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Abstract

In this thesis, we discuss the phenomenon of particle production in gravita-
tional fields. We present the general framework in flat Friedmann-Robertson-
Walker spacetimes and apply it to an asymptotically static model in two
dimensions. In such cases, the particle number can be obtained analytically
in the asymptotic future. We discuss ways to give a physical meaning to the
particle number in expanding universes and apply it to the same model. We
find that in this case, the method of instantaneous vacuum provide meaning-
ful results for the particle number as long as the particle production is not
too big. Finally, a model for production of massless scalar particles during
inflation is discussed. In this model, the dominant contribution to the en-
ergy density and particle number comes from long-wavelength fluctuations
produced during inflation, rather than quantum fluctuations produced after
inflation.

Sammendrag

I denne oppgaven diskuteres fenomenet partikkelproduksjon i gravitasjons-
felt. Vi presenterer den generelle teorien i flate Friedmann-Robertson-Walker-
tidrom og anvender den p̊a en asymptotisk statisk modell i to dimensjoner. I
denne modellen kan partikkelnummeret finnes analytisk. Vi diskuterer måter
for å gi fysisk mening til partikkeltallet i ekspanderende univers og anvender
det p̊a den samme modellen. Vi finner her at instantant-vakuum-metoden
gir et meningfult resultat for partikkeltallet s̊a lenge partikkelproduksjonen
ikke er for stor. Til sist diskuterer vi en modell for produksjon av masseløse
skalarpartikler under inflasjon. I denne modellen gir fluktuasjoner med lang
bølgelengde produsert under inflasjon det største bidraget til partikkelpro-
duksjon, heller enn kvantefluktuasjoner produsert etter inflasjon.
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Conventions and Notation

• We use natural units, i.e we set ~ = c = 1. Sometimes, when explicitly stated
we will also take GN = 1.

• The Minkowski metric is denoted ηµν . We use the signature with ηµν =
diag(1,−1,−1,−1).

• The metric of a general curved spacetime is denoted by gµν(x). Moreover,
the determinant of the metric is denoted by g.

• For general relativity, we use the same conventions as [4].

• For partial derivatives, we often use the short-hand notations ∂
∂xµ = ∂µ.

When acting on a field, we also use the notation ∂µφ ≡ φ,µ
• For covariant derivatives, we use the symbol ∇µ. When acting on a field, we

also use the notation ∇µφ ≡ φ;µ.
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Introduction

The purpose of this Master thesis is to investigate quantum effects in a time-
varying classical background. In particular we are interested in ways to obtain
information about the particle number in an expanding universe. In chapter 1, we
give a general introduction to cosmology. We derive the field equation of general
relativity and discuss homogeneous and isotropic spacetimes. In chapter 2, we
briefly discuss dark matter and some of the possible candidates. This is followed
by chapter on inflation. We discuss the problems of the standard scenario of big
bang cosmology and how inflationary cosmology may solve these. We also talk
briefly about the simplest models for chaotic inflation, where inflation is driven by
a single scalar field with power-law potentials as V ∼ φ2 and φ4. In chapter 4, we
present the general framework for discussing particle production by a free scalar
field in expanding universes. In contrast to Minkowski space, the expansion of the
universe causes a friction term in the equation of motion, which leads to a time-
dependent effective mass of the scalar field. The energy of the scalar field is not
conserved and particles are created. In Chapter 5, we investigate first a solvable
model in 2-dimensional spacetime. In this model, one is able to obtain analytically
the particle number. Then, we address the question of how to do this in models
which cannot be solved analytically. Finally, in chapter 6, we discuss a model for
particle production during inflation. We solve the Friedmann equations together
with the equation for the scalar-inflaton field in a curved spacetime numerically
and see how massless particles minimally coupled to gravity can be produced in
large amount towards the end of inflation. We have also included an appendix
that contains the details that are necessary, but disturbing to the discussion.
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Chapter 1

Cosmology

1.1 A brief introduction to general relativity

Einsteins theory of general relativity is a theory of space, time and gravitation.
It is therefore the natural framework in which the universe as a whole is de-
scribed and a necessary tool when studying cosmology. It is constructed around
the equivalence principle and is written in the language of differential geometry.
The equivalence principle states that all bodies fall in the same way in a gravita-
tional field. Mathematically speaking, spacetime is a 4-dimensional manifold on
which a metric gµν(x) is defined. The manifold is (pseudo-) Riemannian which
means that the line element relating events in spacetime can be written

ds2 = gµν(x)dxµdxν , (1.1)

while pseudo means that we allow ds2 < 0. In this sense, general relativity is very
different from the remaining laws of nature since it describes gravity purely as a
geometric property rather than in terms of a force. Objects follows geodesics in
curved spacetime. In this text, we will not delve into the mathematics of general
relativity, but a little knowledge of tensor manipulations are presumed. Instead,
we will demonstrate how one can derive the field equations from a variational
principle.

1.1.1 Einsteins field equations

The field equations of general relativity relates the curvature to the matter content
of the spacetime in consideration. They can be derived from an action principle if
we consider the following action

SEH =

∫

Ω

d4x
√−g (R− 2Λ) , (1.2)

known as the Einstein-Hilbert action. Note the we have already added the con-
tribution from a cosmological constant Λ. A variation of SEH with respect to the
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metric, leads to variations of the curvature scalar R = Rµµ and
√−g. We find

δ
√−g = −1

2

√−ggµνδgµν , (1.3)

δR = δ(gµνRµν) = δgµνRµν + gµνδRµν . (1.4)

From the equivalence principle, we can at a single point P in spacetime choose a
coordinate system where

Γλµν = 0 , ∂κg
µν = ∇κgµν = 0. (1.5)

Physically, this means that we always can find a local frame around a point that
can be regarded as freely falling. From this we obtain

gµνδRµν = gµν
(
∂κδΓ

κ
µν − ∂νδΓλµλ

)
(1.6)

=
1√−g ∂k

(√−gδwk
)
. (1.7)

We note that δwk is a vector. The relation holds at the point P in a certain
coordinate system, but since both sides are scalars, it should also hold in any other
coordinate system. Moreover, the point P is arbitrary, so it holds everywhere. By
requiring that the variation vanishes at the boundary, we can now drop this term.
Assuming δS = 0 for an arbitrary variation now implies that

1√−g
δSEH
δgµν

= Rµν −
1

2
Rgµν + Λgµν ≡ Gµν + Λgµν = 0. (1.8)

Adding all matter fields to the Lagrangian, we can write

L =
1

2κ
LHE + Lmatter. (1.9)

Since we expect that the energy-momentum (em-) tensor should be the source of
the gravitational field, we should obtain

Tµν ≡
2√−g

δSmatter

δgµν
. (1.10)

The factor κ should be chosen such that we obtain Newtonian dynamics in the
weak-field approximation. Comparing with the Poisson equation ∇2Φ = 4πGρ,
one obtains κ = 8πGN . We may therefore write Einsteins field equations as

Gµν + Λgµν = −8πGNTµν . (1.11)

A fundamental feature of the equations is that they directly relate the curvature of
the universe with its energy content. It is sometimes useful to write the Einsteins
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field equations in a slightly different way, using the Ricci tensor as the only geo-
metrical term. By contracting one index with the metric tensor gµν and putting
µ = ν, we obtain (introducing Tµµ ≡ T ) the relation

R = 8πGNT + 4Λ. (1.12)

We can therefore instead express (1.11) as

Rµν = −8πGN

(
Tµν −

1

2
T
)

+ Λgµν . (1.13)

From this, one deduce that an empty universe without a cosmological constant is
characterized by

Rµν = 0. (1.14)

1.1.2 The energy-momentum tensor

Energy-momentum tensor of a perfect fluid. A perfect fluid is an ideal-
ized fluid where viscous and heat conductive properties are ignored. It is looking
isotropic in its rest frame and we may completely characterize it by its energy
density and pressure. This implies that the energy-momentum tensor must be
diagonal. Furthermore the nonzero spacelike components should be equal due to
isotropy of space. We can therefore write it in the following way in the rest frame

Tµν =




ρ 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P


 , (1.15)

where ρ denotes energy density and P pressure. Also ρ and P should only depend
on time in a homogeneous universe. The only relevant tensors are gµν and the
four-velocity uµ of the fluid. This implies that we can write

Tµν = A(ρ, P )uµuν +B(ρ, P )gµν . (1.16)

From comparison with (1.15), we then obtain

Tµν = (ρ+ P )uµuν − Pgµν . (1.17)

In the case where P = 0, we obtain the EM-tensor for pressureless (nonrelativistic)
matter,

Tµν = ρuµuν . (1.18)
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Energy-momentum tensor for Maxwell field. The free electromagnetic field
is described by the action

Sem = −1

4

∫
d4x
√−ggµαgνβFµνFαβ . (1.19)

After a variation with respect to the metric, one obtains

T em
µν = −FµλFλν +

1

4
gµνFγδF

γδ. (1.20)

Note that the electromagnetic energy-momentum tensor is traceless

Tµµ = −FµλFµλ +
1

4
(4)FγδF

γδ = 0. (1.21)

1.2 Homogeneous and isotropic universes

1.2.1 The cosmological principle

After having briefly discussed general relativity, we may now ask the following
question: Which solutions of Einsteins field equations describe the universe we live
in? Surprisingly, we can at least to some extent answer this question in the sense
that we can construct an idealized model that is consistent with the observational
data available to us. At the heart of the model lies the following principle:

The Universe is at every time of its evolution both homogeneous and
isotropic.

By homogeneous, we mean that general physical properties are the same every-
where in the universe and isotropic means that the universe looks the same in
every direction when observed from a given point. From this we deduce that
isotropy around two points implies homogeneity, while homogeneity does not im-
ply isotropy. As an example of the last statement, will a homogeneous universe
with everything moving in a single direction not be isotropic. The cosmological
principle seems at first to be a much too strong statement. The Solar system does
for example not look isotropic at all, neither does the Milky Way. When we apply
the cosmological principle, we are however only talking about the largest scales
in the universe. The Cosmic Microwave Background radiation (CMB) provides
evidence for isotropy at large scales. It would be most remarkable if we occupy a
special place in the universe and one therefore feels that isotropy should also hold
at other places too, implying homogeneity. While the last argument was previously
used for philosophical reasons, there is today also good evidence for homogeneity.

1.2.2 The FRW universe

We now consider a class of universes that are homogeneous and isotropic, known
as the Friedmann-Robertson-Walker (FRW) spacetime. It is given in comoving
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coordinates (r, θ, φ) by the line element

ds2 = dt2 − a(t)2

[
dr2

1− kr2
+ r2dΩ

]
, (1.22)

where dΩ = sin2 ϑdϕ2 + dϑ2. Here, k = ±1 corresponds to positive and negative
curvature respectively and k = 0 to flat 3-space. The terminology open universe
for k = −1 and closed universe for k = +1 is often also used. This is because
geometrically k = −1 correspond to a three-dimensional hyperboloid, while k = 1
yields a three-dimensional spherical surface. It is convenient to define

S(χ) =





sin(χ) for k = 1,

χ ≡ r for k = 0,

sinh(χ) for k = −1,

such that the metric becomes

ds2 = dt2 − a(t)2
[
dχ2 + S(χ)2dΩ

]
. (1.23)

Note that for k = 0 introducing conformal time dη = dt
a(t) , the metric becomes

conformally flat,

ds2 = a(t)2
(
dη2 − dx2

)
, (1.24)

where dx2 is shorthand notation for the spatial part of the line-element.

Conformal symmetry A conformal transformation of spacetime is a transfor-
mation that shrinks or stretches spacetime. It acts on the metric in the following
way

gµν(x) 7→ g̃µν(x) = Ω2(x)gµν(x), (1.25)

where Ω(x) is a continuous, nonvanishing, finite, real function. Under a conformal
transformation the Christoffel symbols change as

Γσµν 7→ Γ̃σµν =
1

2
g̃σρ (g̃ρµ,ν + g̃ρν,µ − g̃µν,ρ)

= Γσµν + Ω−1
[
δσµΩ;ν + δσνΩ;µ − gµνgσρΩ;ρ

]
.

(1.26)

With this in hand we may now also calculate the change in the Riemann tensor,
Ricci tensor, etc. We will later need the change of the curvature scalar. It is given
by

R 7→ R̃ = g̃µλ
[
Γ̃δµλ,δ − Γ̃δλδ,µ + Γ̃δσδΓ̃

σ
µλ − Γ̃δµσΓ̃σδλ

]

= Ω−2R− 2(d− 1)Ω−3Ω;µνg
µν + (d− 1)(d− 4)Ω−4Ω;µΩ;νg

µν ,
(1.27)

where d is the dimension of spacetime.
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1.2.3 The Friedmann equations

Combining the FRW metric (1.22) with the energy-momentum tensor for a perfect
fluid results in what are known as the Friedmann equations. The symmetries of
the FRW universe reduce the number of independent equations from ten to two.
To obtain the equations, we need the relevant components of the Ricci-tensor Rµν .
From the nonzero component of the metric tensor gµν ,

g00 = 1, g11 =
a2

1− kr2
, g22 = a2r2, g33 = a2r2 sin2 θ, (1.28)

we can derive the Christoffel symbols

Γσµν =
1

2
gσρ (gρµ,ν + gρν,µ − gµν,ρ) . (1.29)

As an example,

Γ0
11 =

1

2
g0ρ (gρ1,1 + gρ1,1 − g11,ρ) = −1

2
∂t

( −a2

1− kr2

)
=

aȧ

1− kr2
, (1.30)

and the others are found similarly. The Ricci tensor is given in terms of the
Christoffel symbols by

Rµν = Γσµσ,ν − Γσµν,σ + ΓρµσΓσρν − ΓρµνΓσρσ (1.31)

This expression looks somewhat ugly, but luckily the only nonzero components are

R11 = 3
ä

a
,

R22 = −
(
1− kr2

)−1 (
aä+ 2ȧ2 + 2k

)
,

R33 = −r2
(
aä+ 2ȧ2 + 2k

)
,

R44 = −r2 sin2 θ
(
aä+ 2ȧ2 + 2k

)
.

(1.32)

We can now also derive the curvature scalar

R = gµνRµν =
6

a2

(
aä+ ȧ2 + k

)
. (1.33)

Focusing on the RHS of the Einstein equation (1.13), we note that the 4-velocity
in our comoving coordinate system (t, r, θ, φ) is simply given by uµ = δ0

µ. The
time-time component then becomes

3
ä

a
= −4πGN (ρ+ 3P ) + Λ, (1.34)

while the µ = ν = i = 1, 2, 3 all yield the same equation,

aä+ 2ȧ2 + 2k = 4πGN (ρ− p) a2 + Λa2. (1.35)
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Eliminating ä from the second equation we get the Friedmann (-Lemâıtre) equa-
tions in their usual form

H2 ≡
(
ȧ

a

)2

=
8πGN

3
ρ− k

a2
+

Λ

3
,

ä

a
=

Λ

3
− 4πGN

3
(ρ+ 3P ) .

(1.36)

It is customary to introduce the critical density ρc as the the energy density at
zero spatial curvature,

ρc = ρ(k = 0) =
3H2

8πGN
, (1.37)

and the abundance Ωi of different constituents as

Ωi =
ρi
ρc
. (1.38)

We therefore see that Λ act as a constant contribution to the total energy density,

ρΛ =
Λ

8πGN
, ΩΛ =

Λ

3H2
. (1.39)

1.2.4 Different constituent contributions to energy density

We can derive the scale dependence of different energy forms by means of energy
conservation assuming adiabatic expansion

dU + PdV = 0, (1.40)

if we make the assumption that each energy constituent have an equation of state
P (ρ) = wρ, with w being constant. We note that pressureless matter has an
equation of state with w = 0, while radiation obey w = 1/3. The last one follows
since the electromagnetic energy-momentum tensor is traceless, Tµµ = 0, thus
ρ − 3P = 0. The cosmological constant has a rather peculiar E.o.S that can be
derived from thermodynamics

P = −
(
∂U

∂V

)

S

= −∂(ρΛV )

∂V
= −ρΛ. (1.41)

Equation (1.40) becomes

d
(
ρa3
)

= −3Pa2da. (1.42)

Writing out both sides and eliminating P by the E.o.S yields a separable differential
equation,

−3(1 + w)
da

a
=

dρ

ρ
. (1.43)
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We therefore obtain

ρ ∝ a−3(1+w) =





a−3 for matter (w = 0),

a−4 for radiation (w = 1/3),

constant for Λ (w = −1).

(1.44)

We can write the solution at arbitrary time in terms of the energy density ρ0 at
present time t0

ρ(t) = ρ0

(
a(t)

a(t0)

)−3(1+w)

. (1.45)

The total energy density of the universe at a given time with three different com-
ponents (matter, radiation, Λ) is thus given by

ρ(t) = ρm,0

(
a0

a(t)

)4

+ ρr,0

(
a0

a(t)

)3

+ ρΛ. (1.46)

As one can see from (1.45) different types of energy would have dominated at
different times during the evolution of the universe. In a universe expanding from
a big bang singularity, radiation will have dominated at early times. Since the
radiation term drops of faster than the matter term, there would have been a time
when matter becomes more dominating. Finally, as the time goes on, the energy
density of matter will be so diluted by expansion that the cosmological constant
will dominate the energy density. This is of course depending on the different
parameters. If Λ is too large, there may never be enough matter to govern the
expansion of the universe. In the end, it is an experimental matter to find the
value of Λ. A most intriguing fact is that ρm and ρΛ both seem to be of the same
order just today, in spite of the very different scaling.

1.2.5 Cosmological models with a single energy component

Let us for a moment consider a k = 0 universe dominated by a single source
of energy with equation of state P = wρ. We can insert (1.45) into the first
Friedmann equation and find

ȧ2 =
8πGN

3
a2ρc(t0)

(
a

a0

)−3(1+w)

= H2
0a

3+3w
0 a−(1+3w). (1.47)

The differential equation is separable and integrating from 0 to t0 yields

t0H0 =
2

3 + 3w
=





2
3 for matter,
1
2 for radiation,

→∞ for Λ.

(1.48)
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The time-scale H−1
0 is known as the Hubble age of the universe. Integrating instead

up to an arbitrary time, we obtain the time-dependence of the scale factor,

a(t) ∝ t2/(3+3w) =





t
2
3 for matter,

t
1
2 for radiation,

exp(t) for Λ.

(1.49)

1.3 Observational status

1.3.1 The expanding universe

The standard model of cosmology, famously known as the big bang-theory has its
origin from the discovery that the universe expands. By studying spectral lines of
large number of galaxies, one measured most of the galaxies to be redshifted

z ≡ ∆λ

λ
> 0. (1.50)

Moreover, the amount of redshift of the galaxies was found to be proportional to
its distance d. By interpreting this redshift as a Doppler shift, i.e that z = vr
(assuming v � c ≡ 1), one obtains the following formula for the recession velocity
known as Hubble’s law

vr = H0d. (1.51)

The proportionality factor is the Hubble constant H0. The law is indeed not
universal, rather an approximation for z � 1 and the Hubble constant is not
really a constant but a time-dependent parameter H(t). To see this, let’s Taylor
expand the scale factor around t = t0,

a(t) = a(t0) + (t− t0)ȧ(t0) +
1

2
(t− t0)2ä(t0) + ... (1.52)

= a(t0)

[
1 + (t− t0)H0 −

1

2
(t− t0)2q0H

2
0

]
. (1.53)

where

H0 ≡
ȧ(t0)

a(t0)
, q0 ≡ −

ä(t0)a(t0)

ȧ(t0)2
. (1.54)

We see that we can identify the Hubble constant H0 with the parameter in the
Friedmann equation taken at t = t0. We have also introduced the deceleration
parameter q which can be determined from studying deviations from Hubble’s
law. For small redshifts

1− z ≈ 1

1 + z
=

a(t)

a(t0)
≈ 1 + (t− t0)H0, (1.55)
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and Hubbles law follows as long as H0(t0− t)� 1. The Hubble constant is usually
given in the rescaled form,

H0 = 100 h km s−1 Mpc−1, (1.56)

to separate out its uncertainty from derived parameters.

1.3.2 The cosmic microwave background radiation

The cosmic microwave background (CMB) is the name given to the almost isotropic
radiation that fills the universe. It was first discovered in 1965 by Arno Penzias
and Robert Wilson, although predicted much earlier by George Gamow and others.
The spectrum of radiation, which lies in the microwave range, can be described
very well as a black-body spectrum of temperature T = 2.7255K. This discovery is
one of the cornerstone predictions of the big bang model. As the early hot universe
cooled and after a few hundred thousand years reached the temperature of a few
thousand kelvin, neutral atoms could form and the universe became transparent.
This is referred to as the surface of last scattering. The CMB is the relic from
the photon decoupling. Due to the expansion of the universe, this radiation is
highly redshifted, explaining why we observe the radiation in the microwave range.
Another important feature is that CMB is almost perfectly isotropic and provides
therefore evidence for the cosmological principle, with

δT

T
∼ δρ

ρ
∼ 10−5, (1.57)

Figure 1.1: Temperature fluctuations of the CMB. This image shows a temperature
range around average of ±200µK, illustrated in colors with blue being the coldest.
Credit: NASA/WMAP Science Team.
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1.3.3 The ΛCDM-model

Using as foundation the cosmological principle, we saw that one could construct
a general class of spacetimes known as Friedmann-Walker-Robertson spacetimes.
Including energy components from different species, we could construct different
cosmological models. One of the goals of observational cosmology is then to specify
the values of the different parameters. That involves specifying the present day
parameters

H0, Ωm,0, Ωr,0, ΩΛ,0. (1.58)

As late as in 1998 an additional important discovery was made. Not only is the
universe expanding, it is expanding at an ever increasing rate. This lead to the
re-introduction of Einsteins biggest blunder, a cosmological constant Λ. Putting
cosmological data together one has today came up with a model known as the
ΛCDM-model which is consistent with all cosmological observations. In this model,
we live in a universe with Ωm + ΩΛ = 1 and zero curvature k = 0. Below, we have
listed a table of cosmological parameters.

Parameter Symbol Value
Hubble parameter h 0.704± 0.025
Cold dark matter density Ωcdm Ωcdmh

2 = 0.112± 0.006
Baryon density Ωb Ωbh

2 = 0.00225± 0.0006
Cosmological constant ΩΛ ΩΛ = 0.73± 0.03
Radiation density Ωr Ωrh

2 = 2.47× 10−5

Table 1.1: Table of cosmological parameters. Data taken from [6].
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Chapter 2

Dark Matter

2.1 Motivation

The best evidence for the existence dark matter in galaxies comes from observations
of rotation curves. A rotation curve is the graph of orbital velocities of objects in
a galaxy as function of the distance to its center. Studying the rotation curve of a
galaxy enables us to compute its mass distribution. The formula for the rotation
curve of a spiral galaxy can easily be derived if we assume that the objects in it
follows circular orbits. Using Newtons law of gravitation, the orbital velocity v(r)
is given by

v(r) =

√
GNM(r)

r
, (2.1)

where M(r) is the mass inside a sphere of radius r. By studying the visible
matter in galaxies one observes matter moving faster than one would expect from
gravitational attraction alone. If visible matter provided all the mass in the galaxy,
then the rotation curve would fall off at r > rdisc. Instead, one observes that v(r)
is more or less constant out to much larger radii indicating M(r) ∝ r for rdisc . r
out to r � rdisc.

2.2 Production Mechanisms and Candidates

One distinguishes between hot (HDM) and cold dark matter (CDM) from whether
it is composed of particles being relativistic or not at chemical decoupling. HDM
are typically neutrinos. The neutrinos, which are interacting only very weakly,
will not collapse into tightly bound object and should remain less condensed. The
study of structure formation of the Universe indicate that most of the dark matter
should be cold since HDM will in general not permit galaxies to form in the way we
observe. CDM, has in contrast been very successful explaining structure formation.
It is both very well motivated and is able to reproduce most features of the observed
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Figure 2.1: Rotation curve of the spiral galaxy NGC 6503. Data point show
observed rotation curves compared to the rotation curves of a disk, an intergalactic
gas and a dark matter halo. Picture taken from [10]

Universe. One can divide dark matter candidates into two categories according
to whether it is thermal or not. Thermal dark matter are particles that once
was in thermal equilibrium with radiation and ordinary matter. A general class of
candidates for cold dark matter are weakly interacting massive particles (WIMPs).
WIMPs in equilibrium in the early Universe has naturally the right abundance
to be CDM. In the early hot Universe, WIMPs interacted with ordinary matter
through reactions like

χχ̄←→ e+e−, µ+µ−, ... (2.2)

At temperatures T � mχ, colliding pairs of particles and antiparticles had suf-
ficient energy to produce pair of WIMPs efficiently. Initially, the annihilation
process were in equilibrium with the production process with rate given by

Γann = 〈σannv〉neq. (2.3)

Here, the WIMP annihilation cross-section σann times the relative velocity of the
annihilating WIMPs v is averaged of the thermal distribution, and neq is denoting
the number density of WIMPs in chemical equilibrium. As the Universe cooled, the
temperature of the plasma eventually fall below the WIMP mass and the number
of WIMPs produced decreased exponentially due to the Boltzmann factor in

neq =

(
mχT

2π

)
e−mχ/T . (2.4)
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As a consequence, the annihilation rate went down. When the annihilation rate
became smaller than the Hubble parameter H, the production of WIMPs became
frozen (chemical decoupling). From this point, the energy density of WIMPs
decrease as a−3. The rate of change can be found from

dn

dt
=

dn

da
ȧ = −3Hn. (2.5)

Adding contributions from creation and annihilation processes also, one obtains

dn

dt
= −3Hn− 〈σannv〉(n2 − neq). (2.6)

Assuming constant entropy S = sV of the Universe, one get another equation

ds

dt
= −3Hs. (2.7)

One usually introduces the dimensionless variables Y = n/s and x = m/T and
use instead of t, the temperature T as the independent variable. From this one
obtains

dY

dx
=

1

3H

ds

dx
〈σannv〉

(
Y 2 − Y 2

ann

)
. (2.8)

Solving this equations can be used to obtain the present WIMP abundance

Ωχh
2 ' 3× 10−27cm3s−1

〈σannv〉
. (2.9)

Since evidence of dark matter first came, there have been a lot of work associated
with the development of suitable candidates for dark matter. Here, we briefly
discuss some of them. In general, there are several conditions that must be satisfied
for something to be considered a good dark matter candidate. For example, they
must be stable on cosmological time scales to still be around. They must also,
naturally, interact very weakly with electromagnetic radiation. Finally, they must
have the right relic density.

Supersymmetric dark matter Among the best motivated extensions of the
standard Model of particle physics is supersymmetry, the main observation being
its ability to stabilize the mass scale of electroweak symmetry breaking. A moti-
vation that is more interesting in this context was the realization that the lightest
supersymmetric particle in models conserving R-parity would be a very good dark
matter candidate. To meet this requirement, the lightest supersymmetric particle
should have a mass . 50 TeV if it was once in thermal equilibrium. This holds for
the neutralino χ or the sneutrino ν̃ and can also be extended for a gravitino.
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Figure 2.2: Evolution of WIMP number density in the early Universe during chem-
ical decoupling. The figure shows Y = n/s as a function of x = m/T . Solid
line shows the evolution for dark matter staying in thermal equilibrium, while
the dashed lines show decoupling for different annihilation cross-sections. Picture
taken from [14]

Axions and the strong CP problem Axions are introduced to solve the
’strong CP problem’ of the standard model. Consider the QCD-Lagrangian

LQCD = −1

4
GaµνG

aµν +

n∑

j=1

[
q̄jγ

µiDµqj − (mjq
†
Lj
qRj + h.c.)

]
+

θg2

32π2
GaµνG̃

aµν .

(2.10)

The last term is a 4-divergence and therefore does not contribute to perturbation
theory. It contributes however through non-perturbative effects. One can show
that the θ dependence must be present if none of the current quark masses vanish
and that the dependence can be parametrized by

θ̄ = θ − arg (m1,m2, ...,mn). (2.11)

If θ̄ 6= 0, then QCD violates P (parity) and CP (charge conjugation + parity).
Since we don’t see CP violation in strong interactions, an upper limit of θ̄ < 10−9

can be set from experiments. The smallness of θ̄ is strange since the quark masses
originates from the electroweak sector (violating P and CP). A proposal to solve
the CP problem was put forward by Peccei and Quinn postulating the existence of a
global U(1) quasi-symmetry broken by nonperturbative instanton effects of QCD.
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The axion is the (quasi-) Nambu-Goldstone boson associated with spontaneous
symmetry breaking of UPQ(1). The presence of this symmetry implies that

θ̄ → θ̄ − a(x)

fa
, (2.12)

solving the strong CP problem. Here, fa is called the axion decay constant. The
axion mass is then given by

ma ∼ 0.6eV
107GeV

fa
, (2.13)

and all axion couplings are inversely proportional to fa. The abundance of axions
depends on their production mechanism, but there exist models that give it the
necessary and efficient abundance to be dark matter.

Superheavy dark matter As a last example, we discuss a possible dark matter
candidate at the other end of the mass scale, namely superheavy dark matter. Typ-
ically, dark matter candidates cannot be too heavy since they would then overclose
the Universe. It is however possible to consider dark matter candidates produced
out of thermal equilibrium. These particles, often dubbed WIMPZILLAS, are
particularly interesting since they are created through the process of gravitational
particle production. They are usually believed to be produced at the last stages
of inflation or during reheating after inflation. For them to be considered a dark
matter candidate they need to have a mass about ∼ 1013GeV. Also, they need
to be stable or have an expected lifetime of order the age of the Universe. In
the latter case, their decay products may give rise to ultra high energy cosmic
rays (above GZK limit). The concept om gravitational particle production will
be discussed in great detail in chapter 4-6. The important realization here is that
particles produced with masses comparable to the Hubble parameter at the end
of inflation He ∼ 10−6Mp may give the right abundance to be dark matter. This
alone, is a big motivation for studying gravitational particle production.
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Chapter 3

Inflation

3.1 Shortcomings of the big bang-model

In spite of the successes of the standard big bang scenario, it also suffers from
some problems. These problems, which we will discuss in the following, are not
problems in the sense that they lead to contradictions with the theory itself, rather
they are shortcomings that cannot be explained by it. Most notably are the horizon
(and homogeneity-) and the flatness problem. They have in common that they
require an incredible fine-tuning of the initial conditions of the universe (or at
least of the classical era below the Planck density1). It would be more satisfying
with a theory that could explain these issues as a necessity rather than merely a
historical accident. Inflation is such a theory. In inflationary cosmology one adds
to the standard model a period of rapid (exponential) expansion in the very early
universe. In this period, the universe expands for a short period of time at least
60 e-folds (i.e. grows by a factor e60 ≈ 0.1 billion×billion×billion) and dilutes the
energy density of matter to nearly zero. As we will see, this does to some extent
improve the above mentioned problems

The homogeneity and the horizon problem Observations of the large-scale
structure of the universe provides good evidence for homogeneity and isotropy.
Since looking out in the universe means looking back in time, the early universe
must have been very homogeneous. This homogeneity could of course have been
driven by some unknown physical mechanism. What is more intriguing is that the
mechanism cannot have been perfect since it’s exactly the small amount of inhomo-
geneity in the early universe that has allowed for structure formation. Homogeneity
also leads to another unsatisfactory feature of the big bang-model. Relativity dic-
tates that information cannot propagate faster than the speed of light. Why are

1General Relativity is generally believed to break down at the Planck scale corresponding to
about 10−43s after the big bang. Prior to that era, quantum fluctuations would have been so
large that a theory of Quantum Gravity is needed to describe it.
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even causally disconnected regions of the universe homogeneous? In an expanding
universe, the particle horizon is defined as the proper distance outwards it remains
possible to observe a particle by exchange of light signals. It is given by (c ≡ 1)

lH(t0) = a0

∫ t0

0

dt

a(t)
. (3.1)

If we live in a universe that has been dominated by matter (or radiation) since the
big bang, the particle horizon is given by

lH(t0) =

∫ t0

0

(
t0
t

)α
=

t0
1− α =

{
3t0 for matter,

2t0 for radiation,
(3.2)

while the scale factor grows like t3/2 (t1/2) according to (1.49). This means that
any length scale l contained completely inside the horizon today was at some time
t, with 0 < t < t0 outside the horizon. In other words, we observe homogeneous
structures in the universe that has supposedly never been in causal contact. To
solve the horizon problem, we need the scale factor to grow faster than the horizon.

The Flatness Problem In Chapter 1, we defined the critical density as the
energy density at zero spatial curvature

ρc =
3H2

8πGN
. (3.3)

We also introduced the relative abundance Ωi of different energy species as the
ratio of their corresponding energy density and the critical density ρc. This means
that we can write the first Friedmann equation as

k

a2
= H2

[∑

i

Ωi − 1

]
≡ H2(Ωtot − 1), (3.4)

which implies that Ωtot = 1 corresponds to a flat universe. As already mentioned, a
universe governed by a single energy component with an equation of state P = wρ
has an energy-density given by

Ωi ∝
1

H2
a−3(1+wi). (3.5)

This means that both the matter- (w = 0) and the radiation term (w = 1/3)
decrease faster than the curvature term in the Friedmann equation. Taking the
time-derivative of (3.4), we obtain

d

dt
|Ωtot − 1| = −2|k| ä

ȧ3
. (3.6)

Therefore, in a decelerating universe (e.g. matter/radiation dominated) the cur-
vature tend to increase. Since observations today indicate Ωtot = 1.002± 0.011 we
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would need an incredible fine tuning of the early universe. To see how much, (3.4)
can be converted into redshift. The left hand side scales as (1+z2), while the Hub-
ble parameter scales as (1 + z)3 or (1 + z)4 for matter and radiation, respectively.
During most of the time since the Planck ages tp ∼ 10−43, the universe has been
radiation dominated. We can therefore obtain an order of magnitude estimate

|Ωtot,pl − 1| ∼ |Ωtot,0 − 1|(1 + zp)−2 ∼ 10−2tp/t0 ∼ 10−62. (3.7)

The relic problems Although we do not yet have a good understanding of the
physics at high energy scales, most of the ideas developed to explain it involves pro-
duction of particles not being part of the ordinary standard model. Among these
ideas, we find most notably supersymmetry, grand unified theories and supergrav-
ity, having in common that they include particles that can only be produced in
the early universe before nucleosynthesis. By claiming that the big bang theory
is valid up to Planck scale, the energy must once have been high enough for these
particles to be produced. Moreover, some of these particles come out with long
lifetimes and would be expected to dominate the current energy density. This
happens for example if particles only interacts via gravitation. These particles
include among others monopoles, gravitons and modulies, and are often referred
to as relic particles since they are relics of the early universe.

Solution by inflation From equation (3.6), we see that an early phase of accel-
erated expansion called inflation2, would drive the curvature term to zero. More-
over, inflation may be so efficient that the curvature produced by a later radiation
or matter dominated phase could be negligible, thus solving the flatness problem.
It could also solve the horizon problem, since the expansion of the universe during
inflation grows faster than the horizon. Thus causally connected regions would be
driven to superhorizon scales. From the second Friedmann equation, we have

ä

a
= −4πGN

3
(ρ+ 3P ) = −4πGN

3
(1 + 3w)ρ, (3.8)

so we need w < −1/3 for acceleration to occur. Consider a universe governed
by an E.o.S with w = −1, i.e. P = −ρ. In such a universe, the energy density
wouldn’t change and the curvature term would soon become negligible leading to

H2 =
8πGN

3
ρ. (3.9)

A constant ρ would therefore lead to a constant Hubble parameter and as a con-
sequence to a = exp(Ht). Therefore, all relic particles produced before inflation
would be exponentially suppressed. When inflation ends, the universe may be
below the temperature necessary to produce these relic particles.

2The term inflation was introduced by Alan Guth.
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3.2 Models for inflation

What mechanism could produce an equation of state with w < −1/3 ? A possibility
we have already seen, is a universe dominated by a cosmological constant Λ. It
would yield an E.o.S with w = −1, leading to exponential expansion. However,
the effect of a cosmological constant increases with time and hence could not be
identified with the small one observed today. In a universe with such a large
cosmological constant, inflation would never end. A possible, and certainly more
interesting way to produce the effect of a cosmological constant is to introduce a
scalar field rolling down a potential V (φ). This scalar field is often referred to as
the inflaton field. We will discuss the behavior of scalar fields in curved spacetime
in more detail in the next chapter, but it suffices to say that the energy density
and pressure of a scalar field in a FRW universe is given by

ρ =
1

2
φ̇2 + V (φ) +

1

2
(∇φ)2, (3.10)

P =
1

2
φ̇2 − V (φ)− 1

6
(∇φ)2. (3.11)

If we assume the scalar field is spatially constant (or study a patch of the universe
where it is homogeneous), it will produce an equation of state given by

w =
P

ρ
=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
∈ [−1, 1]. (3.12)

As long as the potential V (φ) dominate the energy density, we have w ≈ −1 and
inflation will occur.

3.2.1 Early models for inflation

One of the first models for inflation that had a clear physical motivation was
put forward by Alan Guth in 1981. In this model, based on cosmological phase
transitions a scalar field was trapped in a local minimum of its potential with
V (φ) > 0. As long as the field remained there, the energy density would be
dominated by the potential leading to inflation according to (3.12). This state is
known as a false vacuum, since it acts as if it was the lowest possible energy state.
Classically it would be stable, since there is no energy available to push the field
over the potential barrier. It would therefore not be possible to distinguish it from
the true vacuum. However, due to quantum effects the field may tunnel through
the potential barrier to the true vacuum thus ending inflation. Unfortunately, this
model had problems of its own. The bubbles produced when the false vacuum
decayed produced way too much inhomogeneities. Also, the idea of a field trapped
in a local minimum has fine-tuning problems of its own.
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3.2.2 Chaotic inflation

Today, most models are based around an idea suggested by Andrei Linde in 1983.
The evolution a scalar field in an expanding universe is given by

φ̈+ 3Hφ̇+
∂V

∂φ
= 0. (3.13)

This equation is analogous to the one of a damped harmonic oscillator, with the
Hubble parameter H acting as friction. If the field φ finds itself at a large value of
the potential, then according to (3.9), H will be large and φ will roll slowly. We will
have a situation with w ≈ −1 and the universe will expand quasi-exponentially.
As the field rolls down the potential, there will be some point when the system is
no longer heavily damped and the kinetic term of the energy density will become
important, causing inflation to end. An advantage of the chaotic inflation scenario
is that inflation occurs even in theories with V ∼ φ2 or V ∼ φ4, but is not limited
to these. It happens in any theory with a region that allows for a slow-roll regime.
In particular, it can happen for every power-law potential for φ &Mp

V (φ) =
λnφ

4

4Mn−4
p

, λn � 1. (3.14)

Initial conditions To study the evolution of a universe filled with a scalar field
φ, we need a way to set the initial conditions. Let us consider the universe as it
emerges from the Planck-era, with energy density ρ ∼ M4

p . Only from this point,
with ρ .M4

p may we describe the universe in terms of the laws of classical physics.
Thus, we should at this point require that the energy density of the scalar field is
given by

ρ =
1

2
φ̇2 +

1

2
(∇φ)2 + V (φ) ∼M4

p . (3.15)

If in some patch of the universe, we have

1

2
φ̇2 +

1

2
(∇φ)2 . V (φ), (3.16)

inflation will start. Moreover, within a Planck time tp ∼ 10−43s, 1
2 φ̇

2 and 1
2 (∇φ)2

will be driven to values much smaller than V (φ) ensuring that inflation continue.

Slow-roll approximation The equation for the scalar field together with the
Friedmann equation can be simplified if we assume that the field is slowly rolling,
i.e. 1

2 φ̇
2 � V (φ). We then obtain

φ̇ =
φ̈+ V ′(φ)

3H
≈ −V

′(φ)

3H
, (3.17)
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and

H2 =
8πGN

3
ρ ≈ 8πGN

3
V (φ). (3.18)

Using the two equations, we find that

ε ≡ 1

2

(
V ′

8πGNV

)2

� 1, (3.19)

is valid in the slow-roll regime. Another slow-roll parameter can be derived from
|φ̈| � |V ′| after differentiation of (3.17)

η ≡ V ′′

8πGNV
� 1. (3.20)

Assuming (3.19) and (3.20) are fulfilled, it is easy to calculate the number of
e-folds, N, produced by inflation as the scalar field rolls from φ1 to φ2

N ≡ ln (a2/a1) =

∫ t2

t1

Hdt =

∫ φ2

φ1

dφ

φ̇
H = 8πGN

∫ φ1

φ2

dφ
V (φ)

V ′(φ)
. (3.21)

Inflation in λφ4-theory. Let’s consider a theory of inflation with the potential

V (φ) =
1

4
λφ4, with λ� 1 (3.22)

as in figure 3.1. When φ > λ−1/4Mp, the energy density of the scalar field is above
the Planck density ρ > ρp = M4

p and we can no longer neglect the strong quantum
fluctuations of spacetime in our description. This state is referred to as a spacetime
foam and a theory of quantum gravity is a necessity. As

Mp

3 . φ . λ−1/4Mp,
the field is rolling slowly down the potential and the universe expands quasi-
exponentially with w ≈ −1. When φ < Mp/3, the field oscillates around the
minimum of the potential transferring its energy into particles. In this model, the
equations in the slow-roll regime becomes

φ̇ = −λφ
3

3H
= −λφ

3

3

√
3

2πGNλφ4
= −Mp

√
λ

6π
φ, (3.23)

written in terms of the Planck mass Mp = G
−1/2
N . The solution in the slow-roll

regime therefore becomes

φ(t) = φ0 exp

(
−
√

λ

6π
Mpt

)
, (3.24)

where φ0 is the initial value of the inflaton field. Moreover, the number of e-folds
becomes

N =
2π

M2
p

∫ φ

φe

φ dφ =
π

M2
p

(
φ2 − φ2

e

)
. (3.25)
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MP /3
(

λ
4

)−1/4
MP

M4
P

φ

V (φ) = 1
4λφ4

Figure 3.1: A scalar field rolling in a potential with V (φ) = 1
4λφ

4.

In order to achieve 60 efoldings, assuming inflation ends at φe ∼Mp/3 we see that
we need at least

φi =

√(
60

π
+

1

9

)
Mp ≈ 4.4Mp. (3.26)

Massive inflation. We can also consider a theory of inflation with the inflaton
potential as a mass-term

V (φ) =
1

2
m2φ2. (3.27)

In this model, inflation occurs for Mp/6 . φ . m−1. During inflation, the field φ
is to a good approximation given by

φ(t) = φi −
Mpm

2
√

3π
t. (3.28)

Moreover, the number of efoldings becomes according to (3.21)

N =
2π

M2
p

(
φ2 − φ2

e

)
. (3.29)

Hence N ' 60 require

φi ∼ 3.1MP. (3.30)
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3.3 Reheating after inflation

As we have seen, inflation in the early universe is able to solve the mentioned
problems. This however, comes at a price. Inflation leaves the universe very cold
and empty. Not only does it get rid of all relic particles, but all other kinds
of particles as well. During inflation all the energy density of the universe is
contained in the inflaton field. Therefore, when inflation is over there must be
a mechanism where the inflaton decays into other forms of energy and reheats
the universe. Reheating is the theory of particle production by the inflaton field
leading subsequently to thermalization. The details of the theory depend often on
the model of inflation one considers. If the decay of the inflaton happens slowly,
the decay products may have time to interact with each other and come to a
state of thermal equilibrium at the reheating temperature Tr. This is typically
the way it happens if the inflaton field couples directly to other fields and one
can study the process of the inflaton field decaying to different forms of energy
perturbatively. There exists however a much more effective way to for the inflaton
field to decay, namely via parametric resonance. This mechanism, which occurs
in the nonperturbatiev regime is in general much more effective. Consider a case
where the inflaton field φ is coupled to a scalar field χ via the interaction term

Vint =
1

2
g2φ2χ2. (3.31)

In such a model the equation of motion for χ will have a frequency depending on
φ [11]. The oscillations of the inflaton will then cause the resonant modes of χ
to be amplified. This effect was named preheating because it transfers the energy
density of the inflaton field rapidly to fluctuations of the field χ, and to distinguish
it from the slower perturbative mechanisms of reheating.
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Chapter 4

Particle Production in an
Expanding Universe.

Combining quantum mechanics and the special theory of relativity leads to the
possibility of creation and annihilation of particles. In curved spacetime things
can be said to be even more interesting. Upon quantizing a field, particles can
be created from the vacuum by the expansion of the universe itself with no other
external field present. In this chapter we develop the necessary tools for studying
gravitational particle production of scalar fields in a spatially flat FRW universe.
In chapter 5, we apply the formalism developed here on a case which can be solved
analytically. Note that while we quantize the scalar field, the gravitational field
is treated purely as a classical field by means of general relativity. It is clear that
this semi-classical picture will break down for strong gravitational fields. On the
other hand, many of the results of semi-classical radiation theory developed prior
to the theory of quantum electrodynamics is in compliance with the full machinery
itself, and one may hope that quantum fields in classical gravitational backgrounds
shows a similar feature. Much of the discussion in this chapter follow [2].

4.1 Models in flat FRW-universes

4.1.1 Field equation for a scalar field

The simplest Lagrangian that we can write down for a scalar field in Minkowski
space (i.e in flat spacetime) is given by

L =
1

2
ηµνφ,µ φ,ν −V (φ), (4.1)

where the potential V (φ) may be

V (φ) =
1

2
m2φ2, (4.2)
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and the Minkowski metric is given by ηµν = diag(1,−1,−1,−1). The Lagrangian
with the potential (4.2) describes a free (noninteracting) scalar field of mass m.
To see this, note that

d2V

dφ2

∣∣∣∣
φ=φmin

≡ m2. (4.3)

Hence a term quadratic in the field act as a mass term, while higher order terms
generate self-interactions of the field. We want to promote this Lagrangian to a
general curved spacetime with the metric gµν(x). We must then make the following
replacements when constructing the action.

• We must replace the Minkowski metric by an arbitrary metric

ηµν −→ gµν(x).

• Promote ordinary derivatives to covariant derivatives

∂µ −→ ∇µ.

• Use a covariant volume element

d4x = d3x dt −→ d4x
√−g.

The action resulting from this procedure describes a scalar field minimally coupled
scalar field to the gravitational field

S =

∫ √−g d4x

[
1

2
gµνφ;µ φ;ν −V (φ)

]
. (4.4)

By considering a flat FRW-universe given by the line element (Chapter 1)

ds2 = dt2 − a(t)2dx2, (4.5)

this action simplifies to1

S =

∫
d4x a3

[
1

2
φ̇2 − 1

2a
(∇φ)2 − V (φ)

]
. (4.6)

It is now straightforward to find the resulting equation of motion for the scalar
field. Varying the action yields

δS =

∫
d4x a3

[
φ̇δφ− 1

a2
(∇φ) · δ(∇φ)− V ′δφ

]

=

∫
d4x

[
− d

dt
(a3φ̇) + a∇2φ− a3V ′

]
δφ

=

∫
d4x a3

[
−φ̈− 3Hφ̇+

1

a2
∇2φ− V ′

]
δφ = 0.

1For a scalar field, covariant derivatives correspond to ordinary derivatives.
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We have here integrated by parts using Gauß’ theorem and assumed vanishing
boundary terms. Note that we also have introduced the Hubble parameter H ≡ ȧ

a .
Now, since the variation δφ is arbitrary, δS = 0 is only possible if what is inside
the brackets vanish. We therefore obtain the following field equation for a scalar
field a in flat FRW background

φ̈+ 3Hφ̇− 1

a2
∇2φ+ V ′(φ) = 0. (4.7)

We now make some important observations. We see that the term 3Hφ̇ acts as a
friction term for the oscillating field. This is due to the expansion of the universe
considered. As we will see later, this friction will lead to particle production.
Moreover, the gradient of φ becomes suppressed as a increases and can therefore
often be neglected in the expanding universe. It is now very convenient to introduce
conformal time, given by dη = 1

adt. This yields e.g.2

φ̈ =
1

a

d

dη

(
1

a
φ′
)

=
1

a2
φ′′ − a′

a3
φ′, (4.8)

H =
ȧ

a
=
a′

a2
≡ H

a
. (4.9)

We substitute these expressions into (4.7) and obtain

φ′′ + 2Hφ′ −∇2φ+ a2 ∂V

∂φ
= 0. (4.10)

For convenience, we also introduce the auxiliary field given by χ = aφ, i.e.

φ′ =
d

dη

(
1

a
χ

)
=

1

a
χ′ − a′

a2
χ, (4.11)

φ′′ =
d

dη

(
1

a
χ′ − a′

a2
χ

)
=

1

a
χ′′ − 2

a′

a2
χ′ −

(
a′′

a2
− 2

a′2

a3

)
χ. (4.12)

We substitute these into (4.10) and let the potential be a mass term to obtain

χ′′ −∇2χ+

(
m2a2 − a′′

a

)
χ = 0. (4.13)

2We now adapt the notation ′ for derivatives with respect to conformal time, e.g. φ′ = dφ
dη

.
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This is the usual Klein Gordon equation in Minkowski space, but now with a
time-dependent effective mass

m2
eff(η) = m2a2 − a′′

a
. (4.14)

The explicit time-dependence of the effective mass is a signature of the lack of
energy conservation. As we see, the influence made by the gravitational field is
now contained in the effective mass.

Conformal coupling and conformal symmetry The coupling to gravity
given in the action (4.4) is called minimal since it is the minimally required in-
teraction between a scalar field and the gravitational field which still remains
compatible with General Relativity. More generally we could add a coupling to
the Ricci Scalar Curvature R (or even to Rµν or Rµνρσ) by introducing the term

− ξ2Rφ2 in the Lagrangian. This coupling is known as conformal coupling if ξ has
the form

ξ(d) =
1

4

d− 2

d− 1
, (4.15)

in d dimensions. The addition of this term results in a correction of the mass of
the scalar field proportional to the Ricci-scalar

χ′′ −∇2χ+

[
(m2 +Rξ)a2 − a′′

a

]
χ = 0. (4.16)

In Chapter 1, we found the scalar curvature in flat FRW spacetime. For k = 0, it
becomes

R =
6

a2
(aä− ȧ2) =

6

a2

a′′

a
. (4.17)

Inserting this yields

χ′′ −∇2χ+

[
m2a2 − 6

a′′

a

(
1

6
− ξ
)]

χ = 0. (4.18)

Thus the conformal choice ξ = 1
6 in 4 dimensions simplify the equation to

[
d2

dη2
−∇2 +m2a2

]
χ = 0. (4.19)

Let us see what happens if we apply the conformal transformation (1.25) to a
massless scalar field in FRW spacetime conformally coupled to gravity. Consider
the equation of motion changing as

[
�+

1

4

d− 2

d− 1
R
]
φ 7→

[
�̃+

1

4

d− 2

d− 1
R̃
]
φ̃, (4.20)
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with φ̃(x) ≡ Ω(2−d)/2φ(x). We need to know how the d’Alembertian changes under
the transformation

� 7→ �̃ = g̃µν∇̃µ∇̃ν =
1√−g̃ ∂µ

[√
−g̃g̃µν∂ν

]
(4.21)

= Ω−2�+ (d− 2)Ω−3gµνΩ,µ ∂ν . (4.22)

Combining this and the change of the Ricci scalar (1.27), we find

[
�̃+

1

4

d− 2

d− 1
R̃
]
φ̃ = Ω−(d+2)/2

[
�+

1

4

d− 2

d− 1
R
]
φ. (4.23)

We therefore obtain the important result that the field equations are for a massless
scalar field invariant under conformal transformations.

Energy-momentum tensor Using definition (1.10), with the help of (1.3), we
find that for a scalar field in curved spacetime, the (stress-) energy-momentum
tensor becomes

Tµν =
2√−g

δS

δgµν
= φ,µφ,ν − gµνL, (4.24)

hence it coincides with the canonical energy-momentum tensor. The energy density
and pressure become

ρ = T 00 =
1

2
φ̇2 +

1

2
(∇φ)2 + V (φ), (4.25)

P =
1

3

3∑

i=1

T ii =
1

2
φ̇2 − 1

6
(∇φ)2 − V (φ). (4.26)

4.1.2 Mode expansion

We now wish to expand the auxiliary field χ into Fourier modes, i.e. we set

χ(x, η) =

∫
d3k

(2π)3/2
χk(η)eikx. (4.27)

Inserting this expansion into (4.13), we see that we get a set of decoupled differen-
tial equations, one for each Fourier mode χk(η). Introducing the time-dependent
oscillation frequency

ωk(η) = k2 +m2
eff(η), (4.28)

they look like a set of time-dependent oscillators.

χ′′k + ω2
k(η)χk = 0. (4.29)
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By taking the complex conjugate of equation (4.27), using that χ is real, we obtain
the following requirement for the modes

χ∗k(η) = χ−k(η). (4.30)

The general solution can now be written in terms of isotropic mode functions

χk(η) =
1√
2

(
akv
∗
k(η) + a†−kvk(η)

)
. (4.31)

where {vk, v∗k} is a basis for the solution space of (4.29). The isotropy of the modes
is a great simplification which can be made as a consequence of the isotropy of the
FRW-universe. For now, the integration constants ak and a†k are c-numbers, so by
† we really mean complex conjugated. Now, since the set {vk, v∗k} satisfy (4.29) it
has the property that the quantity

W (vk, v
∗
k) = v′kv

∗
k − vkv∗k ′ = 2i Im(v′v∗), (4.32)

known as the Wronskian of {vk, v∗k}, is time-independent and nonzero (see Ap-
pendix). We can therefore use it to normalize the set by a proper scaling to
enforce that

Im(v′v∗) =
W (v, v∗)

2i
= 1. (4.33)

Finally, let us insert the expansion (4.31) into (4.27). The result can be written as

χk(x, η) =
1√
2

∫
d3k

(2π)3/2

(
akv
∗
k(η)eikx + a†kvk(η)e−ikx

)
. (4.34)

4.2 Canonical Quantization of Scalar Fields

We now want to recast the classical field χ(x, η) into a quantum field-operator
χ̂(x, η). The quantization proceeds as in flat spacetime by introducing the canon-
ically conjugated momentum π̂ ≡ χ̂′ and by imposing the usual equal-time com-
mutation relations. The momentum density operator is written explicitly as

π̂(x, η) =
1√
2

∫
d3k

(2π)3/2

(
akv
∗
k
′(η)eikx + a†kvk

′(η)e−ikx
)
. (4.35)

The Hamiltonian for the quantum field is given by

Ĥ(η) =
1

2

∫
d3x

[
π̂2 + (∇χ̂)2 +m2

eff(η)χ̂2
]
, (4.36)

while the equal-time commutation relations become

[χ̂(x, η), π̂(y, η)] = iδ3(x− y),

[χ̂(x, η), χ̂(y, η)] = [π̂(x, η), π̂(y, η)] = 0.
(4.37)
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Promoting ak and a†k to operators, it is easy to show that they must satisfy

[âk, â
†
k′ ] = δ3(k− k′), [âk, âk′ ] = [â†k, â

†
k′ ] = 0. (4.38)

We should therefore interpret them as creation and annihilation operators. Now,
given a set of creation and annihilation operators {ak, a†k}, we can define the
corresponding vacuum as

âk |0〉 = 0 ∀ k. (4.39)

In the same manner, we can use creation operators to make many-particle states
as

|(a)mk1 , nk2 , · · ·〉 =
1√

m!n!...

[(
â†k1

)m (
â†kn

)n
· · ·
]
|(a)0〉 . (4.40)

4.3 Bogolyubov Transformations

Given a set of operators {âk, â†k} we can construct a basis of quantum states in
a Hilbert space with an unambiguous physical meaning only if we have selected
a particular set of mode functions {vk, v∗k}. However, when the set solves the
equation

v′′k + ω2
k(η)vk = 0, (4.41)

then so will the set given by

uk(η) = αkvk(η) + βkv
∗
k(η), (4.42)

where αk and βk are time-independent complex coefficients. If we let

|αk|2 − |βk|2 = 1, (4.43)

then

Im(u′u∗) = u′ku
∗
k − uku∗k′ = 1, (4.44)

also. The mode functions are thus a priori on equal footing. We may therefore
instead choose another set of creation and annihilation operators {b̂k, b̂†k} corre-
sponding to the mode functions uk with the same commutation relations. Since
the Fourier modes χk should be independent of choice of basis, we have

akv
∗
k(η) + a†−kvk(η) = bku

∗
k(η) + b†−kuk(η). (4.45)

Inserting the relation (4.42) for uk on the right hand side yields

âk = α∗k b̂k + βk b̂
†
k, â†k = αk b̂

†
k + β∗k b̂k. (4.46)
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The relations above are known as Bogolyubov transformations and αk and βk as
the corresponding Bogolyubov coefficients. Different Fock spaces will have different
vacua

âk |(a) 0〉 = 0 ∀ k, b̂k |(b) 0〉 = 0 ∀ k, (4.47)

and in the same manner we can construct many-particle states of a- and b-particles
respectively. Note that |(b) 0〉 is a squeezed state in terms of |(a) 0〉. To see this,
we expand the b-vacuum in terms of the a-vacuum. After some algebra, one finds

|(b) 0〉 =
∏

k

1

|αk|1/2

( ∞∑

n=0

(
βk

2αk

)n
|(a) nk, n−k〉

)
. (4.48)

Hence, in general, the b-vacuum could contain a-particles and vice versa. Another
way to see this is to calculate the expected number of a-particles in the b-vacuum.

The number operator of b-particles is given by N̂
(a)
k = â†kâk. Hence we find

〈(b)0|N̂ (a)
k |(b)0〉 = 〈(b)0|â†kâk|(b)0〉

= 〈(b)0|
(
αk b̂
†
k + β∗k b̂k

)(
α∗k b̂k + βk b̂

†
k

)
|(b)0〉

= |βk|2 〈(b)0|b̂kb̂†k|(b)0〉
= |βk|2δ(3)(0).

(4.49)

The divergent factor δ(3)(0) is of the harmless type relating to the infinite volume
of space. The meaningful quantities are anyway the mean number density in the
k mode

nk = |βk|2, (4.50)

and the mean density of all particles

n =

∫
d3k |βk|2. (4.51)

The total energy density becomes

ρ =

∫
d3k

(2π)3
|βk|2ωk. (4.52)

We see that finiteness of the energy density require |βk|2 to decay faster than k−4

for large k.

Computing the Bogolyubov coefficients To compute the Bogolyuov coef-
ficients αk and βk, we need to know the mode functions vk(η),uk(η) and their
first derivatives at some time η, say η0. From equation (4.42) and its derivative
evaluated at η0, we have

uk(η0) = αkvk(η0) + βkv
∗
k(η0), (4.53)

uk
′(η0) = αkvk

′(η0) + βkv
∗
k
′(η0). (4.54)
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These two expressions can be combined to solve for αk and βk. We obtain

αk =
v∗kuk

′ − ukv∗k ′
vk′v∗k − vkv∗k ′

=
v∗kuk

′ − ukv∗k ′
2i

, (4.55)

where we also have used the normalization condition. Similarly, we find

β∗k =
uk
′vk − ukvk′

2i
. (4.56)

We can write the expression in a more compact way by making use of the Wron-
skian.

αk =
W (uk, v

∗
k)

2i

∣∣∣∣
η=η0

,

βk =
W (v∗k, u

∗
k)

2i

∣∣∣∣
η=η0

.

(4.57)

These relations hold at any time η0.

4.4 Ambiguity of the Vacuum

In the last section, we saw that the notion of particle number and vacuum in a
curved spacetime depends on which set of mode functions we work with. All mode
functions related by the transformation (4.42) stand a priori on equal footing. A
natural question to ask is then which set of modes correspond best to the physical
vacuum. Albeit a good question, the answer cannot be provided without specifying
the quantum measurement process. As an example will an inertial (freely falling)
and an accelerated observer not in general agree upon the present particle density,
even in Minkowski space. However, in Minkowski space, all inertial observers will
always measure the same vacuum. Even this feature is lost in a generally curved
spacetime since there is no preferred coordinate system. The particle concept in
Minkowski space depends on the ability to decompose the field φ into plane waves

φk ∼ exp(ikx− iωkt). (4.58)

A localized particle with momentum k is described by a wave packet of uncertainty
∆k. The momentum of the particle is well-defined as long as ∆k � k. The natural
length scale associated with the wave packet is λ ∼ 1/∆k � 1/k. However, if the
geometry of spacetime varies to significantly across a region l ∼ λ, the plane
wave-picture does not make sense anymore since they no longer represent a valid
approximation to the solution of the wave equation. In this section, we will address
ways to give a definition of the particle concept in curved spacetimes.

4.4.1 The instantaneous vacuum

In Minkowski space, the vacuum is defined as the lowest energy-eigenstate of the
Hamiltonian. This enables us to pick out a set of mode functions {vk, v∗k} that
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defines the vacuum unambiguously. The Hamiltonian

Ĥ(η) =
1

2

∫
d3x

[
π̂2 + (∇χ̂)2 +m2

eff(η)χ̂2
]
, (4.59)

is however explicitly time-dependent due to the effective mass and does not have
time-independent eigenvectors that can serve as vacuum. Still, we can define
the instantaneous vacuum at η0, |η00〉 as the lowest energy-state of the instan-

taneous Hamiltonian Ĥ(η0). The procedure is to compute the expectation value
〈v0|Ĥ(η0)|v0〉 for the vacuum-state |v0〉 determined by arbitrarily chosen mode
functions vk(η) and then minimize the expectation value with respect to these, or
what amounts to the same, finding the lowest eigenvalue of these. We therefore
insert the mode-expansion of the auxiliary field

χk(x, η) =
1√
2

∫
d3k

(2π)3/2

(
akv
∗
k(η)eikx + a†kvk(η)e−ikx

)
, (4.60)

into the Hamiltonian (4.59). We can calculate the integrals over configuration
space. They are of the type

∫
d3x

(2π)3
ei(k−p)x = δ3(k− p). (4.61)

The first term in (4.59) for example, becomes

1

2

∫
d3x π̂2 =

1

4

∫
d3k d3p

[
δ3(p + k)

(
v∗k
′v∗p
′akap + vk

′vp
′a†ka

†
p

)

+ δ3(p− k)
(
v∗k
′vp
′aka

†
p + vk

′v∗p
′a†kap

)]

=
1

4

∫
d3k

[
v∗k

2aka−k + vk
2a†ka

†
−k + |vk|2(aka

†
k + a†kak)

]
.

The other terms are found in the same manner. Combining all together, using
[ak, a

†
p] = δ3(p− k), we obtain

H(η) =
1

4

∫
d3k

[
Ek(2a†kak + δ3(0)) + Fka

†
ka
†
−k + Fk

∗aka−k

]
, (4.62)

where

Ek(η) = |vk′|2 + ω2
k(η)|vk|2, (4.63)

Fk(η) = vk
′2 + ω2

k(η)vk
2. (4.64)

Computing the energy-expectation value 〈v0|Ĥ(η0)|v0〉, we see that only one term
survives,

〈v0|Ĥ(η0)|v0〉 =
1

4
δ3(0)

∫
d3k Ek(η0). (4.65)
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Again, one should not worry too much about the divergence. Instead we should
talk about the energy density ε given by

ε(η0) =
1

4

∫
d3k

(
|vk′(η0)|2 + ω2

k(η0)|vk(η0)|2
)
. (4.66)

Minimizing ε(η0) is equivalent to minimizing Ek(η0), while obeying the normaliza-
tion condition Im(v′v∗) = 1. We therefore make the ansatz

vk = rk exp(iαk). (4.67)

Inserting the ansatz into the normalization condition, we obtain

r2
kαk

′ = 1. (4.68)

Hence we find

Ek(η0) = |vk′|2 + ω2
k|vk|2 = r′k

2
+

1

r2
k

+ ω2
kr

2
k. (4.69)

This expression is extremized if

∂Ek
∂rk

=
∂Ek
∂rk′

= 0. (4.70)

Thus we obtain

rk
′(η0) = 0, and rk(η0) =

1√
ω(η0)

. (4.71)

This is clearly a minimum if and only if ω2
k > 0. Hence the existence of the in-

stantaneous vacuum relies on the condition ω2
k > 0. By inserting these expressions

into the ansatz, we find the initial conditions that determine the mode functions
that define the instantaneous vacuum

vk(η0) =
1√

ωk(η0)
eiαk(η0), vk

′ = iωk(η0)vk(η0) (4.72)

Note that we are free to choose the the phase αk since any choice will minimize
the expression.

Bogolyubov Coefficients in the Instantaneous vacuum We now set out
to find the Bogolyubov coefficients relating two instantaneous vacua |η10〉 and
|η20〉. Note that instantaneous vacuum |η0〉 at intermediate time η > η0 is a
squeezed quantum state with respect to |η10〉. We let αk(η) and βk(η) denote the
instantaneous Bogolyubov coefficients relating the initial vacuum |η10〉 and the
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state |η0〉. We can express these coefficients in terms of the modes vk(η) using
(4.57) with the condition (4.72) on uk

αk(η) =
iωkv

∗
k − v∗k ′

2i
√
ωk

, βk(η) =
iωkv

∗
k + v∗k

′

2i
√
ωk

. (4.73)

It is useful introduce the function ζk(η) given by

ζk(η) =
β∗k(η)

α∗k(η)
= −vk

′(η)− iωk(η)vk(η)

vk′(η) + iωk(η)vk(η)
. (4.74)

Taking the derivative of ζk(η), we obtain after some algebra

dζk
dη

= −2iωkζk +
(
1− ζ2

k

) ωk′
2ωk

, (4.75)

where we have used that the modes vk(η) satisfy the mode equation (4.41). From
the condition that vk

′(η0) = iωkvk(η0), we obtain ζk(η0) = 0. It can be shown
that ζk will be small when

ζk(η) = O
(
ω′(η)/ω2(η)

)
. (4.76)

This is however a strong condition that is sufficient, but often not necessary. As
long as ζk is small, we may now use time-dependent perturbation theory. As a
first approximation, we set 1 − ζ(1) = 1 on the RHS of equation (4.75). We then
obtain the initial value problem

dζ(1)

dη
= −2iωkζ(1) +

ωk
′

2ωk
, ζ(1)(η0) = 0. (4.77)

The solution is given in terms of the integral

ζ(1)(η) =

∫ η

η1

dη′
1

2ω(η′)

dω(η′)

dη′
exp

[
−2i

∫ η

η′
dη′′ω(η′′)

]
. (4.78)

We can improve the approximation by iteration as follows

dζ(n+1)

dη
= −2iωkζ(n+1) +

(
1− ζ(n)

) ωk′
2ωk

, ζ(n+1)(η0) = 0, (4.79)

which gives us the recurrence relation

ζ(n+1)(η) =

∫ η

η1

dη′
ω′(η′)

2ω(η′)

(
1− ζ2

(n)

)
exp

[
−2i

∫ η

η′
dη′′ω(η′′)

]
. (4.80)

We can now write the Bogolyubov coefficients in terms of the solution as

αk(η) =
1√

1− |ζk(η)|2
,

βk(η) =
ζ∗k(η)√

1− |ζk(η)|2
.

(4.81)
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From the earlier discussion we find that the mean number density of particles in
a mode k is given by

nk = |βk|2 =
|ζk|2

1− |ζk|2
. (4.82)

4.4.2 The Adiabatic Vacuum

In a slowly changing spacetime, what is called the adiabatic vacuum gives some-
times a more meaningful notion of particle number than the instantaneous vacuum.
The procedure is based on the WKB approximation for the solution of

d2

dη2
χk(η) + ω2

k(η)χk(η) = 0. (4.83)

For the ansatz

χk(η) =
1√
Wk(η)

exp

[
i

∫ η

η0

Wk(η)dη

]
, (4.84)

one finds that the function Wk(η) have to satisfy the nonlinear equation

W 2
k = ω2

k −
1

2

[
Wk
′′

Wk
− 3

2

(
Wk
′

Wk

)2
]
. (4.85)

For a slowly changing spacetime, the derivative terms of this equation will be small
compared to ω2

k, so as a zeroth approximation one has

W
(0)
k (η) = ωk(η). (4.86)

One can now obtain higher order estimate by iteration. To second order, one has

W
(2)
k = ωk

(
1− 1

4

ωk
′′

ω3
k

+
3

8

ωk
′2

ω4
k

)
. (4.87)

Similarly, one can obtain higher order estimates. The series is however, as in the
case of the instantaneous vacuum, asymptotic and the approximation reaches a
best value at some order N .
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Chapter 5

Analytically Solvable Model

We have yet to see an explicit example where production of particles by a gravita-
tional field occurs. In this chapter, we consider particle production in an exactly
solvable model in 1+1 dimensional spacetime. It was first studied in [1]. In this
model, the scale factor changes as

C(η) ≡ a2(η) = A+B tanh(ρη), A > B ≥ 0, ρ > 0. (5.1)

C(η) is called the conformal scale factor and is shown in figure 5.1. A feature of

A−B

A+B

η

C(η) = A+B tanh(ρη)

Figure 5.1: The conformal scale factor C(η) of an asymptotically static universe
undergoing a period of smooth expansion.

this model is that it approaches Minkowski space in the infinite past and future.
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Observe that the amount of expansion is governed by the parameter B and the
rate at which it occur by ρ. Restricting our attention to the case of a spatially flat
FRW universe, the line-element becomes

ds2 = a2(η)(dη2 − dx2). (5.2)

Note that the line element written in this form is manifestly conformally equiva-
lent to Minkowski space through the transformation gµν(x) 7→ a−2(η)gµν(x). As
we discussed in Chapter 4, solving the equation of motion for the scalar field is
equivalent to solving the mode equations

u
′′

k + ω2
k(η)uk = 0. (5.3)

We will consider the minimally coupled case, which in two dimensions correspond
to ξ = 0, i.e.1

ω2
k(η) = k2 +m2

eff(η) = k2 +m2 (A+B tanh(ρη)) . (5.4)

Before trying to solve equation (5.3), we make the following observation. As η
tend to −∞ the equation approaches the one of a harmonic oscillator with energy

ωin =
√
k2 +m2(A−B). (5.5)

Similarly as η →∞ the equation approaches a harmonic oscillator with energy

ωout =
√
k2 +m2(A+B). (5.6)

Therefore we should look for solutions of (5.3) with asymptotic modes behaving
purely as positive frequency exponentials

u
in/out
k (η)

η→∓∞−→ Cin/out exp
(
−iωin/outη

)
. (5.7)

Moreover, by use of the normalization constant (4.33) we can already read off the

integration constants Cin/out =
(
2ωin/out

)− 1
2 .

5.1 Analytical Solution

We now set out to solve equation (5.3), i.e.

u
′′

k(η) +
[
k2 +m2 (A+B tanh(ρη))

]
uk(η) = 0, (5.8)

and make the substitution

ξ =
1 + tanh (ρη)

2
. (5.9)

1In two dimensions the minimal and the conformal coupling coincides.
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The new differential operators then become

d

dη
=

dξ

dη

d

dξ
=
ρ

2

(
1− tanh2(ρη)

) d

dξ
= 2ρξ(1− ξ) d

dξ
,

d2

dη2
= 4ρ2ξ2(1− ξ)2 d2

dξ2
+ 4ρ2ξ(1− ξ)(1− 2ξ)

d

dξ
,

(5.10)

while the remaining terms can be written as

k2 +m2(A+B tanh(ρη)) = k2 +m2(A+B(2ξ − 1))

= ω2
in + 2Bm2ξ

= ω2
in + (ω2

out − ω2
in)ξ

= ω2
in(1− ξ) + ω2

outξ

. (5.11)

Substituting the above expressions into the equation and dividing through it by
the overall factor 4ρ2ξ2(1− ξ)2, we obtain a Riemann type differential equation

[
d2

dξ2
+

(
1

ξ − 1
+

1

ξ
+

)
d

dξ
+

(
ω2

out

4ρ2

1

ξ − 1
− ω2

in

4ρ2

1

ξ

)
1

ξ(ξ − 1)

]
ũ(ξ) = 0. (5.12)

The solutions are given in terms of hypergeometric functions2. The solution be-
having as a pure frequency exponential as η → −∞ is given by

uin
k (η) =

1√
2ωin

exp i

(
−ω+η −

ω−
ρ

ln[2 cosh ρη]

)

× 2F1

[
iω−
ρ
, 1 +

iω−
ρ

; 1− iωin

ρ
; ξ

]
.

(5.13)

Similarly, the solution behaving as a pure positive frequency exponential in the
asymptotic future is given by

uout
k (η) =

1√
2ωout

exp i

(
−ω+η −

ω−
ρ

ln[2 cosh ρη]

)

× 2F1

[
iω−
ρ
, 1 +

iω−
ρ

; 1 +
iωout

ρ
; 1− ξ

]
.

(5.14)

In the solutions above, we have for simplicity also introduced

ω± =
1

2
(ωout ± ωin) . (5.15)

By making use of the transformation formulas of hypergeometric functions (see
Appendix), we may express the in and out solutions in terms of each other by
linear transformations

uin
k (η) = αku

out
k (η) + βku

out∗
−k (η), (5.16)

2The full details can be found in the appendix.
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with the coefficients

αk =

(
ωout

ωin

) 1
2 Γ(1− iωin

ρ )Γ(− iωout

ρ )

Γ(1− iω+

ρ )Γ(− iω+

ρ )
, (5.17)

βk =

(
ωout

ωin

) 1
2 Γ(1− iωin

ρ )Γ( iωout

ρ )

Γ(1 + iω+

ρ )Γ( iω+

ρ )
. (5.18)

5.2 Physical Interpretation

A fortunate feature of spacetimes that are asymptotically Minkowskian in the
remote past and future is that there is a natural choice of the vacuum in the
asymptotic limits, namely the state that is empty to all inertial observers. We
denote the vacuum in the asymptotic past as |0in〉. It is defined through

ain
k |0in〉 = 0, ∀k. (5.19)

Similarly, the unambiguous vacuum state in the asymptotic future, denoted |0out〉
is given by

aout
k |0out〉 = 0, ∀k. (5.20)

The in- and out operators are as discussed in the previous chapter related by the
transformations

aout
k = αka

in
k + β∗ka

in†
−k, (5.21)

ain
k = α∗ka

out
k − β∗kaout†

−k . (5.22)

Consider the quantum field sitting in the vacuum-state |0in〉, defined by (5.19) in
terms of the in-modes uin

k . In the infinite past, the spacetime is Minkowskian. All
inertial observers will see the state as empty of particles and therefore identify it
as the true (physical) vacuum. In the infinite future, the quantum field remains in
the state |0in〉 in the Heisenberg picture, but inertial observers will no longer see
it as the physical vacuum. The physical vacuum is now the state |0out〉 defined in
terms of the out-mode uout

k . Since |0in〉 6= |0out〉, all unaccelerated observers will
see the state |0in〉 as nonempty. In the kth mode, the expected particle number is
given through the Bogoliubov coefficients relating the in- and out modes

nk = |βk|2 =
sinh2(πω−ρ )

sinh(πωin

ρ ) sinh(πωout

ρ )
. (5.23)

Note that in the massless limit, we have ω− → 0 and the particle production
vanish. This is an example of a more general result. No particle creation can
occur from conformally invariant fields propagating in spacetimes conformal to
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Minkowski space. The presence of a mass term breaks this symmetry and causes
particle production. This is easy enough to understand. With m = 0 and the
transformation gµν 7→ a−2(t)gµν , the field becomes equivalent to a free field in
Minkowski space. Therefore all inertial observers will measure a state without
particles. This result also generalizes to higher spin fields. As the rate of expansion
is determined by the parameter ρ, we find for ρ→ 0

|βk|2 → e−2πωin/ρ. (5.24)

The particle number falls exponentially with a slower rate of expansion. A more
precise statement is that the particle number vanish for small ρ/ωin, corresponding
to ρ� k,m. This means that production of modes with energy ω & ρ are strongly
suppressed. This is reasonable since the gravitational field must supply more
energy to provide for a large rest mass or a large k.

5.3 Validity of the instantaneous vacuum

In this section, we want to test the applicability of the instantaneous vacuum
prescription. The existence of the instantaneous vacuum relied on the assumption
ω2
k > 0, which is always true in our case. The relevant formulas for obtaining the

particle number in the instantaneous vacuum was derived in chapter 4. We found
that

nk = |βk|2 =
|ζk|2

1− |ζk|2
, (5.25)

where the function ζk could be estimated perturbatively. To a first approximation

ζ(1)(η) =

∫ η

η1

dη′
1

2ω(η′)

dω(η′)

dη′
exp

[
−2i

∫ η

η′
dη′′ω(η′′)

]
. (5.26)

Recall that in deriving this expression, the validity of perturbation theory relied
on |ζ1|2 � 1. Coensequently, the approximation should be good only for

|β(1)
k |2 =

|ζ(1)|2
1− |ζ(1)|2

� 1. (5.27)

Given this, we can apply the method if the function ωk(η) is known as a function
of η. A sufficient, but not necessary condition for |ζ|2 � 1, was the adiabatic
condition

dωk
dη

1

ω2
k(η)

� 1. (5.28)

For the model we consider, we have

ω2
k(η) = k2 +m2 (A+B tanh (ρη)) , (5.29)
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and the integral (5.26) must be solved numerically. We can however do the integral
in the exponent analytically. We obtain

∫
ω(η) dη =

1

p

[
ωout · arctanh

(
ω(η)

ωout

)
− ωin · arctanh

(
ω(η)

ωin

)]
+ C. (5.30)

The condition (5.28) becomes

dωk
dη

1

ω2
k(η)

=
m2Bρ(1− tanh2(ρη))

[k2 +m2 (A+B tanh (ρη))]
3
2

� 1. (5.31)

This criterion is, as it turns out too strict. Below, we show some plots that
illustrate the validity of the method. We have plotted the solution obtained with
formula (5.26) and compared them to the exact expression

nk = |βk|2 =
sinh2(πω−ρ )

sinh(πωin

ρ ) sinh(πωout

ρ )
. (5.32)

From these plots, we see as we expected that validity of the approximation breaks
down for |βk|2 close to unity. We have also, naively plotted the particle number
as a function of time.
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Figure 5.2: Particle density obtained with the method instantaneous vacuum as a
function of mass for k = 0.01, A = 20, B = 19, ρ = 1.
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Chapter 6

Particle Production by
Inflation

We have in the last chapter seen an explicit example of particle production by
gravitational fields. In this chapter, we study the phenomenon in the context of
inflationary cosmology. The invention of inflationary cosmology led to a more
relaxed attitude to the effects of gravitational particle production in the early
universe. Although gravitational effects are very important near the Planck age
tP ∼ 10−43s, inflation will in general dilute the energy density of relics produced
exponentially small and gravitational particle production is therefore usually a very
inefficient mechanism. There are however some exceptions to this rule. In many
of the models extending the standard model to higher energy scales, particles with
weak scale masses and Planck suppressed couplings are predicted. Most notably
are the gravitino and the scalar moduli. These particles, will, as it turns out often
be copiously produced in the early universe during the end of inflation. They can
have catastrophic consequences destroying the predictions of nucleosynthesis. One
of the goals of this chapter is to produce the results of [9].

6.1 The evolution of an inflationary universe

As discussed earlier, the basic tools for studying the dynamics of inflationary
cosmology are the Friedmann equations together with the equation for a scalar
field φ moving in a potential with its energy density being the dominating form of
energy in the universe. They are for completeness repeated here in terms of the
Planck mass1 Mp = G−1

N

H2 =
8π

3M2
p

ρ =
8π

3M2
p

(
1

2
φ̇2 + V (φ)

)
, (6.1)

1The convention 8πGN ≡M2
p ≡ 1 is often used to get rid of the factor 8πGN in the equations.
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ä

a
= − 4π

3M2
p

(ρ+ 3P ) = − 8π

3M2
p

(
φ̇2 − V (φ)

)
, (6.2)

φ̈+ 3Hφ̇+
∂V

∂φ
= 0. (6.3)

We consider in this section the evolution of the universe in the simplest model of
inflation, where the inflaton potential is a power law V ∼ φ4 or V ∼ φ2. We first
consider the model with potential V (φ) = λφ4. Realistic values for the inflaton
self-coupling are in this model λ ∼ 10−13− 10−14. Below we show the evolution of
the inflaton field and of the scale factor in this model. We have taken λ = 9 ·10−14.
The plots are shown in Planck units and we have for comparison also included the
analytical solution obtained in chapter 3 from assuming that the energy density is
dominated by the potential

φ(t) = φ0 exp

(
−
√

λ

6π
Mpt

)
. (6.4)

As we can see from the plots an inflationary epoch of 60 e-foldings in this model
last for about 10−34s to 10−35s.
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Evolution of the inflaton field in λφ4-theory

Figure 6.1: Inflaton field during inflation in a λφ4-theory with 60 e-foldings of
expansion. The red dashed curved shows the slow-roll solution

We can also consider a theory of inflation with the inflaton potential as a mass-term
V (φ) = 1

2m
2φ2. A typical value for the inflaton mass is in this model m ∼ 10−6Mp.
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Figure 6.2: Scale factor during inflation in a λφ4-theory with 60 e-foldings of
expansion.

In order to achieve 60 e-folds we need to start the inflation at values 3.1Mp or more.
As long as the energy density is dominated by the potential, the scalar field should
evolve according to

φ(t) = φ0 −
Mpm

2
√

3π
t. (6.5)

63



0

0.5

1

1.5

2

2.5

3

3.5

101 102 103 104 105 106 107

φ
(t

)/
M

p

t/tp

Evolution of the inflaton field in m2φ2-theory

Figure 6.3: Inflaton field during inflation in a theory with V (φ) = 1
2m

2φ2 with 60
e-foldings of expansion. The red dashed curved shows the slow-roll solution

6.2 Generation of scalar particles

We now consider a scalar field χ with the potential

V (χ) =
1

2

(
m2 − ξR

)
χ2. (6.6)

We have earlier derived the Ricci scalar for the FRW-universe (1.33). Studying
particle production during the end of a long period of expansion justifies setting
k = 0,

R = − 6

a2

(
äa+ ȧ2

)
. (6.7)

We proceed from here as before by performing a Fourier transform and introducing
conformal time and field variables defined as dη ≡ dt

a ,fk ≡ aχk. The equation for
the modes then becomes

fk
′′ + ω2

kfk = 0, (6.8)

where

ω2
k = k2 +m2a2 − a′′

a
(1− 6ξ) . (6.9)
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The scale factor is determined by the evolution of the inflaton field φ with potential
V (φ). In conformal time the motion of the inflaton is given by

φ′′ + 2
a′

a
φ′ + a2 ∂V (φ)

∂φ
. (6.10)

Similarly, we can write down the Friedmann equations in conformal time. They
are given by

a′′ =
a′

2

a
− 8π

3M2
p

(
aφ′

2 − a3V (φ)
)
, (6.11)

a′
2

a
=

ρa3

3M2
p

=
1

3M2
p

(a
2
φ′

2
+ a3V (φ)

)
. (6.12)

Equation (6.10), (6.11) and (6.12) are not independent of each other, so we are
free to choose our favorite two of the three equations to solve. The remaining one
can be used to check energy conservation during numerical simulations.

Initial conditions for the scale factor and inflaton In our numerical sim-
ulations we normalize the scale factor as a(t0) = 1. This determines the initial
value of the Hubble parameter

H0 = ȧ(t0) =

√
8πV (φ0)

3M2
p

. (6.13)

Initial conditions for the modes As a first approximation, one can use as
initial conditions for the mode positive frequency vacuum fluctuations

fk =
1√
2k

e−ikt. (6.14)

However, for fluctuations produced at the last stages of a long period of inflation,
one should begin with the fluctuations generated from the previous stage of infla-
tion. For a massless scalar field minimally coupled to gravity on should use Hankel
functions [8]:

fk(t) =
ia(t)H√

2k3

(
1 +

k

iH
e−Ht

)
exp

(
ik

H
e−Ht

)
, (6.15)

where H is the Hubble parameter at the beginning of the calculation. One should
also take into account that long-wavelength perturbations are produced at earlier
stages of inflation when H is greater than at the beginning of the calculation. If
the duration of inflation is very long then one can use fk = 1√

2k
e−ikt to a good
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approximation. If the stage is short, doing so will (as we will see) underestimate
the amplitude 〈χ2〉. For de Sitter space the Hankel function solution gives

|fk|2 =
a2H2

2k3
. (6.16)

This expression can be corrected for by using the value of the Hubble constant Hk

when a mode of momentum k crossed the horizon. For the λφ4−theory it can be
approximated as

Hk =

√
2πλ

3

(
φ2
e −

1

π
ln

(
k

He

))
, (6.17)

where φe and He are values for the inflaton and the Hubble parameter at the end
of inflation.

6.2.1 Numerical results in the λφ4-theory.

We first study particle production in the model with inflaton potential V (φ) =
1
4λφ

4 with λ = 9 · 10−14. The plot (6.4) shows k2|fk|2 as a function k. They show
results from runs taken at the last stages of inflation with initial values ranging
from φi = 1.5Mp (the lowest curve) to 2Mp. This corresponds roughly to the last
10-15 efoldings of inflation. The data are taken after ten oscillations of the inflaton
field. The upper curve shows the runs taken with the Hankel function solutions.
The numerical simulation show that runs taken closer to then end of inflation
are suppressed in the infrared part of the spectrum while they all coincide in the
UV. This suppression is due to starting inflation at late time and using (6.14) as
initial conditions. The plots show that long wavelength fluctuations are primarily
produced during inflation. They give the main contribution to the number density.
The left part of the plot show long wavelength modes produced during inflation.
These modes crossed the horizon first and were therefore frozen in at a large value
of the Hubble parameter and therefore with highest amplitude. The lowest modes
did not however have time to cross the horizon and are therefore suppressed. The
right side of the plot show modes created near or during the oscillatory stages
which were not amplified a lot. The numerical simulation also show that a long
period of inflation can be mimicked by a proper set of initial conditions. Instead
of using the fluctuations (6.14) one could use the de Sitter space solution (6.16)
with the Hubble parameter corrected to the value it had as the relevant frequency
mode crossed the horizon. The simulation shows that this is equivalent to running
a simulation with a long period of inflation.
The late time solution of (6.8) can be represented in terms of Bogolyubov coeffi-
cients,

fk(η) =
αk(η)√

2ωk
e−i

∫
ωkdη +

βk(η)√
2ωk

ei
∫
ωkdη, (6.18)

where nk = |βk|2 is interpreted as the particle number and ωknk the energy density
of a given mode. In this context however, the dominant contribution to particle

66



100

104

108

1012

10−4 10−2 100

|f k
|2 k

2
/H

e

k/He

Fluctuations vs mode frequency

Figure 6.4: Fluctuations vs mode frequency in the λφ4-theory. The plot shows
run taken with initial values of the inflaton ranging from 1.5Mp to 2.0Mp. The
dashed curved show the corresponding Hankel function solutions.

production from the field χ comes from long-wavelength fluctuations that crossed
the horizon before the end of inflation. These modes do not oscillate and the Bo-
golyubov coefficients have no clear physical meaning any longer. In turns however
out that the mode amplitudes |fk|2 contain the relevant information for obtaining
the particle number.

6.3 Analytical theory for particle production

The numerical simulation shows that the long-wavelength modes give the dom-
inant contribution to particle production. One is for this reason able to study
the problem analytically. The long-wavelength modes will at late times become
nonrelativistic and their number density is given by

nχ =
ρχ
m

=
1

2
mχ2. (6.19)

The modes that remain outside horizon acts like a classical homogeneous field with
amplitude

〈χ2〉 =
1

(2π)3

∫
d3k |χk|2 =

1

2π2a2

∫
dk k2|fk|2. (6.20)
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Using the Hankel function solutions (6.15), we obtain

〈χ2〉 =
1

(2π)
3

∫
d3k

k

(
e−2Ht

2
+
H2

2k2

)
. (6.21)

Setting H = 0, we see that the first term corresponds to the vacuum fluctuation
contribution in Minkowski space. The second term arises because of inflation. It is
shown in [8] that long-wavelength fluctuations with m2 � H2 in a de Sitter space
lasting for a finite amount of time behave as

〈χ2〉 =
3H4

8π2m2

[
1− exp

(
−2m2

3H
t

)]
. (6.22)

In the massless limit, this expression becomes

〈χ2〉 =
H3t

4π2
. (6.23)

The expression becomes more complicated in realistic models of inflation, where
the Hubble parameter varies with time. In such cases the (massless) fluctuations
satisfy [9]

d〈χ2〉
dt

=
H(t)3

4π2
(6.24)

In the case of the λφ4-theory, we have

H2 =
2πλ

3M2
p

φ4, (6.25)

and the differential equation reads

d〈χ2〉
dt

=
1

4π2

(
2πλ

3

)3/2
φ(t)6

M3
p

=
1

4π2

(
2πλ

3

)3/2
φ6

0

M3
p

exp

(
−
√

6λ

π
Mpt

)
, (6.26)

where we have inserted the solution (6.4). Integrating up to large t, we obtain

〈χ2〉 =
λ

18

(
φ3

0

M2
p

)2

. (6.27)

The typical amplitude is then given by

χ0 =
√
〈χ2〉 =

√
λ

18

φ3
0

M2
p

. (6.28)

This shows that the amplitude depend strongly on φ0.
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Closing Remarks

The primary goal of this thesis was to investigate the phenomenon of particle
production by gravitational fields. This is indeed an intriguing subject since it
is based on using the methods of quantum field theory in curved spacetime. We
only considered the most simple example, where a minimally coupled scalar field
propagated in a flat FRW spacetime. We studied this analytically for an asymptot-
ically static model. Then we investigated the validity of the instantaneous vacuum
prescription, where one minimizes the Hamiltonian at a given moment of time.
The particle number could then be obtained by means of perturbation theory. We
found that such a prescription could be meaningful for some momentum modes,
as long as the particle production in that mode was not too big. However, it
turns out that the most interesting realistic cases of particle production happens
during inflation, or shortly after inflation during reheating. If the particle produc-
tion is very efficient, such as with light moduli fields, this leads to unacceptable
cosmological consequences [9]. If the production is very inefficient, such as with
superheavy particles, they can be a possible dark matter candidate [10]. In the
last chapter we discussed particle production during inflation, and saw that the
dominant contribution to the energy density and particle number came from long-
wavelength modes produced during inflation and frozen in with high amplitudes.
In such cases, the formalism of Bogolyubov coefficients was less useful since these
modes were not exhibiting particle-like behavior. One could however study these
in terms of the mode amplitude which contains the relevant information.

Due to the time it took to develop a feel for the subject, there was only so much
we could do. In this we thesis, we have only discussed scalar fields in expanding
FRW-universes. An extension to higher spin field could therefore be interesting
to look at. As an example, one could study the production of gravitinos in the
early universe. Moreover, we could have done the numerical calculations we did
for other models of inflation.
On a personal level, one main goal of this work was to acquire the knowledge
required to follow some of the ongoing research in the field. Particle production
from inflation represents a fascinating idea that should be taken serious in all
inflationary models. It has also given me a broader overview of cosmology in
general.
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Appendix A

Relevant Mathematics.

A.1 Time dependent Oscillators

We now discuss some features of the time-dependent one-dimensional oscillator

ẍ+ ω(t)x = 0. (A.1)

It is a second order equation and therefore has a two-dimensional solution space,
that is, if x1(t) and x2(t) are two linearly independent solutions of (A.1) then
every solution x3(t) can be written as a linear combination of x1(t) and x2(t). The
Wronskian of two functions x1 and x2 is defined as

W (x1, x2) ≡ ẋ1x2 − x1ẋ2. (A.2)

A solution x(t) of equation (A.1) have a time independent wronskian. To see this
note that

d

dt
W (x, x∗) = ẍx∗ − xẍ∗ = −ω(t)(xx∗ − xx∗) = 0. (A.3)

We may therefore normalize x(t) such that Im(x′x∗) = W [x,x∗]
2i = 1.

A.2 Eulers Gamma function

The gamma-function obey the following relations

Γ(1 + x) = xΓ(x), (A.4)

|Γ(iy)|2 =
π

y sinh(πy)
, when y i real. (A.5)
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A.3 Riemann’s differential equation and Hyper-
geometric functions

A hypergeometric series is a series of the form

2F1(α, β, γ, z) = 1 +
α · β
γ · 1 z +

α(α+ 1)β(β + 1)

γ(γ + 1) · 1 · 2 z2 + · · · (A.6)

Hypergeometric functions satisfy the following important transformation formulas

F (α, β; γ; z) = (1− z)γ−α−βF (γ − α, γ − β; γ; z), (A.7)

F (α, β; γ, z) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
F (α, β;α+ β − γ; 1− z)

+ (1− z)γ−α−β Γ(γ)Γ(α+ β − γ)

Γ(α)Γ(β)
F (γ − α, γ − β; γ − α− β + 1; 1− z).

(A.8)

Riemann’s differential equation is given by

d2u

dz2
+

[
1− α− α′
z − a +

1− β − β′
z − b +

1− γ − γ′
z − c

]
du

dz

+

[
αα′(a− b)(a− c)

z − a +
ββ′(b− c)(b− a)

z − b

+
γγ′(c− a)(c− b)

z − c

]
u

(z − a)(z − b)(z − c) = 0,

(A.9)

and satisfies α+ α′ + β + β′ + γ + γ′ − 1 = 0. It may be written schematically as
follows

u = P




a b c
α β γ z
α′ β′ γ′



 . (A.10)

and the following transformation formulas are then valid

(
z − a
z − b

)k (
z − c
z − b

)l
P




a b c
α β γ z
α′ β′ γ′





= P





a b c
α+ k β + l γ − k − l z
α′ + k β′ + l γ′ − k − l



 .

(A.11)

The hypergeometric differential equation is a special case of (A.9) with

u = P





0 1 ∞
0 0 α z

1− γ γ − α− β β



 . (A.12)
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A special case of (A.11) is

zk(1− z)lP





0 1 ∞
α β γ z
α′ β′ γ′



 = P





0 1 ∞
α+ k β + l γ − k − l z
α′ + k β′ + l γ′ − k − l



 . (A.13)
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Appendix B

Analytical Solution of
Riemanns differential
equation

We want to solve the differential equation

d2u

dη2
+
[
k2 +m2 (A+B tanh(ρη))

]
u(η) = 0. (B.1)

It is convenient to first make the substitution

ξ =
1 + tanh (ρη)

2
. (B.2)

Under the substitution, the new differential operators then become

d

dη
=

dξ

dη

d

dξ
=
ρ

2

(
1− tanh2(ρη)

) d

dξ
= 2ρξ(1− ξ) d

dξ
,

d2

dη2
= 4ρ2ξ2(1− ξ)2 d2

dξ2
+ 4ρ2ξ(1− ξ)(1− 2ξ)

d

dξ
.

(B.3)

Recall the definitions

ωin = k2 +m2(A−B),

ωout = k2 +m2(A+B),

ω± =
1

2
(ωout ± ωin) .

(B.4)

We can write the remaining terms as

k2 +m2(A+B tanh(ρη)) = k2 +m2(A+B(2ξ − 1))

= ω2
in + 2Bm2ξ

= ω2
in + (ω2

out − ω2
in)ξ

= ω2
in(1− ξ) + ω2

outξ.

(B.5)
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Substituting the above expressions into the equation and dividing through it by
the overall factor 4ρ2ξ2(1− ξ)2, we obtain a Riemann type differential equation

[
d2

dξ2
+

(
1

ξ − 1
+

1

ξ

)
d

dξ
+

(
ω2

out

4ρ2

1

ξ − 1
− ω2

in

4ρ2

1

ξ

)
1

ξ(ξ − 1)

]
ũ(ξ) = 0. (B.6)

With

u = P




a b c
α β γ ξ
α′ β′ γ′



 , (B.7)

we see that we can take e.g. a = 0, b = 1 and c = ∞. To determine the other
coefficients, we have

1− α− α′ = 1, αα′ =
ω2

in

4ρ2
⇒ α = −α′ =

iωin

2ρ
, (B.8)

1− β − β′ = 1, ββ′ =
ω2

out

4ρ2
⇒ β = −β′ =

iωout

2ρ
, (B.9)

1− γ − γ′ = 1, γγ′ = 0⇒ γ = 1− γ′ = 0. (B.10)

Thus we obtain

u = P





0 1 ∞
iωin

2ρ
iωout

2ρ 1 ξ

− iωin

2ρ − iωout

2ρ 0



 . (B.11)

We want to write the solution in terms of hypergeometric functions and therefore
use the transformation formula (A.13) to write it as (A.12). The result is

u = ξ
iωin
2ρ (1− ξ)

iωout
2ρ

2F1

[
iω+

ρ
, 1 +

iω+

ρ
; 1 +

iωin

ρ
; ξ

]
. (B.12)

Note that

ξ
iωin
2ρ =

(
1 + tanh(ρη)

2

) iωin
2ρ

=

(
eρη

2 cosh(ρη)

) iωin
2ρ

= e
iωinη

2 e−
iωin
2ρ ln 2 cosh(ρη),

(B.13)

and similarly

(1− ξ)
iωout
2ρ =

(
1− tanh(ρη)

2

) iωin
2ρ

= e−
iωoutη

2 e−
iωout
2ρ ln 2 cosh(ρη). (B.14)

Putting this together, we can write the solution as

u(η) = exp i

(
−ω−η −

ω+

ρ
ln 2 cosh(ρη)

)
(B.15)

× 2F1

[
iω+

ρ
, 1 +

iω+

ρ
; 1 +

iωin

ρ
; ξ

]
. (B.16)
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Now, we want to write the solution in terms of two sets of independent solutions,
one set behaving purely as a positiv and negative frequence exponentials as η →∞.
We start by transforming u(η) according to (A.7)

u(η) = exp i

(
ω+η +

ω−
ρ

ln 2 cosh(ρη)

)
(B.17)

× 2F1

[
− iω−

ρ
, 1− iω−

ρ
; 1 +

iωin

ρ
; ξ

]
≡ u∗in(η). (B.18)

To see that this is indeed the in-solution, we let look at limη→−∞ uin(η). First, we
note that

2F1

[
α, β; γ;

1 + tanh(ρη)

2

]
→ 1, (B.19)

ln 2 cosh(ρη)→ −ρη. (B.20)

for large negative η. Combining this we get

uin → e−iωinη as η → −∞. (B.21)

We use the Wronskian to normalize the solution and set (as η →∞)

W [uin, u
∗
in] = 2i. (B.22)

From this we find

uin(η) =
1√
2ωin

exp i

(
−ω+η −

ω−
ρ

ln 2 cosh(ρη)

)

× 2F1

[
iω−
ρ
, 1 +

iω−
ρ

; 1− iωin

ρ
; ξ

]
.

(B.23)

The out-solution is the one that approaches e−iωout as η → ∞. In terms of
hypergeometric functions, it is the one expanded around the regular singular point
ξ − 1. Using formula (A.8), we find

2F1

[
iω−
ρ
, 1 +

iω−
ρ

; 1− iωin

ρ
; ξ

]
= Ak 2F1

[
iω−
ρ
, 1 +

iω−
ρ

; 1 +
iωout

ρ
; 1− ξ

]

+Bk(1− ξ)−
iωout
ρ

2F1

[
1− iω+

ρ
,− iω+

ρ
; 1− iωout

ρ
; 1− ξ

]
,

(B.24)

with

Ak =
Γ(1− iωin

ρ )Γ(− iωout

ρ )

Γ(1− iω+

ρ )Γ(− iω+

ρ )
, (B.25)

77



Bk =
Γ(1− iωin

ρ )Γ( iωout

ρ )

Γ( iω−
ρ )Γ(1 + iω−

ρ )
. (B.26)

Hence, we obtain

uin
k (η) = αku

out
k (η) + βku

out∗
−k (η), (B.27)

with the out-solution

uout
k (η) =

1√
2ωout

exp i

(
−ω+η −

ω−
ρ

ln[2 cosh ρη]

)

× 2F1

[
iω−
ρ
, 1 +

iω−
ρ

; 1 +
iωout

ρ
; 1− ξ

]
.

(B.28)

and the Bogolyubov coefficients

αk =

√
ωout

ωin
Ak, (B.29)

βk =

√
ωout

ωin
Bk. (B.30)

The particle number is then found from

|βk|2 =
ωout

ωin

|Γ(1− iωin

ρ )|2|Γ( iωout

ρ )|2

|Γ( iω−
ρ )|2|Γ(1 + iω−

ρ )|2
. (B.31)

The properties of the Γ-function then yields

∣∣∣∣Γ
(

1− iωin

ρ

)∣∣∣∣
2

=
πωin

ρ sinh(πωin

ρ )
, (B.32)

∣∣∣∣Γ
(

1 +
iω−
ρ

)∣∣∣∣
2

=
πω−

ρ sinh(πω−ρ )
, (B.33)

∣∣∣∣Γ
(

iωout

ρ

)∣∣∣∣
2

=
πρ

ωout sinh(πωout

ρ )
, (B.34)

∣∣∣∣Γ
(

iω−
ρ

)∣∣∣∣
2

=
πρ

ω− sinh(πω−ρ )
. (B.35)

Combining these yields

|βk|2 =
sinh2(πω−ρ )

sinh(πωin

ρ ) sinh(πωout

ρ )
. (B.36)
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