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ABSTRACT

Installation of Offshore Wind Turbine structural components
need to be executed in sea states for which their dynamic re-
sponses are expected to remain within a safe domain or per-
form a limited number of outcrossings from the safe boundary
beyond which the responses may lead to unsafe working con-
ditions, large impact loads or even structural failure. A critical
installation activity limiting the installation of a Transition Piece
T P is often the motion monitoring phase of the mating points
until its landing on the foundation. The operational limit is nor-
mally given by the horizontal displacement and the safe domain
could conveniently be defined by a circle of radius r in the hor-
izontal plane. This paper presents an existing general accurate
method and its solution to estimate the outcrossing rate of dy-
namic responses for a circular safe boundary in short crested seas
which is applicable for the motion monitoring phase of offshore
wind turbine components prior to mating. The required input is
calculated from spectral analysis in the frequency domain and the
solution is derived for Gaussian processes. It is found that both
1st and 2nd order responses have to be included and that the Gaus-
sian assumption for the slow drift motions is not valid so that its
real PDF is required. Also wave spreading has large influence
in the outcrossing rate and should realistically be applied. The
suggested approach is in agreement with real offshore practice,
and is efficient when compared with time domain simulations.
Then, the outcrossing rate method could help on Marine Opera-
tions decision making during critical installation activities.

NOMENCLATURE
Sηη(ω) Wave spectrum
SX X(ω) Response spectrum
S(2)FF(µ) Drift force spectrum
ω Wave frequency (radian)
F(2)(t) Second order wave force
HXη(ω) Complex transfer function
HXF(µ) Force-motion complex transfer function
Tnm Quadratic transfer function matrix coefficients
Gnm Surge, sway response matrix coefficients
λ j Eigenvalues
fX (x) Probability density function
ρ correlation coefficient
ν+ Outcrossing rate
J Jacobian
φ Normal probability density function
Φ Normal cumulative distribution function
E Expected value
m,µ Mean value
Σ̂ Variance
nX Normal unit vector
SD Boundary between the unsafe and safe domains
PDF Probability density function
JPDF Joint Probability density function
FQT F Full quadratic transfer function
T P Transition Piece
MP Monopile
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DAF Dynamic amplification factor
T D Time domain
HLV Heavy lift vessel
Hs Significant wave height
T p Peak period

INTRODUCTION
According to the DNV OS H101 [3], Marine operations with

reference periods less than 96 hours and planned operational pe-
riods less than 72 hours are defined as weather restricted oper-
ations. Offshore lifting operations fall within this category and
therefore their planning and execution are based on weather fore-
cast and related operational criteria (see i.e. [4]). The installa-
tion of an Offshore Wind Turbine Transition Piece T P involves
several activities, each of them with their own duration, limiting
parameters, safe boundaries and operational limits (see i.e. table
1). From table 1, it is observed that the total planned opera-

No. Activity Duration
[hrs]

Limiting
parameter

Safe bound-
ary

Oper. limit

1 Mooring crane
vessel

8 Hs scalar limit 3m

2 Pre-lift motion
monitoring

0.5 crane tip
X,Y,Z

spherical
radius

0.6m

3 Cut sea-
fastening

1.0 roll crane
barge

scalar limit 0.7deg

4 Lift-off 0.5 heave TP scalar limit 0.5m

5 TP lowering 0.5 DAF scalar limits 1.2

6 TP motion
monitoring &
mating

0.5 X,Y displ circular ra-
dius

0.3m

7 TP heading
control &
leveling

2.0 wind speed scalar limit 15m/s

TABLE 1: Sequential activities and limiting parameters for TP
installation

Note: Operational limits listed above are illustrative.

tional period is 13.5 hours and by adding some contingency time
the reference period will be longer than the planned one. Also,
after the lifting operation has started, (activity No. 4) the pro-
cess cannot be interrupted until the TP has landed on the foun-
dation (activity No. 6). From spectral analysis and with pre-
vious knowledge of the probability density functions PDFs of
the stochastic responses, the allowable sea states could be calcu-
lated for all activities and limiting parameters for their respec-
tive time period. Then, it could be seen that only one or a few
limiting parameters will govern the complete installation. The
sea states corresponding to the governing limiting parameter will
result in the so called design sea states and together with the

FIGURE 1: Mating phase between TP and Monopile using a
heavy lift offshore mono-hull crane vessel

total reference period, suitable weather windows could be se-
lected from the weather forecast. In many cases the forecasted
sea state just complies with the design Hs and T p and monitored
responses. So that, a convenient tool to support the on-board de-
cision making in Marine Operations is provided by the upcross-
ing (for scalar processes) and outcrossing (for vector processes)
analyses, since they will provide information about how often a
stochastic response will leave the safe domain or limit state func-
tion.
A critical activity during the installation of an Offshore Wind
Turbine T P onto a Monopile MP is often the mating phase which
starts when the motions of the T P′s bottom (located a couple of
meters over the foundation) are monitored and then lowered un-
til it circumvents the tip of the MP (activity No. 6 in table 1, see
also figure 1). Then, it is desired that the eccentricity of the con-
necting points during this lowering process remains smaller than
the annular gap provided for installation and grouting purposes.
A practical operational limit for this activity is the horizontal dis-
placement of the mating points and is limited by a circle with a
deterministic radius r equal to the annular space. The choice of
this safe boundary is rather rational than a physical approxima-
tion. Then, operational limits based on this criterion are more
convenient than independent surge and sway limits where no
correlation between stochastic responses are considered and ex-
treme response distributions will lead to conservative results.
By assuming that the process is Gaussian and stationary, existing
methods for outcrossing of vector processes could be applied to
calculate the number of times that the T P bottom will leave the
safe domain for the duration of the installation activity. Moreover
1st and 2nd order motions contribute to the total response and the
later one generally does not follow a Gaussian distribution, and is
necessary to derive its real distribution. The distribution param-
eters for Gaussian processes could directly be obtained from fre-
quency domain spectral analyses and from the respective proba-
bility density functions PDF ′s if the process is not Gaussian.
Several researchers in the past have studied the outcrossing of
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vector processes and most of the work is limited to Gaussian
stochastic processes, see i.e. [1], [6],[2]. Veneziano [1] presented
general formulations for stationary Gaussian processes and gave
solutions for elliptical and spherical domains assuming no cross-
correlation between the processes and their derivatives. Exact
solutions for circular domains could be obtained from existing
methods. Leira [12], derived a general solution for a two di-
mensional vector process after solving the problem in the stan-
dard normal space and considering full correlation between the
stochastic processes and their derivatives. Similarly Naess [15]
presented a general method which could be applied to several
stochastic variables and the solution is based on the conditional
probability theory. These methods are accurate and have been
compared by other researchers [8]. Also, Low [13] presented
the solution for the outcrossing rate of circular safe boundary ap-
plied to the excursions of a moored vessel in extreme sea states.
In this paper, the solution is given based on the Naess’ [15] gen-
eral method.
The solution is valid for Gaussian Processes and could directly
be applied when only first order responses are relevant. Oth-
erwise if 2nd order motions contribute significantly to the total
response, they should be also included and should not be consid-
ered Gaussian distributed since the results will be unconserva-
tive, see i.e. [13]. Then the probability density function PDF of
the slowly varying part (see i.e. [16],[17],[10],[11]) is could be
convoluted with the Gaussian PDF ′s of the first order responses,
so the Gaussian copula could be derived from the Nataf transfor-
mation and input in the exact solution. An important assumption
made in this study is to consider that the contributions of the 2nd

order drift motions of the installation vessel’s crane tip could be
added to the 1st order ones of the T P′s bottom. In other words
it is assumed that both are independent. Other typical applica-
tions for the solutions given in here are: Tower & tripod landing
on pre-installed piles, substation installation, wind turbine tower
installation, control of MP inclination during stabbing, etc.

RESPONSE AUTO AND CROSS-SPECTRA
The distribution parameters for the stochastic responses in

surge and sway and their derivatives are required to establish
their PDF ′s. They could be found from spectral analysis and
then assembled in covariance matrices. For Spectral analysis the-
ory see i.e. [18], [19].
The response auto and cross response spectra for any point in the
T P is defined in general:

SX1X2(ω) = HX1η(ω)H∗X2η(ω)Sηη(ω) (1)

Where Sηη is the wave spectrum, X1 and X2 could be surge and
sway displacements and the HX are the complex transfer func-
tions. For stationary Gaussian Processes, X1 and its first deriva-

tive Ẋ1 are uncorrelated but not necessarily for the cross terms,
the cross-spectra follow:

SX1Ẋ2
(ω) = iωHX1η(ω)H∗X2η(ω)Sηη(ω) (2)

For the derivative of the stochastic processes, the response spec-
trum reads:

SẊ1Ẋ2
(ω) = ω

2SX1X2(ω) (3)

The covariance coefficients follows directly from the integration
of the response spectra.

σX1X2 = Re
∫

∞

0
SX1X2(ω)dω (4)

The second order contributions could be taken from the crane
vessel, so that the response spectra could be calculated from the
drift force spectrum S(2)F and the coupled two degree of freedom
force-motion transfer function matrix HXF for surge and sway as
shown in equation (9). It can be found to be (see i.e. [9]).

S(2)X1X2
(µ) =

2

∑
k=1

2

∑
l=1

HX1Fk(µ)HX2Fl (µ)
∗S(2)FkFl

(µ) (5)

The cross spectra of the wave drift forces could be calculated
from the wave spectrum Sηη(ω) and the complex quadratic
transfer function coefficients Tk,l . The difference frequency is
defined as µ = ω j−ω:

S(2)FkFl
(µ) = 8

∫
∞

0
Sηη(ω)Sηη(ω +µ)×

Tk(ω,ω +µ)T ∗l (ω,ω +µ)dω

(6)

Then, the covariance matrices could be calculated and added to
the one due to first order motions assuming that both are indepen-
dent. The spectrum of slow drift velocities could be treated in the
same way. The 1st order motions follow a Gaussian distribution,
similarly the combined 1st and 2nd order velocities have a near-
Gaussian behavior [13] due to the small contribution from the
slowly varying components (see also table 4 for the study case
response statistics). In contrast, the 2nd order drift motions of the
crane vessel will not follow a Gaussian distribution and its real
PDF is required. In the following, the PDF of the drift motions
of the crane vessel are calculated based on the method proposed
by Naess [15] which has been applied by other researchers, see
i.e [10],[11],[13], [20]. After that, the combined probability den-
sity function is calculated as the convolution of the 1st and 2nd

order PDF ′s. Finally the Nataf transformation will provide the
equivalent Gaussian copula to be input in the outcrossing rate
equation.
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PDF of the 1st and 2nd order surge and sway motions
The 2nd order wave force acting on a vessel in any degree

of freedom and heading could be written in the time domain as
follows, (see i.e. [16],[10]).

F(2)(t) =
N

∑
n=1

N

∑
m=1

Qnmûnû∗mexp [i(ωn−ωm) t] (7)

Where û is a complex Gaussian random variable and:

Qnm = (T c
nm− iT s

nm)
√

2Sηη (ωn)∆ω

√
2Sηη (ωm)∆ω (8)

In equation (8) T c
nm and iT s

nm are the real and imaginary parts of
the second order transfer function coefficients. In this paper, the
full Quadratic Transfer Function FQT F is applied.
A crane barge could be modeled as a linear mass spring and
damper system in surge and sway with the following force-
motion transfer function matrix (contributions from the other de-
grees of freedom are not included in the calculations only for
simplicity):

HXF =

[
HX1F1 HX1F2
HX2F1 HX2F2

]
(9)

From equation (8)and (9) a motion response square matrix G of
dimension N×N could be assembled where the coefficients have
the following form i.e. for surge.

Gx1
nm =

[
HX1F1 HX1F2

][Qx1
nm

Qx2
nm

]
(10)

The Eigenvalues from matrix G denoted as λ j could be sorted
such that λ j, j = 1,2, ..M are positive and λ j, j = M + 1, ..N are
negative. The probability density function is found to be (see i.e.
[16], [10]):

fX(2)(x) =

M
∑
j=1

µ j
λ j

exp(−x/λ j) x≥ 0

N
∑

j=M+1

µ j
|λ j |exp(−x/λ j) x < 0

(11)

Where:

µ j =
N

∏
k=1
k 6= j

[1−λk/λ j]
−1 (12)

The previous described procedure could also be applied to ran-
dom short-crested seas for which case each frequency contribu-
tion is to be replaced by a sum over all wave directions at that
frequency, a more detailed study is found in [17] and the formu-
lations given above are still valid.
The combined probability density function is calculated as the
convolution of the 1st and 2nd order PDF ′s which could be eval-
uated numerically using i.e. Matlab functions.

fX (x) =
∫

∞

−∞

fX(1)(x− x(2)) fX(2)(x(2))dx(2) (13)

Where, X (1) and X (2) are the first and second order motion vec-
tors.

Nataf Transformation
From equation (13) the Gaussian copula for the marginal

PDF ′s and covariance matrix could be derived via the Nataf
transformation. The joint PDF for surge and sway is given by:

fX (x1,x2) = φ2(y1,y2,ρ
′
12)|J| (14)

Where, φ2(y1,y2,ρ
′
12) is the normal JPDF with zero mean val-

ues, unit standard deviations and correlation coefficient ρ ′12. The
Jacobian of the Transformations J follows:

|J|=
fx1(x1) fx2(x2)

φ(y1)φ(y2)
(15)

Where fXi and φ(yi) are the marginals and the corresponding nor-
mal standard PDF ′s. The correlation coefficient could be evalu-
ated numerically and iteratively from the known normalized ran-
dom variables Zi = (Xi−µXi)/σXi and correlation coefficient ρ12
to satisfy the following equation:

ρ12 =
∫

∞

−∞

∫
∞

−∞

z1z2φ2(y1,y2,ρ
′
12)dy1dy2 (16)

OUTCROSSING OF VECTOR PROCESSES
The exact solution for the outcrossing rate could be deter-

mined from the Rice’s formula whose solution for Gaussian pro-
cesses and circular safe boundary could be established.

Multivariate Gaussian Joint PDF
A multivariate Gaussian probability density function is

given as follows, see i.e. Hearn et al [7].:

fX =
1

(
√

2π)n|ΣX |1/2 exp
[
−1

2
(X−mX )

T
ΣX
−1 (X−mX )

]
(17)
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Where for a bivariate PDF n = 2, Σ is the covariance matrix of
the stochastic responses and correspondingly mX is the vector of
the mean values.

Marginal distribution parameters
For a multivariate joint Gaussian density function of several

processes and their derivatives, the distribution parameters are:

fẊX (Ẋ ,X) = N(µ,Σ) (18)

µ =

{
µẊ
µX

}
;Σ =

[
ΣẊ Ẋ ΣẊX
ΣXẊ ΣXX

]
(19)

Where ΣXX , ΣẊX and ΣẊ Ẋ are the covariance matrix for the
stochastic responses, the covariance matrix of the responses and
their derivatives (being zero for the diagonal terms) and the co-
variance matrix for the derivatives of the responses. The mo-
ments for the conditional velocity distribution are given as fol-
lows:

fẊ |X (Ẋ |X) = N(µ̂Ẋ |X , Σ̂Ẋ |X ) (20)

µ̂Ẋ |X = µẊ +ΣẊX Σ
−1
XX (X−mX )

Σ̂Ẋ |X = ΣẊ Ẋ +ΣẊX Σ
−1
XX ΣXẊ

(21)

For a two dimensional vector process, the conditional mean ve-
locity vector and covariance matrix are respectively:

µ̂ ẋn|X =

{
µ̂ẋ1
µ̂ẋ2

}
(22)

Σ̂ẋn|X =

[
Σ̂ẋ1 ẋ1 Σ̂ẋ1 ẋ2

sym Σ̂ẋ2 ẋ2

]
(23)

Outcrossing rate
The outcrossing frequency of a boundary SD between a safe

and unsafe domains is given by the Rice’s formula, see i.e.
Melchers [14]

ν
+
SD

=
∫

SD

dx
∫

∞

0
ẋn fẊnX (ẋn,x)dẋn (24)

Where, ẋn is the product of its normal and the derivative of the
vector process so that they depend on the actual position on the
surface. Instead of the JPDF from equation (24) is is better to
express it in terms of conditional probability density functions.

ν
+
SD

=
∫

SD

∫
∞

0
ẋn fẊn

(ẋn|X = x)dẋn fX (x)dx (25)

Outcrossing rate based on Naess’ method
Naess [15] gave a general solution based on the properties

of the conditional probability. Here, formulations given from
equations (17-25) are applicable. Based on his formulation, the
limit state function defined by a circle could be written in the
following form:

D(X) =
(x1

r

)2
+
(x2

r

)2
= 1 (26)

The gradient of the reliability function then results:

Ḋ(X) = nx1 ẋ1 +nx2 ẋ2 (27)

Where the unit normal velocity components are identified as:

nẊ =

{
nẋ1
nẋ2

}
=

{
2x1/r2

2x2/r2

}
(28)

Also, x1 could be written in the following form:

x1 =±r (d− x2/r)0.5 (29)

Using results from equations (22&23) the mean and variance of
the conditional distribution for the mean velocity in equation (25)
is calculated as follows:

mẋn = µ̂ẋ1nx1 + µ̂ẋ2nx2 (30)

The variance of the normal velocity reads:

σ
2
ẋn =Σ̂ẋ1 ẋ1n2

x1
+ Σ̂ẋ2 ẋ2n2

x2
+2[Σ̂ẋ1 ẋ2nx1nx2 ] (31)

For Gaussian processes, the inner integral in equation (25) could
be found to be:

E (ẋn|X = x) =
∫

∞

0
ẋn fẊn

dẋn = σẋnexp[
−1

2

(
mẋn

σẋn

)2
]
+mẋnΦ

(
mẋn

σẋn

) (32)
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Using equations (17&32), equation (25) gives:

ν
+
SD

=
∫

x2

E (ẋn|X = x) fX (x1 = f (x2,d),x2) |J|dx2 (33)

J =
2r[

h− (x2/r)2
]0.5 (34)

Equation 33 could be evaluated numerically and |J| is the Jaco-
bian of the transformation of x1 in the bivariate PDF and should
be evaluated for d = 1 following the definition of the limit state
function.

STUDY CASE: INSTALLATION OF A TP USING AN OFF-
SHORE CRANE BARGE

The dynamic model used in the analysis is composed of a
heavy lift crane barge and a TP hanging from the crane tip for
a condition corresponding to the motion monitoring phase. The
outcrossing rate will be calculated based on the equations given
above followed by T D simulation for some cases.

Structures main particulars
The main particulars of the structures are given in table 2

and a model setup is shown in figure 2.

Parameter Notation Value Units

- Crane barge
Displacement 5 5.95E4 Ton
Length L 180 m
Breadth B 37 m
Draught T 10 m
Roll nat. period Tn4 11.6 s
- Transition Piece
Mass M 200 Ton
Length L 23 m
Diameter D 6.4 m

TABLE 2: Main particulars of structures

Distribution parameters
The response distribution parameters are calculated from

spectral analysis using the AQWA FER program and the corre-
sponding drift motion PDF as described before. The environ-
mental parameters and simulation cases are shown in tables 3.
The wave spreading function is modeled according to the cosn

FIGURE 2: Coupled dynamic model for TP installation

Environmental
condition

Wave Spec Hs
[m]

Tp
[s]

Gamma
[-]

Dir [deg]

1 JONSWAP 1.0 7.5 1.2 15

2 JONSWAP 1.5 6.5 1.2 180, 135,
90

TABLE 3: Environmental conditions
Note: Wave directions are given counterclockwise from stern

function (see [5]). Table 4 summarizes the required input for the
outcrossing analyses which has been elaborated using formula-
tions given in equations (1-13) and are shown only for Environ-
mental condition 1. Based on table 4, the covariance matrices
could be assembled using the combined terms in the last column
of table 4. At this stage, the outcrossing rate could be evalu-
ated using equation equation (33) by assuming that the second
order motions follow a Gaussian distribution and the results are
shown in figure 4. However this assumption may not be applica-
ble; in figure 3 the PDF ′s corresponding to the slow varying mo-
tions of the barge’s crane tip, the first order Gaussian responses
of the T P′s bottom and the one resulting from their convolution
are plotted.

Table 5 shows a summary of the statistical moments for the
PDFs plotted in figure 3. Note that it is convenient to shift the
responses to zero mean values, (see Table 4) which allow us to
have the reference system at the origin of the circle; otherwise
the limit state function will have to be defined with respect to the
global axis reference system.

Outcrossing rate
The solution of the problem is found numerically by divid-

ing the circular perimeter for each r into a sufficient number
of segments to achieve accurate results; here a total number of
61 line segments is chosen. The outcrossing rate is then calcu-
lated for the exact solution for Gaussian approximation given in
equation (33) and the environmental conditions given in table 3.
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Parameter Units Sim. case Descirption 1st order 2nd order combined

-TP bottom response
σx1 m 1 long crested& FQTF 6.71E-2 3.78E-2 7.70E-2

2 short crested: n=4& FQTF 8.07E-2 2.79E-2 8.54E-2
3 short crested: n=8& FQTF 7.33E-2 3.00E-2 7.92E-2
4 short crested: n=16& FQTF 6.90E-2 3.16E-2 7.59E-2

σx2 m 1 long crested& FQTF 5.39E-2 8.00E-3 5.44E-2
2 short crested: n=4& FQTF 9.79E-2 1.80E-2 9.95E-2
3 short crested: n=8& FQTF 6.79E-2 1.34E-2 6.92E-2
4 short crested: n=16& FQTF 5.45E-2 1.05E-2 5.57E-2

ρx1x2σx1σx2 m2 1 long crested& FQTF 1.60E-3 6.33E-5 1.66E-3
2 short crested: n=4& FQTF 1.27E-3 9.03E-5 1.41E-3
3 short crested: n=8& FQTF 1.75E-3 8.69E-5 1.88E-3
4 short crested: n=16& FQTF 1.83E-3 9.46E-5 1.95E-3

σẋ1 m/s 1 long crested& FQTF 5.29E-2 4.00E-3 5.30E-2
2 short crested: n=4& FQTF 6.06E-2 1.62E-2 6.27E-2
3 short crested: n=8& FQTF 5.54E-2 1.92E-2 5.87E-2
4 short crested: n=16& FQTF 5.28E-2 2.29E-2 5.75E-2

σẋ2 m/s 1 long crested& FQTF 3.61E-2 1.00E-3 3.61E-2
2 short crested: n=4& FQTF 6.11E-2 9.61E-3 6.18E-2
3 short crested: n=8& FQTF 4.43E-2 7.78E-3 4.49E-2
4 short crested: n=16& FQTF 3.69E-2 6.47E-3 3.74E-2

ρẋ1 ẋ2σẋ1σẋ2 m2/s2 1 long crested& FQTF 7.00E-4 1.97E-5 9.26E-4
2 short crested: n=4& FQTF 6.09E-4 2.26E-5 6.32E-4
3 short crested: n=8& FQTF 8.06E-4 2.16E-5 8.27E-4
4 short crested: n=16& FQTF 8.18E-4 2.33E-5 8.42E-4

ρẋ1x2σẋ1σx2 m2/s 1 long crested& FQTF 2.77E-4 5.44E-6 2.82E-4
2 short crested: n=4& FQTF 1.79E-4 -4.18E-5 1.37E-4
3 short crested: n=8& FQTF -8.63E-5 -3.75E-5 -1.24E-4
4 short crested: n=16& FQTF -1.59E-4 -3.86E-5 -1.98E-4

ρx1 ẋ2σx1σẋ2 m2/s 1 long crested& FQTF -2.77E-4 -5.44E-6 -2.82E-4
2 short crested: n=4& FQTF -1.79E-4 4.18E-5 -1.37E-4
3 short crested: n=8& FQTF 8.63E-5 3.75E-5 1.24E-4
4 short crested: n=16& FQTF 1.59E-4 3.86E-5 1.98E-4

mx1 , mx2 , mx3 m 1-4 0 0 0
mẋ1 , mẋ2 , mẋ3 m/s 1-4 0 0 0

TABLE 4: Distribution parameters for environmental condition 1, JONSWAP Hs=1.0m, Tp=7.5sec, α = 15deg, γ = 1.2

−0.2 −0.1 0 0.1 0.2 0.3
0

5

10

15
Surge and Sway probability density functions

x
1
, x

2

f X
(x

1, x
2)

 

 
2nd order Surge
2nd order Sway
1st order Surge
1st order Sway
Conv. Surge
Conv. Sway

FIGURE 3: Convolution of 1st and 1nd order motion PDF ′s for
case 4

Distribution mean variance skewness
norm.

kurtosis
norm.

- SURGE
1storder 0 0.0048 0 3
2ndorder 0.0145 0.0008 0.2962 3.6187
combined 0.0145 0.0056 0.0170 3.0106
- SWAY
1storder 0 0.0030 0 3
2ndorder 0.0060 0.0001 0.5532 4.1838
combined 0.0060 0.0030 0.0013 3.0003

TABLE 5: Statistical moments for probability density functions
for case 4

For the second order motion Gaussian assumption, the results
are plotted in figure 4. Next, the second order motion PDF ′s
are obtained from equation (11) which are then convoluted with
the first order Gaussian probability density functions and trans-
formed into the Gaussian copula via the Nataf transformation;
after a few iterations the correlation coefficient from equation
(16) is determined. This approach here is referred here as Ana-
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lytical method and is applied to the rest of simulation cases. The
results are shown in figure 4. An example of TD simulations for
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FIGURE 4: Outcrossing rate of a circular boundary for case 4
(n=16). JONSWAP Hs=1.0m, Tp=7.5sec, α=15deg, γ=1.2
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FIGURE 5: Outcrossing rate for a circular boundary for long and
short crested seas using FQTF (cases 1-4). JONSWAP Hs=1.0m,
Tp=7.5sec, α=15deg, γ=1.2

the excursions of the bottom of the T P for both long and short
crested seas are given in figures 6 and 7 respectively, where the
allowable radius of the safe domains is r = 0.26m and the total
simulation time is t = 3000s. A large difference is observed in
the number of outcrossings and is consistent with the averaged

results shown in figure 5. Moreover the correlation between the
responses is different and the effect of first order motions be-
comes more important for short crested seas. Similarly for the

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Outcrossing of a circle with r=0.26m for TP installation

surge displacement [m]

sw
ay

 d
is

pl
ac

em
en

t [
m

]
FIGURE 6: Outcrossings from a circular domain of radius
r=0.26m and t=3000s. Case 1: long crested seas. JONSWAP
Hs=1.0m, Tp=7.5sec, α=15deg, γ=1.2
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FIGURE 7: Outcrossings from a circular domain of radius
r=0.26m and t=3000s. Case 2: short crested seas (n=4). JON-
SWAP Hs=1.0m, Tp=7.5sec, α=15deg, γ=1.2

environmental condition No.2 in table 3 the influence of wave
direction and spreading are calculated for head, quartering and
beam seas and plotted in figure 8.
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FIGURE 8: Outcrossing rate for a circular boundary for
head, bow-quartering and beam short-crested seas. JONSWAP
Hs=1.5m, Tp=6.5sec, γ=1.2

Analysis of Results
From figure 3 and table 5, it is observed that the second order

PDF ′s should not be considered as Gaussian since the extremes
will be underestimated due to the significant difference in tail of
the distributions, especially when slow drift motions give signifi-
cant contribution to the total responses. Also, figure 4 shows that
the Gaussian approximation may lead to unconservative results
especially when second order motions are dominating. From fig-
ures 5& 8 it is observed that directional wave spectra will have
large influence on the time variant random processes when ana-
lyzing the responses of floating structures and should preferably
be used for modeling marine operations. Also in figure 10 it is
seen that the assumption made in this paper may not always hold
if the pendulum motion of the T P could be affected by the the 2nd

order responses of the barge’s crane tip since they may not be to-
tally independent. This fact explains the small differences in the
slowly varying surge motions of the crane barge and T P and it
makes the assumption questionable especially if the drift motions
are large and their natural frequencies higher (see also T D results
in figure 5). In this study the natural period in surge and sway are
57 and 52 sec respectively (corresponding to a ship with 8 point
mooring lines each with 500KN pre-tension) while the pendulum
period is 17 sec and the results may still be acceptable. Addition-
ally, it could also be seen that wave spreading has large influence
on the outcrossing rate because floating vessels are sensitive to
wave heading (see figures 5 & 8). As expected, the results for
long crested seas will approach the ones for short crested seas
for large values of n. From figure 8 and head waves the outcross-
ing rate for short crested (n = 4) is lower than for long crested
seas (n ≈ 16) because the 2nd order motions are dominating. In
contrast for beam seas, long crested waves give larger outcross-

ing rates since first order responses dominate. Slowly varying
drift motions should be included in the analyses, and the limiting
parameters and safe boundaries should account for them. Figure
9 which is a typical example of response spectra for surge and
sway for simulation cases 1 & 2 shows not only significant dif-
ferences at both drift and wave frequencies but also for long and
short crested seas.
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CONCLUSIONS AND RECOMMENDATIONS
Outcrossing rates of safe boundaries could be used to bet-

ter assess safety during critical offshore installation activities.
The procedure described in this paper could be applicable es-
pecially for installation phases such as mating and landing; how-
ever it is necessary to first verify the independence assumption
between first and second order responses. Wave spreading is im-
portant and has to be included when the installation is executed
with floating crane barges. The computational costs are very low
and can vary from a few seconds to a few minutes depending
on how fine the grids are selected for the spectral and Eigen-
value analyses. When deriving the second order motion PDF ′s
a convergence criteria could be set based on the spectral analysis
results. Whenever available, 2D forecasted wave spectra based
on frequency and direction parameters should be used. They will
not only reduce uncertainties in the wave spreading angle but
will also allow a more realistic description of multimodal wave
spectra which is preferred when analyzing responses of floating
structures (including wind turbine concepts) and the allowable
responses are small. Numerical integration problems may be en-
countered when carrying out the Eigenvalue analysis for head
and beam seas for symmetric bodies. They may be solved by
slightly changing the heading and integration range of the mo-
tion vectors. In Offshore wind turbine installation the allowable
motion responses are small and therefore should be calculated in
a more realistic and accurate manner.
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