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Abstract
The Klein-Gordon and Dirac equations are formulated for a classical curved back-
ground. The equations are then expressed in Friedmann-Robertson-Walker Universe.
Further the equations are solved in R × S3 spacetime. We present general normalized
solutions to the Klein-Gordon equation together with non-normalized particular solu-
tions to the Dirac equation in R×S3. The discrete energy quantization and degeneracy
are found for both cases.
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Sammendrag
Klein-Gordon ligningen og Dirac ligningen formuleres for generelt krumme klas-
siske bakgrunner. Deretter blir disse uttrykt for Friedmann-Robertson-Walker Univers.
Videre løses ligningene i R × S3 romtid. Vi presenterer generelle normaliserte løs-
ninger av Klein-Gordon ligningen, sammen med ikke-normaliserte partikulære løs-
ninger av Dirac ligningen i R × S3. Den diskrete energikvantiseringen sammen med
degenerasjonsgraden blir funnet for begge tilfeller.
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Chapter 1
Introduction

The quantum theory of gravity can rightfully be described as the holy grail of modern
physics. Since the completion of the theory of quantum mechanics and quantum field
theory, physicists have tried to reconcile the theories of gravity and quantum physics, with
recent attempts being the famous string theory.

The theory of General Relativity shows that gravity is an effect attributed to the curva-
ture of spacetime. In this thesis we hare going to analyze quantum mechanical equations
in a classical curved background. In this sense we can call it classical quantum gravity.
Specifically we are going to analyze the Klein-Gordon equation and the Dirac equation.
We will solve these equations in a closed Friedmann-Robertson-Walker Universe to obtain
the energy eigenvalues and degeneracies. Such problems have been considered in earlier
works, see for example [6] and [15]. This work will be a continuation of the thesis [9].

1



Chapter 1. Introduction

2



Chapter 2
Curved Spacetime

As discussed in the introduction, this thesis will provide an analysis of quantum fields
in a curved spacetime background. In this chapter we are therefore going to outline the
mathematical concepts that are needed to describe curved spacetime. These concepts will
describe the nature of space and time itself, the arena if you like, of all physical processes.
We take into account the Special Theory of Relativity and describe space and time together
as spacetime.

Mathematically, the spacetime of our universe make up what is called a 4 dimensional
manifold. That is, a topological space (which is Hausdorff and has a second countable
basis) that is locally euclidean. In fact our spacetime is locally Minkowskian. Such man-
ifolds are called pseudo-Riemannian or Lorentzian manifolds. We won’t venture too far
into the mathematics of manifolds. It is only useful for us to have it as a basic mathemati-
cal structure on which we are going to attach the properties that will be of importance. For
a more thorough treatment on curved spacetime see [7], which is the book we will mostly
follow in this chapter.

2.1 Vectors and dual vectors
On a manifold M we define at each point p a tangent space Tp, which is the vector space
consisting of the tangent vectors to all the curves passing through p on M .

3



Chapter 2. Curved Spacetime

Figure 2.1: The tangent space Tp at the point p on a manifold M [12].

We will refer to a vector V as a vector in Tp and denote the components of V by V µ.
These are the components of V with respect to some basis ê(µ) such that

V = V µê(µ). (2.1)

There is a natural basis that we can define on the tangent space. It is the basis of directional
derivatives of the coordinate functions xµ at p. We will call this basis the coordinate basis
and it consists of the partial derivatives;

ê(µ) = ∂µ. (2.2)

If we change the coordinate system such that xµ → xµ
′
, the new coordinate basis will be

given by the chain rule;

∂µ′ = ∂xµ

∂xµ′
∂µ. (2.3)

Hence, for a coordinate transformation we have

V µ
′
∂µ′ = V µ

′ ∂xµ

∂xµ′
∂µ. (2.4)

4



2.1 Vectors and dual vectors

A vector is unaffected by a coordinate transformation (only its components will transform),
so that the transformation property of the components is given by;

V µ
′

= V µ
∂xµ

′

∂xµ
. (2.5)

For each tangent space Tp, we define a cotangent space T ∗p consisting of dual vectors.
These are linear maps from the tangent space to the real numbers. Consider a dual vector
ω. Then

ω = ωµθ̂
(µ) (2.6)

for some basis θ̂(µ). This dual basis is constructed such that

θ̂(ν) (ê(µ)
)

= δνµ, (2.7)

so when we act on a vector V by ω we get

ω(V ) = ωµθ̂
(µ) (V ν ê(ν)

)
= ωµV

ν θ̂(µ) (ê(ν)
)

= ωµV
µ. (2.8)

The gradient of a function f is a dual vector, and is denoted by df . If we take the gradient
of the coordinate functions, dxµ, these will constitute the basis in the cotangent space
corresponding to the coordinate basis in the tangent space. This is because

dxµ (∂ν) = ∂xµ

∂xν
= δµν . (2.9)

The dual coordinate basis transforms as

dxµ
′

= ∂xµ
′

∂xµ
dxµ (2.10)

under coordinate transformations, so that a dual vector will transform as

ωµ′ = ∂xµ

∂xµ′
ωµ. (2.11)

5



Chapter 2. Curved Spacetime

2.1.1 Tensors
Of course the concepts of vectors and dual vectors can be generalized to tensors of any
rank. A tensor T of rank (k, l) is a multi-linear map from k dual vectors and l vectors to
the real numbers. Hence, in the coordinate basis we have

T = Tµ1···µk
ν1···νl

∂µ1 ⊗ · · · ⊗ ∂µk
⊗ dxν1 ⊗ · · · ⊗ dxνl . (2.12)

We will usually suppress the tensor product notation. Under a coordinate transformation
the components of a rank-(k, l) tensor transform as

T
µ′1···µ

′
k

ν′1···ν′l
= ∂xµ

′
1

∂xµ1
· · · ∂x

µ′k

∂xµk

∂xν1

∂xν
′
1
· · · ∂x

νl

∂xν
′
l

Tµ1···µk
ν1···νl

. (2.13)

Notation: In this thesis we will almost always refer to a tensor by its components. We
will use the convention that when the tensor is written with indices from the middle of
the Greek alphabet, λ, µ, ν, ρ, σ, the components are with respect to the coordinate basis.
When we speak of the coordinate basis we will include both the basis and the dual basis.

At times we will encounter objects that possess indices but is not a tensor of any
rank. Such an object might be the Christoffel symbols Γµνλ, which we will discuss more
later. Here the index names and placing serve only to remind us what types of indices the
indices of the non-tensorial object usually contract with. The placement of the indices of
non-tensorial objects will be of such a nature that we can use the summation convention.

2.2 The metric
When we discuss properties of length or distances, angles or intervals of time, we talk
about concepts that are fundamental to physics and the measurements we do in experi-
ments. They are concepts we associate with spacetime, but are not properties that exist on
a manifold alone. We need an additional structure to deal with these concepts. That is the
role of the metric.

The metric will be a rank-(0, 2) tensor that is denoted by gµν . It will be symmetric in
its two indices and will have the inverse gµν such that

gµνgνλ = δµλ . (2.14)

Repeatedly the metric is written as

ds2 = gµνdxµdxν , (2.15)

where we have explicitly written out the basis. The notation ds2 is inherited from the
notion of a line element in which the dual basis components dxµ is replaced by the in-
finitesimals dxµ. Because of this we will usually call ds2 the line element.

6



2.3 Covariant derivatives and the Christoffel symbol

With the metric structure we can, for each vector V µ, define the dual vector corre-
sponding to V µ in the following way

Vµ ≡ gµνV νdxµdxν (∂ν) = gµνV
νdxµ = gµνV

ν . (2.16)

Similarly we get a vector from a dual vector by acting on the dual vector by the inverse
metric tensor. The idea is that we define the inner product of two vectors V µ and W ν as

V ·W ≡ VµWµ = gµνV
µW ν . (2.17)

Now we see that we have defined a structure that allows us to talk about the length of
vectors and other quantities related to the usual notion of an inner product. The procedure
of contracting indices by the metric tensor generalizes to tensors of any rank, and we say
that we can lower or raise tensorial indices with the metric and its inverse respectively.

In flat spacetime the line element is given by

ds2 = dt2 − dx2 − dy2 − dz2 ≡ ηµνdxµdxν , (2.18)

where

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.19)

is the usual Minkowski metric.

2.3 Covariant derivatives and the Christoffel symbol
The idea of curvature can exist on a manifold without the structure of a metric. Although
we will only deal with spacetime as a manifold equipped with a metric. Curvature however
is not assigned to the metric, but to an object known as the affine connection. We denote
the affine connection by Γµνλ, but it is not a tensor. When the manifold is equipped with a
metric there is a unique affine connection known as the Christoffel symbol and we will use
the same notation for this connection as with a general affine connection. This will be no
problem since we from this point and out will assume that the metric structure is attached
to the spacetime manifold.

The connection is intimately related to the concept of a covariant derivative. In a
Minkowskian spacetime the partial derivative of a tensor, for example ∂µV ν , has the same
form in every coordinate system related by a Lorentz transformation. These objects can
therefore be used to write physical laws that are Lorentz invariant and therefore obey
Special Relativity. In an arbitrary spacetime and for arbitrary coordinate transformations
the notion of a partial derivative is generalized to a covariant derivative. The covariant

7



Chapter 2. Curved Spacetime

derivative is constructed in such a way that when acting on a general tensor, the result will
again be a tensor. We denote the covariant derivative by∇µ.

By requiring that the operator ∇µ should be linear and obey the Leibniz rule for op-
erators, it can be written as a partial derivative plus a linear transformation. So for the
covariant derivative of a vector we have

∇µV ν = ∂µV
ν + ΓνµλV λ, (2.20)

where Γνµλ is a set of linear transformations, or matrices, known as the connection. The
transformation property of the connection is such that the object ∇µV ν transforms as a
tensor. We won’t state the explicit form of the transformation property of Γνµλ here, other
than that it is not that of a tensor.

Imposing that the covariant derivative of the Kronecker delta should vanish and that

∇µφ = ∂µφ, (2.21)

for a scalar φ, we get the covariant derivative of a dual vector:

∇µων = ∂µων − Γλµνωλ. (2.22)

This is generalized to a rank-(k, l) tensor in the following way:

∇σTµ1µ2···µk
ν1ν2···νl

=∂σTµ1µ2···µk
ν1ν2···νl

+ Γµ1
σλT

λµ2···µk
ν1ν2···νl

+ Γµ2
σλT

µ1λ···µk
ν1ν2···νl

+ · · ·

− Γλσν1
Tµ1µ2···µk

λν2···νl
− Γλσν2

Tµ1µ2···µk

ν1λ···νl
− · · · .

(2.23)

We will assume that the connection is torsion-free, i.e that it is symmetric in the lower
indices;

Γµνλ = Γµλν (2.24)

In addition we assume that the connection is metric compatible, that is, that the covariant
derivative of the metric vanishes;

∇µgνλ = 0. (2.25)

With these assumptions there is a unique expression of the connection that involves the

8



2.3 Covariant derivatives and the Christoffel symbol

metric tensor;

Γλµν = 1
2g

λσ
(
∂µgνσ + ∂νgσµ − ∂σgµν

)
(2.26)

When written in this way, with the assumptions we have made, the connection is called
the Christoffel symbol.

One identity which will be of use, is the expression for Γνµν . Contracting the two
indices gives the identity

Γνµν = ∂µ ln
√
−g, (2.27)

where g is the metric determinant.

2.3.1 Parallel transport
When we take the derivative of a vector field along some curve xµ(λ) in the usual eu-
clidean scenario, we essentially compare the components of the vector at two infinitesi-
mally close points, call them x and x+ dx. They are separated by the parameter distance
δλ. The derivative along the curve in flat spacetime at the point x will then be

d

dλ
V µ
∣∣∣∣
x

= lim
δλ→0

V µ(x+ dx)− V µ(x)
δλ

. (2.28)

Now on an arbitrary manifold, the object V µ(x + dx) − V µ(x) will not in general be a
vector. This is because a vector at to different points on a manifold is not part of the same
tangent space. The result of this will be that their difference is not necessarily a vector
in any tangent space, and does in general not exist. We recognize this as the same reason
that the partial derivative of a vector is not itself a vector. This issue is overcome with the
concept of parallel transport. The idea is to take the vector at one of the two points and
transport it along the manifold, while keeping it constant, so that the two vectors coincide.
Then the two vectors will be part of the same tangent space and is therefore comparable. In
flat spacetime the requirement for a vector to be parallel transported along a curve xµ(λ),
would be that its derivative along the curve should vanish. On a general manifold this
requirement becomes

D

dλ
V µ = dxν

dλ
∇νV µ = 0, (2.29)

where we have defined the covariant derivative along the curve as

D

dλ
≡ dxν

dλ
∇ν . (2.30)

9



Chapter 2. Curved Spacetime

This generalizes easily to tensors of any rank. It is worth noting that the result of parallel
transport is dependent on the path of transport. This can be illustrated as follows:

Figure 2.2: Parallel transport of a vector on a 2-sphere [4].

Using the expression for the covariant derivative of a vector, (2.20), we get the equation of
parallel transport of a vector:

D

dλ
V µ = dxν

dλ
∂νV

µ + Γµνσ
dxν

dλ
V σ = 0. (2.31)

This is a first order ODE that describes how a vector V µ is parallel transported along a path
xν(λ) on a manifold. It will be independent of the parametrization λ. On infinitesimal
form it is written as

V µ(x→ x+ dx) = V µ(x)− Γµνλ(x)V ν(x)dxλ (2.32)

Here we have written the coordinates explicitly to know where each object is located.
V µ(x → x + dx) is the vector V µ(x) parallel transported from the point x to the point
x+dx along the curve xµ(λ). We use the notation in which a point in spacetime is written
as x with the indices suppressed.

The assumption that the connection is metric compatible, (2.25), yields that the length
of a vector is preserved when it is parallel transported. To see this we calculate

D

dλ
(gµνV µV ν) =

(
D

dλ
gµν

)
V µV ν + gµν

(
D

dλ
V µ
)
V ν + gµνV

µ

(
D

dλ
V ν
)

= 0, (2.33)
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2.4 Local inertial coordinates and the tetrad formalism

where the first term vanishes since ∇λgµν = 0. The other terms is zero because of the
requirement of parallel transport. We conclude from this that the assumption of metric
compatibility is a natural one to make.

Equation (2.32) will be of major importance in this thesis. We will use it to find the
connection coefficients of objects that are not necessarily tensors, such is the case with the
spinor in the Dirac equation. We see that it is the Christoffel symbols that determine the
transport of vectors written in the coordinate basis. For other bases the connection will be
different. We will encounter a scenario like that when we discuss local inertial bases. More
on that later. First we are going to briefly cover the material of quantifying the curvature
on the manifold.

2.3.2 The Riemann curvature tensor
The material covered in this section will be of minor importance to us, so we will only
state the general properties of the Riemann tensor.

The exact notion of curvature at each point on a manifold is quantified by the Riemann
curvature tensor. It is defined as

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (2.34)

This is a rank-(1, 3) tensor that is antisymmetric in the last two lower indices. We see that
this tensor is only dependent on the Christoffel symbols. Hence it is the connection that
defines a curvature on a manifold, as stated earlier.

From the Riemann curvature tensor we can construct two objects that will be of rele-
vance. First off we have the Ricci tensor defined as

Rµν = Rλµλν . (2.35)

This tensor will be symmetric. From this tensor again, we can finally form what is called
the Ricci scalar;

R = gµνRµν . (2.36)

2.4 Local inertial coordinates and the tetrad formalism
Thus far we have been working with the natural choice of the coordinate basis on the
spacetime manifold. In the coordinate basis the basis vectors are given by ê(µ) = ∂µ and
the dual basis vectors are given by θ̂(µ) = dxµ. All the objects and structure considered
exist independently of any specific coordinate system, so let’s take a slightly different
approach of setting up a basis.

The fundamental principle that underlies the General Theory of Relativity is the Ein-
stein Equivalence Principle. It can be stated in many different ways, but let’s use the
formulation from [7]:

11



Chapter 2. Curved Spacetime

In small enough regions of spacetime, the laws of physics reduce to those of
Special Relativity; it is impossible to detect the existence of a gravitational
field by means of local experiments.

We recognize this as one of the criterions for describing spacetime as a Lorentzian man-
ifold; the fact that spacetime is locally Minkowskian. It is a direct consequence of the
Principle of Equivalence. Since we know how to formulate the relativistic quantum me-
chanics for the scalar and spin- 1

2 particles, i.e, to describe their behaviour in Minkowski
space, we know that this is valid in small enough regions of curved spacetime. This will
be our starting point for our formulation of the Dirac equation in curved spacetime as we
will see later.

Let’s start with the basics first. Let’s set up a basis at each point in spacetime, a
spacetime that will be curved, and let the basis be Minkowskian or locally inertial. This
means that the metric tensor will be Minkowskian when written in terms of this basis. We
will denote these basis vectors as ê(a) and the dual basis vectors as θ̂(b), with a latin index.
So in the neighbourhood of each point in spacetime we have

gab = gabθ̂
(a)θ̂(b) = ηab. (2.37)

This can be seen as the inner product of the two dual basis vectors, and in this sense they
constitute an orthonormal set with respect to the Minkowski metric. Such an orthonormal
set is called a tetrad or vierbein, and this procedure of setting up an orthonormal frame at
each point on a manifold is called the tetrad formalism.

Notation: We will use the convention that when a tensor is written with indices from the
start of the Latin alphabet, a, b, c, d, then the components are with respect to a local inertial
basis, such as described in this section. From this point and out we will refer to a vector
written in terms of local indices as local vectors. Vectors written in terms of the coordinate
basis will be referred to as global vectors. There is a point to be specified here. A manifold
is comprised of so called charts, which is coordinate systems that cover "patches" of the
manifold. In this sense there might not exist a single coordinate system that can cover the
whole manifold, and hence be called global. Nevertheless we will still call the coordinate
basis a global basis. It is more global than local anyway.

As before we require that

θ̂(a) (ê(b)
)

= δab . (2.38)

We can always transform between the old coordinate basis and the local inertial basis;

ê(µ) = e a
µ ê(a) (2.39)

and similar for the dual basis,

θ̂(µ) = eµbθ̂
(b). (2.40)
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2.5 The spin connection

Here e a
µ and eµb will be transformation matrices. These will be the matrices we will call

the vierbein and the inverse vierbein respectively. That they are inverses follows from the
requirements (2.38) and (2.7). We have that

e a
µ eµb = δab and e a

µ eνa = δνµ. (2.41)

Consider the metric written in terms of the global basis, and transform the global basis
to the local one. The result will be the metric written in local coordinates as in equation
(2.37). Let’s see

gab = gµνe
µ
aθ̂

(a)eνbθ̂
(b) = ηab. (2.42)

Suppressing the dual basis vectors we get that

ηab = eµae
ν
bgµν and gµν = e a

µ e b
ν ηab. (2.43)

The metric tensor is not the only tensor we can refer to in terms of the local basis. We can
talk of any tensor with respect to the local basis, and the vierbeins and the inverse vierbeins
transform between the local and global indices. So for a global vector V µ, its components
in the local basis is

V a = e a
µ V µ. (2.44)

For a general tensor we have

Tµ1···a···µk

ν1···b···νl
= e a

µ eνbT
µ1···µ···µk

ν1···ν···νl
, (2.45)

and we see that we can switch back and fourth between local and global indices. With this
notation we have that local indices gets raised and lowered with the Minkowski metric,
while global indices gets raised and lowered as usual with the global metric. With the
vierbeins at hand we have a way of dealing with physical quantities that are only formu-
lated in a Minkowskian background.

2.5 The spin connection
With the tetrad formalism we have set up a local inertial coordinate system at each point on
the curved manifold. We want to know how a vector located at one point with components
in the local basis at that point, parallel transports to another point on the manifold with a
new local basis. The answer to this question will yield a connection related to this form
of parallel transport. It is called the spin connection and it will be define a covariant
derivative of local tensors. The name spin connection derives from the fact that it allows
us to formulate the covariant derivative of the spinor, which we will discuss later.

13



Chapter 2. Curved Spacetime

The equation for parallel transport of local vectors should be of the same form as the
global vector case, except with a different connection;

V a(x→ x+ dx) = V a(x)− ω a
µ b(x)V b(x)dxµ. (2.46)

Here ω a
µ b(x) is the spin connection. It carries the information to transport the vector itself

utilizing the Christoffel symbols, as well as adjusting the local coordinates at the starting
point with the local coordinates at the end point via the vierbeins. To find the explicit
expression for ω a

µ b(x), we first recall that

V µ(x) = eµa(x)V a(x). (2.47)

Transported from the point x to the point x+ dx this reads

V µ(x→ x+ dx) = eµa(x+ dx)V a(x→ x+ dx). (2.48)

Expanding eµa(x+ dx) to first order in dx yields

V µ(x→ x+ dx) = eµa(x)V a(x→ x+ dx) + ∂νe
µ
a(x)V a(x→ x+ dx)dxν . (2.49)

Inserting the expression for V a(x → x + dx), (2.46), we get (keeping only first order
terms in dx)

V µ(x→ x+ dx) = eµa(x)V a(x)− [eµa(x)ω a
λ b(x)− ∂λeµb(x)]V b(x)dxλ

= V µ(x)− [eµa(x)ω a
λ b(x)− ∂λeµb(x)] e b

σ (x)V σ(x)dxλ. (2.50)

From the parallel transport equation for global vectors, (2.32), we recognize

Γµσλ = [eµaω a
λ b − ∂λe

µ
b] e

b
σ . (2.51)

Solving this for the spin connection, we find it to be

ω a
µ b = e a

ν e
σ
bΓνσµ + e a

ν ∂µe
ν
b. (2.52)

Usually we will write it with all indices lowered:

ωµab ≡ ηace c
ν e

σ
bΓνσµ + ηace

c
ν ∂µe

ν
b (2.53)

Now, since Γνσµ is the Christoffel symbols, we have assumed that the connection is metric

14



2.6 The Friedmann–Robertson–Walker metric

compatible. In terms of local coordinates this would mean that the covariant derivative of
the Minkowski metric should vanish. With the spin connection at hand we see that

∇µηab = ∂µηab − ω c
µ aηcb − ω c

µ bηac

= −ωµba − ωµab = 0, (2.54)

hence the ωµab is antisymmetric in the last two indices;

ωµab = −ωµba . (2.55)

2.6 The Friedmann–Robertson–Walker metric
In this last section in the chapter on curved spacetime we are going to consider the specific
metric in which we will analyze the Klein-Gordon and Dirac fields. It will be the metric
that reflects the homogeneity and isotropy of the Universe. The line element is given by

ds2 = dt2 − a2(t)
[

1
1− kr2 dr2 + r2 (dθ2 + sin2 θdφ2)] , (2.56)

and it is known as the Friedmann-Robertson-Walker metric, the FRW metric for short.
Here the expression in the square bracket will be the metric of a maximally symmetric
3-manifold denoted by Σ. In the coordinates we will be using, the size of this manifold
will be given by the factor a(t), known as the scale factor. The scale factor will then
have unit of distance and measure the size of the Universe. Now, the coordinate r will be
dimensionless and the factor k in 1

1−kr2 dr2 will take the values

k ∈ {−1, 0, 1}. (2.57)

It is useful to make the substitution

dχ = dr
1− kr2 , (2.58)

which yields

r = Sk(χ). (2.59)
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Chapter 2. Curved Spacetime

For each value of k, the function Sk(χ) will be given by

Sk(χ) =

 sinχ, k = +1
χ, k = 0
sinhχ, k = −1.

(2.60)

When k = −1 the manifold Σ will exhibit a constant negative curvature and is therefore
called open. For k = 0, Σ will be the manifold of flat space. The case that will be of
importance to us will be the case when k = +1. In that case the maximally symmetric
manifold Σ has a constant positive curvature. It is then called closed, and Σ will be the
manifold of the 3-sphere.

As mentioned in the introduction we will formulate the Klein-Gordon equation and the
Dirac equation in a generally curved spacetime. We will then write out these equations for
the FRW metric. At last we are going to solve them on the 3-sphere, and we now have a
way of substitution that will give the metric of the 3-sphere from the FRW metric.
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Chapter 3
Klein-Gordon Fields in Minkowski
Spacetime

One of the two parts of this thesis will be the analysis of the Klein-Gordon field. We begin
therefore with a chapter regarding the Klein-Gordon equation and its field in Minkowski
spacetime. We will mostly follow L. H. Ryder; Quantum Field Theory [13] in the general
analysis of the Klein-Gordon equation.

Bosonic particles of spin-0 are described by a scalar field which we will denote as
φ(x). The dynamics of such a scalar field is determined by the so-called Klein-Gordon
equation of which we will now turn our attention.

3.1 The free Klein-Gordon equation
The neutral and free Klein-Gordon field φ will be real and described by the Lagrangian
density

L = 1
2 (∂µφ) (∂µφ)− 1

2m
2φ2. (3.1)

The corresponding Hamiltonian density is given by

H = 1
2π

2 + 1
2 (∇φ)2 + 1

2m
2φ2 (3.2)

Here m is the mass parameter. It is interpreted as the mass of the particles resulting
from the quatization of the field. In the case of a charged scalar field, φ will be complex
and have two independent components; φ and its complex conjugate. Inserted into the
Euler-Lagrange equation, (3.1) gives the equation of motion known as the Klein-Gordon
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Chapter 3. Klein-Gordon Fields in Minkowski Spacetime

equation;

(
∂µ∂µ +m2)φ = 0. (3.3)

Historically this equation was put forward as the relativistic improvement of the
Schrödinger equation. Hence the Klein-Gordon equation was first thought of as a single
particle wave equation, with φ interpreted as a quantum mechanical wave function obeying
Born’s probability interpretation. It turns out that such a view cannot be correct. This is
because the conserved current density corresponding to the Klein-Gordon equation gives
a charge density that is not positive definite, thereby shattering any hope of interpreting it
as a probability current in the first place. To see this we observe that the conserved current
density in the case of the Klein-Gordon equation will be

jµ = i [φ∗∂µφ− φ∂µφ∗] . (3.4)

This current density satisfies the continuity equation;

∂µj
µ = ∂

∂t
ρ+ ∇ · j = i∂µ [φ∗∂µφ− φ∂µφ∗]

= i [φ∗∂µ∂µφ− φ∂µ∂µφ∗] = 0,

where we have used the Klein-Gordon equation for φ and its complex conjugate. With this
current density we see that the charge density is given by

ρ = i

[
φ∗

∂

∂t
φ− φ ∂

∂t
φ∗
]
. (3.5)

Now since the Klein-Gordon equation is a second order PDE we are free to choose the
initial conditions of φ and ∂

∂tφ. Hence ρ can be negative, positive or zero, thereby estab-
lishing the failure of the probability interpretation. We note that for a real field, ρ will
always be zero.

With (3.5) in mind, we define the inner product of two functions f and g for the Klein-
Gordon case as

(f, g) = i

∫
d3x

[
f∗

∂

∂t
g − g ∂

∂t
f∗
]
. (3.6)

This inner product will define orthogonality of the eigenfunctions of the Klein-Gordon
equation.

Another problem with the single particle interpretation is the appearance of negative
energy states for the free particle. This issue, and the current density issue, disappear how-
ever when the Klein-Gordon equation is rightfully interpreted as a many-particle equation.
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3.2 The Klein-Gordon field

Then the scalar field is taken to be an operator, and the procedure of promoting the field
to an operator is called second quantization. The result of second quantization will be a
proper quantum field theory.

As mentioned, the goal of this thesis will be to calculate the energy spectrum and
degeneracy for the Klein-Gordon and Dirac field on the 3-sphere. In this sense we will
not go far with the second quantization procedure. The solutions and spectrum we find
however, is important in their own right since they will be the staring point of second
quantization anyway. With this in mind, let’s solve the free Klein-Gordon equation for the
scalar field.

3.2 The Klein-Gordon field
To find the solutions to the Klein-Gordon equation we adapt Fourier analysis and write the
field as a wave expansion (writing the field as explicitly real):

φ(x) =
∫

d4k

(2π)4

[
φ(k)e−ikx + φ∗(k)eikx

]
. (3.7)

Here φ(k) are general Fourier coefficients to be determined. Substituting φ(x) into (3.3)
yields

∫
d4k

(2π)4

(
k2 −m2) [φ(k)e−ikx + φ∗(k)eikx

]
= 0. (3.8)

This holds generally only if k2 = m2, so we write φ(x) with the coefficients

φ(k) = 2πδ
(
k2 −m2)A(k), (3.9)

which gives

φ(x) =
∫

d4k

(2π)3 δ
(
k2 −m2) [A(k)e−ikx +A∗(k)eikx

]
. (3.10)

We are now ready to perform the integration over the k0−component utilizing the delta
function. The integral contributes only when k2 = m2, or phrased differently, when(
k0)2 = k2 + m2. Defining ωk ≡

√
k2 +m2 and recalling the properties of the delta
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Chapter 3. Klein-Gordon Fields in Minkowski Spacetime

function, we write

δ
(
k2 −m2) = δ

((
k0)2 − ω2

k

)

= 1
2ωk

[
δ
(
k0 + ωk

)
+ δ

(
k0 − ωk

)]
. (3.11)

Inserted into (3.10) we get the general solution of the Klein-Gordon equation;

φ(x) =
∫

d3k
(2π)32ωk

[
a(k)e−i(ωkt−k·x) + a∗(k)ei(ωkt−k·x)

]
, (3.12)

where we have gathered like exponentials after performing the substitution k → −k in
two of the terms. We have defined a (k) = A (ωk,k) +A∗ (−ωk,−k).

Next we note that the functions

fk = 1√
(2π)32ωk

e−i(ωkt−k·x) (3.13)

form an orthonormal set with respect to the inner product (3.6);

(fk, fk′) = i

∫
d3x

[
f∗k

∂

∂t
fk′ − fk′

∂

∂t
f∗k

]
= δ3(k− k′). (3.14)

Hence we write

φ(x) =
∫

d3k√
(2π)32ωk

[fka(k) + f∗ka
∗(k)] , (3.15)

and the conjugate momentum of the field as

π(x) =
∫

d3k√
(2π)3

(−i)
√
ωk

2 [fka(k)− f∗ka∗(k)] . (3.16)

3.3 Quantization of the field
Here we will briefly go through the most important points regarding second quantization
for this thesis. To quantize the field, the field and its conjugate momentum gets promoted to
operators. The result is that the Fourier coefficients a(k) and a∗(k) become the operators
a(k) and a†(k).

20



3.3 Quantization of the field

To quantize the field we impose the equal time commutation relations:

[φ (t,x) , π (t,x′)] = iδ3 (x− x′) ,
[φ (t,x) , φ (t,x′)] = 0,
[π (t,x) , π (t,x′)] = 0.

 (3.17)

Imposing these commutators yields

φ(x) =
∫

d3k√
(2π)32ωk

[
fka(k) + f∗ka

†(k)
]

(3.18)

and

π(x) =
∫

d3k√
(2π)3

(−i)
√
ωk

2
[
fka(k)− f∗ka†(k)

]
, (3.19)

where now a(k) and a†(k) are operators that can be shown to obey the following commu-
tation relations [

a(k), a†(k′)
]

= (2π)32ωkδ
3 (k− k′) ,

[a(k), a(k′)] = 0,[
a†(k), a†(k′)

]
= 0.

 (3.20)

Here a(k) and a†(k) are the usual annihilation and creation operators respectively. Re-
calling the Hamiltonian density, (3.2), the Hamiltonian will be given by

H =
∫
d3x

[
1
2π

2 + 1
2 (∇φ)2 + 1

2m
2φ2
]

=
∫

d3k
(2π)32ωk

ωk

2
[
a†(k)a(k) + a(k)a†(k)

]
, (3.21)

In the last equality have suppressed a rather lengthy calculation with excessive use of
the commutators (3.20), and the functional representation of the Diracs delta function.
Utilizing (3.20) once more we get

H =
∫

d3k
(2π)32ωk

ωk

2
[
2a†(k)a(k) + (2π)32ωkδ

3(0)
]
. (3.22)

We will use this Hamiltonian to calculate the energy of the vacuum corresponding to the
scalar field.
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3.4 Vacuum energy
Remembering that a(k) |0〉 = 0 for a vacuum state |0〉 we calculate the vacuum energy for
the scalar field:

〈0|H |0〉 = 1
2δ

3(0)
∫
d3kωk

= V

∫
d3k

(2π)3
1
2ωk. (3.23)

Here we have used that δ3(0) = V/(2π)3, where V is the volume of space, clearly infinite
in the present case.

In this thesis we will always deal with situations where ωk take on a discrete, infinite
set of values rather than a continuum as discussed so far. This will be linked to the finite-
ness of the 3-sphere space. When k take on discrete values we will have the replacement

V

∫
d3k

(2π)3 −→
∑

k

, (3.24)

so that the vacuum energy of the scalar field will be given by

〈0|H |0〉 = 1
2
∑

k

ωk (3.25)

3.5 The Klein-Gordon equation in spherical coordinates
It will be useful for later reference to consider the free Klein-Gordon equation in spherical
coordinates. This will introduce the so-called radial Klein-Gordon equation and we will
encounter a similar situation for both the Klein-Gordon and the Dirac field when analyzed
on the 3-sphere. It will therefore be beneficial to introduce these concepts in the simplest
scenario.

Written in terms of spherical coordinates the Klein-Gordon equation reads

∂2

∂t2
φ−∇2φ+m2φ = 0, (3.26)

where

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1
r2 sin2 θ

(
∂2

∂ϕ2

)
(3.27)
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3.5 The Klein-Gordon equation in spherical coordinates

is the Laplace operator in spherical coordinates. This operator is treated in any good
introductory text on quantum mechanics, see for example [10]. Imposing separation of
variables, we write the solution to (3.26) as

Φ = R(r)Y ml

l (θ, ϕ)e−iωt (3.28)

for a radial function R(r), and where Y ml

l (θ, ϕ) are the usual spherical harmonics with
the orbital quantum number l and the corresponding magnetic quantum number ml. Being
the spherical harmonics they satisfy the orthonormality condition∫

dΩ
(
Y
m′l
l′

)∗
Y ml

l = δll′δmlm′l
(3.29)

where the integral goes over the angular part of space. Inserting the ansatz (3.28) into
(3.26) yields

Y ml

l e−iωt
[

1
r2

∂

∂r

(
r2 ∂

∂r

)
R− l(l + 1)

r2 R+ k2R

]
= 0, (3.30)

where we have utilized the way the angular part of the Laplacian acts on the spherical
harmonics. We have also written k2 = ω2 − m2 as usual. This gives the radial Klein-
Gordon equation in spherical coordinates;[

1
r2

d

dr

(
r2 d

dr

)
− l(l + 1)

r2 + k2
]
R = 0, (3.31)

which is a second order ODE that determines the radial function R(r). When this equa-
tion is solved, the general solution to the Klein-Gordon equation follows by the principle
of superposition (this is what we implicitly did when we adapted Fourier analysis for solv-
ing the Klein-Gordon equation earlier). We will leave the radial equation here however,
because it is only the way it is obtained that will be useful for us in later analysis.

Throughout this thesis we will write up a table of the quantum numbers that we are
using. This table will be updated with new quantum numbers as we go along. So far we
have:

Quantum number Expression Values

l l 0, 1, 2, 3, . . .

ml −l,−l + 1, . . . , l − 1, l . . . ,−2,−1, 0, 1, 2, . . .

Table 3.1: 1st table of quantum numbers.
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3.6 Closing remarks
In this chapter we have adapted the notation where we write the angular frequency ωk and
the wave-vector k. This notation is all due to the wave like form of the Klein-Gordon
equation. Of course these quantities will correspond to the energy and momentum of a
particle quantization. So for a particle we have the correspondence

k −→ p, and ωk −→ Ep. (3.32)
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Chapter 4
Klein-Gordon Fields in Curved
Spacetime

We are now ready to embark on the first major topic of this thesis. The present chapter
will be devoted to the formulation of the Klein-Gordon equation in a curved spacetime
background. Next we will state its form in the FRW metric, and then solve the equation
on the 3-sphere.

With the Klein-Gordon field being a tensorial object (a scalar), the transition from
Minkowski space to a general curved spacetime will be quite immediate.

4.1 The covariant Klein-Gordon equation
To write down the coordinate independent (covariant) version of the Klein-Gordon equa-
tion we start by recalling its Lagrangian density in Minkowski space;

L = 1
2η

µν (∂νφ) (∂µφ)− 1
2m

2φ2. (4.1)

For curved spacetime the Minkowski metric will be replaced by the general metric tensor.
Next we consider the appearance of ∂µφ. Now since φ is a scalar, its covariant derivative
will reduce to the partial derivative, leaving ∂µφ tensorial. We seem to have covered all
points that need consideration when writing L covariantly, however there is one more
circumstance that needs to be investigated. The effect of a curved spacetime could in
theory manifest itself through a scalar coupling to φ2. We know of exactly such a scalar
quantity, namely the Ricci curvature scalar R. This will add a term proportional to Rφ2,
which in turn leads to the Lagrangian density for a scalar field in curved spacetime on the
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Chapter 4. Klein-Gordon Fields in Curved Spacetime

form

L = 1
2η

µν (∂νφ) (∂µφ)− 1
2m

2φ2 − 1
2ξRφ

2. (4.2)

Here ξ will be the gravitational coupling to the scalar field with mass dimension of two.
This coupling could in theory be determined by experiments, however the effect of gravity
are of such a small magnitude that such an experiment would be next to impossible to
conduct.

To find the covariant Klein-Gordon equation from this Lagrangian density we write up
the action

S =
∫
d4x
√
−gL, (4.3)

where we have recalled the way integration is performed in curved spacetime. Upon re-
quiring that δS = 0 we get the Euler-Lagrange equations in curved spacetime

∂µ
∂
√
−gL

∂ (∂µφ) −
∂
√
−gL
∂φ

= 0. (4.4)

Inserting the Lagrangian density (4.2) into these Euler-Lagrange equations yields the
Klein-Gordon equation in curved spacetime:

1√
−g

∂µ
(√
−ggµν∂νφ

)
+
(
m2 + ξR

)
φ = 0 (4.5)

Here we have used the fact that
√
−g does not depend on neither ∂µφ nor φ. We are now

going to write this equation out for the FRW metric.

4.2 The Klein-Gordon equation in FRW spacetime
For easy reference we start by recalling that the FRW metric is given by (2.56):

gµν =


1 0 0 0
0 − a2(t)

1−kr2 0 0
0 0 −a2(t)r2 0
0 0 0 −a2(t)r2 sin2 θ

 , (4.6)
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with the inverse metric

gµν =


1 0 0 0
0 − 1−kr2

a(t)2 0 0
0 0 − 1

a2(t)r2 0
0 0 0 − 1

a2(t)r2 sin2 θ

 . (4.7)

We will define F ≡
√

1− kr2 from here on, to make notation easier. Also the scale factor
is taken to be constant from here on, that is a(t) = a. The square root of −g is given by

√
−g = a3r2 sin θ

F
. (4.8)

We now write the the Klein-Gordon equation, (4.5), as

∂2

∂t2
φ+ 1√

−g
∂i
(√
−ggij∂j

)
φ+

(
m2 + ξR

)
φ = 0. (4.9)

Here the Latin indices goes over the spatial components. Written out we have

∂2

∂t2
φ− 1

a2 ∇2
FRWφ+

(
m2 + ξR

)
φ = 0, (4.10)

where we have defined the FRW Laplacian

∇2
FRW ≡

F

r2
∂

∂r

(
Fr2 ∂

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1
r2 sin2 θ

(
∂2

∂ϕ2

)
. (4.11)

We observe that the angular part of this operator is identical to the angular part of the
Laplacian for flat spacetime in spherical coordinates, (3.27). The radial part however
is different and gives a different radial equation. As done in flat spacetime we impose
separation of variables and write

Φ = R(r)Y ml

l (θ, ϕ)e−iωt. (4.12)

Inserting this into (4.10) gives the radial Klein-Gordon equation in FRW spacetime;[
F

r2
d

dr

(
Fr2 d

dr

)
− l(l + 1)

r2 + a2 (k2 − ξR
)]
R = 0. (4.13)
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4.3 The Klein-Gordon equation on the 3-sphere
We are now going to solve the Klein-Gordon equation for the FRW-metric after performing
the substitutions k = 1 and r = sinχ. As discussed in chapter 2, such a substitution results
in the metric of the 3-sphere, denoted by R× S3. The scale factor a denotes the radius of
the sphere. Imposing the substitutions yield

F = cosχ and
d

dr
= 1

cosχ
d

dχ
.

Hence the the radial equation becomes[
1

sin2 χ

d

dχ

(
sin2 χ

d

dχ

)
− l(l + 1)

sin2 χ
+ a2 (k2 − ξR

)]
R = 0, (4.14)

or with the differential operator written out:

[
d2

dχ2 + 2cosχ
sinχ

d

dχ
− l(l + 1)

sin2 χ
+ ς2

]
R = 0. (4.15)

To simplify notation further we have introduced ς2 ≡ a2 (k2 − ξR
)
. We can start to

recognize this ODE as a hypergeometric differential equation by imposing the following
substitution, [8]:

u = sin2 χ

2 . (4.16)

Using trigonometric identities yields

cosχ = cos2 χ

2 − sin2 χ

2 = 1− 2 sin2 χ

2 = 1− 2u,

sin2 χ = 1− cos2 χ = 1− (1− 2u)2 = 4u(1− u),

d

dχ
= du

dχ

d

du
= sin χ2 cos χ2

d

du
= 1

2 sinχ d

du
=
√
u(1− u) d

du
,

d2

dχ2 = u(1− u) d
2

du2 +
(

1
2 − u

)
d

du
.
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This substituted into the radial equation gives the following ODE for Rl:[
u(u− 1) d

2

du2 − 3
(

1
2 − u

)
d

du
− l(l + 1) + 4u(u− 1)ς2

4u(u− 1)

]
R = 0. (4.17)

4.3.1 Solving the radial equation
The ODE for R is well behaved except at the points 0, 1 and possibly at infinity. We are
now going to analyze these points following appendix A.

The point u0 = 0:

Now u0(u0 − 1) = 0, so this point is singular. The limits (A.2) become

lim
u→0
−

3
( 1

2 − u
)

u− 1 = 3
2 ,

lim
u→0
− l(l + 1) + 4u(u− 1)ς2

4(u− 1)2 = − l(l + 1)
4 ,

(4.18)

which are both finite. We conclude that the point u0 = 0 is a regular singular point.

The point u0 = 1:

Now u0(u0 − 1) = 0, so this point is singular. The limits (A.2) become

lim
u→1
−

3
( 1

2 − u
)

u
= 3

2 ,

lim
u→1
− l(l + 1) + 4u(u− 1)ς2

4u2 = − l(l + 1)
4 ,

(4.19)

which are both finite. We conclude that the point u0 = 1 is a regular singular point.

The point u0 =∞:

We now make the substitution u = 1
v . Then

d

du
= −v2 d

dv
,
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and hence

d2

du2 = 2v3 d

dv
+ v4 d

2

dv2 .

Substituted into the original equation (4.17) yields:

v2(1− v)R′′ − v
(

1 + 1
2v
)
R′ − l(l + 1)v2 + 4(1− v)ς2

4(1− v) R = 0. (4.20)

Where ′ now denotes derivative with respect to v. From this we see that the point u0 =∞
corresponds to the point v0 = 0. Hence v2

0(1− v0) = 0 so that v0 = 0 is a singular point.
The limits (A.2) now become

lim
v→0
−
(
1 + 1

2v
)

1− v = −1,

lim
v→0
− l(l + 1)v2 + 4(1− v)ς2

4(1− v)2 = −ς2,

(4.21)

which are both finite. We finally conclude that v0 = 0 is a regular singular point. Hence
the point u0 =∞ is a regular singular point.

We have now classified all the singular points of the radial equation, and found that it
has the three regular singular points 0, 1 and∞. The indicial equations for each of these
singular points respectively, is given by (A.5):

µ(µ− 1) + 3
2µ−

l(l + 1)
4 = 0, (4.22)

ν(ν − 1) + 3
2ν −

l(l + 1)
4 = 0, (4.23)

λ(λ− 1)− λ− ς2 = 0, (4.24)

where we have used the limits calculated above for each singular point. Solving these
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4.3 The Klein-Gordon equation on the 3-sphere

equations for the indices yields:

µ2 + 1
2µ = l(l + 1)

4 ,

⇒
(
µ+ 1

4

)2
= 1

16 + l(l + 1)
4

= 1
16
(
1 + 4l2 + 4l

)

=
(

1 + 2l
4

)2
,

which gives

µ(±) = −1
4 ±

1
4(1 + 2l), (4.25)

since l is not negative. Similarly we get

ν(±) = −1
4 ±

1
4(1 + 2l), (4.26)

λ(±) = 1±
√

1 + ς2. (4.27)

With these indices we have the following tableau (see appendix A) for the ODE for R:

T (R) =



0 1 ∞

1
2 l

1
2 l 1 +

√
1 + ς2

− 1
2 −

1
2 l −

1
2 −

1
2 l 1−

√
1 + ς2


. (4.28)

As discussed in appendix A, we can by a suitable factorization of the form

f = uα0(u− 1)α1R, (4.29)

shift the indices in this tableau so that we get a new tableau corresponding to the hyperge-
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Chapter 4. Klein-Gordon Fields in Curved Spacetime

ometric differential equation. The hypergeometric equation has the tableau,

T (hypergeometric) =

 0 1 ∞
0 0 α

1− γ γ − α− β β

 . (4.30)

Imposing the factorization, (4.29), the tableau for the ODE for the function f will be given
by

T (f) =



0 1 ∞

1
2 l + α0

1
2 l + α1 1 +

√
1 + ς2 − α0 − α1

− 1
2 −

1
2 l + α0 − 1

2 −
1
2 l + α1 1−

√
1 + ς2 − α0 − α1


. (4.31)

Equating T (f) and T (hypergeometric) results in equations for all the unknowns
α0, α1, α, β, γ. We get

α0 = −1
2 l, α = l + 1 +

√
1 + ς2,

α1 = −1
2 l, β = l + 1−

√
1 + ς2,

γ = l + 3
2 .

From appendix (A.3) we see that f satisfies the hypergeometric equation:

u(1− u)f ′′ + [γ − (α+ β + 1)u] f ′ − αβf = 0, (4.32)

with the solution

f = A2F1 (α, β; γ;u) +Bu1−γ
2F1 (1 + α− γ, 1 + β − γ; 2− γ;u) , (4.33)

for two complex constants A and B. The radial Klein-Gordon equation then gets the
solutions

R =Au 1
2 l(u− 1) 1

2 l2F1 (α, β; γ;u)

+Bu−
1
2−

1
2 l(u− 1) 1

2 l2F1 (1 + α− γ, 1 + β − γ; 2− γ;u) . (4.34)
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4.3 The Klein-Gordon equation on the 3-sphere

Let’s analyze the behaviour of this solution near u = 0, corresponding to χ = 0. As u
approaches zero, the only possible singular factors will be the factors of u. We look at
their exponents. Now since

1
2 l ≥ 0, (4.35)

the first term is acceptable. For the second term we have the exponent of u as

− 1
2 −

1
2 l < 0, (4.36)

so that we must require B = 0 for a physically acceptable solution. Then the solution of
the radial equation is

R =Au 1
2 l(u− 1) 1

2 l2F1

(
l + 1 +

√
1 + ς2, l + 1−

√
1 + ς2; l + 3

2;u
)
. (4.37)

Next we analyze the behaviour of this solution near u = 1, corresponding to χ = π. For
this analysis we use relation (A.14) and write

2F1 (α, β; γ;u) =
[

Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β)

]
2F1 (α, β;α+ β − γ + 1; 1− u) +

(1− u)γ−α−β
[

Γ(γ)Γ(α+ β − γ)
Γ(α)Γ(β)

]
×

2F1 (γ − α, γ − β; γ − α− β + 1; 1− u) . (4.38)

From this we see that around u = 1 there will appear a term proportional to
(u− 1)γ−α−β−α1 in the solution R. Since

γ − α− β − α1 = −1
2 −

1
2 l < 0, (4.39)

this term will be too singular near u = 1, and we must require that the term vanishes. The
only way for this to happen is that

Γ(γ)Γ(α+ β − γ)
Γ(α)Γ(β) = 0. (4.40)

The gamma function does not have any zeroes, hence we must have that either Γ(α) or
Γ(β) hit a pole and goes to infinity. This happens if the argument of the gamma function
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is a negative integer counting zero. α will always be positive in our case, so that we must
have β = −nr where we have defined the radial quantum number nr = 0, 1, 2, . . . .

Using the expression for β yields

√
1 + ς2 = l + nr + 1,

⇒ ς2 = n2
B − 1, (4.41)

where we have defined the principal quantum number for the Bosonic case:
nB ≡ l+nr+1 = 1, 2, 3, . . . . Inserting the expression for ς we get the energy quantization
for a scalar field on S3 × R:

ω = ±
√

(n2
B − 1) + 6ξ

a2 +m2
B (4.42)

Here we have used the expression for the Ricci scalar in FRW spacetime. This is calculated
in appendix B.1. For dadt = 0 and k = 1 it is given by

R = 6
a2 . (4.43)

Let’s go back to the solution of the radial equation, (4.37). With the quantum numbers
defined we can write it as

R = Au
1
2 l(u− 1) 1

2 l2F1

(
nr + 2(l + 1),−nr; (l + 1) + 1

2;u
)
. (4.44)

From appendix A.3 we see that if we define b = l + 1, then

2F1

(
nr + 2b,−nr; b+ 1

2;u
)

= nr!
(2b)nr

C(b)
nr

(1− 2u), (4.45)

where C(b)
nr is the Gegenbauer polynomial of degree nr. Recalling that u = sin2 χ

2 we
finally arrive at the solution to the radial Klein-Gordon equation on S3:

R(χ) = sinl χC(b)
nr

(cosχ) (4.46)

Here we have suppressed all constants.
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4.4 Normalization of the solutions to the Klein-Gordon equation on the 3-sphere

4.4 Normalization of the solutions to the Klein-Gordon
equation on the 3-sphere

We proceed by normalizing the the positive energy solutions

Φ = R(χ)Y lml
(θ, ϕ)e−iωBt, (4.47)

where the function R was calculated in the previous section. We have defined ωB as the
positive root of (4.42). Recalling the normalization condition for the scalar field, which
follows from (3.6)), we should have

2ωB

∫ ∣∣Φ∣∣2d3x = 1. (4.48)

Now since the spherical harmonics are orthonormal, it suffices to normalize the radial
functions. We should have, for a normalization constant A,

2ωB
∣∣A∣∣2 π∫

0

∣∣R(χ)
∣∣2 sin2 χdχ = 1,

⇒ 2ωB
∣∣A∣∣2 π∫

0

sin2l+2 χ
[
C(b)
nr

(cosχ)
]2
dχ = 1. (4.49)

From appendix A.3 we have the orthogonality relation for the Gegenbauer polynomials,
(A.16). With the variable substitution x = cosχ we get

π∫
0

sin2l+2 χ
[
C(b)
nr

(cosχ)
]2
dχ = π−2l−1Γ(nr + 2(l + 1))

nr!(nr + l + 1) [Γ(l + 1)]2
, (4.50)

where we have used that b = l + 1. Inserted into (4.49) yields

A = πl+
1
2 Γ(l + 1)

√
nB

2ωB

(nB − l − 1)!
Γ(nB + l + 1) (4.51)
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4.5 General solution of the Klein-Gordon equation on the
3-sphere

With the normalization of the special solutions to the Klein-Gordon on R×S3 we are now
ready to write down the general solution. By the principle of superposition the general
solution to the Klein-Gordon equation on the 3-sphere is

φ(t, χ, θ, ϕ) =
∑

nB,l,ml

√
1

2ωB

[
cnBlml

ΦnBlml
(t, χ, θ, ϕ) + c†nBlml

Φ∗nBlml
(t, χ, θ, ϕ)

]

(4.52)

where cnBlml
and c†nBlml

are Fourier coefficients. We have also written

ΦnBlml
(t, χ, θ, ϕ) = πl+

1
2 Γ(l + 1)

√
nB(nB − l − 1)!
Γ(nB + l + 1) R(χ)Y lml

(θ, ϕ)e−iωBt, (4.53)

with

ωB =
√

(n2
B − 1) + 6ξ

a2 +m2
B (4.54)

Let’s update the table of quantum numbers thus far:

Quantum number Expression Values

l l 0, 1, 2, 3, . . .

ml −l,−l + 1, . . . , l − 1, l . . . ,−2,−1, 0, 1, 2, . . .

nr nr 0, 1, 2, 3, . . .

nB l + nr + 1 1, 2, 3, . . .

Table 4.1: 2nd table of quantum numbers.

The quantum number nB completely determines the value of the energy level ωB. For each
value of nB, the possible values of l is given by

l = 0, 1, 2, . . . , nB − 1. (4.55)
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4.6 Quantization on the 3-sphere

For each of these values for l, there is again (2l + 1) values of the magnetic quantum
number ml. Hence the degeneracy, d (nB), of each energy level is given by

d (nB) =
nB−1∑
l=0

(2l + 1) = n2
B (4.56)

4.6 Quantization on the 3-sphere
In this last section we will briefly outline how one can quantize the field solutions (4.52).
The conjugate momentum of the field, given by π = ∂L

∂tφ
, will be equal to φ̇ also in R×S3

spacetime. This arises of course, from the fact that g00 = 1. As we did in Minkowski
space we impose the commutation relations

[φ (t,x) , π (t,x′)] = iδ3 (x− x′) ,
[φ (t,x) , φ (t,x′)] = 0,
[π (t,x) , π (t,x′)] = 0.

 (4.57)

With these relations, it can be shown that the coefficients cnBlml
and c†nBlml

will obey

[
cnBlml

, c†n′Bl′m′l

]
= δnBn′B

δll′δm′
l
ml
,[

cnBlml
, cn′Bl′m′l

]
= 0,[

c†nBlml
, c†n′Bl′m′l

]
= 0,

 (4.58)

suitable for annihilation and creation operators.
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Chapter 5
Dirac Fields in Minkowski
Spacetime

We have now finished our study of the scalar field on the 3-sphere, and it is therefore time
to begin the second part of this thesis. It is time to turn the our attention to the spin- 1

2 field.
Fermionic particles of spin- 1

2 are described by the so-called Dirac field, denoted by
ψ(x), and its dynamical behaviour is determined by the Dirac equation. Being a field of
non-zero spin, the Dirac field must be of a different form than a scalar field, in that it must
incorporate the additional degrees of freedom that comes with non-zero spin. We will see
how this turns out in a bit.

Since we are going to analyze the Dirac equation in curved spacetime, specifically on
the 3-sphere, we start with an outline of the Dirac theory in Minkowski space. We will for
the most part use the book of A. Zee; Quantum field theory in a nutshell [16] for reference
on the background theory presented in this chapter.

5.1 The free Dirac equation
The physics of the Dirac field ψ(x) is described by the Dirac equation;

(iγµ∂µ −m)ψ = 0. (5.1)

Here the objects γµ are gamma matrices, that is, 4 × 4 matrices satisfying the so-called
Clifford algebra:

{γµ, γν} = 2ηµν × I4, (5.2)

where I4 is the four dimensional identity matrix. We will almost always use the more
compact notation of writing I4 as 1 when working with the Dirac equation. From the
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Chapter 5. Dirac Fields in Minkowski Spacetime

Clifford algebra we see that

(
γ0)2 = 1,

(
γi
)2 = −1. (5.3)

We also impose the Hermiticity conditions

(
γ0)† = γ0,

(
γi
)† = −γi, (5.4)

which conveniently can be combined as

(γµ)† = γ0γµγ0. (5.5)

However, the Hermiticity condition together with the Clifford algebra, does not define
the gamma matrices uniquely. Thus we have to choose a representation for the gamma
matrices. One example will be the standard (or Dirac) representation defined as

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (5.6)

although we will choose another representation when we are going to solve the Dirac
equation on the 3-sphere. The two by two matrices σi is the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.7)

It is sometimes useful to define what is called the Dirac matrices;

β ≡ γ0, α ≡ γ0~γ. (5.8)

Different representations of gamma matrices are related by a similarity transformation S,
that is, a non-singular unitary transformation. Thus a new representation can be obtained
by

γµ
′

= SγµS−1, (5.9)

with the new solution ψ′ = Sψ satisfying the Dirac equation expressed in terms of the
new gamma matrices γµ

′
.

With γµ being a four by four matrix, the Dirac field ψ is a four component object
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5.1 The free Dirac equation

called a spinor;

ψ =


ψ1
ψ2
ψ3
ψ4

 . (5.10)

In Klein-Gordon theory we frequently came across the quantity φ∗ or φ†. In the Dirac
theory however ψ† will not be as important as the so-called Dirac adjiont . The Dirac
adjoint is defined as follows:

ψ= ψ†γ0. (5.11)

As with the Klein-Gordon field we can transform ψ to momentum space by setting

ψ(x) =
∫

d4k

(2π)4ψ(k)e−ikx (5.12)

so that the components ψ(k) satisfies the momentsum space Dirac equation

(γµkµ −m)ψ(k) = 0. (5.13)

Historically the Dirac equation was put forward by Dirac as a first order relativistic wave
equation, as opposed to the second order Klein-Gordon equation. The original motivation
was to obtain a single particle wave equation with a positive definite probability density.
To see that this will be the case we simply note that the conserved current density of the
Dirac equation will be the quantity

jµ =ψγµψ. (5.14)

This current density is shown to obey the continuity equation with the use of the Dirac
equation. From this we define the probability density as j0 = ψ†ψ, giving

j0 = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2, (5.15)

which is clearly positive definite.
While solving the issue of the probability density, the Dirac equation still suffers the

same fate as the Klein-Gordon equation in giving both positive and negative energies for
the free particle. This was first resolved by Dirac by proposing that all the negative energy
states are filled up by means of the Pauli exclusion principle, but the modern interpretation
will be that the negative energy states will correspond to a positive energy state of the
antiparticle.
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5.2 Dirac bilinears
We can construct a basis for all 4 × 4 matrices out of the gamma matrices. The basis
will be given by the following set {1, γµ, σµν , γµγ5, γ5}, where the fifth gamma matrix is
defined as

γ5 ≡ iγ0γ1γ2γ3 (5.16)

and σµν as

σµν ≡ i

2 [γµ, γν ] . (5.17)

The Dirac bilinears will be quantities of the formψΓψ, where Γ is a four by four matrix.
From basis set presented above we see that we can form 16 different Dirac bilinears. Each
of these bilinears will transform differently under Lorentz transformations as presented in
this table:

Dirac bilinear Transformation property

ψψ Scalar

ψγ5ψ Pseudoscalar

ψγµψ Vector

ψγµγ5ψ Axial vector

ψσµνψ Antisymmetric tensor

Table 5.1: The Dirac bilinears with transformation properties under Lorentz transformations.

The vector and scalar Dirac bilinear will be used later for the development of the covariant
derivative of the spinor. The transformation of the spinor itself under Lorentz transforma-
tions is also worth noting. It will certainly not be that of a 4-vector. Under rotations the
spinor transforms as a spin- 1

2 field, whereas a vector field will rotate as a spin-1 field. We
will not go further into the transformation properties of the spinor, it only suffices for us
to note that it is not a vector field (it is a spinor field).

5.3 Quantization of the field
We will also briefly discuss the quantization of the Dirac field. Similar to the Klein-Gordon
equation, the Dirac equation has to be rightfully interpreted as a many-particle equation.
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For the free wave solution let u(k, s)e−ikx denote the positive energy solution and
v(k, s)eikx denote the negative. Here k0 = ωk = ±

√
k2 +m2 as before. We have also

included the spin degrees of freedom for the spinor, that is, s = ± 1
2 . Inserted into the

Dirac equation we get

(γµkµ −m)u(k, s) = 0 and (γµkµ +m) v(k, s) = 0. (5.18)

We will impose the normalization conditions

∑
s

u†(k, s)u(k, s) =
∑
s

v†(k, s)v(k, s) = ωk (5.19)

together with

u(k, s)u(k, s′) = −v(k, s)v(k, s′) = mδss′ ,

u(k, s)v(k, s′) = −v(k, s)u(k, s′) = 0.

}
(5.20)

We then obtain

ψ(x) =
∑
s

∫
d3k

(2π)3/2

√
1
ωk

[
b(k, s)u(k, s)e−ikx + d†(k, s)v(k, s)eikx

]
(5.21)

and

ψ(x) =
∑
s

∫
d3k

(2π)3/2

√
1
ωk

[
d(k, s)v(k, s)e−ikx + b†(k, s)u(k, s)eikx

]
, (5.22)

where b and b† are annihilation and creation operators for the particle, and d and d† are
corresponding operators for the antiparticle. Since the Dirac field obeys the Fermi-Dirac
statistics (being a fermion field) we must impose anticommutators in order to quantize the
field;

{ψ (t,x) , ψ† (t,x′)} = iδ3 (x− x′) ,
{ψ (t,x) , ψ (t,x′)} = 0,
{ψ† (t,x) , ψ† (t,x′)} = 0.

 (5.23)

It can be shown that these anticommutators gives the following anticommutators for the
creation and annihilation operators:

{b(k, r), b†(k′, s)} = {d(k, r), d†(k′, s)} = δkk′δss
′, (5.24)
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with all other combinations equal to zero. This will be suitable for creation and annihila-
tion operators. We specifically note that for a vacuum state |0〉 we have

b |0〉 = d |0〉 = 0. (5.25)

5.4 Vacuum energy
The Lagrangian and Hamiltonian density for the Dirac field will be

L =ψ(iγµ∂µ −m)ψ (5.26)

and

H =ψ
(
i~γ · ~∂ +m

)
ψ (5.27)

respectively. From this it is possible to obtain the Hamiltonian

H =
∫
d3k

∑
s

ωk
[
b†(k, s)b(k, s) + d†(k, s)d(ks)− δ3(0)

]
, (5.28)

from which we will have the vacuum energy for a Dirac field for a discrete spectrum of k:

〈0|H |0〉 = −2
∑

k

ωk (5.29)

We observe that it comes with a minus sign.

5.5 The free Dirac equation in spherical coordinates
It will be useful for later discussions to analyze the Dirac equation in spherical coordinates.
In spherical coordinates the Dirac equation takes the form

i
∂

∂t
Ψ = −iα ·∇Ψ + βmΨ, (5.30)

where we have introduced Diracs α and β matrices. As done in the case of the Dirac
equation in a central potential V (r) , we introduce the angular momentum operator L =
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−ir×∇, following chapter 4 of [14]. By looking at

ê(r) × L = −iê(r) × (r×∇)

= −i
[
ê(r)r

∂

∂r
− r∇

]
, (5.31)

we can get an expression for ∇ involving L;

∇ = ê(r)
∂

∂r
− i1

r
ê(r) × L. (5.32)

Hence

− iα ·∇ = −i
(
α · ê(r)

) ∂
∂r
− 1
r

α ·
(
ê(r) × L

)
. (5.33)

For two arbitrary vectors A and B we have the identity

(α ·A) (α ·B) = A ·B + iΣ · (A×B) , (5.34)

where Σ = γ5α = 2S is twice the spin operator. Substituting A = ê(r) and B = L and
using that ê(r) · L = 0, yields

α ·
(
ê(r) × L

)
= −iγ5 (α · ê(r)

)
(α · L)

= −i
(
α · ê(r)

)
(2S · L) , (5.35)

since γ5 commutes with α. Inserting this into (5.33) gives

−iα ·∇ = −i
(
α · ê(r)

) [ ∂
∂r
− 1
r

(2S · L)
]

= −i
(
α · ê(r)

) [ ∂
∂r

+ 1
r
− 1
r
β2 (2S · L + 1)

]
. (5.36)

Remembering that S2 = 1
2 ( 1

2 + 1) because we are dealing with a spin- 1
2 field, we can

write

2S · L + 1 = J2 − L2 − S2 + 1 = J2 − L2 + 1
4 . (5.37)
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Where J = L + S is the total angular momentum. We now define what we can call a
spin-orbit operator [14]:

K = β

(
J2 − L2 + 1

4

)
. (5.38)

With this operator at hand the Dirac equation in spherical coordinates can finally be written
as

i
∂

∂t
Ψ = −i

(
α · ê(r)

) [ ∂
∂r

+ 1
r
− 1
r
βK

]
Ψ + βmΨ = H0Ψ. (5.39)

To proceed we will look for eigenfunctions of the Dirac Hamiltonian H0. As standard
in quantum mechanics we can find these eigenfunctions by acquiring a complete set of
commuting observables. This set is given by the Hamiltonian, together with total angular
momentum and its thrid component, spinor parity and the spin-orbit operator. With this
set {H0,J2, J3,P,K}, there is a set of simultaneous eigenfunctions that is constructed
out of separation of radial and spherical coordinates, and time.

5.5.1 Spinor spherical harmonics
The angular part of the spinor Ψ is given by spinor spherical harmonics. These are eigen-
functions of J2 and J3, and parity. For a Dirac field the total angular momentum is the
orbital angular momentum combined with spin angular momentum equal to 1

2 . The eigen-
functions of L2 and L3 are the usual spherical harmonics Y ml

l , and the eigenfunctions of
S2 and S3 are given by two-component spinors χms

, where ms = − 1
2 ,

1
2 corresponds to

spin down and up respectively. These two-component spinors take the form

χ−1/2 =
(

0
1

)
and χ1/2 =

(
1
0

)
. (5.40)

With this in mind, the construction of the spinor spherical harmonics Ωjlmj
is given by

Ωjlmj
=

∑
ms=− 1

2 ,
1
2

C

(
l,

1
2 , j;mj −ms,ms,mj

)
Y ml

l χms . (5.41)

Here C (j1, j2, j3;m1,m2,m3) are the Clebsch-Gordan coefficients for combining angu-
lar momenta j1 and j2 into a state with total angular momentum j3. m1, m2 and m3 are
the corresponding magnetic quantum numbers. The functions Ωjlmj

form an orthonormal
set; ∫

dΩ
(

Ωj
′

l′m′
j

)†
Ωjlmj

= δj′jδl′lδm′
j
mj
. (5.42)
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5.5 The free Dirac equation in spherical coordinates

From addition of angular momenta we get that j = l± 1
2 (let’s assume for the moment that

l > 0, otherwise j will just be equal to 1
2 since there is no angular momentum present).

For these two values of j the spinor spherical harmonics is given by [1]:

Ωl+1/2
lmj

=

√ l+mj+1/2
2l+1 Y

mj−1/2
l√

l−mj+1/2
2l+1 Y

mj+1/2
l

 (5.43)

and

Ωl−1/2
lmj

=

−√ l−mj+1/2
2l+1 Y

mj−1/2
l√

l+mj+1/2
2l+1 Y

mj+1/2
l

 . (5.44)

It is useful to determine the eigenvalues of the operator K ′ =
(
J2 − L2 + 1

4
)

when acting
on these spinor spherical harmonics. We get

K ′Ωl+1/2
lmj

=
(

J2 − L2 + 1
4

)
Ωl+1/2
lmj

=
[(
l + 1

2

)(
l + 3

2

)
− l(l + 1) + 1

4

]
Ωl+1/2
lmj

= (l + 1)Ωl+1/2
lmj

. (5.45)

And similarly

K ′Ωl−1/2
lmj

= −lΩl−1/2
lmj

. (5.46)

We will call these eigenvalues−κ, so that κ = ∓
(
j + 1

2
)

for j = l± 1
2 . We will encounter

the number κ later when we deal with the Dirac field on the 3-sphere. When κ is set, so is
j and l, so we will write Ωjlmj

≡ Ωκmj
.

Updating the table of quantum numbers gives
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Chapter 5. Dirac Fields in Minkowski Spacetime

Quantum number Expression Values

l l 0, 1, 2, 3, . . .

ml −l,−l + 1, . . . , l − 1, l . . . ,−2,−1, 0, 1, 2, . . .

nr nr 0, 1, 2, 3, . . .

nB l + nr + 1 1, 2, 3, . . .

ms ms − 1
2 ,

1
2

j l ± 1
2

1
2 ,

3
2 ,

5
2 , . . .

mj −j,−j + 1, . . . , j − 1, j . . . ,− 3
2 ,−

1
2 ,

1
2 ,

3
2 , . . .

κ ∓
(
j + 1

2
)

. . . ,−2,−1, 1, 2, . . .

Table 5.2: 3rd table of quantum numbers.
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Chapter 6
Dirac Fields in Curved Spacetime

When we wrote up the covariant version of the Klein-Gordon equation earlier, we began
with the Lagrangian density. We altered this Lagrangian by adjusting each term appro-
priately for a scalar field. While this approach was fairly straightforward because of the
tensorial nature of the scalar field, we will need to take another viewpoint when formulat-
ing the covariant Dirac equation.

Since the Dirac field is not a tensorial field we cannot simply interchange the partial
derivative by the covariant derivative presented in chapter 2. We need to find a completely
new covariant derivative appropriate for spinors. To do this we take advantage of the fact
that we can formulate the Dirac equation in flat spacetime. With the tetrad formalism at
hand we now how to connect separate neighbourhoods in a general curved spacetime via
the spin connection. This will be our starting point for writing down the covariant version
of the Dirac equation.

6.1 The spinor covariant derivative
First we need to find the covariant derivative of the spinor field,

∇µΨ(x) =
[
∂µ + Ωµ(x)

]
Ψ(x). (6.1)

Here Ωµ(x) is the connection coefficient for the spinor field. With this connection the
spinor should obey the following rule for parallel transport:

Ψ(x→ x+ dx) = Ψ(x)− Ωµ(x)Ψ(x)dxµ. (6.2)

To find the spinor connection we look at the parallel transport properties of certain Dirac
bilinears, to implicitly derive the rule for parallel transport of the spinor. We will follow
chapter 7 of [11] closely. From table 5.1 we have the scalar quantity S(x) = Ψ(x)Ψ(x),
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Chapter 6. Dirac Fields in Curved Spacetime

which should remain unchanged under parallel transport;

S(x→ x+ dx) = Ψ(x→ x+ dx)Ψ(x→ x+ dx)

=
[
Ψ†(x)γ0 −Ψ†(x)Ω†µ(x)γ0dxµ

][
Ψ(x)− Ων(x)Ψ(x)dxν

]

= S(x)−Ψ(x)
[
Ωµ(x) + γ0Ω†µ(x)γ0

]
Ψ(x)dxµ. (6.3)

Here we have used (6.2), the definition of the Dirac adjoint and that
(
γ0)2 = 1. Also, the

term proportional to dxµdxν have been neglected since dxµ is infinitesimal. For (6.3) to
hold, we must have

γ0Ω†µγ0 = −Ωµ. (6.4)

Next we look at the local vector ja(x) = Ψ(x)γaΨ(x) which should transport in the same
way as any other local vector (2.46);

ja(x→ x+ dx) =
[
Ψ†(x)−Ψ†(x)Ω†µ(x)dxµ

]
γ0γa

[
Ψ(x)− Ωµ(x)Ψ(x)dxµ

]

= Ψ(x)γaΨ(x)−Ψ(x)
[
γaΩµ(x)− Ωµ(x)γa

]
Ψ(x)dxµ, (6.5)

where we have taken into account the first condition on Ωµ (6.4). By the requirement that
this must obey (2.46), we get our second condition on the spinor connection:

[
γa,Ωµ

]
= ω a

µ bγ
b. (6.6)

From this commutator we conclude that Ωµ should be composed of some combination
of the spin connection, together with a gamma matrix product satisfying the commutator.
Recalling that

[
γa, σbc

]
= 2i

(
γcηba − γbηca

)
, and making the indices come out right in

(6.6), we make the following ansatz for Ωµ:

Ωµ = Cωµbcσ
bc, (6.7)

where C is a complex constant. Inserted into (6.6):

[
γa,Ωµ

]
= 2iCωµbc

(
γcηba − γbηca

)
= 4iCω a

µ bγ
b. (6.8)
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6.2 Dirac equation in curved spacetime

Here we have used the antisymmetry property of the spin connection in the second equal-
ity. From this the constant C is determined, C = 1

4i . Remembering that
(
σbc
)† =

γ0σbcγ0, we see that with the constant C the spin connection also satisfies (6.4). We
have then derived the covariant derivative of the spinor. It has the following connection:

Ωµ = −1
4 iωµbcσ

bc = 1
8ωµbc

[
γb, γc

]
. (6.9)

6.2 Dirac equation in curved spacetime
To make the Dirac equation valid in curved spacetime we must also consider the gamma
matrices in the Minkowskian form of the equation (5.1). These matrices are written in
terms of local coordinates, so to write them in terms of global coordinates we must contract
with the inverse vierbeins;

γµ = eµaγ
a. (6.10)

The global gamma matrices satisfy the generalized Clifford algebra:

{γµ, γν} = 2gµν . (6.11)

We are now ready to write down the generalized Dirac equation for a curved spacetime
background. It is

[
ieµaγ

a (∂µ + Ωµ)−m
]
Ψ = 0 (6.12)

The connection term in this equation can be further analyzed. This term when written out,

ieµcγ
cΩµ = iγcΩc = 1

8 iωcab
(
γcγaγb − γcγbγa

)
, (6.13)

involves products of three gamma matrices. Here we have defined ωcab ≡ eµcωµab . Uti-
lizing the identity

γcγaγb = ηcaγb + ηabγc − ηcbγa − iεdcabγdγ5 (6.14)

yields

γcγaγb − γcγbγa = 2ηcaγb − 2ηcbγa − 2iεcabdγdγ5. (6.15)
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Chapter 6. Dirac Fields in Curved Spacetime

The Dirac equation, (6.12), is now written more explicitly as

ieµaγ
a∂µΨ + 1

4 iωcab
(
ηcaγb − ηcbγa

)
Ψ− 1

4ε
abcdωcabγdγ

5Ψ−mΨ = 0, (6.16)

where the properties of the Levi-Civita symbol have been used. We will later show that
the term involving this symbol actually vanishes for the FRW metric.

6.3 The reduced Dirac equation
To further simplify (6.16) we will follow [3], and impose a factorizability ansatz on the
spinor. Such an ansatz will work when analyzing the Dirac equation in spacetimes that
are sufficiently symmetric. In the case of the FRW metric, spacetime exhibits azimuthal
symmetry and the metric only depends on the coordinates r and θ, and time in the case of
an expanding universe. Also the metric is diagonal in the FRW case and then consequently
so is the vierbein. The vierbein then inherit the same symmetry as the metric. With this in
mind we make the following ansatz. Let

Ψ = f(x0, x1, x2)ψ, (6.17)

such that Φ satisfies the reduced Dirac equation

ieµaγ
a∂µψ −

1
4ε
abcdωcabγdγ

5ψ −mψ = 0. (6.18)

As mentioned, in the FRW case we will show that the term involving the Levi-Civita
symbol is equal to zero. Consequently, if there exists an f such that (6.18) holds, we have
got rid of the connection term altogether.

The factorization (6.17) inserted into the Dirac equation (6.16), yields

ieµaγ
a∂µf + 1

4 iωcab
(
ηcaγb − ηcbγa

)
f = 0, (6.19)

where we have used (6.18). This set of PDEs for f can be further simplified by multiplying
by γe to left. We then take the trace of both sides utilizing the trace identity tr (γaγe) =
4ηae:

4ηaeeµa∂µf + ωcab
(
ηcaηeb − ηcbηea

)
f = 0, (6.20)

which after some manipulations becomes

∂µ log(f) + 1
2e

c
µ ηbcω

ab
a = 0. (6.21)
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6.3 The reduced Dirac equation

From the expression for the spin connection (2.52) we have

e c
µ ηbcω

ab
a = Γνµν + e a

µ ∂νe
ν
a. (6.22)

Using the identity for Γνµν , (2.27), we get the following set of PDEs for f :

∂µ log(f) = −∂µ log
(√
e
)
− 1

2e
a
µ ∂νe

ν
a. (6.23)

Here e is the determinant of e a
µ . Defining f ≡ he−1/2 gives finally

∂µ log(h) = −1
2e

a
µ ∂νe

ν
a. (6.24)

which will determine the existence of the factorization function f , with the condition being
that this set of PDEs have an analytic solution.

In the case of a diagonal vierbein, the set (6.24) is easy to write out:

∂t log(h) = −1
2e

t
t ∂te

t
t,

∂r log(h) = −1
2e

r
r ∂re

r
r,

∂θ log(h) = −1
2e

θ
θ ∂θe

θ
θ,

∂ϕ log(h) = 0.



(6.25)

Here we have kept in mind that f does not depend on ϕ.
This is as far as we can get without specifying exactly what the metric is, although we

have stated some general properties like symmetry and diagonality. The existence of f
depends highly on the exact expression for the metric.
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Chapter 6. Dirac Fields in Curved Spacetime

6.4 The Dirac equation in FRW spacetime
For easy reference we recall that the metric for a FRW universe is given by the line element
(2.56), and on matrix form we have

gµν =


1 0 0 0
0 − a2(t)

1−kr2 0 0
0 0 −a2(t)r2 0
0 0 0 −a2(t)r2 sin2 θ

 , (6.26)

hence the vierbeins and their inverse are respectively given by

e a
µ =


1 0 0 0
0 a(t)√

1−kr2 0 0
0 0 a(t)r 0
0 0 0 a(t)r sin θ

 (6.27)

and

eνa =


1 0 0 0
0

√
1−kr2

a(t) 0 0
0 0 1

a(t)r 0
0 0 0 1

a(t)r sin θ

 . (6.28)

Imposing the factorization (6.17), this set of vierbeins give the following set of PDEs for
h:

∂t log(h) = ∂θ log(h) = ∂ϕ log(h) = 0,

∂r log(h) = 1
2

kr

1− kr2 ,

 (6.29)

so h depends only on r. Hence the last equation becomes an ODE in r. Integrating yields

h =
(
1− kr2)−1/4

, (6.30)

and we get

f = he−1/2 = 1
a3/2r sin1/2 θ

. (6.31)
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6.4 The Dirac equation in FRW spacetime

The factorization of the spinor is then given by

Ψ = 1
a3/2r sin1/2 θ

ψ, (6.32)

where ψ satisfies the reduced Dirac equation (6.18).
In the appendix (B.1) we have calculated the spin connection ωcab for the FRW metric.

Its non-zero components up to antisymmetry are:

Indices {c, a, b} Expression for ωcab

{1, 0, 1} 1
a
da
dt

{2, 0, 2} 1
a
da
dt

{2, 1, 2} 1
ar

√
1− kr2

{3, 0, 3} 1
a
da
dt

{3, 1, 3} 1
ar

√
1− kr2

{3, 2, 3} 1
ar

cos θ
sin θ

Table 6.1: Non-zero components of the spin connection in a FRW Universe up to antisymmetry.

First of all it is worth taking a moment just to mention the high degree of symmetry this
connection exhibits. The patterns in this table are highly regular. The expressions for equal
middle index are equal. We have gotten only index combinations on the form {i, j, i},
where i = 1, 2, 3 and j < i. Secondly we notice that we have no components with all
different indices. Hence

1
4ε
abcdωcabγdγ

5 = 0 (6.33)

because of the properties of the Levi-Civita symbol.
Collecting these results we get that ψ obeys a highly reduced Dirac equation on the

form

ieµaγ
a∂µψ −mψ = 0, (6.34)

completely without connection terms. This equation was studied by Brill and Wheeler
in 1957 for a Schwarzschild type metric [6], and later by Villalba and Percoco in 1990
for the FRW spacetime [15]. These articles have a more direct approach on obtaining
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Chapter 6. Dirac Fields in Curved Spacetime

a connectionless equation, whereas we in this thesis have obtained (as in [3]) a way of
calculating a factorization function from a given metric to get rid of the connection terms.
We will however follow the ideas presented in the mentioned articles upon solving the
reduced Dirac equation on the 3-sphere by the method of separation of variables.

Let’s begin by writing out equation (6.34):

ia
∂

∂t
ψ = −iγt

[
γr

∂

∂r
+ γθ

∂

∂θ
+ γϕ

∂

∂ϕ

]
ψ + amγtψ, (6.35)

where we have written γµ = eµaγ
a.

As discussed by Brill and Wheeler we have some freedom in choosing the matrices
γµ. This is attributed to the fact that we can choose different coordinate systems for the
vierbeins. Now the FRW metric is written in terms of spherical coordinates, so that the
obvious choice for the vierbeins will be the diagonal matrices that we have chosen to work
with, where the vierbein axes point in the directions t, r, θ, ϕ. We will call this choice the
diagonal tetrad gauge (borrowing the term from [15]). In this gauge we have

γtd = γ0, γrd = Fγ1,

γθd = 1
r
γ2, γϕd = 1

r sin θγ
3,

where γ0, γ1, γ2, γ3 are the usual flat spacetime gamma matrices in Cartesian coordinates.
We have put the subscript d for diagonal and also defined F =

√
1− kr2 as before.

Another choice will be the scenario where the vierbein axes point along the directions
t, x, y, z. In this Cartesian tetrad gauge the gamma matrices will be given by

γtc = γ0, γrc = F
[(
γ1 cosϕ+ γ2 sinϕ

)
sin θ + γ3 cos θ

]
,

γθc = 1
r

[(
γ1 cosϕ+ γ2 sinϕ

)
cos θ − γ3 sin θ

]
,

γϕc = 1
r sin θ

(
−γ1 sinϕ+ γ2 cosϕ

)
.

We have put the subscript c for Cartesian.
Now these two sets of gamma matrices satisfy the Clifford algebra and are therefore

linked to each other by a similarity transformation S. S will be the usual transformation
for transforming the gamma matrices from Cartesian coordinates to spherical coordinates
and it is given by

S = exp
(
− ϕ

2 γ
1γ2
)

exp
(
−θ2γ

3γ1
)
S, (6.36)
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6.4 The Dirac equation in FRW spacetime

where the transformation

S ≡ 1
2
(
γ1γ2 − γ1γ3 + γ2γ3 + 1

)
(6.37)

acts on the spatial gamma matrices in the following way

Sγ1S−1 = γ3, Sγ2S−1 = γ1, Sγ3S−1 = γ2, (6.38)

γ0 is preserved under this transformation. The two different choices of gamma matrices
are related by γµc = SγµdS

−1, and the solutions by ψc = Sψd. The real and measurable
quantities should of course be the same for both solutions, so that they are in this sense
equivalent, but clearly the diagonal gauge seems easier to use for explicitly solving the
equation. However the solutions resulting from this choice will not be as physically trans-
parent as the solution in the Cartesian gauge [6]. Firstly the function Ψd will not be a single
valued function of position, and secondly, the angular part of the solution will be harder
to interpret in terms of physically measurable quantities such as angular momentum. The
radial equations will be the same for both choices.

Following this discussion we choose to solve the reduced Dirac equation in the diago-
nal tetrad gauge and write (6.34) as

ia
∂

∂t
ψ = Tψ (6.39)

where we have defined the operators

T = −iγ0γ1F
∂

∂r
+ γ1

r
K− iaγ0m (6.40)

and

K = iγ1γ0γ2 ∂

∂θ
+ i

sin θγ
1γ0γ3 ∂

∂ϕ
. (6.41)

The angular operator K is Hermitian and commutes with T. It is convenient to work in
the representation

γ0 =
(
−i 0
0 i

)
, γi =

(
0 σi

σi 0

)
, (6.42)

where σi are the usual Pauli matrices. In the end we will be interested in the solution

Ψ = 1
a3/2r sin1/2 θ

Sψ, (6.43)
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so that it will be useful to have the explicit expression for the similarity transformation S.
Using the representation (6.42), S will be given in block form as

S =
(
Z 0
0 Z

)
(6.44)

for the matrix

Z =
(

e−iϕ/2 0
0 eiϕ/2

)(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
S (6.45)

calculated using the series expansion for the exponential operator. Actually it will turn out
to be easier to solve the Dirac equation of we apply the transformation S right away [15].
We will then solve for the solutions ψ̃ = Sψ. Using the transformation properties of the
gamma matrices (6.38), we get

T̃ = −iγ0γ3F
∂

∂r
+ γ3

r
K̃− iaγ0m (6.46)

and

K̃ = iγ3γ0γ1 ∂

∂θ
+ i

sin θγ
3γ0γ2 ∂

∂ϕ
. (6.47)

Now since the operators T̃ and K̃ commutes, we can proceed to find simultaneous eigen-
functions of these two operators and impose separation of variables with the following
ansatz

ψ̃ = R(r)Θ(θ)eimjϕ−iωt. (6.48)

The notation mj will become apparent later. Firstly we look at the azimuthal dependence.
For the solution Ψ to be single valued and continuous we should require that

Ψ(ϕ) = Ψ(ϕ+ 2π). (6.49)

Since Ψ ∼ Sψ, and we see from the azimuthal part of the transformation S that

S(ϕ+ 2π) = −S(ϕ), (6.50)

we must require that

ψ̃(ϕ+ 2π) = −ψ̃(ϕ). (6.51)
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6.4 The Dirac equation in FRW spacetime

This is satisfied if mj = ± 1
2 ,±

3
2 ,±

5
2 , . . . .

Having determined the values of the quantum number mj we go on to analyze the
eigenvalue problem for the angular operator. Using the representation (6.42) we get

K̃ψ̃ = i

(
σ2 0
0 −σ2

)
∂

∂θ
ψ − mj

sin θ

(
−σ1 0

0 σ1

)
ψ̃ = κψ̃, (6.52)

denoting the eigenvalue by κ. Now this suggests that we should write the angular part of
the spinor as

ψ̃ ∼
(

Θ(θ)
σ3Θ(θ)

)
=


Θ1
Θ2
Θ1
−Θ2

 , (6.53)

so that we have two free components to be determined. Inserted into the angular eigenvalue
equation (6.52) yields a set of two coupled first order ODEs for the θ-dependent angular
functions;

d

dθ

(
Θ1
Θ2

)
=

 mj

sin θ −κ

κ − mj

sin θ

(Θ1
Θ2

)
(6.54)

This set will be the angular Dirac equation in FRW spacetime.
We now turn our attention to the radial part of the Dirac equation. Utilizing what we

have found for the angular equation we have

ia
∂

∂t
ψ̃ = T̃ψ̃ = −iγ0γ3F

∂

∂r
ψ̃ + γ3

r
κψ̃ − iaγ0mψ̃, (6.55)

which yields

aωψ̃ = −i
(

0 −iσ3

iσ3 0

)
F
∂

∂r
ψ̃ + κ

r

(
0 σ3

σ3 0

)
ψ̃ − iam

(
−i 0
0 i

)
ψ̃. (6.56)

From this we see that we should write the solution as

ψ̃ =
(
P (r)Θ(θ)
σ3Q(r)Θ(θ)

)
eimjϕ−iωt, (6.57)

for two (one-component) radial functions P andQ. Inserting this solution into (6.56) gives
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the following set of coupled first order ODEs for the radial functions:

F
d

dr

(
P
Q

)
=

 −κr a (ω +m)

−a (ω −m) κ
r

(P
Q

)
(6.58)

which will be the radial Dirac equation in FRW spacetime.
We will now turn our attention to solving the angular and radial Dirac equations on the

3-sphere.

6.5 The Dirac equation on the 3-sphere
Similar to when we studied the Klein-Gordon equation in curved spacetime we are now
going to solve the Dirac equation for the FRW-metric after performing the substitutions
k = 1 and r = sinχ, yielding the metric for R× S3. As before we have

F = cosχ,

d

dr
= 1

cosχ
d

dχ
.

Let’s begin with the radial equations. We have

d

dχ

(
P
Q

)
=

 − κ
sinχ a (ω +m)

−a (ω −m) κ
sinχ

(P
Q

)
. (6.59)

This set can be decoupled to give ODEs for the functions P and Q alone. Isolating P and
Q yields

P = − 1
a(ω −m)

(
d

dχ
− κ

sinχ

)
Q, (6.60)

Q = 1
a(ω +m)

(
d

dχ
+ κ

sinχ

)
P. (6.61)

Inserting Q into the upper equation gives the second order ODE for P ;

[
d2

dχ2 −
κ(κ+ cosχ)

sin2 χ
+ ε2

]
P = 0, (6.62)
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6.5 The Dirac equation on the 3-sphere

where we have defined ε2 ≡ a2(ω2 −m2). The equation for the function Q will be the
same when we let κ→ −κ.

When it comes to the angular equations they remain unchanged by the transition to R×
S3 spacetime, and we observe that they become identical in form to the radial equations.
Hence it suffices to solve the ODE for the radial function P .

6.5.1 The radial solution
The radial Dirac equations are very similar to the radial Klein-Gordon equation on the 3-
sphere. We can therefore, by the same substitution of variable, recognize these equations
as hypergeometric differential equations. As in the Klein-Gordon case we impose the
substitution

u = sin2 χ

2 . (6.63)

For easy reference let’s list the trigonometric identities

cosχ = cos2 χ

2 − sin2 χ

2 = 1− 2 sin2 χ

2 = 1− 2u,

sin2 χ = 1− cos2 χ = 1− (1− 2u)2 = 4u(1− u),

d

dχ
= du

dχ

d

du
= sin χ2 cos χ2

d

du
= 1

2 sinχ d

du
=
√
u(1− u) d

du
,

d2

dχ2 = u(1− u) d
2

du2 +
(

1
2 − u

)
d

du
.

This inserted into the ODE for P results in

u(u− 1)P ′′ −
(

1
2 − u

)
P ′ − κ(κ+ 1− 2u) + 4u(u− 1)ε2

4u(u− 1) P = 0, (6.64)

where ′ denotes d
du .

As mentioned, we need only solve the equation for P . The solution for Q is obtained
by letting κ → −κ in the solution for P . Following what we did for the radial Klein-
Gordon equation, we begin by classifying the possibly singular points.
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The point u0 = 0:

Now u0(u0 − 1) = 0, so this point is singular. The limits (A.2) become

lim
u→0
−
( 1

2 − u
)

u− 1 = 1
2 ,

lim
u→0
−κ(κ+ 1− 2u) + 4u(u− 1)ε2

4(u− 1)2 = −κ(κ+ 1)
4 ,

(6.65)

which are both finite. We conclude that the point u0 = 0 is a regular singular point.

The point u0 = 1:

Now u0(u0 − 1) = 0, so this point is singular. The limits (A.2) become

lim
u→1
−
( 1

2 − u
)

u
= 1

2 ,

lim
u→1
−κ(κ+ 1− 2u) + 4u(u− 1)ε2

4u2 = −κ(κ− 1)
4 ,

(6.66)

which are both finite. We conclude that the point u0 = 1 is a regular singular point.

The point u0 =∞:

We now make the substitution u = 1
v . Then

d

du
= −v2 d

dv
,

and hence

d2

du2 = 2v3 d

dv
+ v4 d

2

dv2 .

Substituted into the original equation (6.64) yields:

v2(1− v)P ′′κ + v

(
1− 3

2v
)
P ′κ −

κ(κ+ 1− 2
v )v2 + 4(1− v)ε2

4(1− v) P = 0. (6.67)

Where ′ now denotes derivative with respect to v. From this we see that the point u0 =∞
corresponds to the point v0 = 0. Hence v2

0(1− v0) = 0 so that v0 = 0 is a singular point.
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6.5 The Dirac equation on the 3-sphere

The limits (A.2) now become

lim
v→0

(
1− 3

2v
)

1− v = 1,

lim
v→0
−
κ(κ+ 1− 2

v )v2 + 4(1− v)ε2

4(1− v)2 = −ε2,

(6.68)

which are both finite. We finally conclude that v0 = 0 is a regular singular point. Hence
the point u0 =∞ is a regular singular point.

We have now classified all the singular points of the ODE for P , and found that it has the
three regular singular points 0, 1 and∞. The indicial equations for each of these singular
points respectively, is given by (A.5):

µ(µ− 1) + 1
2µ−

κ(κ+ 1)
4 = 0, (6.69)

ν(ν − 1) + 1
2ν −

κ(κ− 1)
4 = 0, (6.70)

λ(λ− 1) + λ− ε2 = 0, (6.71)

where we have used the limits calculated above for each singular point. Solving these
equations for the indices yields:

µ2 − 1
2µ = κ(κ+ 1)

4

⇒
(
µ− 1

4

)2
= 1

16 + κ(κ+ 1)
4

= 1
16
(
1 + 4κ2 + 4κ

)

=
(

1 + 2κ
4

)2
.
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Which gives

µ(±) = 1
4 ±

1
4
∣∣1 + 2κ

∣∣. (6.72)

And similarly we get

ν(±) = 1
4 ±

1
4
∣∣1− 2κ

∣∣, (6.73)

λ(±) = ±|ε|. (6.74)

As a control we note that these indices add up to one, as they should. With these indices
we have the following tableau for our differential equation:

T (P ) =



0 1 ∞

1
4 + 1

4
∣∣1 + 2κ

∣∣ 1
4 + 1

4
∣∣1− 2κ

∣∣ +|ε|

1
4 −

1
4
∣∣1 + 2κ

∣∣ 1
4 −

1
4
∣∣1− 2κ

∣∣ −|ε|


. (6.75)

As in the case of the radial Klein-Gordon equation, we can by a suitable factorization of
the form

f = uα0(u− 1)α1P, (6.76)

shift the indices in this tableau so that we get a new tableau corresponding to the hyper-
geometric differential equation. For simple reference the hypergeometric equation has the
tableau,

T (hypergeometric) =

 0 1 ∞
0 0 α

1− γ γ − α− β β

 . (6.77)

Imposing the factorization (6.76) yields

T (f) =



0 1 ∞

1
4 + κ+ + α0

1
4 + κ− + α1 +|ε| − α0 − α1

1
4 − κ

+ + α0
1
4 − κ

− + α1 −|ε| − α0 − α1


. (6.78)
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6.5 The Dirac equation on the 3-sphere

Here we have defined the two quantities κ± ≡ 1
4
∣∣1 ± 2κ

∣∣. The notation will become
evident in a bit.

Setting T (f) = T (hypergeometric) gives

α0 = −1
4 − κ

+, α = κ+ + κ− + 1
2 + |ε|,

α1 = −1
4 − κ

−, β = κ+ + κ− + 1
2 − |ε|,

γ = 2κ+ + 1,

The function f then satisfies the hypergeometric differential equation:

u(1− u)f ′′ + [γ − (α+ β + 1)u] f ′ − αβf = 0, (6.79)

with the solution

f = A 2F1 (α, β; γ;u) +B u1−γ
2F1 (1 + α− γ, 1 + β − γ; 2− γ;u) . (6.80)

Here A and B are complex constants. The radial equation for P then gets the solutions

P =Au−α0(u− 1)−α1 2F1 (α, β; γ;u)

+Bu1−γ−α0(u− 1)−α1 2F1 (1 + α− γ, 1 + β − γ; 2− γ;u) . (6.81)

We have to leave the radial solution here to intermediately solve the angular equations.
This is needed to get more information on the values of κ.

6.5.2 The angular solution
The angular equations are given by

d

dθ

(
Θ1
Θ2

)
=

 mj

sin θ κ

−κ − mj

sin θ

(Θ1
Θ2

)
, (6.82)

so that we see that these will yield the same solutions as P and Q with the changes

χ→ θ, κ→ −mj , ε2 → κ2. (6.83)
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Now writing w = sin2 θ
2 we have

Θ1 =Cw−α0(w − 1)−α1 2F1 (α, β; γ;w)

+Dw1−γ−α0(w − 1)−α1 2F1 (1 + α− γ, 1 + β − γ; 2− γ;w) (6.84)

with

α0 = −1
4 −m

−
j , α = |mj |+

1
2 + |κ|,

α1 = −1
4 −m

+
j , β = |mj |+

1
2 − |κ|,

γ = 2m−j + 1,

where

m+
j +m−j = |mj | =

1
2 ,

3
2 ,

5
2 , . . . (6.85)

andm±j ≡ 1
4
∣∣1±2mj

∣∣ as before. The solution Θ2 will be obtained by lettingmj → −mj .
Let’s analyze the behaviour of Θ1 near w = 0, corresponding to θ = 0. We seek

non-singular eigenfunctions on the interval 0 ≤ θ ≤ π. This requires that the exponents
of the factors of u in the solution should be greater than or equal to 1

4 (taking into account
the factorization of the solution Ψ). Now since

− α0 = 1
4 +m−j ≥

1
4 , (6.86)

the first term is acceptable. For the second term we have

1− γ − α0 = 1
4 −m

−
j . (6.87)

This may seem acceptable for the particular value mj = 1
2 , but here we have to remember

that while this holds for Θ1, it will not be acceptable for Θ2 since thenmj → −mj . Hence
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6.5 The Dirac equation on the 3-sphere

we must require that D = 0. Following this we get the solution

Θ1 =Cw
1
4 +m−

j (w − 1)
1
4 +m+

j

× 2F1

(
|mj |+

1
2 + |κ|, |mj |+

1
2 − |κ|; 2m−j + 1;w

)
. (6.88)

Next we analyze the behaviour of this solution near w = 1, corresponding to θ = π. As
with the Klein-Gordon case we use relation (A.14) and write

2F1 (α, β; γ;u) =
[

Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β)

]
2F1 (α, β;α+ β − γ + 1; 1− u) +

(1− u)γ−α−β
[

Γ(γ)Γ(α+ β − γ)
Γ(α)Γ(β)

]
×

2F1 (γ − α, γ − β; γ − α− β + 1; 1− u) . (6.89)

From this we see that around w = 1 there will appear a term proportional to
(w − 1)γ−α−β−α1 in the solution Θ1. Since

γ − α− β − α1 = 1
4 −m

+
j , (6.90)

this term will be too singular near w = 1, and we must require that the term vanishes. We
recall that for this to be the case we must have β = −nr, which gives the quantization of
κ:

κ = ±1,±2,±3, . . . . (6.91)

With the appearance of β = −nr we see from appendix A.3 that if we define a = 2m−j ,
we have

2F1

(
|mj |+

1
2 + |κ|, |mj |+

1
2 − |κ|; 2m−j + 1;w

)
= nr!

(a+ 1)nr

P (a,b)
nr

(1− 2w),

(6.92)
where b = 2m+

j and P (a,b)
nr (1− 2w) will be the nr’th order Jacobi polynomial. This gives

us the solution

Θ1 = Cw
1
4 + 1

2a(w − 1) 1
4 + 1

2 bP (a,b)
nr

(1− 2w) (6.93)
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for a new constant C dependent on the quantum numbers. For Θ2 we will have mj →
−mj so that it has the same solution as Θ1 but with a and b interchanged;

Θ2 = Dw
1
4 + 1

2 b(w − 1) 1
4 + 1

2aP (b,a)
nr

(1− 2w). (6.94)

Having established the angular solutions we can go on to determine the full angular part
of the particular solutions Ψ. Recalling that w = sin2 θ

2 and using the properties of the
Jacobi polynomials, it can be shown [15] that

Ψ = 1
a3/2 sinχ sin 1

2 θ

(
cos(θ/2)e−iϕ/2 − sin(θ/2)e−iϕ/2

sin(θ/2)eiϕ/2 cos(θ/2)eiϕ/2

)(
PΘ
σ3QΘ

)
eimjϕ−iωt

(6.95)
will be given by

Ψ = 1
a3/2 sinχ

P (χ)Ωκlmj
(θ, ϕ)

Q(χ)Ω−κlmj
(θ, ϕ)

 e−iωt. (6.96)

Here we have performed the similarity transformation discussed earlier (6.43). The angu-
lar functions Ωκlmj

(θ, ϕ) are the normalized spinor spherical harmonics that were presented
in section 5.5.1 with the quantum number κ taking the values ∓(j + 1

2 ), where j is the
total angular momentum.

6.5.3 The radial solution revisited
With the exact nature of the values of κ we can go back to the radial solution

P =Au−α0(u− 1)−α1 2F1 (α, β; γ;u)

+Bu1−γ−α0(u− 1)−α1 2F1 (1 + α− γ, 1 + β − γ; 2− γ;u) . (6.97)

As with the angular case we have to require that the second term should vanish for a
physically acceptable solution, i.e that B = 0. In addition the behaviour around u = 1
also require that β = −nr in this case. Then

P =Au 1
4 +κ+

(u− 1) 1
4 +κ−

× 2F1

(
|κ|+ 1

2 + |ε|, |κ|+ 1
2 − |ε|; 2κ+ + 1;u

)
, (6.98)
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and similarly for Q but with the change κ+ → κ−. With β = −nr we get

|ε| = |κ|+ nr + 1
2 , (6.99)

giving us (remembering the definition of ε) the energy quantization for the Dirac field in
R× S3 spacetime:

ω = ±

√(
nF + 1

2
)2

a2 +m2
F. (6.100)

Here we have defined the principal quantum number for the Fermionic case;

nF ≡ |κ|+ nr = 1, 2, 3, . . . . (6.101)

The solution P is also in this case expressed in terms of Jacobi polynomials. Now defining
a = 2κ+ and b = 2κ− yields

P (χ) = A sin 1
2 (χ) sina

(χ
2

)
cosb

(χ
2

)
P (a,b)
nr

(cosχ) (6.102)

and

Q(χ) = B sin 1
2 (χ) sinb

(χ
2

)
cosa

(χ
2

)
P (b,a)
nr

(cosχ), (6.103)

for two new constants A and B.

6.6 The solutions to the Dirac equation on the 3-sphere
We now have the particular solutions to the Dirac equation on the 3-sphere. They are given
by

Ψ = 1
a3/2 sinχ

P (χ)Ωκlmj
(θ, ϕ)

Q(χ)Ω−κlmj
(θ, ϕ)

 e±iωFt (6.104)

where Ωκlmj
are the spinor spherical harmonics and the radial functions are given in the

previous section. This set of particular solutions can as in the case of the Klein-Gordon
field, be expanded as a sum over the quantum numbers yielding the full general solution to
the problem. We have not normalized the radial solutions but it can be done utilizing the
orthogonality properties of the Jacobi polynomials. The Dirac field energies is quantized
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and given by

ωF =

√(
nF + 1

2
)2

a2 +m2
F (6.105)

The last and full table of the quantum numbers that occurs in this thesis is then:

Quantum number Expression Values

l l 0, 1, 2, 3, . . .

ml −l,−l + 1, . . . , l − 1, l . . . ,−2,−1, 0, 1, 2, . . .

nr nr 0, 1, 2, 3, . . .

nB l + nr + 1 1, 2, 3, . . .

ms ms − 1
2 ,

1
2

j l ± 1
2

1
2 ,

3
2 ,

5
2 , . . .

mj −j,−j + 1, . . . , j − 1, j . . . ,− 3
2 ,−

1
2 ,

1
2 ,

3
2 , . . .

κ ∓
(
j + 1

2
)

. . . ,−2,−1, 1, 2, . . .

nF |κ|+ nr 1, 2, 3, . . .

Table 6.2: 4th table of quantum numbers.

The energy levels ωF is completely determined by the value of nF. For each value of nF,
|κ| ranges over the values

|κ| = 1, 2, . . . , nF. (6.106)

For each of these values there are two values of κ corresponding to the two spin states. For
a given |κ| there corresponds a value of j for which there are (2j + 1) or 2|κ| values of
mj . Combining all these possibilities yield the degeneracy, d(nF) for each energy level:

d (nF) =
nF∑
|κ|=1

4|κ| = 2nF (nF + 1) (6.107)
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Chapter 7
Results

In this final chapter we will summarize and discuss the main results obtained in this thesis.
We will refer to the Klein-Gordon field and the Dirac field simply as bosons and fermions,
respectively.

7.1 Field equations on curved spacetime
The Klein-Gordon equation was obtained by adjusting the corresponding Lagrangian den-
sity, yielding the equation

1√
−g

∂µ
(√
−ggµν∂νφ

)
+
(
m2

B + ξR
)
φ = 0, (7.1)

where the coupling to the scalar curvature of spacetime was included with the coupling
constant ξ. We will discuss this coupling in more detail below. This equation was then
written out for the specific FRW metric and then solved for R × S3 spacetime. It turned
out that the solutions came with a discrete spectrum of energies.

For the Dirac equation we had to find the covariant derivative corresponding to the
spinor. This where found using the tetrad formalism and the equation could be written out
as

ieµaγ
a∂µΨ + 1

4 iωcab
(
ηcaγb − ηcbγa

)
Ψ− 1

4ε
abcdωcabγdγ

5Ψ−mFΨ = 0. (7.2)

This equation was greatly simplified by the means of a factorization ansatz. The ansatz
considered to work in sufficiently symmetric spacetimes. As with the bosonic case we
solved this equation in R × S3 spacetime and found that the energies for the field were
quantized.
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7.2 Energies and degeneracies on the 3-sphere
In R× S3 spacetime the bosons acquired the energy states

ωB =
√

(n2
B − 1) + 6ξ

a2 +m2
B (7.3)

with the state degeneracy

d (nB) =
nB−1∑
l=0

(2l + 1) = n2
B. (7.4)

Here the bosonic quantum number takes the values nB = 1, 2, 3, . . . . If we had considered
a charged scalar field, the degeneracies had been doubled.

Fermions on the other hand was subject to the energies

ωF =

√(
nF + 1

2
)2

a2 +m2
F (7.5)

and degeneracies

d (nF) =
nF∑
|κ|=1

4|κ| = 2nF (nF + 1) . (7.6)

We note that the fermionic quantum number nF take on the same values as the bosonic.
There is no peculiarities about the discrete quantization of the energies for both bosons

and fermions in the closed FRW Universe. In this case, space has a finite volume and the
wave solutions of the field equations are subject to periodic boundary conditions.

We will now explore the correlation between the bosonic degrees of freedom and the
fermionic degrees of freedom (including charged scalar fields). For fermions and bosons
we plot the degeneracy versus the energy value (units are irrelevant here).
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Figure 7.1: Energies and state degeneracies for bosons and fermions for mB = mF = 10, a = 1
and ξ = 5/24 (the factors of 2 in the degeneracies have been omitted).

We observe from this plot an intimate relation between the bosonic and fermionic de-
grees of freedom. Although the energies does not coincide, they follow the same curve.
Indeed the interpolation of bosons and fermions coincide for the specific value of the
scalar curvature coupling constant, namely ξ = 5/24, as opposed to the canonical value
ξ = 1/6 = 4/24.

7.3 Conclusions and outlook
We conclude that there are some correlation between the bosonic and the fermionic degrees
of freedom on the 3-sphere. The energy degeneracies follow the same trajectory when
plotted against energy values for a specific value of the scalar curvature coupling constant
of the scalar field. This can therefore be seen loosely as a theoretical determination of this
constant.

There are a lot of extensions to this work. First and foremost will be the transition to
quantum field theory, rather than quantum mechanics. Second will be the inclusion of a
time dependent scale factor, with dynamic spacetime rather than static.
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Appendix A
Singular Points and the
Hypergeometric Differential
Equation

In this appendix we are going to briefly discuss some concepts regarding ODEs. These
concepts being singular points, the Frobenius method and indices. We will also discuss
some properties of the hypergeometric differential equation. The topics discussed here
will be relevant for the thesis at hand.

A.1 Singular points
A second order ODE of the form

p2(x)y′′ + p1(x)y′ + p0(x)y = 0, (A.1)

is said to have a singular point at x0 if p2(x0) = 0. That singular point is called regular if
the following limits exists and are finite:

lim
x→x0

(x− x0) p1(x)
p2(x) = c1,

lim
x→x0

(x− x0)2 p0(x)
p2(x) = c2,


(A.2)

where c1 and c2 are finite. If this is not the case, then the singular point x0 is called
irregular. To classify x0 = ∞ we make the substitution x = 1

z and study the point
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z0 = 0.
An ODE whose all singular points are regular is called a Fuchsian differential equa-

tion. Any second order Fuchsian differential equation can, after suitable substitutions, be
written as a hypergeometric differential equation.

A.2 The Frobenius method and indices
If an ODE of the form (A.1) has one or more regular singular points, there is a method of
finding a series solution to the equation around that singular point. This method is known
as the Frobenius method [5]. The idea is to write the series solution of the form

y = (x− x0)µ
∞∑
n=0

an (x− x0)n (A.3)

around the regular singular point x0, and require that a0 6= 0.
We are now going to consider a second order ODE. Calculating the first and second

derivative of y yields

y =
∞∑
n=0

an (x− x0)n+µ
,

y′ =
∞∑
n=0

an(n+ µ) (x− x0)n+µ−1
,

y′′ =
∞∑
n=0

an(n+ µ)(n+ µ− 1) (x− x0)n+µ−2
.

Inserting this into (A.1) and dividing through p2(x) gives

∞∑
n=0

an

{
(n+ µ)(n+ µ− 1) + (x− x0) p1(x)

p2(x) (n+ µ)

+ (x− x0)2 p0(x)
p2(x)

}
(x− x0)n+µ−2 = 0. (A.4)

We now see the reason for defining regular singular points the way we have done. In the
limit x → x0 the expression in the square bracket will be finite for finite n. An equation
for µ is given if we write out the n = 0 term and require that the coefficient is zero. This
will be the most singular term. In the limit of x → x0 this gives us what is called the
indicial equation for µ around x = x0. From the limits (A.2) we get that, for a second

II



order ODE, the indicial equation for the regular singular point x0 is given by

µ(µ− 1) + c1µ+ c2 = 0. (A.5)

Here we have remembered that by definition, a0 6= 0. This equation will have two roots in
general, if we count multiplicity. Lets call them µ(+) and µ(−). These are the indices of
x0.

The case of regular singular points at 0, 1 and∞
There is a useful way of organizing the regular singular points together with there indices.
In the case where x0 = 0, 1,∞ consider the following tableau:

T (y) =


0 1 ∞

µ(+) ν(+) λ(+)

µ(−) ν(−) λ(−)

 . (A.6)

Here the regular singular points are listed in the first row, with their corresponding indices
in each column. Of course this tableau generalizes to arbitrary regular singular points and
arbitrary order of the ODE, but the case of x0 = 0, 1,∞ will be of special importance to
us.

Factorizations of the form

z(x) =
∏
i

(x− xi)αi y(x), (A.7)

where i goes through the points xi = 0, 1, are of special importance. Expressing y(x) in
terms of z(x) we get a new ODE for z(x) whose indices have been shifted compared to
the ODE for y(x). The new tableau for z(x) will be:

T (z) =


0 1 ∞

µ(+) + α0 ν(+) + α1 λ(+) −
∑
i

αi

µ(−) + α0 ν(−) + α1 λ(−) −
∑
i

αi

 . (A.8)

Since the indicial tableau completely characterizes the differential equation, we now have
a method of substitution that allows us to transform one ODE into another with a known
tableau. This is important if we want to know if a particular ODE can be written as say,
the hypergeometric differential equation, which will be the case in this thesis. So lets take
a look now at some properties of the hypergeometric differential equation.
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A.3 The hypergeometric differential equation
The following second order ODE is called the hypergeometric differential equation:

x(1− x)y′′ + [γ − (α+ β + 1)x] y′ − αβy = 0. (A.9)

Here α, β and γ are complex constants, and the nature of these constants determine what
kind of solutions this equation will have. This ODE has regular singular points at x0 =
0, 1,∞, with the following tableau of indices:

T (hypergeometric) =

 0 1 ∞
0 0 α

1− γ γ − α− β β

 . (A.10)

The solution of (A.9) is constructed out of the hypergeometric series (or function)[2].
Around the point x = 0, we will have the solution

y = C2F1 (α, β; γ;x) +Dx1−γ
2F1 (1 + α− γ, 1 + β − γ; 2− γ;x) . (A.11)

Here 2F1 (α, β; γ;x) is the hypergeometric series, defined as

2F1 (α, β; γ;x) = Γ(γ)
Γ(α)Γ(β)

∞∑
m=0

Γ(α+m)Γ(β +m)
Γ(γ +m)

xm

m! , (A.12)

where |x| < 1 and γ 6= 0,−1,−2, . . . . To make notation easier we can introduce the
Pochhammer symbol:

(α)m ≡
Γ(α+m)

Γ(α) . (A.13)

The hypergeometric function around the point x = 0 is related to the hypergeometric
function around x = 1 in the following way

2F1 (α, β; γ;x) =
[

Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β)

]
2F1 (α, β;α+ β − γ + 1; 1− x) +

(1− x)γ−α−β
[

Γ(γ)Γ(α+ β − γ)
Γ(α)Γ(β)

]
×

2F1 (γ − α, γ − β; γ − α− β + 1; 1− x) . (A.14)
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In the case where α or β is a negative integer −n = 0,−1,−2, . . . , the hypergeometric
series reduces to a polynomial of degree n.

Let’s assume that β = −n, then there is two cases that we will encounter in this thesis:

1. If we for some a can write α = n + 2a and γ = a + 1
2 , then the hypergeometric

function is reduced to

2F1

(
n+ 2a,−n; a+ 1

2;x
)

= n!
(2a)n

C(a)
n (1− 2x). (A.15)

The polynomials C(a)
n is the n’th order Gegenbauer polynomials. These obey the

following orthogonality relation:

1∫
−1

(
1− x2)a− 1

2 C(a)
n (x)C(a)

n′ (x)dx = π1−2aΓ(n+ 2a)
n!(n+ a) [Γ(a)]2

δnn′ , (A.16)

where a 6= 0 and a > − 1
2 .

2. If we for some a and b can write α = a + 1 + b + n and γ = a + 1, then the
hypergeometric function is reduced to

2F1 (a+ 1 + b+ n,−n; a+ 1;x) = n!
(a+ 1)n

P (a,b)
n (1− 2x). (A.17)

The polynomials P (a,b)
n is the n’th order Jacobi polynomials. These obey the fol-

lowing orthogonality relation:

1∫
−1

(1− x)a (1 + x)bP (a,b)
n (x)P (a,b)

n′ (x)dx = 2a+b+1

2n+ a+ b+ 1×

Γ(n+ a+ 1)Γ(n+ b+ 1)
n!Γ(n+ a+ b+ 1) δnn′ ,

(A.18)

where a, b > −1.
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Appendix B
Maple Calculations

Here we will list Maple code for various calculations.

B.1 The spin connection and the Ricci scalar for the FRW
metric

Loading the tensor package and defining for the FRW metric, gµν , gµν , e a
µ , eµa, together

with the Minkowski metric:

> with(tensor):

> coord:=[t,r,theta,phi]:

> g_compts:=array(symmetric,sparse,1..4,1..4):
> g_compts[1,1] := 1:
> g_compts[2,2] := -(a(t)^2)/(1-k*r^2):
> g_compts[3,3] := -a(t)^2*r^2:
> g_compts[4,4] := -a(t)^2*r^2*sin(theta)^2:

> g := create( [-1,-1], eval(g_compts)):

> ginv:= invert (g, $’$detg’):

> e_compts:=array(symmetric,sparse,1..4,1..4):
> e_compts[1,1] := 1:
> e_compts[2,2] := a(t)/sqrt(1-k*r^2):
> e_compts[3,3] := a(t)*r:
> e_compts[4,4] := a(t)*r*sin(theta):

> e := create( [-1,1], eval(e_compts)):

> einv := invert( e, ’dete’):

> eta_compts:=array(symmetric,sparse,1..4,1..4):
> eta_compts[1,1] := 1:
> eta_compts[2,2] := -1:
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> eta_compts[3,3] := -1:
> eta_compts[4,4] := -1:

> eta := create( [-1,-1], eval(eta_compts)):

Calculation of the Christoffel symbols of first and second kind:
> D1g:= d1metric (g, coord):

> Cf1:= Christoffel1 (D1g):
> ‘tensor/Christoffel2/simp‘:= proc(x)
> simplify(x, trig) end proc:

> Cf2:= Christoffel2 (ginv, Cf1):

Calculating the Ricci scalar and printing it in LATEX-code:
> D2g := d2metric ( D1g, coord ):

> RMN := Riemann( ginv, D2g, Cf1 ):

> RICCI := Ricci( ginv, RMN ):

> RS := Ricciscalar( ginv, RICCI ):

> latex( ’RS’ );

table([index_char = [], compts = 6 a(t) d2
dt2 a(t)+( d

dta(t))2+k
(a(t))2 ]).

Calculating the term e a
ν e

σ
bΓνσµ in ω a

µ b :
> Cf2local := prod(Cf2,e,[1,1]):

> first := prod(Cf2local,einv,[1,1]):

Calculating the term e a
ν ∂µe

ν
b in ω a

µ b :
> part_einv := partial_diff(einv, coord):
> second := prod(e,part_einv,[1,1]):
> permutesecond := permute_indices(second,[3,1,2]):

Forming ω a
µ b and then calculating ωcab . Finally we print the components of ωcab in

LATEX-code:
> omega := lin_com(first, permutesecond):

> omegalower := lower(eta, omega,2):

> simplomegalower := simplify( omegalower, ’symbolic’ ):

> omegalocal := prod(einv, simplomegalower, [1,1]):

> latex( ’omegalocal’ ):
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table([index_char = [−1,−1,−1], compts = array([4, 4, 1 = −
d

dta(t)
a(t) ,

4, 4, 4 = 0, 3, 2, 2 = 0, 3, 4, 3 = 0, 1, 4, 3 = 0, 3, 1, 3 =
d

dta(t)
a(t) , 2, 2, 4 = 0, 3, 3, 3 =

0, 2, 1, 3 = 0, 3, 2, 1 = 0, 1, 2, 3 = 0, 2, 1, 2 =
d

dta(t)
a(t) , 1, 1, 1 = 0, 1, 4, 4 = 0, 2, 3, 1 =

0, 3, 1, 2 = 0, 4, 2, 3 = 0, 1, 1, 3 = 0, 2, 4, 3 = 0, 3, 4, 4 = 0, 1, 3, 1 = 0, 4, 3, 1 =
0, 2, 3, 4 = 0, 1, 2, 4 = 0, 2, 1, 1 = 0, 2, 4, 1 = 0, 2, 1, 4 = 0, 1, 3, 3 = 0, 1, 4, 1 =
0, 1, 1, 4 = 0, 1, 3, 4 = 0, 4, 1, 3 = 0, 4, 2, 1 = 0, 2, 4, 4 = 0, 4, 4, 2 = −

√
1−kr2

a(t)r , 2, 2, 2 =
0, 3, 3, 4 = 0, 4, 1, 2 = 0, 1, 3, 2 = 0, 4, 2, 4 =

√
1−kr2

a(t)r , 3, 1, 4 = 0, 2, 4, 2 = 0, 3, 2, 3 =
√

1−kr2

a(t)r , 1, 4, 2 = 0, 2, 2, 3 = 0, 3, 2, 4 = 0, 4, 3, 3 = 0, 2, 2, 1 = −
d

dta(t)
a(t) , 2, 3, 2 =

0, 3, 4, 2 = 0, 1, 2, 1 = 0, 3, 3, 1 = −
d

dta(t)
a(t) , 4, 3, 4 = cos(θ)

a(t)r sin(θ) , 3, 1, 1 = 0, 1, 1, 2 =

0, 1, 2, 2 = 0, 4, 1, 4 =
d

dta(t)
a(t) , 4, 2, 2 = 0, 3, 4, 1 = 0, 4, 4, 3 = − cos(θ)

a(t)r sin(θ) , 2, 3, 3 =
0, 4, 1, 1 = 0, 3, 3, 2 = −

√
1−kr2

a(t)r , 4, 3, 2 = 0])]).
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