing inversion using the above
re�ectance calculations. Only headers are shown, for full code refer to attached code (cpudm.cpp,
getabs.cpp, nnls.cpp) if available.

Code B.11: appendix/CPU�DM/cpudm.h

1 #ifndef GPUDM_H_DEFINED

2 #define GPUDM_H_DEFINED

3
4 //delta -eddington , tree -layered and two -layered

5 void ReflE2L3( f loat mua1 , f loat mus1 , f loat mua2 , f loat mus2 , f loat mua3 , f loat

mus3 , f loat gcol , f loat *res , f loat d1 , f loat d2);

6 void ReflE2L2( f loat mua1 , f loat mus1 , f loat mua2 , f loat mus2 , f loat gcol , f loat

*res , f loat *derivmuad , f loat *derivmuae);

7
8 // isotropic source function , two -layered and three -layered and one -layered

9 void ReflIsoL2( f loat muae , f loat muse , f loat muad , f loat musd , f loat gcol ,

f loat *res , f loat *derivmuad , f loat *derivmuae);

10 void ReflIsoL2( f loat muae , f loat muse , f loat muad , f loat musd , f loat gcol ,

f loat *res , f loat *deriv);

11 void ReflIsoL3( f loat mua1 , f loat mus1 , f loat mua2 , f loat mus2 , f loat mua3 ,

f loat mus3 , f loat gcol , f loat d1 , f loat d2 , f loat *res);

12 void ReflIsoL1( f loat mua , f loat mus , f loat gcol , f loat *res , f loat *deriv);

13
14 //for finding the next muad/muae given derivatives and reflectance value

15 void nextMuad( f loat lineData , f loat refl , f loat deriv , f loat *muad , f loat

safeinit);

16
17 //skin data calculation

18 void calcSkinData( f loat lambda , f loat oxy1 , f loat Bd1 , f loat oxy2 , f loat Bd2 ,

f loat muam694 , f loat bil , f loat car , f loat met , f loat wat , f loat *mua1 ,

f loat *mus1 , f loat *mua2 , f loat *mus2 , f loat *mua3 , f loat *mus3 , f loat *gcol

); // setter ekstrakromoforene i lag 3

19 void calcSkinData( f loat lambda , f loat oxy1 , f loat Bd1 , f loat oxy2 , f loat Bd2 ,

f loat muam694 , f loat bil2 , f loat bil3 , f loat car1 , f loat car3 , f loat met2 ,

f loat met3 , f loat wat1 , f loat wat2 , f loat wat3 , f loat *mua1 , f loat *mus1 ,

f loat *mua2 , f loat *mus2 , f loat *mua3 , f loat *mus3 , f loat *gcol);

20
21 #endif
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Code B.12: appendix/CPU�DM/getabs.h

1
2 f loat getAbs( f loat refl , f loat w, f loat oxy , f loat bvf , f loat muam694);

3 f loat getAbs( int lag , f loat refl , f loat w, f loat oxy , f loat bvf , f loat muam694)

;

Code B.13: appendix/CPU�DM/nnls.h

1 //GNU scientific libraries

2 #include <gsl/gsl_vector.h>

3 #include <gsl/gsl_matrix.h>

4
5 //solve chromophores * x = b in least squares sense with x > 0

6 bool nnls_hanson(gsl_matrix *chromophores , gsl_vector *absspec , int param , int

obs , gsl_vector *x, double *std);

163


	Abstract
	Sammendrag
	Preface
	List of tables
	List of figures
	Introduction
	Theory and background
	Light transport in tissue
	Absorption and scattering mechanisms of photons in human tissue
	Monte Carlo
	Diffusion model
	Skin model

	GPU-architecture
	Real-time systems and general concurrency
	Image processing
	Least squares methods
	Spectral unmixing
	The common remote viewing problem
	Abundance estimation


	Materials and methods
	GPU-MCML
	Camera and computer hardware
	Inversion strategy
	Melanin absorption

	Choice of unmixing method
	Implementation
	GPU allocation
	Data structures
	CUDA kernels
	Processing stages
	CPU-DM
	Libraries and compilation

	Noise removal

	Results and discussion
	General fitting results and choice of inverse model
	Choice of melanin inverse model
	Effects of too high/too low melanin
	Three-layered fitting
	Wavelength ranges for two-layered fitting

	Time analysis
	Optimization
	Real-time analysis

	Numerical accuracy
	Singularities
	GPU versus host computing
	The performance of SCA

	Verification on real data
	Melanin verification
	Parameter verification
	Choice of wavelength interval

	Verification on simulations
	Verification using the two-layered diffusion model
	Verification using the two-layered Monte Carlo model
	Verification using the three-layered Monte Carlo model
	The effect of blood vessels

	Feasibility
	Calibration and visualization
	Visualization
	Calibration
	Skin masking


	Conclusion and further work
	Inverse parameters
	Code
	CUDA kernels
	Wrapper code
	CPU-DM


