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Sammendrag

I denne masteroppgaven har vi studert fasediagrammet tilhørende den kirale faseovergangen til
kvantekromodynamikk (QCD) i T -µ-planet. Vi bruker den lineære sigmamodellen med kvarker for
å modellere QCD ved små energier. For å regne ut fasediagrammet benytter vi oss først av mid-
delfeltteori. Med denne tilnærmingen finner vi en førsteordens faseovergang i hele T -µ-planet i den
kirale grensen. Imidlertid finner vi en crossover ved null kjemisk potensial med fysiske kvarkmasser,
som endres til en førsteordens faseovergang når µ økes. Dette impliserer eksistensen av det kritiske
punktet.

Etter dette flytter vi fokuset til en mer raffinert teknikk, nemlig den funksjonale renormaliser-
ingsgruppen. Vi bruker så lokalpotensialtilnærmingen for å finne en likning for det effektive poten-
sialet. Med denne tilnærmingen finner vi en annenordens faseovergang ved null kjemisk potensial
i kiralgrensen, som endres til en førsteordens overgang når vi øker µ. Dette betyr at ved bruk
av renormaliseringsgruppen fant vi et kritisk punkt også i den kirale grensen. Når vi sammen-
ligner fasediagrammet vi fikk ved å bruke middelfeltteori med fasediagrammet vi fikk ved å bruke
renormaliseringsgruppen observerer vi at det sistnevnte fasediagrammet faller av raskerer for høye
kjemiske potensial enn førstnevnte.

Selv om denne oppgaven i hoveddel angår QCD med to kvarker, så har en tre-kvark-modell også
blitt introdusert, og vi finner faseovergangen til denne ved bruk av middelfeltteori. Sammenlignet
med to-kvark-modellen ser vi at effekten av å inkludere særkvarken på fasediagrammet er svært
liten. Forskjellen mellom diagrammene med og uten særkvarken blir større dersom vi velger en
høyere verdi for sigmamassen, men selv ved 800 MeV er forskjellen fortsatt liten.
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Abstract

In this thesis we map out the phase diagram of the chiral phase transition of quantum chromody-
namics (QCD) in the plane of temperature and quark chemical potential. We use the linear sigma
model with quarks (LSMq) as a low energy effective theory of QCD. We first employ the mean-
field approximation to calculate the phase diagram. With this approximation we find a first-order
phase transition in the whole T -µ plane in the chiral limit. However at the physical point we find
a crossover at zero chemical potential, which changes into a first-order transition as we increase µ,
implying the existence of a critical endpoint.

We then turn our attention to the more sophisticated functional renormalisation group and
nonperturbative approximations. Using the local potential approximation (LPA), which is the
simplest nonperturbative approximation, we found a second-order phase transition in the chiral
limit at zero chemical potential. As we increased µ, the transition changed into a first-order one,
which means that in contrast to the results from the mean-field approximation we found a critical
endpoint also in the chiral limit. When comparing the phase diagrams obtained in the mean-field
approximation with the phase diagrams from the LPA, we see that the latter phase diagram declines
faster for high chemical potentials.

While this work is primarily concerned with two-flavour QCD, we also introduce the three-flavour
LSMq model and map out the phase diagram in the mean-field approximation. We find that the
inclusion of the strange quark only has a minor effect on the phase diagram. The difference becomes
more prominent as we increase the mass of the sigma particle to 800 MeV, but the difference is still
small.
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Notation

Natural units ~ = c = kB = 1 are used throughout the thesis.

The metric is
ηµν = diag(1,−1,−1,−1).

If coordinates are denoted by a simple x or y, the full space-time vectors xµ, yµ are implied, and
with multiplication of these, the contraction has already been carried out xp = xµp

µ. Space vectors
will be written in boldface x, y.

Greek indices take values starting at 0, while Latin letters take values starting at 1. Einstein’s
sum convention is always implied, meaning that Greek indices are always contracted up with down,
while Latin ones are summed if repeated. Examples:

xµxµ = x2
0 − x2

1 − x2
2 − x2

3

aibi =
∑

i

aibi

Whenever d is denoted as the dimension, both space and time dimensions are included. In most
cases we will work in 4dMinkowski space, meaning one time dimension and three spatial dimensions
with the metric signature above.

Space-time integrals with no boundary conditions imply that they are taken to infinity
∫

d4x =

∫ ∞

−∞
dt

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz

If the integration measure is ddx, this implies integration over all space-time dimensions. The
integration measure dx is over all spatial dimensions. Sometimes the notation

∫

x
and

∫

q

will be used. This also implies integration over all space-time dimensions, but it is context de-
pendent. In the sections on quantum field theory, they are integration over Minkowski space-time,
while in the sections on thermal field theory they include the thermal limit in Euclidean space, or
are identical to the sum-integral in Fourier space:

∫

x
=

∫ β

0
dτ

∫
dx,

∫

q
≡ T

∞∑

n=−∞

∫
dp

(2π)3

xi



I have chosen to use the standard representation of the γ matrices

γ0 =

(
I 0

0 −I

)
, γi =

(
0 τ i

−τ i 0

)
, γ5 =

(
0 I

I 0

)
,

where τ i are the three Pauli matrices, I is the 2× 2 identity matrix, and γ5 = iγ0γ1γ2γ3.
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Introduction

The phase diagram in the plane of temperature T and baryon chemical potential µB (i.e. baryon
density) of quantum chromodynamics (QCD), the theory describing the dynamics and interactions
of quarks and gluons, has in recent years received a lot of attention due to its rich structure [1, 2].
At low temperature and density, QCD is in in the so called hadronic phase, where quarks and
gluons only appear as bound states such as the baryons and mesons. This owes to the confining
nature of the strong force. At high energy scales on the other hand, QCD possesses asymptotic
freedom, which allows for interesting and exotic phases at high temperatures and/or high densities.
For example heavy-ion collider experiments at RHIC (Relativistic Heavy Ion Collider) and LHC
(Large Hadron Collider) has verified the existence of quark-gluon plasma at high temperatures, and
the same phase is strongly believed to have existed in the very early universe. At low temperatures
but high densities, a quark matter phase as well as multiple colour-superconducting phases are
predicted. These phases are believed to exist inside compact stars and be present at the collapse of
neutron stars [3].

The aforementioned confining properties of QCD makes it an exceedingly difficult theory to work
with, as perturbative techniques break down at energy scales lower than that of deconfinement. One
therefore has to resort to other methods of calculation such as lattice QCD, a numerical technique
using a discretised version of QCD to calculate various quantities from first principles. Another
option, which we will make use of in this thesis, is to model QCD with effective theories, simplifying
the picture considerably. One such model is the linear sigma model with quarks, in which gluons have
effectively been replaced by mesons, and quark-gluon interactions with quark-meson interactions.
On top of being a very successful model, it has an historic background as Yukawa proposed in 1934
[4] that the force particle corresponding to the strong force was in fact the meson, for which he later
received the Nobel Prize in 1949.

Even using effective models for QCD we still can not find analytic expressions for the quantities
needed to calculate the phase diagrams, and further approximation is needed. We will first use
the mean-field approximation, to calculate said quantities, but we will quickly turn to a more
sophisticated nonperturbative functional renormalisation group technique. One should notice the
small figures in the upper right corner of every odd page. This is the plot of an effective potential
at various stages of renormalisation, calculated using the renormalisation group equations we will
derive later in this thesis, and is meant to be flipped through like a flip book.
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CHAPTER 1

Preliminaries

In this thesis I will assume that the reader is familiar with the basics of quantum field theory (QFT)
and I will therefore only give a very brief derivation of it. Afterwards I will continue with a study of
some of its properties and applications before proceeding to a formalism in which the temperature
is nonzero.

1 Quantum field theory

In the early 20th century, at the discovery of the quantum theory, physicists realised that physics
might not be as predictive as they first thought. Quantum theory, which seemingly governed the
mechanics at very small scales, could only calculate probabilities for outcomes. Meaning that any
quantum process would have a fundamental element of uncertainty tied to it. One manifestation
is Heisenberg’s uncertainty principle, which states that if the position of a particle is known to a
certain precision, there is a limit to how precise one can know the momentum of the same particle.
This limit is determined by the Planck constant found almost 30 years earlier by Planck in relation
to the energy distribution of black body radiation. Therefore, in any quantum theory, for a given
process one would calculate the probability for a certain outcome, and use that to make predictions
of what will generally occur. These probabilities are called transition amplitudes, and we will have
a look at how they are defined and calculated using quantum field theory.

A transition amplitude is defined as 〈B, tf |A, ti〉, where the square of this is the probability of
finding the system in state |B〉 at time tf given it was in state |A〉 at time ti. This is in the so called
Scrödinger representation, in which the state of the particle is time dependent, and can be evolved
in time by applying the time-evolution operator e−iĤ(tf−ti). In the Heisenberg representation on the
other hand, particle states are time independent, however quantum mechanical operators are not.
We will not concern ourselves with this representation here, and in the Schrödinger representation,
the transition amplitude is

〈B| e−iĤ(tf−ti) |A〉 . (1.1)

The time-evolution operator stems from the stationary solution to the Schrödinger equation

i
∂φ

∂t
= Ĥφ , (1.2)

where Ĥ is the quantum mechanical operator corresponding to the classical Hamiltonian.

First let us derive a formula for the transition amplitude of a specific system. The algebra and
identities needed is listen in appendix A1. To calculate Eq. (1.1) we insert N (taken to infinity)
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complete sets of states |φ〉 at times tn separated by an infinitesimal time ∆t = (tf − ti)/N . We also
insert a complete set of states in momentum space (|π〉). This yields

〈φf | e−iĤ(tf−ti) |φi〉 = lim
N ∞

∫ (
N∏

n=1

dφn
dπn
2π

)
〈φf |πN 〉 〈πN | e−iĤ∆t |φN 〉 〈φN |πN−1〉

× 〈πN−1| e−iĤ∆t |φN−1〉 . . . 〈π1| e−iĤ∆t |φ1〉 〈φ1|φi〉 . (1.3)

Here |φn〉 is the state at time tn = ti+n∆t, while |πn〉 is the momentum rep. at time tn. Expanding
the exponents to first order in ∆t we should obtain terms on the form Ĥ |φn〉. We assume that all
|φn〉’s are eigenstates to the operator Ĥ with eigenvalues Hn. Identifying this as the series expansion
of an exponential, and evaluating the scalar products 〈φn|πm〉 using (A.9) we finally arrive at

〈φf | e−iĤ(tf−ti) |φi〉 = lim
N ∞

∫ (
N∏

i=1

dφi
dπi
2π

)
δ(φ1 − φi)

× exp

{
−i∆t

N∑

i=1

∫
dd−1x

[
H(φi, πi)− πi(φi+1 − φi)/∆t

]
}
. (1.4)

Taking the continuum limit we rewrite the sum in the exponential as an integral over time, and
recognise the last term as the formal definition of the partial derivative w.r.t. time, of the field φ. A
new notation for the outer integration measure is also introduced symbolising functional integration,
but is identical to what is defined above:

〈φf | e−iĤ(tf−ti) |φi〉 =

φ(tf )=φf∫

φ(ti)=φi

DφDπ exp
{
i

∫ tf

tI

dt

∫
dd−1x

(
π
∂φ

∂t
−H(φ, π)

)}
. (1.5)

1.1 Transition amplitudes for bosons

To continue the calculations from Eq. (1.5), we will choose a simple Hamiltonian describing a system
of scalar fields with a standard kinetic term and a momentum independent potential,

H =
1

2
π2 +

1

2

(
∇φ
)2

+
1

2
m2φ2 + U(φ). (1.6)

Even though this might seem simple, it can be easily extended to other fields by using the associated
kinetic term. Actually, the Hamiltonian describing the famous Standard Model of particle physics
is this form, only extended to all the various fields. Inserted into Eq. (1.5), we have

〈φf , tf |φi, ti〉 = lim
N ∞

∫
DφDπ exp

{
N∑

i=1

∫
dd−1x

[
iπi(φi+1 − φi)

− i∆t
(

1
2π

2
i + 1

2(∇φi)2 + 1
2m

2φ2
i + U(φi)

)]}
. (1.7)

The fields are all discretised in time, but also need to be discretised in space for us to be able to
evaluate the integrals. This we do by dividing space into M3 boxes with sides of length a and

2



take the limit a 0. To make sure we keep track of all dimensionfull quantities, we substitute
πi with a dimensionless one πi(x) = ρi(x)/

√
a3∆t. As the π’s in Eq. (1.7) is term by term only

dependent upon the current space-time coordinate, we end up with NM3 Gaussian integrals that
can be evaluated using Eq. (B.4),

∞∫

−∞

dρj
2π

exp
{
− i1

2ρ
2
j + i

√
a3

∆t
(φj+1 − φj)ρj

}
=

1√
2πi

exp
{
ia3(φj+1 − φj)2

2∆t

}
. (1.8)

Taking the continuum limit again in both space and time yields the final result

〈φf , tf |φi, ti〉 =

(
1

2πia3∆t

)(NM3/2)
∫
Dφ exp

{
i

∫
dt

∫
dd−1x

[
1
2

(∂φ
∂t

)2
− 1

2

(
∇φ
)2 − 1

2m
2φ2 − U(φ)

]}
,

= C

∫
Dφ exp

{
i

∫
dt

∫
dd−1xL(∂µφ, φ)

}
. (1.9)

The term in the exponential is known as the action, S =
∫

dt L =
∫
x L. To get a physical inter-

pretation of this result, it is easier to turn to the quantum mechanical result. Assume we have a
particle at position xi at time ti, and want to calculate the probability that it is at position xf at
time tf . Analogous to the calculation we just did, the transition amplitude is given as

〈xf |xi〉 =

∫ ( N∏

n=1

dxn

)
ei

∫ tf
ti

L(xn,ẋn) . (1.10)

The transition amplitude can therefore be interpreted as the interference between all possible paths
in space the particle can take to get from position xi to position xt. The phase associated with
each path is given by the action said path generated. This method for calculating the transition
amplitudes is therefore often referred to as the path-integral formalism. In an analogous manner,
the transition amplitudes in field theory is the sum of all intermediate field configurations the field
φ can take “moving” from configuration φi to configuration φf .

1.2 Generating functional

The transition function calculated in Eq. (1.9) calculates the probability for a state given at time ti
evolving into a specific state at time tf . Usually what happens both before and after the measured
time, as well as everything happening in the background is irrelevant. It is therefore customary to
simplify it by choosing both |φi〉 and |φf 〉 to be the vacuum state |Ω〉, and take the limits ti −∞
and tf ∞. Now that we have removed the initial and final state from the transition, how can
this predict any physics? In the spirit of quantum mechanics, we promote the field φ to an operator
and expand it in Fourier space,

φ̂(x) =

∫
d3p

(2π)3
√

2Ep

(
âpe
−ipx + â†pe

ipx
)
. (1.11)

âp and â†p are the annihilation and creation operators respectively of states with particles having
momentum p. Meaning that

â†p |Ω〉 = |p〉 , (1.12)

âp |p〉 = |Ω〉 , (1.13)

3



in which |p〉 is a one particle state with momentum p. Transitions from a state with a set of particles
to another state with another set of particles can therefore be expressed using the correlation
functions:

Gn(x1, x2, . . . , xn) = 〈Ω|T
{
φ(x1)φ(x2) · · ·φ(xn)

}
|Ω〉 , (1.14)

where T is the time ordering operator making sure that for instance destruction of a particle cannot
happen before is has been created. The relation between the transition amplitude and the correlation
function is summed up in the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula which we
will not go into here. A full derivation can be found in introductory books on the subject, e.g. [5, 6].
Using the results from the transition amplitude calculations, the correlation functions (also called
n-point functions) can be expressed on integral form:

〈Ω|T
{
φ(x1)φ(x2) · · ·φ(xn)

}
|Ω〉 = N−1

∫
Dφ φ(x1)φ(x2) · · ·φ(xn)exp

{
i

∫
ddxL(∂µφ, φ)

}
. (1.15)

In the above expression N is a normalisation constant. We want the probability normalised so that
〈Ω|Ω〉 = 1, implying that

N =

∫
Dφ exp

{
i

∫
ddxL

}
. (1.16)

There exists a simpler method for calculating these correlation functions based on an object called
the generating functional. Suppose we included a new term in the action in the form of an external
source J(x) coupled to the field ∫

ddxJ(x)φ(x). (1.17)

We call the resulting object the generating functional and denote it W [J ] (also often written Z[J ]),

W [J ] =

∫
Dφ exp

{
i

∫
ddx

[
L+ J(x)φ(x)

]}
. (1.18)

Taking the functional derivative of W with respect to J , then setting J = 0, results in

1

iW [0]

δ

δJ(x1)
W [J ]

∣∣∣
J=0

=
1

W [0]

∫
Dφ φ(x1) exp

{
i

∫
ddxL

}
, (1.19)

which is exactly the correlation function of one field at position x1. This is easily generalised, and
the correlation functions can therefore be conveniently expressed as derivatives of the generating
functional

〈Ω|T
{
φ(x1)φ(x2) · · ·φ(xn)

}
|Ω〉 =

1

W [0]

δ

iδJ(x1)

δ

iδJ(x2)
· · · δ

iδJ(xn)
W [J ]

∣∣∣
J=0

. (1.20)

If the Lagrangian is a dependent on more than one field, every field can have a separate external
source coupled to it. For example Lagrangians with fermionic fields will have one source η̄ coupled
to the Dirac field ψ, and another source η coupled to the Dirac adjoint of ψ:

W [η, η̄] =

∫
Dψ̄ψ exp

{
i

∫
ddx

[
L(ψ, ψ̄) + η̄ψ + ψ̄η

]}
. (1.21)
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1.3 Symmetries

Now that the basics of QFT has been introduced we turn to a short analysis of the symmetries of
the transition amplitudes. Then we state and prove Noether’s theorem, which will be important
when we later wish to couple the quarks to a quark number chemical potential.

Symmetries of the Lagrangian

Arguably the most important symmetries are those of the Lagrangian itself, as one usually defines a
physical system by its Lagrangian density and not e.g. its action. In fact, there are many situations
where one requires the Lagrangian to be invariant under certain transformations, and in that way
constructs the Lagrangian based on which symmetries it must satisfy. For example the Lagrangian
of a relativistic model must be invariant under a Lorentz boost, implying that only terms where all
Lorentz indices have been contracted are allowed.

Symmetries of the action

While all symmetries of the Lagrangian also are symmetries of the action, there exists transforma-
tions that are symmetries of the action, but not the Lagrangian. To see this, assume we have a
transformation which adds a total derivative to the Lagrangian density

L L+ ∂µJ µ. (1.22)

The corresponding action is

S′ =

∫

V
dxL+ ∂µJ µ = S +

∫

Ω
dS n̂ · ~J , (1.23)

where we used the divergence theorem to convert the integral over ∂µJ µ to a surface integral. If
the flux running out of the surface Ω is zero (which is often the case for physical current densities),
the action is invariant under the transformation of Ref. (1.22).

Euler-Lagrange equation

The equations of motion in classical mechanics can actually be expressed as a symmetry of the
action. In classical mechanics, the physical field configuration is that which minimises the action.
At the minimum, the derivative of the action with respect to φ and ∂φ is zero, and therefore the
action should be invariant under an infinitesimal transformation of these two quantities

S(φ+ δφ, ∂φ+ δ∂φ)
∣∣
φ0

= S(φ, ∂φ)
∣∣
φ0
. (1.24)

Rewriting this using the definition of the action, we get

S
(
φ+ δφ, ∂φ+ ∂δφ

)
=

∫
dxL

(
φ+ δφ, ∂φ+ ∂δφ

)
,

=

∫
dx
{
L
(
φ, ∂φ

)
+
∂L
∂φ

δφ+
∂L
∂∂µφ

∂µδφ
}
,

=

∫
dx
{
L
(
φ, ∂φ

)
+
[∂L
∂φ
− ∂µ

∂L
∂∂µφ

]
δφ
}

+

∫

Ω
dS n̂µ

∂L
∂∂µφ

δφ

︸ ︷︷ ︸
=0

,

= S(φ, ∂φ) +

∫
dx
[∂L
∂φ
− ∂µ

∂L
∂∂µφ

]
δφ. (1.25)
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The surface integral in the third line is zero because the variation of the field must be zero at the
boundary (δφ(Ω) = 0). Comparing Eqs. (1.24) and (1.25), we see that the last term must be zero
for the action to be invariant. The deviation from the minimum, δφ, is arbitrary, and therefore the
expression in the parenthesis must vanish, giving the equations

∂µ
∂L
∂∂µφ

=
∂L
∂φ

. (1.26)

These are the equations of motion for the classical field φ, also known as the Euler-Lagrange equa-
tions.

Noether’s theorem

Noether’s theorem is an important result in field theory which summarises the connection between
continuous symmetries and conservation laws. The theorem is as follows:

For every continuous symmetry there exists a conserved current (jµ) corresponding to
that symmetry

Proof :

A continuous transformation is one where the field can be transformed by an infinitesimal amount
(φ φ+ δφ). Inserted into the Lagrangian:

L
(
φ+ δφ, ∂φ+ ∂δφ

)
= L+

∂L
∂φ

δφ+
∂L
∂∂µφ

∂µδφ,

= L+ ∂µ

( ∂L
∂∂µφ

δφ
)

+
[∂L
∂φ
− ∂µ

∂L
∂∂µφ

]
δφ, (1.27)

where we have written one of the terms as a total derivative plus a partial derivative, similar to
the partial integration done in Eq. (1.25). The expression in the [ ]-bracket is the Euler-Lagrange
equation, and is therefore zero. As noted previously, a symmetry transformation of the action is
one which at most adds a total derivative to the Lagrangian. Therefore we can equate the right
hand sides of Eqs. (1.22) and (1.27), and we are left with a conservation law,

∂µ

( ∂L
∂∂µφ

δφ− Jµ
)

= 0 ≡ ∂µjµ. (1.28)

The conserved current, jµ is often called the Noether current, emphasising that it is a conserved
current corresponding to a continuous symmetry. There is an analogue to Noether’s theorem in
QFT, where every continuous symmetry has a Schwinger-Dyson equation associated with its Noether
current conservation law. We will not derive this here, but a derivation can be found in [6], pp. 308.

Example: U(1) symmetry

Probably the simplest demonstration of Noether’s theorem is by constructing a U(1) symmetric
Lagrangian and applying Noether’s theorem to an infinitesimal U(1) symmetry transformation. The
Lagrangian of a massive, noninteractive complex field φ is

L = 1
2∂µφ

∗∂µφ− 1
2m

2φ∗φ. (1.29)
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A complex field has two independent components, and we will therefore treat φ and φ∗ as indepen-
dent fields. One can easily see that the above Lagrangian is symmetric under a U(1) transformation,
φ eiαφ and φ∗ e−iαφ, where α is a constant. On infinitesimal form, these transformations are

φ φ + iαφ , (1.30)
φ∗ φ∗ − iαφ∗, (1.31)

from which we can see that δφ = iαφ and δφ∗ = −iαφ∗. As the Lagrangian was constructed to be
invariant under a U(1) symmetry, this is not only a symmetry of the action, but also the Lagrangian,
meaning that the current J µ in Eq. (1.28) is zero. The Noether current is therefore

jµ = 1
2 iφ∂µφ

∗ − 1
2 iφ
∗∂µφ = Im

[
φ∗∂µφ

]
, (1.32)

which can be shown to be the number density four-current of the complex field φ.

1.4 Abelian gauge theories

In the previous example we described a theory which was invariant under a global continuous
transformation, meaning that the phase of the U(1) transformation is the same for all space-time
coordinates. It is interesting to see how we can promote this symmetry to be local (α α(x)).
A theory invariant under such a local continuous symmetry is referred to as a gauge theory. To
illustrate, let us return to the U(1) symmetric Lagrangian.

Example: U(1)

Transforming the Lagrangian in Eq. (1.29) using a space-time dependent phase α(x) we end up
with the following:

L′ = ∂µ
(
e−iα(x))φ∗

)
∂µ
(
eiα(x)φ

)
−m2φ∗φ,

= L+ iφ∂µα∂
µφ∗ − iφ∗∂µα∂µφ+ φ∗φ∂µα∂

µα. (1.33)

This Lagrangian is clearly not invariant under a local U(1) transformation, and we see that the
problem resides in the derivative terms. When α was a constant, the two operations of transforming
the field φ and taking the derivative of φ commuted, and we could therefore pull the factor eiα

outside the derivative and cancel it with the factor coming from φ∗, just as we do for the mass term.
Therefore, to ensure gauge invariance of the Lagrangian in Eq. (1.29) we introduce a new derivative
Dµ, called the covariant derivative, which also transforms under the gauge transformation in such
a way as to cancel the term caused by the commutator of ∂ and eiα(x):

∂µ Dµ = ∂µ + iAµ, (1.34)

where the gauge transform of the gauge field Aµ is

Aµ Aµ − ∂µα, (1.35)

The definition of the covariant derivative ensures that

Dµ(A)φ Dµ(A′)eiα(x)φ = eiα(x)Dµ(A)φ, (1.36)
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which implies that the new Lagrangian where we have replaced derivatives with covariant derivatives

L = 1
2

(
Dµφ

)∗(
Dµφ

)
− 1

2m
2φ∗φ, (1.37)

is invariant under a local U(1) symmetry transformation, but what is the meaning of these gauge
fields? In its current state we see that the gauge fields are coupled to φ, but they are not propagating
as there are no kinetic terms associated with them. We are allowed to include such a term in the
Lagrangian but it must also be gauge invariant. An example of such a kinetic term can be found in
electrodynamics, namely the electrodynamic field-strength tensor

Fµν = ∂µAν − ∂νAµ. (1.38)

Which when contracted with itself gives the Lagrangian of the electromagnetic fields

L = −1

4
FµνFµν = −1

2

(
E2 −B2

)
. (1.39)

With the gauge field Aµ behaving suspiciously like the electrodynamic four-potential, one would
suspect that Aµ can be used to describe photons. In fact, gauging with the U(1) symmetry group
is one of the easiest ways to couple a theory to electrodynamics. The substitution of the derivative
with the covariant derivative can be seen as field theory’s answer to the minimal substitution often
used in particle mechanics, and the gauge transformation of of the gauge field Aµ is the same as
the gauge transformation of electrodynamic four-potential. In a similar manner the weak force is
described by an SU(2) gauge symmetry and the strong force by an SU(3) gauge symmetry, but as
neither of these symmetry groups are Abelian, there are some complications which we will tackle in
Sec. 5.

1.5 Symmetry breaking

Now that we have analysed symmetries and their usefulness in QFT we will turn our attention to
the dynamics behind breaking these symmetries. Spontaneous symmetry breaking (SSB) and the
appearance of Goldstone bosons is of particular interest.

Breaking of a discrete symmetry

First of all, let us look at breaking of a discrete symmetry. The simplest discrete symmetry is the
Z1 symmetry, an example of a Z1 symmetric Lagrangian is

L = 1
2∂µφ∂

µφ− 1
2m

2φ2 − 1
4λφ

4 ≡ 1
2∂µφ∂

µφ− U(φ). (1.40)

Knowing that classical dynamics is governed by configurations which minimises the energy, the
minimum of the potential U(φ) is of some interest as the quantum ground state of the system
should be close to this values. The minimum is given by

φ0 =





0 m2 > 0,

±
√
−m2

λ m2 < 0.
(1.41)

If we have a mass parameter less than zero, we have two possible minima to choose from. While
they are themselves related by a Z1 transformation, choosing a minimum breaks Z1 symmetry as
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Figure 1.1: Discrete spontaneous symmetry breaking.

the ground state is not Z1 symmetric. This is what is known as spontaneous symmetry breaking,
its name owing to the fact that we “spontaneously” break the symmetry at the point of choosing a
minimum. An illustration is given in Fig. 1.1.

A little side note. One can argue that the choice m2 < 0 is not physical, as no particle can
have imaginary mass. But by analysing the fluctuations around the minimum, which is why were
interested in the minimum in the first place, we see that the fluctuating fields (φ = φ0 + φ̃) has
acquired a positive mass

√
2m

U(φ̃) ≈ U(φ0) +
1

2
U ′′(φ0)φ̃2 = U0 + |m2|φ̃2. (1.42)

Breaking of a continuous symmetry

The simplest example of a continuous symmetry being spontaneously broken can be studied by sim-
ply expanding the previous example to be O(2) symmetric by including an additional independent
field (φ φ = [φ1, φ2]):

L = 1
2∂µφ1∂

µφ1 + 1
2∂µφ2∂

µφ2 − 1
2m

2
(
φ2

1 + φ2
2

)
− 1

4λ
(
φ2

1 + φ2
2

)2
. (1.43)

If m2 < 0, the minima satisfies m2 +λ(φ2
1 +φ2

2) = 0. This time the minima are located on the circle
(φ2

1 + φ2
2) = −m2/λ, and once again we have to choose. Choosing φ10 =

√
−m2/λ, φ20 = 0, and

expanding the fields around this solution, we obtain

L = 1
2

(
∂µφ̃1

)2
+ 1

2

(
∂µφ̃2

)2 − |m2|φ̃1
2 − U0 +O(φ̃3). (1.44)

Again, even though we chose m2 < 0, a physical particle with positive mass appears, but also a
particle with no mass at all (here φ̃2). Looking at a plot of the potential in Fig. 1.2, we can identify
the massive particle as fluctuations perpendicular to the minimum curve (the red curve), and the
massless mode as fluctuations parallel to it. The massless mode is normally named the Goldstone
boson, as it is predicted by Goldstone’s theorem.
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Figure 1.2: Breaking of a continuous symmetry.

Goldstone’s theorem

For every spontaneously broken continuous symmetry, there appears at least one massless
particle. The number of massless particles is equal to the number of generators of the
broken group [7].

Proof :

Assume we have a Lagrangian on the form:

L = (kinetic terms)− U(φi), (1.45)

with N fields, φi. Expanding the potential around its minimum, we get

U(φi) = U(φi0) + 1
2(φi − φi0)(φj − φj0)

∂2U

∂φi∂φj

∣∣∣∣
φi0,φj0

+ . . . , (1.46)

where the double derivatives are positive as φ0 is the minimum of U . A continuous transformation
of the field φ can be written on its infinitesimal form:

φi φi + δφi. (1.47)

The system is symmetric under this transformation, and therefore U(φ + δφ) = U(φ). Expanding
the left hand side around δφ = 0, we get

U(φi) = U(φi + δφi) δφi
∂U

∂φi
= 0. (1.48)

Differentiating this expression with respect to φj and evaluating it at the minimum, we get
(
∂δφi
∂φj

)

φ0

(
∂U

∂φi

)

φ0

+ δφi

(
∂2U

∂φi∂φj

)

φ0

= 0, (1.49)

where the first term is zero, being the definition of the minimum. This implies that in any direction
φj in which δφj 6= 0, the double derivative is zero, and looking at the series expansion in Eq. (1.46)
this corresponds to a massless particle. These directions are exactly those in which the symmetry
has been spontaneously broken, proving Goldstone’s theorem. Additional proofs of Goldstone’s
theorem can be found in a paper by Goldstone, Salam and Weinberg form 1962 [8].
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Figure 1.3: The tadpole diagram.

1.6 Renormalisation

We will in this section look at some examples of perturbative renormalisation before we move on to
more advanced methods in Sec. 3. A simple λφ4 theory will be used to illustrate. The Lagrangian
for this system has already been written down multiple times, and is

Lλφ4 = 1
2∂µφ∂

µφ− 1
2m

2φ2 − 1
4!λφ

4. (1.50)

It is common to make use of the Feynman diagrams for keeping track of calculations in QFT. We
will not go into the formalism behind these diagrams, as a more complete overview can be found in
any introductory QFT text, e.g. [5, 6]. The Feynman rules for λφ4 are

=
i

p2 −m2
, = −iλ. (1.51)

First let us calculate the “tadpole diagram” shown in figure 1.3. Using the Feynman rules given in
Eq. (1.51), the diagram is given by the expression

M1 1 ∝ λ
∫

q

1

q2 −m2
. (1.52)

The momentum q is a variable in Minkowski space, but we can rotate the time-component to
the imaginary axis (known as a Wick-rotation) and we get the expression below in d-dimensional
Euclidean space

M1 1 ∝ λ
∫

ddq

q2 +m2
. (1.53)

If d is larger than, or equal to, 2, this expression diverges for large q. We therefore have to find a way
to rid ourselves of such divergences, but first a quick note. One might wonder what the quantity
M in the calculations above is. It is related to the transition amplitudes in the following way,

〈φf1, φf2, . . . , φfn|φi1, φi2, . . . , φim〉 = (2π)4δ
(
en-mom. cons.

)
iMif (1.54)

Also, unless otherwise stated, all calculations involving diagrams are “amputated”, meaning that
external lines have the Feynman rules,

= 1, = 1. (1.55)
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Regularisation

To be able to cure such divergences, some measure of their divergence is needed, one cannot simply
cancel infinity with infinity unless it is known that they cancel. The process of getting an analytic
expression for divergent terms in QFT is referred to as regularisation. There are multiple schemes
to follow when regularising a theory, and each of them have different virtues. We will use cut-off
regularisation for this example as it is easy to implement and easy to grasp. Other options include
dimensional regularisation[9], Pauli-Villars regularisation [10], lattice regularisation and Schwinger’s
proper time regularisation [11].

With cut-off regularisation one only takes momentum integrals up to some cut-off scale Λ by
either cutting the integration sharply at that scale (

∫∞ ∫ Λ), or by introducing a smooth cut-off
function, an example of which we will see in Sec. 3.4. Applying a sharp cut-off to Eq. (1.53), we
get:

M1 1 = iλ
2π2

2(2π)4

∫ ∞

0

q3dq

q2 +m2
−
Reg

−λ
16π2

∫ Λ

0

q3dq

q2 +m2
=
−λ

32π2

[
Λ2 −m2log

(m2 + Λ2

m2

)]
. (1.56)

Even though we have gained an analytic result for the contribution of the tadpole diagram, it is
still clearly ambiguous. The scale Λ is somewhat arbitrary and in the end we would like to take the
limit Λ ∞.

Renormalisation

It is time to cure the divergences accumulated so far. To motivate the method of renormalisation,
we will first look at how the propagator is altered by the inclusion of loop diagrams in general, but
first, some notation is needed.

Diagrams can be conveniently grouped depending on how many sub diagrams they contain.
Those which cannot be divided into sub diagrams, are called one particle irreducible (1PI). Diagrams
that can be cut into two 1PI diagrams are called 2PI and so on. For example the diagram

is 1PI, while the diagram

is 2PI as it can be cut into two 1PI diagrams (illustrated by the dashed line). All definitions aside,
let iM2 denote all propagator like 1PI diagrams (one incoming and one outgoing line):

iM2 = + + + · · · ≡ 1PI (1.57)
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The exact propagator is the two-point function (〈Ω|φfφi |Ω〉), which includes all propagator like
diagrams. In terms of iM2 defined above, it reads:

= + 1PI + 1PI 1PI + · · · ,

=
i

p2 −m2
+

i

p2 −m2
iM2 i

p2 −m2
+

i

p2 −m2
iM2 i

p2 −m2
iM2 i

p2 −m2
+ · · · ,

=
i

p2 −m2

∞∑

n=0

(
iM2 i

p2 −m2

)n
=

i

p2 −m2

1

1− iM2 i
p2−m2

=
i

p2 −m2 +M2
. (1.58)

The exact propagator therefore describes the propagation of a particle with massm2−M2. Since the
exact propagator is the proper one, one would argue that the parameter m2 is somewhat misleading
as it does not give the physical mass at all. Using m2

0 = m2−M2, we should rewrite the Lagrangian
to be dependent upon the proper mass parameter

Lλφ4 = 1
2∂µφ∂

µφ− 1
2m

2
0φ

2 − 1
2M

2φ2 − 1
4λφ

4. (1.59)

The theory is said to have been renormalised, and M2 is commonly called the mass counter term
(often written δm2 to signify this). Similar to this, both λ and Z (the field strength, unrenormalised
it is one, Zφ = 1φ) need to be renormalised when other loop diagrams are included. In perturbation
theory, just as the loop diagrams are calculated order by order in λ, the parameters are renormalised
order by order. Therefore the parameters are written down order by order:

m2 =
∞∑

i=0

m2
iλ

i, (1.60)

λ =
∞∑

i=0

giλ
i, (1.61)

where m0 and g0 are the fully renormalised parameters. Renormalised parameters are often called
“dressed” parameters, while nonrenormalised ones are called “bare”. In the previous example we
calculated iM2 to first order in λ, which translates to

m2
1 = − 1

32π2

[
Λ2 −m2

0log
(m2

0 + Λ2

m2
0

)]
. (1.62)

2 Thermal field theory

QFT is a formalism mostly used to predict the physics of quantum systems in a vacuum. Thermal
field theory (TFT) on the other hand, even though mathematically very similar to QFT, aims at
calculating ensemble properties of a given model. For example thermodynamic pressure, particle
density, free energy and other quantities often related to the domain of thermodynamics and sta-
tistical mechanics. Despite the apparent difference between the two, they are closely related, and
many of the methods and phenomena encountered in QFT are also present in TFT. They are after
all the same theory only applied to different systems. While a brief overview of TFT will be given
in this section, a more thorough approach can be found in introductory text books on the subject
[12, 13].
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· · ·

Figure 1.4: Vacuum diagrams.

Before we can introduce TFT, we need to define the grand canonical partition function, arguably
the most fundamental object in statistical mechanics. For a system with possible energy states Ei,N
with N particles, at temperature T and chemical potential µ, we can associate a Boltzmann factor
exp(−(Ei,N − µN)/T ) to estimate how likely it is that the system occupies this configuration. As
this is not a normalised probability, we need to multiply all such Boltzmann factors with a global
normalisation constant 1/Z, where

Z =
∑

N,i

e−(Ei,N−µN)/T . (1.63)

and this normalisation constant is known as the grand canonical partition function. From it, a
surprising amount of information can be extracted, more than one would think from a single object.
A detailed description can be found in e.g. [14]. Converted to the language of quantum mechanics
E should be promoted to the Hamilton operator and N to a particle density operator. All in all,
the partition function is

Z =
〈
e−(Ĥ−µN̂)/T

〉
=
∑

n

〈φn| e−(Ĥ−µN̂)/T |φn〉 . (1.64)

Following the same steps as we did deriving an integral representation for the transition amplitude,
we can find an integral representation of the partition function in QFT:

Z =

φ(β)=φ0∫

φ(0)=φ0

DφDπ exp
{∫ β

0
dτ

∫
ddx

(
iπ
∂φ

∂τ
−H(φ, π) + µN (φ, π)

)}
. (1.65)

There are two major differences between this expression and the transition amplitudes in QFT. First,
the time variable has been replaced by a new variable t − iτ = −i 1

T ≡ −iβ. Integrals over the
new “space-time” is therefore in Euclidean space instead of Minkowski space, which is why TFT is
often referred to as the Euclidean formalism, or the imaginary time formalism. Given a Lagrangian
in QFT, it is converted to a Lagrangian of TFT by the simple substitution and redefinition

L(t,x) L(−iτ,x) ≡ −LE(τ,x). (1.66)

The second major difference is the boundary condition. Where QFT had boundary conditions
decided by the transition one wished to calculate, the boundary conditions for the partition function
are periodic. In terms of Feynman diagrams this implies that only closed loop diagrams are allowed,
also called vacuum diagrams. Some examples are illustrated in Fig. 1.4.
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2.1 Thermodynamic quantities

With the simple replacements mentioned in the previous section, we can write down the TFT’s
equivalent to the generating functional

W [J ] =

∫
Dφ exp

{
−
∫ β

0
dτ

∫
dd−1x

(
LE(φ)− Jφ

)}
. (1.67)

This still has periodic boundary conditions, and therefore the relation to the partition function is
trivial, W [0] = Z. Using the partition function we can calculate both Helmholtz’ and Gibbs’ free
energy. They are classically defined to be

F = − 1

β
log(Z), (1.68)

G = F + pV. (1.69)

We can construct a functional form of Helmholtz’ free energy analogous to the generating functional.
It is given by:

F [J ] = − 1

β
log(Z[J ]). (1.70)

The functional form of Gibbs’ free energy is a bit trickier. It can actually be defined as a Legendre
transformation of Helmholtz’ free energy (which is why we needed it on its functional form). We
define φcl to be

φcl(x) =
δ

δJ(x)
F [J ] = − 1

β

∫
Dφφ(x)e−

∫
(L−Jφ)

∫
Dφ e−

∫
(L−Jφ)

. (1.71)

Gibbs’ free energy is then given by the Legendre transform:

Γ[φcl] = −F [J ] +

∫
ddxJ(x)φcl(x). (1.72)

As expected from a Legendre transformation, the field J can be recovered by taking the φcl derivative
of Γ[φcl],

δ

δφcl(x)
Γ[φcl] = J(x). (1.73)

From Helmholtz’ free energy, the thermodynamic potential is defined as

Ω =
1

V
F [0], (1.74)

which can be used to obtain the pressure (P ), the entropy (S), the particle number density (N)
and the energy density (E), which are given by [14]

P = −Ω, (1.75)

S =
∂P

∂T
, (1.76)

N =
∂P

∂µ
, (1.77)

E = Ω + TS + µN. (1.78)
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2.2 Partition function for bosons

We want to calculate the partition function for a Lagrangian with a single scalar field φ, similar to
what we did in Sec. 1.1. The TFT Lagrangian is

LE =
1

2

(∂φ
∂τ

)2
+

1

2

(
∇φ
)2

+
1

2
m2φ2 + U(φ). (1.79)

This Lagrangian does not have any continuous global symmetries, and looking to Noether’s theorem,
does not have any natural conserved charge to be associated with a chemical potential. µN is
therefore set to zero. With a system in place, the integral over π in Eq. (1.65) is done analogous to
the calculation in Sec. 1.1, and we end up with:

Z = N

∫
Dφ exp

{
−
∫ β

0
dτ

∫
ddxLE(∂µφ, φ)

}
. (1.80)

Letting U(φ) = 0 we can carry this calculation a bit further, but first we must Fourier transform
the fields:

φ(τ,x) =
∑

n

∑

p

φn,pe
i(ωnτ+x·p). (1.81)

Because of the periodicity constraint on the field, φ(0,x) = φ(β,x), ωn = 2nπT . Conversely,
fermionic fields have an anti periodicity constraint, ψ(0,p) = −ψ(β,p), implying νn = (2n+ 1)πT ,
where νn is used instead of ωn to signify this difference. Inserted into the action, we can carry out
the integrals over τ and x to obtain

S =
1

2

∑

n,m

∑

p,q

(
− ωnωm − p · q +m2

)
φm,qφn,p βδn,−m V δp,−q,

=
1

2
βV

∑

n,p

(
ω2
n + p2 +m2

)
φ−n,−pφn,p. (1.82)

The field φ is real, therefore φ−n,−p = φ∗n,p = φn,p and the partition function is simply

Z = N

∫ (∏

n,p

dφn,p

)
exp
{
− βV 1

2

∑

n,p

(
ω2
n + p2 +m2

)
φ2
n,p

}
. (1.83)

The field φn,p has mass dimension 2, so we should change variables φ ρ
√
β/V . The integral is a

simple Gaussian, and is evaluated using Eq. (B.3) with Aij = 1
2β

2(ω2
i + p2

i +m2)δi,j resulting in:

Z = N ′
1√

det(Aij)
= N ′

∏

n,p

1√
β2(ω2

n + p2 +m2)
. (1.84)

Our ultimate goal is to calculate either of the free energies, so we take the logarithm on both sides
and obtain:

log(Z) = −1

2
tr
[
log(Aij)

]
+K = −1

2

∑

n,p

log
[
β2(ω2

n + p2 +m2)
]

+K, (1.85)

where the trace-log identity, log
[

det(Aij)
]

= tr
[
log(Aij)

]
, has been used. K is independent of β and

V , and will therefore be discarded. The right hand side can either be calculated using the contour
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trick described in Appendix B.5, or by using a set of sum identities and mathematical tricks. As
the contour sum is frequently used to calculate several other such sums, we will use it here as well
to become familiar with it. The other approach is described in [12].

The logarithm has branch cuts instead of poles in the complex plane, and must be rewritten in
a more convenient form before proceeding. Rewriting it as an integral

log(Z) = −1

2

∑

p

∞∑

n=−∞

β2(p2+m2)∫

1

da2 1

β2ω2
n + a2

+ log(β2ω2
n + 1), (1.86)

we can pull the sum over n inside the integral over a2, and obtain an expression similar to the
formula derived in the appendix. Once again the last term is independent of both temperature and
volume, and is discarded. Using the result from Eq. (B.17) we get

log(Z) = −1

2

∑

p

∫
da2

2a

[
1− 2nB(Ta)

]
. (1.87)

Utilising ∫
da

1

ea − 1
= log(1− e−a), (1.88)

and throwing away constant terms, we end up with the final result

log(Z) = −1

2
V

∫
dp
[
βω + 2log(1− e−βω)

]
, (1.89)

where ω =
√

p2 +m2. Using Eq. (1.70), we get the free energy to be

F =
1

2
V

∫
dp
[
ω + 2T log(1− e−βω)

]
. (1.90)

The first term is badly divergent as we carry out the integral over p, but as this term is temperature
independent, it is seen as a background energy. We can only measure differences in energy, and
therefore it will never show up in any physical results. Based on this, the divergent term is commonly
dropped.

3 Renormalisation group

In Sec. 1.6 we saw that calculations in QFT sometimes result in ultraviolet divergent terms, and
that these need to be regularised and then renormalised for the theory to give physically sensible
results. This should not come as a surprise as ultraviolet divergences are related to arbitrary high
energy scales, at which we cannot even be certain that QFT is the correct theory, not to mention
the Lagrangian density.

A good example of a similar ultraviolet catastrophe occurring in classical physics, is the energy
radiation of a black body. Classically, the energy radiated from a black body at energy T in a small
frequency interval (ν,ν + dν) is given by

I(ν, T ) = 2πν2T. (1.91)
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Calculating the total energy flow we integrate over all possible frequencies

J(T ) =

∫ ∞

0
I(ν, T ) dν = 2πT

∫ ∞

0
ν2 dν. (1.92)

Analogous to the UV divergences of QFT, the integrand goes to infinity as ν ∞. Large ν, or
small wavelengths, is exactly what we struggle with calculating amplitudes of loop diagrams. When
quantum mechanics was introduced in the early 20th century, a recalculation of the energy flow
resulted in Planck’s distribution function

I(ν, T ) =
4π2ν3

e2πν/T − 1
. (1.93)

For small ν, Eq. (1.93) can be series expanded in ν, and we recover Eq. (1.91). As an example,
with T = 1500K, the classical expression is a good approximation for values up to 1013s−1 =
6.58 · 10−9MeV.

Therefore, in a very similar fashion, we expect there to be a different theory explaining physics at
very high energies. The high energy particle accelerators are hard at work looking for results which
deviate from the standard model of particle physics. For example CERN is quickly approaching
proton-proton collisions with energies up to 14 TeV, but above this scale we do not know the validity
of our theories.

3.1 Coupling renormalisation

In section 1.6 the notion of “bare” and “dressed” parameters was introduced. The “bare” parameters
are the parameters of the Lagrangian, and they had to be renormalised to cure them of their energy
scale dependence. This scale dependence is of some interest, and as we will see, it is normally
described by differential equations called the renormalisation group equations (RGEs).

The physical interpretation of renormalisation is a bit different in the different fields of physics,
but in high energy particle physics it is seen as a screening effect. The most easily grasped example
comes from the screening of the electric charge due to vacuum polarisation. Heisenberg’s uncertainty
principle states that ∆x∆p ≥ 1

2 , which in some circumstances can be interpreted as ∆E∆t ≥ 1
2 .

Therefore massive particles can come into existence for short periods of time, telling us that the
vacuum is not strictly empty. Various conservation laws still play their roles, so for every electron
coming into existence from these vacuum fluctuations, a positron must also appear. If there is a real
electron present in the vacuum, the virtual positrons are attracted towards this by electromagnetic
interactions, while the virtual electrons are repelled. Effectively this creates a dielectric cloud of
virtual electron-positron pairs surrounding the electron as illustrated in Fig. 1.5.

Measurements of the electric charge can be carried out by looking at the cross section of an
electron bombarded by photons. If a low energy photon is used, less energy is needed to deflect it
from its path, and interaction with the virtual electron-positron cloud will be significant. On the
other hand, if a high energy photon is used, more energy is needed, and the photon will penetrate
deeper into the electron-positron cloud, making the screening less dominant. Therefore, a low energy
measurement of the electron charge should result in a lower value than a high energy measurement,
implying an energy dependence of the electric charge.
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Figure 1.5: Vacuum polarisation of the electric charge.

For a short while it was believed that all interactive terms were screened in a similar matter,
and that all such parameters had to increase with scale, but it was later shown that a non-Abelian
Yang-Mills Lagrangian (such as in QCD) can have the opposite behaviour. More on this later.

3.2 The Callan-Symanzik equation

When renormalising the mass parameter of λφ4, we calculated the dressed mass based on the
assumption that the sum of all propagator terms should have a simple pole at the renormalised mass.
This is known as a renormalisation condition, and for massive particles, choosing the renormalisation
scale is straight forward. If, on the other hand the particles are massless, what should the scale be?
This question does not only affect massless theories, but all theories in the high energy limit where
the mass is much less than the momentum. In those cases a different scale must be chosen.

Setting the renormalisation scale to be Θ, the renormalisation conditions for the propagator of
λφ4 theory reads:

1PI = 0 for p2 = −Θ2, (1.94)

∂2

∂p2

(
1PI

)
= 0 for p2 = −Θ2. (1.95)

As mentioned, in a massive theory, the physical massmR is a natural choice for Θ, but for a massless
theory this is a bit arbitrary, and one choice for Θ might be equally good as another. An equation
describing how the parameters change based on this choice is therefore desired. For that we look at
how the n-point function is renormalised.

With a massless theory, there are only the field strength Z, and the coupling constant(s) g
left to renormalise. For simplicity, we choose a theory with only one coupling, which has bosonic
degrees of freedom. The renormalised n-point function should only depend upon the renormalised
coupling, and the renormalisation scale. The unrenormalised n-point function on the other hand
should only depend on the cut-off scale Λ and the unrenormalised coupling. The n-point function
can be renormalised through n field strength renormalisation factors, which means we have a simple
relation between the two:

GRn(λR,Θ) = Z−n/2
(
g0(Λ), Λ

Θ

)
G0n(g0(Λ),Λ). (1.96)

19



Since G0 is independent of Θ, taking the derivative wrt. it gives the equation
[

Θ
∂

∂Θ
+ Θ

dgR
dΘ︸ ︷︷ ︸

β(gR)

∂

∂gR
+ n

1

2
Θ

d

dΘ
logZ

︸ ︷︷ ︸
γ(gR)

]
GRn = 0, (1.97)

which is known as the Callan-Symanzik equation [15, 16], but it does not end there. What would
happen if we chose a different renormalisation scale Θ/b? Following the same arguments as earlier
we should get new renormalised parameters (subscript eff )

GRn(gR,Θ/b) = Z
−n/2
eff (b)GRn(geff (b),Θ). (1.98)

The new coupling constant should satisfy the differential equation:

b
dgeff

db
= β(geff (b)), geff (1) = gR. (1.99)

geff is an effective coupling constant at the new energy scale Θ/b and is called the running coupling
constant. The β- and γ functions can be calculated by renormalising various n-point functions.
With λφ4, ones has to renormalise both the 2- and 4-point functions to extract the β function.
One-loop results for both λφ4 and QED are given below

βλφ4(λ) =
3

16π2
λ2 +O(λ3), (1.100)

βQED(e) =
e3

12π2
+O(e4). (1.101)

In both cases, β > 0, meaning that the running coupling increases with energy scale, just as we
argued in Sec. 3.1.

3.3 Wilson’s renormalisation group

A different, but very elegant way to look at renormalisation was introduced by Wilson in [17].
Suppose we have a theory defined up to some cut-off scale Λ. For simplicity let us look at a theory
with a single scalar field φ, such as the one in Sec. 2.2, with the partition function

ZΛ =

∫
(Dφ)Λ exp

{
−
∫

dτ

∫
dxL(φ)

}
. (1.102)

Cutting off the high energy contributions to Z can be expressed as only integrating over fields with
energy less than this scale:

(Dφ)Λ =
∏

|p|<Λ

dφ(p). (1.103)

Defining a second cut-off scale Θ < Λ, we can split the fields φ into two sets. One for energies below
the new scale, and another for energies in between the new and the old energy scale:

φ<(p) =

{
φ(p) when |p| < Θ

0 else
(1.104)

φ>(p) =

{
φ(p) when Θ ≤ |p| ≤ Λ

0 else
(1.105)
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With these new variables, the partition function becomes

ZΛ =

∫
Dφ<

∫
Dφ> exp

{
−
∫

dτ

∫
dxL(φ< + φ>)

}
. (1.106)

The integral over φ> can in general not be calculated analytically, and one must resort to either
perturbative methods or other nonperturbative approximations, but assuming we could, we would
be left with a effective Lagrangian describing the system at the new renormalisation scale:

ZΛ =

∫
(Dφ)Θ exp

{
−
∫

dτ

∫
dxLeff (φ)

}
. (1.107)

This formalism is a member of a larger group of formalisms known as the functional renormali-
sation group (FRG), a good introduction to which can be found in e.g. Ref. [18]. In contrast to the
Callan-Symanzik equations, which are renormalisation group equations for the individual parame-
ters of L, the FRG equations are in general RG equations for L itself. As a result, a Lagrangian
renormalised using an FRG formalism can take on any functional form accepted by its symmetries.
E.g. an λφ4 Lagrangian can after at a lower renormalisation scale include a six and eight point
coupling even though it only had a four point coupling at its initial renormalisation scale. We would
therefore write the λφ4 Lagrangian at an arbitrary renormalisation scale to be

L =
1

2
K1(∂µφ)2 − 1

2
K2φ

2 +
1

4!
K3(∂µφ)4 − 1

4!
K4φ

4 +
1

6!
K5(∂φ)6 − 1

6!
K6φ

6 − . . . . (1.108)

It is convenient to define a vector ~K = [K1,K2,K3,K4,K5,K6, . . .], whose initial value for a λφ4

theory is ~K = [1,m2, 0, λ, 0, 0, . . .], as we integrate out momentum shells ~K traces a line in K-space.
If we have experimental values our theory should explain, the idea is to choose the correct initial
conditions for ~K so that it ends up at a point in K-space that describes a Lagrangian with the
correct properties.

3.4 The effective average action

The effective average action (EAA), also an FRG method, is an alternative to Wilson’s. With
Wilson’s method we integrated out high energy modes of the partition function and saw how this
could be seen as a change in the Lagrangian. As we saw, the new Lagrangian could include new
couplings, and therefore be a very complex object. Instead of looking at how renormalisation evolves
the Lagrangian, EAA analyses how Gibbs’ free energy is changed1. Let us introduce a parameter k
to keep track of the modes integrated out in such a way that

Γk=Λ[φcl] = S[φ = φcl], (1.109)
Γk=0[φcl] = Γ[φcl]. (1.110)

At k = Λ no modes have been integrated out, and we recover the original Gibbs’ free energy, while
at k = 0 all fluctuations have been integrated out and we should be left with the true free energy,
quantum and thermal fluctuations included. A common way to include this k dependence is by
adding a momentum dependent mass like term which can work as a regulator similar to the mass
term added in Pauli-Villars regularisation. If the effective mass term is taken to infinity for certain

1QFT’s equivalent to Gibbs’ free energy is called the average action, hence the name effective average action
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energy modes, they will decouple from the system, and not contribute to the free energy, while if it
is set to zero the energy mode will be left unchanged. In terms of the action, we write

S[φ] S[φ] + ∆k[φ], (1.111)

where
∆k[φ] =

1

2

∫

x,y
φ(x)Rk(x− y)φ(y) =

1

2

∫
ddpRk(p)φpφ−p. (1.112)

∆k has the form off a mass term and the conditions (1.109, 1.110) can be translated to Rk

Rk=0(p) = 0, (1.113)
Rk=Λ(p) =∞, (1.114)
Rk(|p| > k) ≈ 0. (1.115)

As long as the function Rk(p) follows these criteria and does not explicitly break any of the symme-
tries of the Lagrangian, the possible choices for Rk(p) are limitless. Depending on the system some
choices are easier to work with than others, but there has also been studies by e.g. Daniel Litim
[19, 20], where he tries to optimise this choice.

Exact RG equation for scalar fields

Our goal is, using the k dependent Gibbs’ free energy introduced in the last Section, we want to find
an differential equation on the form ∂kΓk = fk(Γk). Recalling Sec. 2.1, Gibbs’ free energy is defined
using Helmholtz’ free energy, which in turn is defined by the generating functional. Including the
the cut-off term ∆k, the generating functional is

Wk[J ] =

∫
Dφ exp

[
− S[φ]−∆k[φ] +

∫
Jφ

]
. (1.116)

The definition of the k-dependent object Γk has to be slightly different from the definition of Gibbs’
free we have in Eq. (1.72) for it to satisfy the condition in Eq. (1.109),

Γk[φcl] + Fk[J ] =

∫
J φcl −∆k[φcl], (1.117)

where one should notice the addition of ∆k. To obtain an expression for ∂kΓk we can take the
derivative of Eq. (1.117) with respect to k, but there is a difference between taking the derivative
keeping the field J constant, or the field φcl. They are related by

∂k|J = ∂k|φcl +

∫

x
φcl(x)

δ

δφcl(x)
, (1.118)

where ∂k|J is the derivative when J is kept constant and ∂k|φcl with φcl constant. To differentiate
F [J ], it is easiest to start with W [J ].

∂k|JWk[J ] = −1

2

∫
Dφ
(∫

x,y
φ(x)∂kRk(x− y)φ(y)

)
e−Sk[φ]+

∫
Jφ,

= −1

2

∫

x,y
∂kRk(x− y)

δ

δJ(x)

δ

δJ(y)
Wk[J ]. (1.119)
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In the last line we used the trick introduced in Sec. 1.2 to rewrite the fields as functional derivatives.
Writing Wk[J ] in terms of Fk[J ] results in

∂k|JFk[J ] = −1

2

∫

x,y
∂kRk(x− y)

(
δ2Fk

δJ(x)δJ(y)
+

δFk
δJ(x)

δFk
δJ(y)

)
. (1.120)

From here on we will drop the subscript cl from φcl and only include it if there is any doubt. Taking
the k|J derivative of Eq. (1.117),

∂k|JΓk[φ] =−
∫

x,y
∂kRk(x− y)

(
δ2Fk

δJ(x)δJ(y)
+

δFk
δJ(x)

δFk
δJ(y)

)
+

∫

x
J(x)∂kφ(x)

− 1

2

∫

x,y
(∂kRk(x− y))φ(x)φ(y)− 1

2

∫

x,y
Rk(x− y)(∂kφ(x))φ(y)

− 1

2

∫

x,y
Rk(x− y)φ(x)(∂kφ(y)), (1.121)

and using Eq. (1.118) to convert the derivative, we end up with

∂k|φΓk[φ] =
1

2

∫

x,y
∂kRk(x− y)

[ δ2Fk
δJ(x)δJ(y)

]
. (1.122)

To convert this into a proper differential equation of Γk, we will have to analyse the expression
further. First we note that the modified Legendre transformation in Eq. (1.117) results in slightly
modified Legendre identities

δFk[J ]

δJ(x)
= φ(x), (1.123)

δΓk[φ]

δφ(x)
= J(x)−

∫

y
Rk(x− y)φ(y). (1.124)

Making use of these, we can write

δ(x− y) =
δ2Wk

δφ(x)δJ(y)
=

∫

z

δ2Wk

δJ(z)δJ(y)

δJ(z)

δφ(x)
,

=

∫

z

δ2Wk

δJ(z)δJ(y)

δ

δφ(y)

( δΓk
δφ(z)

+

∫

w
Rk(z − w)φ(w)

)
,

=

∫

z

δ2Wk

δJ(z)δJ(y)

( δ2Γk
δφ(y)δφ(z)

+Rk(z − y)
)
. (1.125)

The last line implies that the two factors are the functional inverse of each other, therefore we can
symbolically write

∂kΓk =
1

2

∫

x,y
∂kRk(x− y)

(
Γ

(2)
k (x, y) +R(x− y)

)−1
, (1.126)

or, more conveniently in Fourier space,

∂kΓk =
1

2

∫

q
∂kRk(q)

( δ2Γk
δφ(p)δφ(p′)

+ δ(p+ p′)Rk(p)
)−1

q,−q
, (1.127)
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The subscript indicates that we later have to evaluate the momenta (p, p′) at (q,−q). A diagram
representation is sometimes also used, with the notation

=
1

Γ
(2)
k (p) +Rk(p)

, = ∂kRk(p), (1.128)

the exact RGE can be expressed as

∂kΓk =
1

2
. (1.129)

The RG equation can be easily generalised to theories with more than one field φ,

∂kΓk =
1

2
tr
∫

q
∂kRk,i,j(q)

( δ2Γk
δφi(p)δφj(p′)

+ δ(p+ p′)Rk,i,j(p)
)−1

q,−q
, (1.130)

where ()−1 has been promoted to the matrix inverse of [Γ
(2)
k (p) +Rk(p)]ij

Exact RG equation for fermionic fields

For fermionic fields, the calculation is almost identical. The generating functional is dependent on
two fermionic sources η and η̄, Wk[η, η̄]. We define the two new fermionic fields ψcl and ψ̄cl to be

ψcl(x) =
δF
δη̄(x)

, (1.131)

ψ̄cl(x) =
δF
δη(x)

. (1.132)

The cut-off function Pk(x− y) is, analogous to the scalar case, included as a mass term,

∆k[ψ, ψ̄] =

∫

x,y
ψ̄(y)Pk(x− y)ψ(x). (1.133)

Dropping the subscript cl on ψcl and ψ̄cl, the parameter dependent Gibbs’ free energy is thus

Γk[ψ, ψ̄] = −F [η, η̄] +

∫

x
η̄(x)ψ(x) +

∫

x
ψ̄(x)η(x)−∆k[ψ, ψ̄], (1.134)

with the RG equation

∂kΓk = −tr

∫

q
∂kPk(q)

( δ2Γk
δψ(q)ψ̄(q)

+ Pk(q)
)−1

. (1.135)

where the trace is over the spinor indices of ψ. Using dashed lines to symbolise the true fermion
propagator, the diagram representation is

∂kΓk = − . (1.136)
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Approximations of the RGE

The two Eqs. (1.127) and (1.135) are exact RGEs, and solving them is just as hard as finding an
analytic expression for the partition function. We will therefore approximate Γk by expanding it in
derivatives of φ, and truncate the series after a few terms, see e.g. Ref [21]. At order O(∂2), the
free energy is

Γk[φ] =

∫
ddx

(1

2
Zk(φ)(∇4φ)2 + Uk(φ)

)
. (1.137)

where ∇4 is the Euclidean derivative operator (∇4 = [∂τ , ~∂]). The factor Zk is a field normalisation
term, whose components are in general different for the space and time derivatives of φ. The lowest
order derivative expansion, O(∂0), is named the local potential approximation (LPA), in which the
field strength renormalisation Zk is set to one:

Γk[φ] =

∫
ddx

(1

2
(∇4φ)2 + Uk(φ)

)
. (1.138)

As one can see, the only k-dependent term remaining is Uk, and we would therefore like to find a
differential equation for ∂kUk instead of the one we have. This can be acomplished by evaluating
the free energy in uniform fields φ(x) = φuni, in which case it is

Γk[φuni] = VU(φuni), (1.139)

where V (in contrast to V ) is the full space-time volume. The rest of the calculation will be carried
out in Fourier space. The Fourier transform of Γk is

Γk =

∫
ddp

(1

2
p2φ(p)φ(−p) + U(φ(p))

)
. (1.140)

Using this expression, we can calculate Γ
(2)
k,q,q′

δ2Γk
δφ(q)δφ(q′)

=

∫
ddp

(
p2δ(p− q)δ(p+ q′) +

∂2U

∂φ(q)φ(q′)

)
. (1.141)

The second term can be identified by
∫

z

∂U(φz)

∂φx∂φy
=

∫

z

∂2U

∂φ2
uni
δ(x− z)δ(y − z),

=

∫

q,q′

∫

z

∂2U

∂φ2
uni
eiq(x−z)eiq

′(y−z,

= F 2
q,q′

[
δ(q + q′)

∂2U

∂φ2
uni

]
, (1.142)

where F 2 is the double Fourier transform. Collecting all the terms, we can write

V∂kUk =
1

2

∫

q
∂kRk(q)

(
δ(q + q′)

[
q2 +

∂2U

∂φ2

]
+ δ(q + q′)Rk(q)

)−1

q,−q
. (1.143)

We can make use of the functional inverse introduced in Eq. (1.125) to identify:
(
δ(q + q′)

[
q2 +

∂2U

∂φ2

]
+ δ(q + q′)Rk(q)

)−1
=

δ(q + q′)

q2 + ∂2U
∂φ2

+Rk(q)
. (1.144)
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Finally, with δ(0) = V, we arrive at

∂kUk =
1

2

∫

q

∂kRk(q)

q2 + ∂2Uk
∂φ2

+Rk(q)
. (1.145)
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CHAPTER 2

Quantum chromodynamics

This thesis, as mentioned earlier, is about the phase transition taking place at high temperature, or
high particle density, where the bound quarks in the hadrons and mesons becomes deconfined. If
the temperature is high enough, the resulting phase can be a plasma like state of quarks and gluons
known in the literature as quark-gluon plasma (QGP). The full phase diagram is discussed later in
Sec. 9. Before we get to the result, we will study the standard theory of the quarks and gluons
known as quantum chromodynamics (QCD), as well as some effective models used to approximate
this theory.

4 General overview

The interactions between the quarks and gluons, known as the strong force, is described by a theory
called quantum chromodynamics. The theory consists of six quarks each carrying one of three colour
charges 1. The six quarks are named up (u), down (d), strange (s), charm (c), bottom (b) and top
(t), and the type of quark is referred to as flavour. Each of the quarks has a corresponding anti
quark which can carry negative colour charge. It might seem a bit confusing, but it is equivalent
to electric charge in QED, the electron carries negative electric charge, and the positron carries
positive electric charge. One could argue that there are actually 18 quarks and not six, as up-blue,
up-green and up-red are all different particles, but this is not common practise. The quarks and
their properties can be conveniently arranged into three families by their masses, and is given as:

Generation Electric
charge1. 2. 3.

up charm top 2/3 e

down strange bottom −1/3 e

Quarks have spin 1/2, and are therefore fermions. The mediators of the strong force are gluons.
They are massless vector bosons with spin 1. In contrast to photons, gluons also carry colour charge,
and do therefore interact with each other. Gluons actually carry one positive and one negative colour
charge. This would add up to nine possible gluons, but only eight of these exist. The ninth possible
gluon would be a colourless free state, and nothing like that has been observed experimentally.

1The strong charge is named colour charge, of which there are three, red, blue and green, hence the name
chromodynamics
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Figure 2.1: The spin zero meson nonet.

The self interactiveness of the gluons is one of the reasons why QCD possesses many interesting
properties, and why it is a notoriously difficult theory to work with. QCD is confining, meaning
that at low energies (or conversely large distance) the potential energy between a quark-anti quark
pair becomes very high [22]. This is why we never see free quarks, because as one tries to pull
the pair apart, the potential energy between them rises to a level where there is enough energy to
create a new quark anti-quark pair which in turn form new bound states of quarks. On the other
hand, QCD is also asymptotically free[23, 24], meaning that the strength of the coupling decreases
for high energies (short distance). In terms of the theory we introduced in Sec. 3.2, the β-function
for the QCD coupling is negative. At low energies, this coupling 2 is O(1), which has bothered
theorists for a long time as perturbation theory breaks down. While at high energies, the coupling
decreases, making perturbation theory viable again. At scale mZ (= 91 GeV), it is measured to be
αs(mZ) ≈ 0.118 [25].

4.1 Bound states

As already mentioned, only bound states of quarks appear in nature. There is actually a simple
rule of thumb for this, all physical states must be colour singlets. This can only be achieved by
having either one anti-colour for every colour, or an equal number of the three colours. With this
in mind, only a limited number of possible configurations of bound states are possible. So far
only two such configurations have been found experimentally, bound states of a quark-anti quark
pair (qq̄), called mesons, and bound states of three quarks (qqq), called baryons. Combinations of
these two configurations are also theoretically possible, such as the four-quark mesons (qq̄qq̄) or the
pentaquark (qqqqq̄), but decisive evidence of their existence has yet to come from experiments.

On top of this classification, the mesons and baryons can be grouped based on their intrinsic
spins. As they are bound states of particles with spin, they can themselves have spin values resulting
from the addition of the constituents’ spins as well as any possible angular momentum excitation. We
will not go into details on this, but it can be found in any introductory text to quantum mechanics,
e.g. [26, 27]. The mesons, being a bound state of two spin 1/2 particles, have integer spin, while
the baryons have half integer spin. Based on these two groupings, the mesons and baryons can

2By the coupling we mean a generalised fine-structure constant, αs = g2/4π, where g is the QCD analogy to the
electric charge e.
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Figure 2.2: The spin 3/2 baryon decuplet.

be quite elegantly displayed in diagrams where they have been sorted according to their electric
charge and flavour charge. The first of these diagrams were found by Gell-Mann [28, 29], before
the introduction of the quark model, displaying the eight baryons with spin 1/2. The diagrams for
the spin zero meson nonet and the spin 3/2 baryon octet is shown in Figs. 2.1 and 2.2. The quark
model was in fact originally motivated by how neatly all the newly discovered particles could fit
into such diagrams, hinting at an underlying structure.

Hypothetically there should also exist bound states of gluons, dubbed glueballs. These have not
yet been found experimentally, but they have been simulated using lattice QCD.

5 Yang-Mills theory

In Sec. 1.4 we saw how the U(1) symmetry group could be gauged by introducing a gauge field Aµ.
Any Lie group can in fact be gauged. However, the procedure for doing so is not as straightforward
for non-Abelian Lie groups. We will take a closer look at how to define the Lagrangian of a gauged
non-Abelian symmetry group, known as Yang-Mills theory [30], but first let us have a short recap
of Lie groups and their properties.

5.1 Lie groups

A Lie group G is a group whose members depend continuously and smoothly on a set of parameters
αi, i = 1, 2, . . . , N . If a group element is denoted by u(α), the parameters can be chosen in such a
way that u(0) = e, where e is the identity element. A linear representation R of a group element u
is a linear mapping

u DR(u), (2.1)

where DR has to satisfy DR(e) = 1, and DR(u1u2) = DR(u1)DR(u2). In physics, a matrix rep-
resentation is the most convenient one, as it lets us make use of the Lie group through standard
matrix multiplication.
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Because any group element can be mapped to different regions of parameter-space through
continuous translations, a study in the region around the identity suffices to describe the whole
group structure. An element infinitesimally close to the identity can be described as

u(δαi) = e+ δαi Li, (2.2)

where the Li’s are the tangent vectors at e. In a linear representation, this would read

DR(u) = 1 + iδαiTRi. (2.3)

TRi are called the generators of the symmetry group G in representation R. It can be shown that
using the tangent vectors, or the generators, every element u can be expressed in exponential form
as:

DR(u) = eiαiTRi , (2.4)

which reduces to Eq. (2.3) for infinitesimal α. One can inspect the group algebra by testing the
second constraint in representation D (we dropped the subscript R) on exponential form. Using
elements ua = eiαiTi , ub = eiβiTi and uaub ≡ uc = eiγiTi ,

γi = αi + βi − 1
2ηi, with ηi so that αiβj

[
Ti, Tj

]
= iηkTk. (2.5)

Therefore, [
Ti, Tj

]
= fijkTk, (2.6)

is called the Lie algebra of the group. One nice property of the algebra is that even though the gen-
erators Ti depend upon the representation, the structure constants fijk are representation invariant.
It is possible to use the structure constants themselves as a linear representation of the group, this
is referred to as the adjoint representation. If the members of the group G commute, G is said to
be an Abelian group, if not it is said to be non-Abelian.

5.2 Yang-Mills Lagrangian

Assume we have a Lagrangian on the form

LG = Lkin.(∂φ)− UG(φ), (2.7)

where the full Lagrangian is symmetric under global transformations of the group G (φ uφ,
u ∈ G). Upon promoting this symmetry to a local one, we want to introduce the covariant derivative
D so the combined transformations

φ uφ

D D̃

}
Dφ D̃uφ = uDφ, (2.8)

make sure the kinetic term is invariant. Including new fields Aiµ, the covariant derivative can be
written as

Dµ = ∂µ − iAµ. (2.9)

Here, Aµ is a matrix, depending on the representation of the group. This dependence can be
extracted by setting Aµ = AiµT

i, where T i are the generators of G. To fulfil the criterion in Eq.
(2.8), Aiµ must transform according to

Aµ uAµu
† − i(∂µu)u†. (2.10)
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Using the exponential form of the group G (u(x) = eigα
i(x)T i), where a number g is introduced as

a coupling constant, the transformations are written on their infinitesimal forms

φ
(
1 + igαi(x)T i

)
φ, (2.11)

Aiµ Aiµ + ∂µα
i − gf ijkαjAkµ. (2.12)

Having introduced the new gauge fields Aiµ, the only thing missing in a proper Lagrangian is a
kinetic term for Aµ. In addition to being a kinetic term for Aµ, it has to be invariant under the
gauge transformation in Eq. (2.12). The commutator of the covariant derivative

[
Dµ, Dν

]
does

exactly that, and in writing it out we see that it is not a differential operator at all:

i

g

[
Dµ, Dν

]
≡ Fµν = ∂µAν − ∂νAµ − ig

[
Aµ, Aν

]
, (2.13)

and it transforms as expected
Fµν uFµνu

†. (2.14)

On component form, Fµν = F iµνT
i, it is

F iµν = ∂µA
i
ν − ∂νAiµ + gf ijkAjµA

k
ν . (2.15)

From this, a gauge invariant kinetic term for the Ai’s can be constructed. It is given by

LYM = −1

2
tr
(
FµνF

µν
)
. (2.16)

It is conventional to choose a representation in which T i is normalised so that tr(T iT j) = 1
2δij .

Inserted into Eq. (2.16) is reduces to

LYM = −1

4
F iµνF

i,µν . (2.17)

Notice that any reference to the representation has disappeared as one would expect from a physical
theory.

6 QCD Lagrangian

Quantum chromodynamics is a Yang-Mills theory based on the local SU(3) symmetry group coupled
to six quarks described by massive fermionic fields ψf,cs . All indices included (flavour f = 1, 2, . . . , 6,
colour c, d = 1, 2, 3, spin s = 1, 2 and gauge-index i = 1, 2, . . . , 8), the complete Lagrangian is

LQCD = iψ̄f,cs
(
γµ∂µ −mf

)
ψf,cs + gAiµψ̄

f,d
s γµT ic,dψ

f,c
s −

1

4
F iµνF

i,µν . (2.18)

The algebra governing the generators T i are summarised in appendix. A2.

The Lagrangian above only describes the chromodynamics of the quarks, not the other interac-
tions they also take part in as they possess both electric- and flavour charge. Electrodynamics can
be easily included by gauging the U(1) symmetry group as we did in Sec. 1.4, while flavourdynamics
is a bit trickier, but as neither of these forces play any role in the forming of QGP, they are left out.
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i,µ

= igγµT i,

k,ρ

i,µ

j,ν q

p
k

=

gf ijk
[
gµν(k − p)ρ

+gνρ(p − q)µ

+gρµ(q − k)ν
]
,

j, νi, µ

k, ρ l, σ

=

−ig2
[
f ijmfklm(gµρgνσ − gµσgνρ)

+f ikmf jlm(gµνgρσ − gµσgνρ)

+f ilmf jkm(gµνgρσ − gµρgνσ)
]
.

Figure 2.3: Feynman rules for the QCD interactions

Using the Feynman rules displayed in Fig. 2.3, one can perturbatively calculate the β-function
for a Yang-Mills theory. This can be shown for an SU(N) Yang-Mills theory to be

β(g) = − g3

(4π)2

(11

3
N − 2

3
nf

)
, (2.19)

where nf is the number of massless fermions coupled to the Yang-Mills field. Massless is taken to
be approximately massless compared to the energy scale at which the process is measured. With a
measurement done at 1 GeV, the u, d and s quarks are considered massless, while c, b and t decouple
as their appearance in virtual processes are negligible at this scale. One notices that although the
fermions have a positive contribution according to the screening argument of Sec. 3.1, the gauge
fields have the opposite effect. Therefore, as long as the total number of quark flavours is less than
17, the β-function will always be negative, and the QCD coupling decreases as the energy increase.
In terms of the strong force’s fine-structure analogue αs = g2/4π, the solution to Eq. (2.19) is

αs(k) =
αs0

1 + b0
αs0
4π log(k2/M2)

, (2.20)

in which b0 = 11− 2
3nf . Having both the arbitrary renormalisation scaleM as well as the renormal-

isation condition αs0 at this scale is somewhat impractical, therefore a second scale Λ is introduced
so that

1 = b0
αs0
4π

log(M2/Λ2), (2.21)

which gives the equation:

αs(k) =
2π

b0log(k/Λ)
. (2.22)

The parameter Λ can be measured experimentally, and at nf = 3, it is Λ ≈ 250MeV [25]. Fig. 2.4
shows the behaviour of αs above 1 GeV where perturbation theory holds. At lower energy scales,
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Figure 2.4: The running QCD coupling αs[6].

αs becomes too large for perturbation theory to work because a Taylor series in αs would give an
infinite number of non-negligible contributions. Therefore the exact behaviour of the β-function at
lower energies is still unknown.

7 Chiral symmetry breaking

Let us remove the gauge field from Eq. (2.18) for a bit, and focus on a possible symmetry of the
free massive Dirac equation. It becomes a bit more transparent if we rewrite the Lagrangian to
be dependent upon the left- and right handed components of the fermion fields separately. In the
standard representation of the spinors, the Dirac spinors (lower case ψ) are made up of left- and
right handed Weyl spinors (upper case Ψ) in the following manner

ψ =
1√
2

(
ΨR + ΨL

ΨR −ΨL

)
, (2.23)

and they can be projected out by applying the left- and right handed projection operators

R̂ψ =
1 + γ5

2
ψ =

1√
2

(
ΨR

ΨR

)
≡ ψR, (2.24)

L̂ψ =
1− γ5

2
ψ =

1√
2

(
ΨL

−ΨL

)
≡ ψL. (2.25)

It might be worth mentioning that in the massless limit, ΨR and ΨL are helicity eigenstates of the
Dirac equation. Anyway, expressed in terms of ψR and ψL, the Dirac Lagrangian reads

LDirac = iψ̄R /∂ψR + iψ̄L/∂ψL −mψ̄RψL −mψ̄LψR. (2.26)
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We already know that the Dirac Lagrangian has a standard U(1) symmetry, but we see from the
representation above that by setting the mass terms to zero (often called the chiral limit), the left-
and right-handed fields decouple, and a second U(1) symmetry appears as we can now transform
these two fields independently,

ψR eiαRψR, ψL eiαLψL. (2.27)

In terms of the full Dirac spinor, choosing αV ≡ αR = αL results in the standard U(1) transform

ψ eiαV ψ, (2.28)

while a separate choice αA ≡ αR = −αL results in the chiral transformation

ψ eiαAγ
5
ψ, (2.29)

and its corresponding Noether current is the axial current

jµA = ψ̄γµγ5ψ. (2.30)

It is therefore common to refer to the U(1)R×U(1)L symmetry as U(1)V ×U(1)A, where V stands
for vector and A for axial.

Another set of symmetries can be identified if we extend the Lagrangian to include more quark
flavours. It then reads

LDirac = iψ̄i(/∂ −mi)ψi,

= iψ̄Ri/∂ψRi + iψ̄Li/∂ψLi −miψ̄RiψLi −miψ̄LiψRi. (2.31)

From the first of these, we see that by setting all quark masses identical, an SU(nf ) symmetry
emerges, as we can rotate ψi in flavour-space. This is commonly referred to as isospin symmetry,
and is almost an exact symmetry when nf = 2 as the u- and d quarks have almost identical masses
(mu = 1.7 − 3.3 MeV, md = 4.1 − 5.8 MeV [25]). Setting all masses to zero, produces a second
axial SU(nf ) symmetry as ψL and ψR can be rotated independently, similar to the axial U(1) just
introduced. All in all, we have SU(nf )V ×SU(nf )A×U(1)V ×U(1)A symmetry in the chiral limit.
Actually, even in the chiral limit, U(1)A is broken by a peculiar process in QFT known as the axial
vector anomaly, or the Adler-Bell-Jackiw anomaly after its discoverers [31, 32]. Ten years later,
Kazuo Fujikawa showed that the anomaly was a result of the fermionic integration measure Dψ̄Dψ
not being invariant under the axial U(1) transformation 3 [33, 34].

As for the SU(nf )A symmetry, it is said to be softly broken in the nf = 2 sector, owing to the
small masses of both u and d. In Sec. 1.5 we saw how a continuously broken symmetry resulted
in massless Goldstone bosons. The SU(2)A symmetry is obviously not an exact symmetry at all,
it is explicitly broken by the u and d masses, which is fundamentally different from spontaneous
symmetry breaking. But as the u and d masses are very small, the symmetry is softly broken, and
we expect there to be three pseudo-Goldstone bosons with small masses matching the axial SU(2)

3More accurately, we come to a point in the calculation where we have to choose between vector and axial U(1)
symmetry, but as breaking the vector symmetry implies that flavour charge is no longer conserved, that choice would
be unphysical
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Figure 2.5: The chiral condensate.

symmetry. Searching particle data tables, we see that the three pions are perfect candidates as they
are pseudoscalar spin-less bosons with relatively small masses (m ∼ 140 MeV).

We have just argued that mass terms on the form ψ̄ψ are responsible for chiral symmetry
breaking. A natural candidate for a measure of how “bad”, if at all, the chiral symmetry is broken,
is the chiral condensate 〈ψ̄ψ〉. This condensate is directly related to the pions, as they are the
lowest energy configuration of this type, and should therefore be the dominating contribution.
When analysing the deconfinement transition in the next chapters, we will use 〈ψ̄ψ〉 as an order
parameter to identify when we have reached the deconfined phase. A rough picture of the chiral
condensate is shown in Fig. 2.5.

8 The linear sigma model

The linear sigma model (LSM), is one of many models aiming at an effective description of QCD
at low energies where where quarks and gluons for the most part only appear confined within
hadrons. The model was proposed by Gell-Mann and Lévy in 1960 [35], and it is based on the
chiral condensate introduced in the last chapter. At low energies, the quarks and anti-quarks in
QCD should have formed bound states of spinless mesons, and an effective Lagrangian describing
the dynamics of the mesons can replace the QCD Lagrangian. With no quark degrees of freedom,
the two-flavour, isospin symmetric (md = mu), LSM Lagrangian is

LLSM =
1

2
∂µφα∂

µφα −
1

2
m2φαφα −

1

4
λ
(
φαφα

)2
+ hαφα. (2.32)

The parameters m2, λ and hi have to be fixed by experimental measurements. Excluding the last
term, this theory is O(4) symmetric, which is isomorphic to the SU(2)×SU(2) symmetry of massless
two-flavour QCD. The parameter hα is introduced to break this symmetry explicitly, simulating
how SU(2)A is explicitly broken by the quark masses. With h = 0, the O(4) symmetry can be
spontaneously broken, leaving us three massless Goldstone bosons taken to be the three pions. The
fourth field is identified as the σ particle (referred to as f0(600) in the particle data group booklet
[25]), which has a substantially higher mass compared to the pions with mσ = 400− 1200 MeV. In
terms of the parameters above (still h = 0), mσ = −2m2 (m2 < 0).

The model can also couple to quark degrees of freedom through Yukawa-coupling terms. This
model is named the linear sigma model with quarks (abbreviated LSMq), or the quark-meson model.
The two-flavour, isospin symmetric model reads:

LLSMq = iψ̄
[
/∂ − g(σ + iγ5~τ · ~π)

]
ψ + LLSM , (2.33)

where we have chosen to spontaneously break the O(4) symmetry of LLSM in the φ0 direction, and
have renamed the fields φ0 = σ, φi = πi. The quark mass term has manifested itself into couplings
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Figure 2.6: A T -µB phase diagram for QCD, taken from [36].

with mesons, which classically results in an effective mass term for the quarks,

mf = g 〈σ〉 . (2.34)

9 QCD phase diagram

In the world we live in, at normal temperatures and not too high particle densities, QCD is in
its confined phase, where quarks and gluons only appear in bound states such as the mesons and
baryons. Due to the nature of the QCD coupling, one could argue that at extreme enough conditions
we expect QCD to behave quite differently as the coupling weakens enough for quarks to free
themselves from their bound states. Such conditions have been reached in heavy ion collision
experiments at RHIC (Relativistic Heavy Ion Collider) and the LHC (Large Hadron Collider), and
is speculated to exist in the core of compact stars (such as neutron starts), and to have existed in
the very early universe. Our current understanding of this phase diagram is displayed in Fig. 2.6.

In this thesis we are mostly concerned with the deconfinement transition, in which quarks and
gluons break free from their confined states, and move around as individual particles rather than
being bound within the borders of the mesons and baryons. This can happen in one of two ways.
Either, at very high temperatures, there is enough thermal energy to weaken the strong force
sufficiently, so the quarks can break lose. In this case they will move around in a “soup” of interacting
quarks and gluons. This is known as the quark-gluon plasma, which experiments have been able to
create for a fraction of a second during heavy ion collisions at the great colliders. Alternatively, the
hadrons can be packed so close together that their borders start to overlap making a description
of separate hadrons nonsensical, and we once again have a deconfined state. This is known as the
(normal) quark matter (NQ) phase, and is speculated to exist at the core of very dense stars, such
as neutron stars.
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At zero temperature and zero chemical potential we have vacuum, and it is here calculations
with QFT are carried out, predicting the result of results of e.g. proton-proton collision experiments.
Moving towards higher chemical potential, i.e. higher particle density, the first phase transition one
encounters is the familiar gas-liquid phase transition. It happens at roughly µB ≈ 924 MeV [1], and
above this limit the hadrons condense into “drops”. At higher density, we encounter the NQ phase
described above.

At higher particle densities still, one argues by Cooper’s theorem that we should have a super-
conducting state involving quarks. It can be rigorously shown for asymptotically high densities, but
one expects from calculations with various models to reach this phase also for intermediate values.
Colour superconductivity is a bit more complicated than normal superconductivity as there are
more quantum numbers present which need to form anti-symmetric states, and therefore there are
multiple superconducting phases. The first of these one encounters is the 2-flavour colour supercon-
ducting (2SC) phase where the up and down quarks form Cooper pairs. To satisfy the anti-symmetry
condition, these need to have different colour values, for example up-green with down-blue. Next
up is the superconducting state in which we have sufficient energy to include the strange quark.
This phase is known as the colour-flavour-locked (CFL) phase in which all three quarks form pairs
using all colours. These states are invariant under rotation in flavour and colour-space, but they
have to be simultaneously transformed to satisfy the anti-symmetry requirement, hence the name
CF locked
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CHAPTER 3

Mean-field approximation

Our first approach at identifying the deconfinement phase transition is utilising the mean-field
approximation [37, 38]. It uses the linear sigma model with quarks to describe QCD at low energies,
and it assumes no bosonic quantum fluctuations. In the language of perturbation theory, it is a
“one-loop” approximation. We will in this chapter visit both a two- and three-flavour quark meson
model evaluated at both h = 0 (the chiral limit) and h > 0 (the physical point).

10 Two-flavour quark-meson model

The Lagrangian of the two-flavour linear sigma model with quark degrees of freedom is

L2fl = q̄
[
i/∂ − g(σ + iγ5~τ · ~π)

]
q +

1

2
∂µσ∂

µσ +
1

2
∂µ~π∂

µ~π − U(σ, ~π) + hσ, (3.1)

where U is an O(4) symmetric potential of the vector
[
σ, ~π

]
, and hσ is a term for explicitly breaking

this symmetry down to O(3), simulating how chiral symmetry is broken by the quark masses. We
choose the classical potential to be

U(σ, ~π) =
1

2
m2
(
σ2 + ~π2

)
+
λ

4

(
σ2 + ~π2

)2
, (3.2)

as it is the simplest O(4) symmetric potential with bosonic couplings.

10.1 Thermodynamic potential

The first step is to add a quark chemical potential to the above Lagrangian. To do this, we need
to find an expression for the quark number density, which can be obtained by applying Noether’s
theorem to the U(1) symmetry of the quarks. On infinitesimal form, this transformation is

q (1 + iθ)q δq = iq, (3.3)
q̄ (1− iθ)q̄ δq̄ = −iq̄, (3.4)

which gives the following Noether current

jµ =
∂L2fl

∂∂µψ
δψ +

∂L2fl

∂∂µψ̄
δψ̄ = ψ̄γµψ. (3.5)

Its zeroth component is a conserved charge density which is identified as the quark number density.
The Lagrangian with a quark chemical potential is therefore

L2fl L2fl + µq̄γ0q. (3.6)

39



Next we want to find an analytic expression for the thermodynamic potential defined in Eq. (1.74)
using the mean-field approximation. Removing all bosonic quantum fluctuation, we simply substi-
tute σ and ~π by their space-time independent expectation values, meaning that up to a normalisation
constant, the partition function is

Z = e−βV U(〈σ〉,〈~π〉)
∫
Dq̄Dq exp

{
−
∫

x
q̄
[
γ0∂τ − ~γ · ∇+ g(〈σ〉+ iγ5~τ · 〈~π〉)− µγ0

]
q

}
, (3.7)

and in turn, using the calculation in Appendix B6, the thermodynamic potential is

Ω(T, µ) = U
(
〈σ〉,〈~π〉

)
+ Ωqq̄, (3.8)

where the quark anti-quark contribution is

Ωqq̄ = −2NfNc

∫
dp

(2π)3

{
ω + T log

[
1 + e−(ω+µ)β

]
+ T log

[
1 + e−(ω−µ)β

]}
. (3.9)

We have defined ω2 = p2 + m2
q and m2

q = g2
(
〈σ〉2 + 〈~π〉2

)
. Note that a factor Nc has been added

to compensate for the extra colour degrees of freedom of the quarks. The first term is identified as
a contribution from the vacuum energy, and is therefore discarded. We find the expectation value
of the fields σ and ~π by the minimum of the thermodynamic potential

∂Ω

∂σ
= 0, (3.10)

∂Ω

∂~π
= 0. (3.11)

As the scalar fields σ and ~π correspond to the chiral quark condensates, we find the chiral phase
transition at the point in T -µ space where their expectation values are zero. 〈~π〉 = 0 is always a
solution of the above equations with the given potential, and therefore the value of 〈σ〉 determines
the phase transition.

10.2 Characterising phase transitions

One defines a phase transition by either the point where an order parameter has become zero,
or where it jumps discontinuously. If it jumps discontinuously it is said to be a first-order phase
transition, while if it goes continuously to zero it is higher order. The definition of the higher
order phase transitions follows the same logic. A second-order phase transition goes to zero with a
discontinuous first derivative, while a third order has a discontinuous second derivative, and so on.
Examples of a first and second-order phase transition is shown in Figs. 3.1a and 3.1b. On top of
the various orders of phase transitions, there is also an additional possibility, which is not a proper
phase transition, but is often associated with them. If the order parameter goes towards zero but
does never quite reaches it, we have a crossover. In those circumstances there are multiple ways to
define the crossover point. We will define it as the inflection point, or the point with the most rapid
change. Another alternative is to use the point at which the order parameter’s value is half of that
of the vacuum.
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Figure 3.1: Examples of 1st and 2nd order phase transitions.

10.3 Matching parameters

The Lagrangian in Eq. (3.1) has four still undetermined parameters, m, λ, h and g, and therefore we
need four experimental measurements to match the parameters with. The comparison is done in the
vacuum, zero temperature and chemical potential, where we have no thermodynamic fluctuations.
The four experimental values we will use are the constituent quark mass mq (one-third of the proton
mass), the pion decay constant fπ, the pion mass mπ, and the sigma mass mσ. Their values are

mq 312.8 MeV,

fπ 93 MeV,

mπ 138 MeV,

mσ 450 MeV.

The partial conservation of axial current (PCAC) relations gives us 〈σ〉 = fπ, and from this we can
immediately see from the definitions in Eq. (3.9) that g = md/fπ = 3.36. The meson masses are
given as the curvature of Ω at the minimum:

zam2
π =

∂2Ω

∂~π2

∣∣∣∣
〈σ〉,〈~π〉

= m2 + λf2
π , (3.12)

m2
σ =

∂2Ω

∂σ2

∣∣∣∣
〈σ〉,〈~π〉

= m2 + 3λf2
π = m2

π + 2λf2
π . (3.13)

Inverted, they determine m and λ:

m2 =

(
3m2

π −m2
σ

)

2
= −(269.6MeV)2, (3.14)

λ =
m2
σ −m2

π

2f2
π

= 10.6. (3.15)
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Figure 3.2: Thermodynamic potential at µ = 0 for various T in the mean-field approximation. The left
plot is in the chiral limit while the right plot is at the physical point, see main text for more
details.

Finally, using Eq. (3.10), we find h to be

h = m2
πfπ = (121.0MeV)3. (3.16)

In the chiral limit (h = 0) we only need to match three parameters as mπ = 0. They are m2 =
−m2

σ/2 and λ = m2
σ/2f

2
π , while g is the same.

10.4 Results

The plots in Fig. 3.2 show the thermodynamic potentials at zero chemical potential for various
temperatures (both h = 0 and h 6= 0). In the left plot, one sees that the potential develops two
minima as T increases, and at T ≈ 111 MeV, the minimum jumps discontinuously to zero, marking
a first-order phase transition. In the plot on the right we see how the minima continuously shifts
to the left towards zero, but never quite reaches it. This can be seen directly from the equation
determining the minimum

(
m2 + λσ2)σ + 2NfNcσg

2

∫
dp

(2π)3

1

ω

[
nq(T, µ) + nq̄(T, µ)

]
= h (3.17)

where nq(T.µ) =
(
e(ω−µ)/T + 1

)−1 is the quark distribution function and nq̄(T, µ) = nq(T,−µ) is
the anti-quark distribution function. One can sees that as long as h 6= 0, σ = 0 will never be a
possible solution, no matter the value of T and µ. The position of the minima as a function of
temperature for zero chemical potential has been plotted in Fig. 3.3. In this plot it is clear that the
system undergoes a first-order transition in the chiral limit, while it is a crossover at the physical
point, as argued above. The inflection point of the crossover-curve is at T ≈ 120 MeV.

The resulting phase diagrams are plotted in Fig. 3.4. At chemical potentials higher than 105
MeV, the thermodynamic potential develops a second minimum at the physical point. As T is
increased for these values of µ, the minimum jumps discontinuously to the second minimum, and
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Figure 3.3: Plots of the minimum of the thermodynamic potential with varying T at µ = 0. The plot shows
a first-order phase transition at T = 111 MeV in the chiral limit, while we have a crossover at
the physical point, its inflection point at T = 120 MeV.

we have a first-order transition instead of a crossover. The point (T, µ) ≈ (109, 105) MeV therefore
marks what is known as the critical endpoint, at which the phase transition should be second-order
(discontinuous first derivative). The existence and position of this point is still debated among
physicists, see e.g. Ref. [39] for an analysis and Ref. [40] for a lattice QCD perspective.

In Fig. 3.5 the phase diagram has been plotted for various values of mσ, and one can see a strong
correlation between the phase diagram and the value of the sigma mass. In addition to raising the
whole phase diagram, an increased sigma mass also pushes back the critical endpoint (CEP), and
at high enough mσ, it should disappear completely. As most lattice simulations [40, 41, 42] places
the (pseudo)critical temperature with zero chemical potential in the range 150-170 MeV, the results
from these plots suggests that the sigma mass should be somewhere between 600 and 800 MeV. The
results will be discussed further in Sec. 14 when all approximations have been presented.

An important clarification has to be made regarding the phase diagram in the chiral limit. When
we calculated the quark contribution to the thermodynamic potential given in Eq. (3.9), we threw
away the quark vacuum energy contribution. If we had renormalised the vacuum contribution using
e.g. the cut-off regularisation scheme which was introduced in Sec. 1.6, we would have found a
second-order phase transition in the chiral limit instead of a first-order, as shown by Skokov et al
in Ref. [43]. It was later shown by Andersen, Khan and Kyllingstad in Ref. [44] that the phase-
transition would be second-order in the whole T -µ plane, not going through a critical endpoint.
The argument presented by Skokov et al is the following: Close to the critical temperature, the
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quark mass, which is proportional to the order parameter σ, should be small compared with the
temperature, meaning that we can expand the quark contribution to the thermodynamic potential
in powers of mq/T

Ωqq̄ = NcNfT
4

{
− 7π2

180
+

1

12

m2
q

T 2
+

1

8π2

m4
q

T 4

[
log
(mq

πT

)
+ γE −

3

4

]}
+O

(
m6
q

T 6

)
. (3.18)

Added to the mesonic potential, and using the expression for mq, we get the full potential

Ω =
1

2

(
m2 + g2NfNc

6T 2

)
σ2 +

1

4

(
λ+ g4NfNc

4π2

[
log
( gσ
πT

)
+ γE −

3

4

])
σ4 + Ω0. (3.19)

With a potential on this form, it is the sign of the quartic term which determines the order of the
phase transition. If the quartic term is positive we have a second-order phase transition, while it is
first-order if it is negative. The λ term therefore compete with the logarithm term to determine the
order of the transition, but as the temperature is high and the order parameter is small close to the
phase transition, the logarithmic term can become very large, and negative, leaving us a first-order
phase transition. To see how this is countered by the vacuum fluctuation of the quarks we regularise
the term with a UV cut-off Λ, and expand the result in powers of mq/Λ

Ωvac
qq̄ = −NfNc

π2

∫ Λ

0
p2dp

√
p2 +m2

q ,

= −NfNc

4π2
Λ4

{
1 +

m2
q

Λ2
+

1

8

m2
q

Λ4

[
1 + 4ln

(mq

2Λ

)]}
+O

(
m6
q

Λ6

)
. (3.20)

The first two terms that are O(Λ4) and O(Λ2) and needs to be renormalised, but we see that the
logarithmic term exactly matches that of Eq. (3.18), cancelling the σ-dependence of the logarithm
leaving us

Ω =
1

2

(
m2 + g2NfNc

6T 2

)
σ2 +

1

4

(
λ+ g4NfNc

4π2

[
log
( 2Λ

πT

)
+ C

])
σ4 + Ω0. (3.21)

where C is an unimportant constant. From this we see that as long as we choose a cut-off scale Λ
large enough, the quartic term will be positive and we have a second-order phase transition.

11 Three-flavour quark-meson model

The simple model introduced in the previous section can be extended by adding the strange quark
to the mix. At temperatures up to 150 - 200 MeV, it is certainly possible for the strange quark
(ms = 101+29

−21 MeV[25]) to contribute to the results. We will in this analysis follow the work of
Schaefer and Wagner [45].

11.1 Thermodynamic potential

Similar to the arguments presented when we wrote down the two-flavour Lagrangian, we require the
three-flavour Lagrangian to be symmetric under the U(3)L × U(3)R symmetry group in the chiral
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limit, and then introduce an extra term to explicitly break this symmetry. Looking back at how we
constructed the QCD Lagrangian, the Lagrangian of the quark-meson model is

L3fl = q̄
(
i/∂ − gTi(σi + iγ5πi)

)
q + tr

[
∂µφ

†∂µφ
]
− US(φ)− UB(φ). (3.22)

The matrices Ti are the nine generators of U(3) (which are the eight generators of SU(3) plus
the identity), and φ = Ti(σi + iπi). The potentials US and UB are the symmetric and symmetry
breaking potentials respectively, and are

US(φ) = m2tr
[
φ†φ
]

+ λ1

(
tr
[
φ†φ
])2

+ λ2tr
[(
φ†φ
)2]

, (3.23)

UB(φ) = −c
(
det[φ] + det[φ†]

)
− tr

[
hiTi(φ+ φ†)

]
. (3.24)

The chiral anomaly in QCD, which was introduced in Sec. 7, and was shown by ’t Hooft in 1976
to be an effect of instanton configurations in the vacuum [46], is accounted for by the parameter c.
The parameters hi are introduced to break the SU(3)A chiral symmetry, In Ref. [47] it is shown
that only diagonal matrices hiTi give symmetry breaking leading to the PCAC’s, meaning that only
h0, h3 and h8 can be different from zero (we have chosen T0 = 1√

6
I, and Ti to be the Gell-Mann

matrices). We will also choose h3 to be zero to conserve isospin symmetry between u and d, meaning
that we only break one component of flavour symmetry. This is often referred to as the 2+1 flavour
quark-meson model. Evaluated in the mean-field approximation we get finite expectation values for
σ0 and σ8 only. The quark contribution is thus

Lqq̄ = q̄f
(
i/∂ −mf

)
qf , f ∈ {u, d, s}, (3.25)

where mf are the effective quark masses, mu,d = 1√
6

(
σ0 + 1√

2
σ8

)
and ms = 1√

6

(
σ0 +

√
2σ8

)
. One

can see that in this basis, σ0 and σ8 are superpositions of a strange and a non-strange condensate.
It is more convenient to separate them, therefore a change of basis is made:

(
σud

σs

)
=

1√
3

(√
2 1

1 −
√

2

)(
σ0

σ8

)
, (3.26)

resulting in new effective quark masses mu,d = gσud/2 and ms = gσs/
√

2. Similarly, we transform
h0 and h8 to hud and hs. Once again, the quarks in the mean-field approximation has gained
effective masses by their interactions with the mesons, and the thermodynamic potential can be
calculated analytically

Ω = US + UB + Ωqq̄(T, µi) (3.27)

where the quark contribution is given by

Ωqq̄ = −2NC

∑

f={u,d,s}

∫
dp

(2π)2

{
T log

[
1 + e−(ωf+µf )β

]
+ T log

[
1 + e−(ωf−µf )β

]}
, (3.28)

with ω =
√
p2 +m2

f . We will also here discard the vacuum energy of the fermions, even though
we argued in the previous section that this term can have an effect on the order of the phase
transition. To the best of the author’s knowledge, this contribution has not yet been analysed in
the three-flavour model, and is therefore a possible avenue for future research.
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11.2 Matching parameters

Analogous to the parameter matching we did in Sec. 10.3, we have seven parameters to match in our
current Lagrangian, g, hud, hs, m, λ1, λ2, and c. The parameters hud and hs can still be determined
by the PCAC relations which relates the condensates at zero temperature and chemical potential
to the pion and kaon decay constants [47, 48]

〈σud〉 = fπ, 〈σs〉 =
1√
2

(
2fK − fπ

)
. (3.29)

We can use the pion and sigma masses to determine m2 and λ1, while λ2 is set by the kaon mass.
Lastly the anomaly parameter c is fixed by the average η-particle mass, 1

2(m2
η + m2

η′). To be able
to evaluate the particle masses, we need to transform the condensates to their meson basis. The
U(3)V × U(3)A symmetry the Lagrangian was constructed from results in 9 + 9 = 18 mesons. The
nine belonging to U(3)V , σi, make up the zero spin scalar nonet (JP = 0+), while the nine from
U(3)A, πi, compose the zero spin pseudo scalar nonet (JP = 0−, depicted in Fig. 2.1). The σ and
π matrices can therefore be written as [48]

σ = Tiσi =
1√
2




1√
2
σud + 1√

2
a0 a−0 K∗−0

a+
0

1√
2
σud − 1√

2
a0 K̄∗0

K∗+0 K∗0 σs


 , (3.30)

π = Tiπi =
1√
2




1√
2
πud + 1√

2
π0 π− K−

π+ 1√
2
πud − 1√

2
π0 K̄0

K+ K0 πs


 , (3.31)

where σud and σs are mixtures of the σ particle and f0(1370) particle 1, while πud and πs are
mixtures of the η and η′ particles. This results in the following parameters for sigma masses of 450,
600 and 800 MeV

mσ [MeV] m2 [(MeV)2] λ1 λ2 c [MeV] hud [(MeV)3] hs [(MeV)3]

450 (467.53)2 −4.40 46.49 4807.25 (120.73)3 (336.41)3

600 (342.50)2 1.40 46.49 4807.25 (120.73)3 (336.41)3

800 −(306.29)2 13.49 46.49 4807.25 (120.73)3 (336.41)3

while g is still determined by the proton mass, g = 2mp/3fπ ≈ 6.5.

11.3 Results

We have plotted the two condensates, σud and σs in Fig. 3.6 as a function of T at µ = 0, and
added lines showing the inflection points of the two curves. The nonstrange σud condensate quickly

1f0(980) would also be a viable candidate, having the correct spin and parity, but the theory predicts a mass
m(σs) ≈ 1200 MeV, which is closer to 1370 MeV.
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sharp corssover at T = 120.8 MeV, while the strange condensate has a much smoother crossover
at higher T ≈ 234 MeV.
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Figure 3.8: Phase diagrams for mσ = 450, 600 and 800 MeV with both the two- and three-flavour LSMq
models. Two-flavour results are plotted with plain lines while the three flavour results are
marked by .

reaches its pseudocritical temperature Tc at 120.8 MeV, close to the two-flavour value (119.7 MeV).
The strange σs condensate however reaches its pseudocritical temperature at a higher temperature
of Tcs = 234 MeV. Its transition is also much smoother than that of σud.

We once again plot phase diagrams for various sigma masses in Fig. 3.7. The critical temperature
of the nonstrange condensate has been used to identify the phase transition for a given quark
chemical potential, effectively marking the restoration of the SU(2) × SU(2) sub-symmetry of u
and d, with the full SU(3) × SU(3) following at higher temperatures and/or particle densities.
We have chosen the quark chemical potential to be independent of quark flavour, only considering
identical chemical potentials µu = µd = µs ≡ µ. A comparison between the two- and three-flavour
phase diagrams are made in Fig. 3.8. It is clear that the addition of the strange quark has a small
effect on the overall result, but that it becomes more prominent at higher energy scales, meaning
higher sigma mass as it is correlated to the temperature and density scale of the phase transition.
This comes as no surprise, as higher energy scales are needed to produce the strange quark than
the much lighter up and down quarks which dominates QCD at energies below 200 MeV.

In Appendix C7 the temperature dependence of the effective meson masses is displayed and
discussed. The phase transition is just as pronounced in these plots as it is in Fig. 3.6, as the
meson masses become degenerate when chiral symmetry is restored. The plots also show differences
between the pseudocritical temperatures for the nonstrange and strange condensates, as for example
the f0 mass coincides with the other masses after the latter phase transition.
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CHAPTER 4

Functional renormalisation group methods

Having produced phase diagrams with the slightly crude mean-field approximation in the last chap-
ter, we now move on to a more advanced method, the functional renormalisation group. With this
method we can find a nonperturbative expression for the thermodynamic potential in form of RG
differential equations, as described in Sec. 3. This RG equation, being just as hard to solve as
finding the exact thermodynamic potential, will have to be approximated, which we will do using
the local potential approximation. This approach has become very popular since the introduction
of the effective average action by Wetterich [49, 50, 51], and the application of it can be divided into
two subgroups. One approach is to expand the potential in a Taylor series and truncate it after a
few terms

Uk(ρ) =
N∑

n=1

tn(k)ρn. (4.1)

One can then insert this expression into the local potential approximated RGE and obtain coupled
differential equations for the parameters tn. Examples of this approach can be found in e.g. Refs.
[52, 53]. An alternative approach, which is the one we will use here, is to discretise the fields, and
treat the potential at the discrete values of the fields as separate variables, which again results in
as many coupled differential equations as there are discrete values of the field, see for example Refs.
[54, 55, 56].

12 The RG equation

Once again we will use the linear sigma model with two quark flavours to represent our system, its
Lagrangian with an added quark chemical potential is given by

LE = q̄
[
γ0∂τ − i~γ · ∇+ g

(
σ + iγ5~τ · ~π

)
− µγ0

]
q +

1

2

(
∇4φ

)2
+ U(φ)− hσ. (4.2)

where φ =
[
σ, ~π

]
. Also here, U(φ), is an O(4) symmetric potential and an additional term, hσ, is

added to the Lagrangian to explicitly break this symmetry. With the local potential approximation
this Lagrangian gives the effective action

Γk[φ, q, q̄] =

∫ β

0
dτ

∫
dx

{
q̄
[
γ0(∂τ −µ)− i~γ ·∇+ g(σ+ iγ5~τ ·~π)

]
q+

1

2

(
∇4φ

)2
+Uk(φ)−hσ

}
. (4.3)

We assume that the quark-meson coupling g is already renormalised (is independent of k), and we
see from Eq. (1.130) that h also must be k independent as hσ is linear in sigma, and the right hand
side of the RGE is only dependent on second derivatives in the fields. The full RG equation with
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both boson and quark contributions is simply the sum of the right hand sides of Eqs. (1.130) and
(1.135) [57], and can be written in diagrammic form as

∂kΓk =
1

2
tr − , (4.4)

where the trace is over the components of φ. There is also a trace implied in the fermionic term,
but that trace is over spinor, flavour and colour indices. Writing out the diagrams, the RGE is

∂kΓk
[
φ, ψ, ψ̄

]
=

1

2
tr
∫

q
∂kRk(q)

(
δ2Γk

δφi(p)δφj(p′)
+ δijδ(p+ p′)Rk(p)

)−1

q,−q

− tr

∫

q
∂kPk(q)

(
δ2Γk

δψ(q)ψ̄(q)
+ Pk(q)

)−1

. (4.5)

Using the effective action from Eq. (4.3), we want an RG equation for the potential Uk as it is the
only k dependent term in Γk. Therefore similar to what we did in Sec. 3.4 we evaluate the RGE with
space-time independent (uniform) fields. In this case, the double derivatives can be easily worked
out:

∂2Γk
∂φi(p)∂φj(p′)

= δ(p+ p′)
[
p2δij +

∂2U

∂φi∂φj

]
, (4.6)

∂2Γk
∂ψ(p)∂ψ̄(p)

= δ(0)
[
iγ0(νn + iµ) + ~γ · p + g(σ + iγ5~τ · ~π)

]
. (4.7)

We have Fourier transformed Eq. (4.3), and have denoted the zeroth component of the momentum
four-vector as ωn for bosons and νn for fermions, same as the notation introduced in Sec. 2.2. Next
we have to choose the bosonic and fermionic cut-off functions Rk(q) and Pk(q), which have to satisfy
the conditions stated in Eqs. (1.113) to (1.115). An approximate way to achieve the second of these
conditions is by substituting infinity by the order of the renormalisation scale, which should be
chosen to be much higher than every other energy scale present. With this slight relaxation, the
second condition becomes

Rk=Λ(q) ∼ Λ2, (4.8)
Pk=Λ(q) ∼ Λ, (4.9)

It is also important to note that Pk must have the same Lorentz structure as a momentum term,
i.e. Pk(q) ∼ γµq

µ. If it was similar to a mass term (Pk(q) ∼
√
q2) or an axial current term

(Pk(q) ∼ γ5γµq
µ), it would explicitly break chiral symmetry. A thorough discussion can be found

in [57]. We will choose the same cut-off functions as e.g. [55, 58],

Rk(q) = (k2 − q2) θ(k2 − q2), (4.10)

Pk(q) =

(√
(νn + iµ)2 + k2

(νn + iµ)2 + q2
− 1

)[
iγ0(νn + iµ) + ~γ · q

]
θ(k2 − q2), (4.11)

where the function θ(x) is the Heaviside step function.
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12.1 Bosonic contribution

We will first evaluate the bosonic contribution to the RG equation using the cut-off function defined
in Eq. (4.10). Its contribution to the differential equation of Uk is

∂kUk(φ)B = T

∞∑

n=−∞

∫
dq

(2π)3
k θ(k2 − q2)tr

[
∂kU

2

∂φi∂φj
+ δij

(
q2 + (k2 − q2) θ(k2 − q2)

]−1

(4.12)

The potential U is O(4) symmetric, and can therefore be expressed as a function of ρ = 1
2(σ2 +~π2).

In this basis, the second derivative of U is ∂2U
∂φi∂φj

= δijU
′(ρ) + φiφjU

′′(ρ), where U ′(ρ) denotes
derivative with respect to ρ. We have assumed that U will retain its symmetry as it is renormalised,
and we can therefore pick out a single direction in φ space on which U depends, and set the rest to
zero. As we have explicitly broken the O(4) symmetry in the direction of σ, we will choose this as
the primary direction, and set ~π = 0, and ρ = 1

2σ
2. With this the matrix in Eq. (4.12) is diagonal




U ′ + 2ρU ′′ + q2 +Rk 0 0 0

0 U ′ + q2 +Rk 0 0

0 0 U ′ + q2 +Rk 0

0 0 0 U ′ + q2 +Rk



, (4.13)

which simplifies the expression considerably:

∂kUk(φ)B =
T

2π2

∞∑

n=−∞

∫ ∞

0
q2dq k θ(k2 − q2)

[
1

ω2
n + q2 +Rk(q) + U ′ + 2ρU ′′

+
3

ω2
n + q2 +Rk(q) + U ′

]
. (4.14)

The first Heaviside function ensures that the integrand is zero for all values of q higher than k.
We can therefore substitute the upper limit of the integral with k instead of infinity. As q now is
ensured to be less than k, all step-functions are evaluated to be one, in which case q2 + Rk(q) =
q2 + (k2 − q2)θ(k2 − q2) = k2, and we are left with

∂kUk(φ)B =
T

2π2

∞∑

n=−∞

∫ k

0
p2dp k

[
1

ω2
n + k2 + U ′ + 2ρU ′′

+
3

ω2
n + k2 + U ′

]
. (4.15)

The only momentum dependence remaining is that from the integral measure, and the integral is
therefore easily carried out

∂kUk(φ)B =
Tk4

6π2

∞∑

n=−∞

[
1

ω2
n + k2 + U ′ + 2ρU ′′

+
3

ω2
n + k2 + U ′

]
. (4.16)

The Matsubara sums are both on the form calculated in Appendix B5, and are given by Eq. (B.17):

∂kUk(φ)B =
k4

12π2

{
1

ωσ

[
1 + 2nB(ωσ)

]
+

3

ωπ

[
1 + 2nB(ωπ)

]}
, (4.17)

53



where nB(ω) =
(
eω/T − 1

)−1 is the Bose-Einstein distribution, and the sigma and pion dispersion
relations are

ω2
σ = k2 + U ′ + 2ρU ′′, (4.18)

ω2
π = k2 + U ′. (4.19)

12.2 Fermionic contribution

Just as in the previous calculation, the step function in the numerator ensures that q ≤ k, and
we can therefore replace the step function in the denominator by 1. This implies that we have to
evaluate an object on the form

tr

[
iγ0(νn + iµ) + ~γ · q

]
∂kAk[

iγ0(νn + iµ) + ~γ · q
]
Ak + gσ

, (4.20)

where Ak is the square root term in Pk, and we have set ~π = 0. To evaluate this we can expand it
in a power series:

1

gσ +
[
iγ0(νn + iµ) + ~γ · q

]
Ak

=
1

gσ

∞∑

n=0

(−Ak
gσ

)n[
iγ0(νn + iµ) + ~γ · q

]n
. (4.21)

Utilising that all the γ matrices are traceless and follow the anti-commutation relation
{
γµ, γν

}
=

ηµν , we can trace the expression order by order

n = 0 : iγ0(νn + iµ) + ~γ · q tr 0,

n = 1 : −(νn + iµ)2 − q2 tr − 4NcNf

[
(νn + iµ)2 + q2

]
, (4.22)

n = 2 :
(
iγ0(νn + iµ) + ~γ · q

)3
tr 0,

...

which again can be recognised as a different power series. The expression in Eq. (4.20) is therefore

4NcNf (∂kAk)
Ak

(gσ)2

[
(νn + iµ)2 + q2

] ∞∑

n=0

( −A2
k

(gσ)2

)n[
(νn + iµ)2 + q2

]n

= Ak(∂kAk)
4NcNf

[
(νn + iµ)2 + q2

]

(gσ)2 +A2
k

[
(νn + iµ)2 + q2

] . (4.23)

Inserting the expression for Ak, the fermion contribution is greatly simplified, and we are left with

∂kUkF = −T 2NcNf

π2

∞∑

n=−∞

∫ k

0
q2dq

k

(νn + iµ)2 + k2 + (gσ)2
. (4.24)

Once again the only q dependence left is that of the integration measure, and the integral is readily
calculated, leaving the sum. The sum is also on the form presented in Appendix B5, and utilising
Eq. (B.21) we end up with the final result

∂kUkF = −NcNf

3π2

k4

ωq

[
1− nF (ωq, µ)− nF̄ (ωq, µ)

]
, (4.25)

where the quark energy is
ω2
q = k2 + (gσ)2, (4.26)

and nF (ωq, µ) is the fermion distribution function introduced in the last Chapter.
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Figure 4.1: Plots showing the convergence of the parameter conditions as a function of RG time.

12.3 Full RG equation

Combining the meson and quark contribution we obtain the full RG equation for Uk

∂kUk(ρ) =
k4

12π2

{
1

ωσ

[
1 + 2nB(ωσ)

]
+

3

ωπ

[
1 + 2nB(ωπ)

]}

− NcNf

3π2

k4

ωq

[
1− nF (ωq, µ)− nF̄ (ωq, µ)

]
. (4.27)

By setting the meson fluctuations to zero, we recover the expression given by the mean-field approx-
imation. This approach will therefore hopefully give more accurate results for the thermodynamic
potential and in extension the phase transition, as it includes both quantum- and thermal fluctua-
tions of the meson fields in addition to the quark fluctuations.

The RG equation is a two dimensional partial differential equation in the sense that it has partial
derivatives with respect to k on the left hand side and with respect to ρ on the right hand side. As
mentioned in the introduction to this chapter, two possible approaches one can take to solve this
is either to parametrise Uk and find one ordinary differential equation (ODE) for each parameter,
or to discretise ρ ρi and find an ODE for each Ui(k) = Uk(ρi). In this work the latter has been
chosen, and the details behind discretisation and how the partial derivatives in ρ are evaluated are
given in chapter 5.

13 Initial conditions and parameters

Before we can solve Eq. (4.27), we need to provide a continuous set of initial conditions for the
potential Uk. These should be given at k = Λ, where all quantum fluctuations are suppressed and
we regain the classical potential. For the initial condition we will use the same potential we used in
Sec. 10 when utilising the mean-field approximation,

UΛ(ρ) = m2ρ+ 4λρ2. (4.28)
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Figure 4.2: Plots displaying various aspects of the renormalisation of Uk at h = 0.

With this choice, the Lagrangian has four free parameters, which we will match to fπ, mπ, mσ, and
the proton mass mp. We will map out the phase diagram both with and without explicit symmetry
breaking by the hσ term, and therefore need to determine m2 and λ for both these cases. The
parameters h and g are set to g = mq/3fπ and h = 0 or h = m2

πfπ, while m2 and λ are set by the
two conditions

∂Ω

∂σ

∣∣∣∣
σ=fπ

=
∂Uk=0

∂σ

∣∣∣∣
σ=fπ

− h = 0, (4.29)

∂2Ω

∂σ2

∣∣∣∣
σ=fπ

=
∂2Uk=0

∂σ2

∣∣∣∣
σ=fπ

= m2
σ, (4.30)

both at zero temperature and zero chemical potential. When integrating the full RG equation
numerically, it is convenient to change integration variable from k to the dimensionless variable
t = log

(
k
Λ

)
, which we will call RG time. In Fig. 4.1 we can see how the minimum, which should be

equal to fπ at t = −∞, and the square root of the curvature of U at the minimum, which should
be mσ at t = −∞, evolve as t moves from zero towards minus infinity. While the minimum quickly
stabilises at around t ≈ −2, the curvature continues to vary, but settles close to t ≈ −3.5. We will
assume that the contribution from t < −6 (k < 2.5 10−3Λ) is negligible, and therefore truncate the
numerical integration at t = −6.

On top of the four parameters of the Lagrangian, the initial condition for U presented in
Eg. (4.28) has an additional parameter, Λ. Analytically, all physical quantities (such as mσ, fπ
and Tc) are independent of the cut-off scale Λ as long as it is larger than the highest energy scale
of the system. Unfortunately the numerical results are not, but the dependence on Λ is weak. We
have chosen a cut-off scale Λ = 500 MeV, which is larger than our choice for mσ, just as Schaefer
and Wambach did in [54]. As we will analyse further in Chapter 5, the value of the sigma mass is
somewhat problematic to determine in this model. While the minimum is very resilient to change,
the curvature at the minimum does not only depend on the five parameters, but also on the numer-
ical method used to solve the ODEs, which is unfortunate. The sigma mass will therefore be set
by an interval approximately 350 - 500 MeV instead of by a specific value. With this is place, the
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Figure 4.3: Minimum of the potential U0 as a function of T with µ = 0. The left plot is taken in the chiral
limit, and it shows second-order phase transition as the minimum goes continuously to zero.
The right plot is at the physical point and it shows a crossover where the minimum approaches
zero as T increases.

values chosen for m2 and λ are

h = 0 h = m2
πfπ

m2 [(MeV)2] 0 (98.1)2

λ 2.125 2.45

14 Results

From the full RG equation given in Eq. (4.27) it can immediately be seen that the renormalisation
is a competition between the meson and quark contributions. The meson contribution, having a
positive sign, drives the potential to higher values, weakening its symmetry breaking and pushes
the minimum towards zero, while the quark contribution has the opposite effect. This is even
clearer in Fig. 4.2a, where the renormalised potential has been plotted with either the quark- or
the meson contribution turned off. The unrenormalised and fully renormalised potential has also
been plotted as a reference. Combined with the plots in Fig. 4.2b which show the potential at
different renormalisation times t, we can conclude that the quark contribution is dominant in the
high k region, while the mesons contribute more towards the end. Because the meson contribution
is dependent on the derivatives of U , we see that as the potential starts to decline, we get a feedback
reaction where the meson contribution takes over as a result of the quark contribution pushing the
potential down. At around t = −0.6 or k ≈ 0.5Λ we see that the feedback has reached its limits
and the potential is driven towards higher values again. These complex interplays between the two
contributions are the reason why the fully renormalised potential is not simply the average between
the pure meson and pure quark renormalised potentials.

In Fig. 4.3 the minimum of the renormalised potential U0 as a function of temperature has been
plotted. In the chiral limit (the left plot) we have a second-order phase transition at zero quark
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Figure 4.4: Phase diagram in the chiral limits. The second-order phase transition is plotted with a dashed
line, while the first-order phase transition is plotted with a solid line. The critical endpoint is
marked by a dot .

chemical potential. At higher chemical potentials, this transition eventually turns into a first-order
transition, and we therefore also in the chiral limit find a critical endpoint. This was not seen in
either of the two mean-field approximations (although not explicitly shown for the three-flavour
model), telling us that the inclusion of both the thermal and quantum fluctuations of the mesons
add to the phase diagram. The resulting phase diagram is plotted in Fig. 4.4, and one can see
the critical endpoint at (T, µ) ≈ (253, 62) MeV. The plot to the right in Fig. 4.3 shows a crossover
transition at the physical point. Because we lack precise knowledge of the position of the minimum,
due to the discretisation of σ, the inflection point cannot be found with numerical derivatives like
we did previously. The data points were therefore fitted to a similar curve, from which we could
calculate the inflection point. The phase diagram at the physical point has been plotted in Fig. 4.5.
The standard deviation of the fitting parameters, resulting in a standard deviation for the critical
temperature, has been added as error bars. After µ ≈ 260 MeV, the fitting function is no longer
good, and the transitions have therefore been taken as an educated guesses based on the shape of
the σ0(T ) plots, the error bars given accordingly. The fitting procedure and the resulting errors
are discussed in more detail in Sec. 17.4. One should also notice the lack of a critical endpoint
in the phase diagram at the physical point. It should be stressed that this is not because none
exists, but is simply a consequence of the numerics, as they are less accurate at small, but nonzero,
temperatures. It was therefore difficult both to find the transition temperature, and also the order
of the transition. The critical endpoint has therefore been omitted.

The plots in Fig. 4.6 shows a comparison between phase diagrams produced using the LPA
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Figure 4.5: Phase diagram at the physical point. The error bars indicate the error of the parameter fit
which had to be carried out to identify the crossover transition, see the full text and Sec. 17
for more details.

and the mean-field approximation. In both the chiral limit and the physical point we see that
the inclusion of meson fluctuations has pushed the critical temperature at zero chemical potential
to a higher value, despite the lower value for the sigma mass. On the other hand, in the region
of high µ and low T the phase diagrams calculated with the LPA drops quicker than that of the
mean-field approximation. The two curves even cross before they hit the µ axis. The explanation
for this behaviour can be found in the RG equation, Eq. (4.27). At zero temperature the fermionic
contribution to the potential is:

∂kUkF (T = 0) = −NfNc

3π2

k4

ωq

[
1− θ(µ− ωq)

]
, (4.31)

where once again θ is the Heaviside step function. Therefore, for all values of k and σ such that
ωq < µ, the quark contribution is zero, and as a result, at high µ and low T the meson contribution
is dominating. Earlier we argued that the meson contribution weakens the symmetry breaking,
driving the minimum towards zero, which is why we should expect the phase diagram to drop
quicker at high µ if this contribution is included.

15 Thermodynamic quantities

In Sec. 2.1 we introduced the thermodynamic potential Ω and the various thermodynamic quantities
which could be calculated based on it. In this section we will use the LSMq with the local potential
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Figure 4.6: Comparison between phase diagrams resulting from the LPA (mσ ≈ 450 MeV) and the mean-
field approximation (mσ = 600 MeV).

approximation to calculate these quantities and compare them to that of a free gas of massless
quarks and gluons.

15.1 Additional contributions to the high temperature region

If we had used Eqs. (1.75) to (1.78) to calculate the thermodynamic quantities using the results
for Ω obtained after having integrated down from the ultraviolet cut-off scale Λ, we would find the
results lacking in the high temperature regions when compared to e.g. mean-field calculations or
lattice results. The reason for this is that we are missing the temperature dependence of the modes
with energies higher than Λ, and these need to be reincluded in to obtain correct results for the
thermodynamic quantities. We write the corrected Ω as

Ω = Ω0 + ΩΛ, (4.32)

where Ω0 is the contribution from k = Λ to k = 0, the one calculated in the previous section, and
ΩΛ is the contribution from k = ∞ to k = Λ. Due to the asymptotic freedom of the quarks and
gluons we assume that the meson condensates have melted, and that we are left with free quarks
and gluons for energies above Λ. Therefore, for k > Λ, the RG equations are

∂kUk =
k3

12π2

{
Ng

[
1 + 2nB(k)

]
− 4dF

[
1− nF (k)− nF̄ (k)

]}
, (4.33)

where Ng = 2(N2
c − 1) is the degrees of freedom for the gluons and dF = NfNc is the degrees of

freedom for the quarks. We have excluded the quark mass from the dispersion relation of the quarks
as it is negligible compared to values of k larger than Λ. The addition from the high temperature
limit to the thermodynamic potential is therefore

ΩΛ =
1

12π2

∫ Λ

∞
k3dk

{
Ng

[
1 + 2nB(k)

]
− 4dF

[
1− nF (k)− nF̄ (k)

]}
. (4.34)
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Figure 4.7: The pressure and quark number susceptibility at the physical point using the LPA both with
and without corrections from the high energy modes. The lower curve is without corrections
while the upper one is with.

The two divergent terms are also this time not dependent on either T nor µ, and they therefore
only contribute to an unobservable shift of the potential. The thermodynamic potential can be
renormalised simply by subtracting the potential of the vacuum from the final result.

15.2 Results

All the results of this section will be normalised to those of a free gas of massless quarks and gluons,
and will be given at zero quark chemical potential. The thermodynamic potential of a free gas of
massless quarks and gluons is given by

Ωfree = −
(
Ng +

7

2
dF

)π2

90
T 4 − dF

6
T 2µ2 − dF

12π2
µ4. (4.35)

The pressure with and without the high temperature correction has been plotted in Fig. 4.7a nor-
malised with the pressure of an ideal gas. The plot clearly demonstrates that the high energy modes
becomes more important as one cranks up the temperature, but there is a problem. Already at
T = 50 MeV, around 20% of the pressure comes from the high energy modes, and as T rises above
250 MeV, the contribution from the modes with energy less than Λ becomes negligible. The same
behaviour can be seen from the quark number susceptibility

χij =
∂2P

∂µi∂µj
(4.36)

which has been plotted in Fig. 4.7b.

The problem arises from the choice we made for Λ. While 500 MeV was sufficient to obtain
information about the critical region and find the chiral transition for a sigma mass approximately
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450 MeV, it is too low to acquire information on the thermodynamics of the system at high temper-
atures. Unfortunately, choosing a higher cut-off scale requires a lot of time both tuning parameters
and calculating the quantities themselves. We therefore did not have enough time to finish these
calculations, and it will therefore be a natural continuation of this work. This will be discussed
further in the last chapter.
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CHAPTER 5

Numerical methods

In this chapter we will analyse the underlying numerics of the results presented in this thesis. We
will focus on numerical methods, numerical instability and minor details one has to pay attention
to. There will be both pseudocode and C++ code included to describe the numerical methods and
ideas.

16 The mean-field approximation

First, a short summary of the numerics at the base of the mean-field results will be given. The GNU
Scientific Library (GSL) [59], a C library for numerical computation, has been used extensively. Most
notably it includes a C implementation of QUADPACK [60], a FORTRAN77 library for numerical
integration of one-dimensional functions, which was used to evaluate the integrals in Eqs. (3.9,3.28).
We also used two of the library’s many root finding algorithms. The Brent algorithm was utilised
to find the roots of the two-flavour model, and the Hybrid algorithm with a multi-dimensional finite
difference scheme to calculate the Jacobian was used for root-finding with the three flavour model,
see [59, p. 383] for more detail.

16.1 Crossover transitions

Finding the phase transitions for small chemical potentials is quite straight forward. For both the
two- and three flavour case, the root of the derivative of the thermodynamic potential was found
rather than the minimum, as an analytic expression for this derivative could be easily calculated. We
only had a crossover at the physical point, whose inflection point was found by numerical derivatives
in T . When scanning for this inflection point, steps of around 10−2 MeV were taken in T , being
more than sufficient to get accurate enough results to take numerical derivatives, which we will see
is not the case with results from the renormalisation group methods.

16.2 First-order phase transitions

Finding the first-order phase transition when h = 0 is trivial as we know that the minimum jumps
to zero at the phase transition. Therefore one only has to check if the thermodynamic potential
at the local minimum is less than the value at zero for every iteration. When this no longer is the
case, we have found the critical temperature.

At the physical point it is a little bit trickier as the new minimum to which we jump discontin-
uously also has to be found. Therefore, knowing both the shape of the potential and the nature of
the root finding method in use is essential. When using numerical root-finding functions, one has to
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Figure 5.1: A plot showing multiple root finding with multiple guesses. Potential taken from two-flavour
linear sigma model with mσ = 600 MeV at (T, µ) = (70, 250) MeV at the physical point.

specify an initial guess where the root might be. If the function has multiple roots, the numerical
method usually finds a root close to where the guess said it would be. When looking for a first-order
transition we therefore have to make two guesses to where the minima are. From Fig. 5.1 we can
see that in our case, a good idea is to let one guess be close to the original minimum (fπ), and the
other guess be around zero. Below is a pseudocode snippet describing how the phase transitions
were found and identified:

mins[5] stores 5 minima, needed for numerical double derivative
findMinimum() takes two input, temperature and a guess, returns minimum
for i = 0 to 5 do {find the first 5 minima}
mins[i] = findMinimum(T ,fπ)
T = T + dT

end for
while T < Tmax do
min1 = findMinimum(T , mins[4])
min2 = findMinimum(T , 0)
if min1 6= min2 then

if Ω(min2) < Ω(min1) then
return T {Tc found, first-order transition}

end if
end if
for i = 1 to 5 do {throw away one minimum to make room for min1}
mins[i− 1] = mins[i]

end for
mins[4] = min1
ddx = doubleDerivative(mins) {calculate numerical double derivative}
if ddx > 0 then

return (T − 2dT ) {inflection point, second-order transition}
end if

64



T = T + dT
end while

17 Renormalisation group approach

We solved the RG equation, which is a partial differential equation in k and ρ numerically by
discretising Uk(ρ) Uk(ρi), where ρi are the discrete values of ρ and i runs from 1 to n. This way
we are left with an n-dimensional ODE instead, which we proceeded to solve using Runge-Kutta
algorithms of varying order. We tested the results for n = 100, 200, 500 and 1000. While the three
first choices had no affect on our final result, the third choice gave worse results than the others.
This is to be expected as we do not have the precision in k to account for the precision in ρ. A good
analysis of errors in numerical solutions to PDEs can be found in [61, p. 1036]. Most of the results
are therefore calculated with n = 200. Actually, for most of the results n = 256 was used. The
reason for this is that the code used to solve the ODEs was paralellised using a messenger passing
interface (MPI) library for C++, and as processors have a tendency to come with the number of
processing cores equal to a power of two, 256 = 28 was used for portability.

17.1 Runge-Kutta method

Probably the most used method for numerical solutions to ODEs is the Runge-Kutta method. To
illustrate it, we will use an ODE on the form

dy(t)

dt
= f(y, t). (5.1)

Let us descretise it in time, t ti = t0 + ih and y(t) yi = y(ti). The lowest order Runge-Kutta
method (normally called the Euler method) is obtained by substituting the derivative in Eq. (5.1)
with a first-order forward difference formula:

yi+1 = yi + hf(yi, ti) (5.2)

With this formula, we can give an initial value for y, y0 = y(t0), and evolve it in time towards the
final result yf = y(tf ), but there is a problem. Not only is is the algorithm only correct to first-order
in h, meaning that we need very small step-sizes, it is also quite unstable. We can obtain a better
result by also taking into account the derivative at the mid-point, known as the midpoint method
(or second-order Runge-Kutta). This needs to be done in two steps:

k1 = hf(ti, yi),

yi+1 = yi + hf
(
ti + 1

2h, yi + 1
2k1

)
, (5.3)

and this method is correct to order h2. So by taking into account derivatives at more and more points
in between ti and ti+1 we can increase the accuracy of the method. An n-th order Runge-Kutta
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method is therefore on the form

k1 = hf(ti, yi),

k2 = hf(ti + c2h, yi + a21k1),

...
km = hf(ti + cmh, yi +

m−1∑
j=1

amjkj),

yi+1 = yi +
m∑
j=1

djkj , (5.4)

where generally m ≥ n. The algorithm is fully defined by the parameters ci and di and the lower
triangular matrix aij . The classical fourth order Runge-Kutta is defined by the following set of
parameters:

ci =




0
1
2
1
2

1



, aij =




0 0 0 0
1
2 0 0 0

0 1
2 0 0

0 0 1 0



, di =




1
6
1
3
1
3
1
6



. (5.5)

17.2 Stepsize control

While there is nothing wrong with using a fourth order (or higher) Runge-Kutta with a constant
stepsize h, we can save a lot of computer time by varying h depending on whether f is smooth or
not at the current ti. To do this we need an estimate of the error relating to the current stepsize.
The simplest approach to this is through step doubling. We could first calculate yn+1 with one step
of size h, and then again calculate y∗n+1 using two steps at half the stepsize, h/2. The difference
δ = y∗n+1−yn+1 gives an estimate for the error associated with the stepsize h. This technique could
unfortunately require as many as 3n−1 evaluations of f , which would be costly, but better methods
have been developed.

One such method is the 4,5-Dormand-Prince (Dopr45) algorithm [62], where two sets of parame-
ters, their only difference being the values of di, give one result correct to O(h4) and another correct
to order O(h5). The difference between these two values for yi+1 gives the error estimate needed
to decide whether the current value of h is sufficient. These two sets both require six function
evaluations, which is substantially better than the step doubling technique which would require 11
evaluations for the fourth-order Runge-Kutta.

In this work, we have a set of n coupled ODEs, let us denote them by y(ti, ρj) = yi,j . Let yi+1,j

and y∗i+1,j be two different methods for calculating the next step, correct to different orders in h.
For example y is calculated with the fourth-order expression of the Dopr45 algorithm, while y∗ is
calculated with the fifth-order expression. The total error is then

err =

√√√√ 1

n

n∑

j=1

(
yi+1,j − y∗i+1,j

scalej

)2

, (5.6)

where the scalei is an error bound which we set to be

scalej = atol + rtolMAX
(
|yi+1,j |, |y∗i+1,j |

)
. (5.7)
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Hence, atol denotes the absolute error tolerance while rtol is the relative error tolerance. Therefore
if err is greater than one, we reject the step and reduce h by a factor depending on err, while if
err ≤ 1 we accept the step and increase h accordingly.

Both Dopr45 and Dopr853 (8,9-Dormand-Prince algorithm with a fifth- and a third order error
estimate and 12 function evaluations [63]), as well as the classical fourth-order Runge-Kutta as listed
in Eq. (5.5) have been implemented and used to solve the RG equation. Whenever fourth-order
Runge-Kutta was utilised, a stepsize of h = −10−6 was used. We checked that neither halving nor
doubling this value had any effect on the final result. With both Dopr45 and Dopr853, we mostly
used an absolute error tolerance of either 10−12 or 10−13 depending on whether we calculate Ut with
a high or low T . This choice was made on the basis that the potential U possesses no additional
structure on scales less than these values.

17.3 Handling complex numbers

Due to the truncation of the integral over k (or t), the potential Uk obtains an imaginary part during
the numerical integration. Therefore, instead of having n ODEs we end up with twice as many as
we need to account for the running of the imaginary part as well. This is as straightforward to
account for as one would think except for the square roots in Eq. (4.27), where one has to be a bit
careful when evaluating. The square root has two different solutions, separated by a complex phase
π, and the physical result should trace a continuous line in the complex plane. Meaning that if one
plots Uk in the complex plane as a function of ρ, this line has to be continuous. This was achieved
by comparing the real and imaginary parts of the complex square roots at point ρi with its values at
the previous point, ρi−1. This is most easily explained with C++ code for the complex square root
function, and pseudocode for the continuity check. First comes the complex square root function,
which has a branch cut at the negative real axis. The resulting real part will therefore always be
positive:

//Input: real and imaginary part of the number which will be used , and
// containers to store the result in
void complexSqrt(const double re , const double im , double &sqrtRe , double &sqrtIm←↩

→ )
{

double w;
double aRe = fabs(re);
double aIm = fabs(im);

if(re==0 and im==0){
sqrtRe = 0; sqrtIm = 0;
return;

}else if( aRe >= aIm){
w = sqrt (0.5* aRe + 0.5* aRe*sqrt (1. + aIm*aIm/(aRe*aRe)));

}else{
w = sqrt (0.5* aRe + 0.5* aIm*sqrt (1. + aRe*aRe/(aIm*aIm)));

}

if(re >= 0){
sqrtRe = w; sqrtIm = 0.5*im/w;

}else if(im >= 0){
sqrtRe = 0.5* aIm/w; sqrtIm = w;
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}else{
sqrtRe = 0.5* aIm/w; sqrtIm = -w;

}
}

Next is a piece of pseudocode explaining how we make sure the resulting contributions are
continuous as we increase ρ.

f iRe and f
i
Im are the values we will take the root of

the result stored in
√
f iRe and

√
f iIm

for i = 0 to n do
complexSqrt(f iRe, f

i
Im,

√
f iRe,

√
f iIm)

if i 6= 0 and |
√
f iRe| > |

√
f iIm| then

sign = SIGN(
√
f i−1

Re)
else if i 6= 0 then
sign = SIGN(

√
f i−1

Im) · SIGN(
√
f iIm)

end if√
f iRe = sign ·

√
f iRe√

f iIm = sign ·
√
f iIm

do additional calculations
end for

Another alternative would be to convert from Cartesian to polar coordinates, and then at each
iteration check if the complex phase is continuous.

17.4 Phase transition at the physical point

As presented in the previous chapter, the phase transition for small chemical potentials at the
physical point (h = fπm

2
π) is a crossover, the same as we had in both mean-field field approximation.

We will also here define the transition to be at the inflection point of either the σ0-T curve or the
σ0-µ curve, but contrary to the mean-field approximation, we have discretised σ, and therefore do
not have the precision necessary to find this point consistently using numerical derivatives. Instead
we fitted the data from the calculations to similar looking curves whose inflection point is known.
We have, similar to Andersen and Tranberg in Ref. [64] chosen to fit the plots to the function

σ0(T ) = a+
bn

Tn + cn
. (5.8)

The parameter n was varied by hand rather than fitted. For small µ, n = 4 was found to provide
good fits, while a lower value were used for higher µ. At each step, multiple values for n were tested,
and when it had been determined, the critical temperature is given by the parameter c as

Tc = n

√
n− 1

n+ 1
c. (5.9)

where e.g. n = 4 was found to give excellent agreement for small µ. After c has been decided from
the fit, the critical temperature is given as Tc = (3/5)0.25c. An example fit with µ = 0 is shown in
Fig. 5.2, which shows excellent agreement. The fits were calculated using the Levenberg-Marquardt
algorithm, using an implementation provided by GSL.
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Figure 5.2: A fit of the σ0-T curve at µ = 0 using Eq. (5.8).

17.5 Numerical instability

While the position of the minimum has been found the be very resilient to change in the numerical
methods used, the potential itself seems to be more unstable, which is why it was argued that the
sigma mass was hard to fix exactly. Numerical unstable differential equations are often referred
to as stiff equations, and are often related to possible divergences. In our equations, we have
terms like 1

ωσ
and 1

ωπ
which can be singular for an unfortunate set of initial conditions. While an

algorithm utilising constant stepsize might blissfully skip past these problematic points (and they
often do) with only minor numerical inaccuracies to show, the adaptive stepsize algorithms have an
unfortunate tendency to hone in on these configurations, decreasing the stepsize until it is below
the precision of the computer, and then fail. It is hard to say which approach produces the most
correct results, and they should both be used with a bit of caution. Stepsize control certainly seem
like the safest option as it would rather stop than letting inaccuracies propagate through, it does
however not always produce any results. In addition, stepsize control algorithms can also obtain new
instabilities resulting from having too many function evaluations (which themselves carry faults).
Ideally one would use an algorithm to solve the differential equation more suited for solving stiff
equations such as the implicit methods, but they require the Jacobian of the right hand side ( ∂2f

∂ρi∂ρj
,

where ρi are the discrete values for ρ), which is both difficult and costly to calculate.
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CHAPTER 6

Conclusion and outlook

In this thesis we have studied the chiral transition in QCD at high temperatures, resulting in a
quark-gluon plasma, or high quark densities, resulting in quark matter. We used the linear sigma
model with quarks to model QCD at low energies where the quarks are confined to hadrons. First
we applied the mean-field approximation to one-loop, which neglects all quantum and thermal
fluctuations of the mesons. We saw that even with this simple approximation, many of the critical
phenomena in QCD were found. In the chiral limit we found a first-order phase transition for
all values of T and µ, while at the physical point the melting of the condensate is a crossover
transition for low quark chemical potentials, which turns into a first-order transition as we increase
µ. Similar behaviour was found when we extended the two-flavour LSMq to include the strange
quark. We saw that the addition of the strange quark had little effect on the phase diagram, only
pushing the transitions to slightly higher temperatures and the critical endpoint to higher chemical
potentials. The effect of the strange quark became more prominent for higher sigma masses, but
even at mσ = 800 MeV the phase diagram was only pushed up ∼ 3 MeV, its shape unchanged.

In Chapter 4 we replaced the perturbative method used in the previous chapter with a renormal-
isation group method, and the mean-field approximation with the nonperturbative local potential
approximation. With this we were able to include the thermal and quantum fluctuations that
were missing from the first approach. We saw that with the mesonic contribution, the transition
was pushed up to higher temperatures at zero quark chemical potential, while the transition curve
dropped much faster as we increased µ. This was to be expected as the mesonic contribution,
which is dominant in the region of high µ and low T , weakens the symmetry breaking, driving the
condensate towards zero. Finally we tried to calculate the thermodynamic quantities associated
with the thermodynamic potential to see how these compared to that of a free gas of quarks and
gluons. We saw that the choice we had made for Λ was too small to find the proper behaviour at
high temperatures.

18 Outlook

Reading Chapter 4 one notices that there is still much left to do. The numerical work was more
demanding than anticipated, and therefore a great amount of time was spent simply obtaining
correct renormalised potentials which were needed for all subsequent calculations. First the high
chemical potential region of the phase diagram at the physical point, displayed in Fig. 4.5, needs
to be calculated again at higher precision. In this region the fit proposed in Eq. (5.8) is not very
good, and a better fitting function must be found.
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As we were unable to determine the high temperature behaviour of the LSMq due to our choice
of Λ being too small. We should therefore calculate the thermodynamic quantities again at a
higher renormalisation scale. Of particular interest is the quark number susceptibilities defined in
Eq. (4.36), as these have, to the authors knowledge, not yet been calculated using the nonper-
turbative approximation presented in this work. It would be interesting to see how these results
would compare to other approximations such as the mean-field approximation and hard thermal
loop perturbation theory, see e.g. the work of Andersen et al. for a Nf = 3 study [65]. The results
should also be compared with recent lattice results, e.g. Ref. [66] for Nf = 2 and Refs. [67, 68] for
Nf = 2 + 1.

It should be noted that the computation time needed to calculate the renormalised potential at
higher renormalisation time does not follow a simple scaling relation. The reason is that we need
to take the integral over t = log(k/Λ) to lower values than -6 to reach the same value in k, but this
also needs to be done with smaller stepsizes.

18.1 Polyakov loop

In this work we have identified chiral symmetry restoration with deconfinement by the argument
that when the chiral condensate has melted, the quarks no longer favour bound states, such as
the mesons. While this is more of a suggestive argument than anything else, lattice calculations
have found the chiral- and deconfinement transitions to take place at the same (pseudo)critical
temperature [69]. The deconfinement transition actually has a different order parameter associated
with it, found by Polyakov [70], which is

L(x) =
1

Nc
trP exp

[
i

∫ β

0
dτ A4(x, τ)

]
, (6.1)

where P is the path-ordering operator and the trace is taken over the indices of the resulting
matrix (remember that A4 = Ai4T

i is the QCD gauge-field, which is a three-by-three matrix in the
fundamental representation). The object L(x) is commonly referred to as the Polyakov loop. The
deconfinement transition can therefore be analysed by including the effect the gluons have on the
system. Without any further approximations this would only yield the QCD Lagrangian, which
is what the low energy models are trying to avoid. We therefore only couple the quarks of the
LSMq to a constant background A0, meaning that we use space-time independent gauge-fields Ai.
We see from Eq. (2.18) that the coupling between the gluonic background field and the quarks are
like that of an imaginary chemical potential. The fact that we can include the background field as
an imaginary chemical potential was shown by Fukushima in Ref. [71]. This model is named the
Polyakov extended quark-meson model (PQM), and using the local potential approximation the RG
equation for the potential is readily calculated, see e.g. Ref. [58]:

∂kUk = ∂kUkB −
NfNc

3π2

k4

ωq

[
1−N(`, `∗, T, µ)− Ñ(`, `∗, T, µ)

]
, (6.2)

where ∂kUkB is the bosonic contribution given in Eq. (4.17), ` = 〈L〉 and `∗ = 〈L†〉 are the space-
averaged Polyakov loops and the functions N and Ñ are given by

N(`, `∗, T, µ) =
1 + 2`∗eβ(ωq−µ) + `e2β(ωq−µ)

1 + 3`e2β(ωq−µ) + 3`∗eβ(ωq−µ) + e3β(Eq−µ)
, (6.3)
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and Ñ(µ) = N(−µ). One can verify that they reduce to the fermion distribution functions for
` = `∗ = 0. One also has to add an effective gluon potential to the final thermodynamic potential,
but it is customary to assume that this is independent of the renormalisation parameter k:

Ω Ωk=0 + U(`, `∗). (6.4)

We have replaced the Polyakov loop with its expectation values, which can be found by the equations:

∂Ω

∂`
= 0, (6.5)

∂Ω

∂`∗
= 0. (6.6)

In addition to having an effect on the chiral transition, the PQM model can be used to identify the
deconfinement transition, which happens at the point where the Polyakov loop vanishes.

18.2 Three-flavour LSMq model with FRG methods

Working on this thesis, a fair amount of work has been spent trying to find and solve an RG equation
for the three-flavour LSMq, which we solved using the mean-field approximation in Sec. 11. When
we solved the two-flavour LSMq using the RG equation, we wanted the potential Uk to retain its
O(4) symmetry throughout renormalisation, and we therefore introduced the variable ρ = σ2 + ~π2

to make sure of this. With the three-flavour model, we want the meson potential to retain its
U(3) × U(3) symmetry, for which two variables must be chosen (just as we had two condensates
when we solved it with the mean-field approximation). Two such variables can be

ρ = tr
[
φ†φ
]
, (6.7)

τ =
3

2
tr
[(
φ†φ
)2]− 1

2
ρ2, (6.8)

where the meson matrix φ was defined in Sec. 11. Finding RG equations for the meson potential is
just as straight forward as it was for the two-flavour model, but a problem arises when one tries to
solve them numerically. The two variables that were introduced to preserve the symmetry of U are
not independent, and therefore if we choose a value for one of them we restrict the value the other
can take. Not only does this make finite differencing schemes problematic, it also means that we
have multiple expressions for σ0(ρ, τ) and σ8(ρ, τ) resulting in Eqs. (6.7) and (6.8). Unfortunately,
due to time restrictions, less time than one would deem sufficient was spent trying to solve this
problem, and a second attempt at solving it is definitely a viable continuation of the work presented
in this thesis.

Finally, in Sec. 11.1, when using the linear-sigma model, we neglected the contribution to the
thermodynamic potential from the fermion vacuum energy. It could be very interesting to study
how this addition would impact the phase diagram as it has not yet, to the best of the author’s
knowledge, been studied in the case of three-quark LSM.
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APPENDIX A

Definitions and algebras

1 Field theory representation

I have used the standard representation of both quantum mechanics and quantum field theory. This
representation is described below:

1.1 Quantum mechanics

Let |0〉 describe the ground state of our system and let q̂i and p̂i be the coordinate- and momen-
tum operators. The index i runs over all spatial coordinates. Eigenstates of these operators are
perpendicular and follow these rules:

q̂i |qj〉 = δijqi |qj〉 , (A.1)
p̂i |pj〉 = δijpi |pj〉 (A.2)

The commutation relations between the operators are
[
q̂i, q̂j

]
= 0 (A.3)[

p̂i, p̂j
]

= 0 (A.4)[
q̂i, p̂j

]
= iδij (A.5)

The normalisation of the eigenstates are chosen so that

〈q|p〉 = eixp (A.6)

1.2 Field theory

In field theory let |Ω〉 be the vacuum state, and let φ̂(x) be the field-operator, and π̂(x) its canonical
momentum operator. Similarly to quantum mechanics, the eigenstates and operators are defined to
follow

φ̂(x) |φ〉 = φ(x) |φ〉 , (A.7)

π̂(x) |π〉 = π(x) |π〉 , (A.8)

〈φ|π〉 = exp
{
i

∫
ddxπ(x)φ(x)

}
, (A.9)

[
φ̂(x), φ̂(y)

]
= 0, (A.10)

[
φ̂(x), φ̂(y)

]
= 0, (A.11)

[
φ̂(x), π̂(y)

]
= δd(x− y). (A.12)
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2 SU(3) algebra

Using a linear representation of SU(3), every member u ∈ SU(3) can be written in exponential
form using the generators T iR:

DR(u) = eiα
i
uT

i
R . (A.13)

The algebra of SU(3) is also contained within the generators, and can be expressed through the
structure constants f ijk: [

T iR, T
j
R

]
= if ijkT kR. (A.14)

The structure constants are independent on the representation R, and are completely antisymmetric
(f ijk = −f jik = −f ikj = −fkji). Therefore, only a few structure constants are needed, from which
the rest is easily calculated. For SU(3) these are given as:

f123 = 1, f147 = f246 = f257 = f345 = f516 = f637 =
1

2
, f258 = f678 =

√
3

2
(A.15)

The representation in which tr[T iFT
j
F ] = 1

2δ
ij are called the fundamental representation. A common

choice is T iF = 1
2λ

i, where λi are the Gell-Mann matrices depicted in Tab. A.1.

λ1 =




0 1 0

1 0 0

0 0 0


 λ2 =




0 −i 0

i 0 0

0 0 0


 λ3 =




1 0 0

0 −1 0

0 0 0




λ4 =




0 0 1

0 0 0

1 0 0


 λ5 =




0 0 −i
0 0 0

i 0 0


 λ6 =




0 0 0

0 0 1

0 1 0




λ7 =




0 0 0

0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0

0 1 0

0 0 −2




Table A.1: Gell-Mann matrices
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APPENDIX B

Useful mathematical formulas and derivations

3 Gaussian integrals

The standard one dimensional Gaussian integral is often needed calculating quantities in QFT and
TFT, with and without a linear term, it is

G1(a, 0) =

∫ ∞

−∞
dx e−ax

2
=

√
π

a
, (B.1)

G1(a, b) =

∫ ∞

−∞
dx e−ax

2+bx =

√
π

a
e
b2

4a . (B.2)

The n-dimensional Gaussian integrals are also needed and is gives as

Gn(Aij , 0) =

∫
dnxi e

−xiAijxj =

√
π

det(Aij)
(B.3)

Gn(Aij , bi) =

∫
dnxi e

−xiAijxj+bixi =

√
π

det(Aij)
e

1
4
biA
−1
ij bj (B.4)

4 Grassmann algebra

Fermions, being particles following the Fermi-Dirac distribution, need to be described by fields
with somewhat different algebraic properties from normal variables. The proper algebra is called
Grassmann algebra, and it has said properties. The defining property of these numbers is that they
are anti-commuting similar to the fermions themselves. Let η and θ be two Grassmann variables,
then they should follow this set of rules

ηθ = −θη, (B.5)

θ2 = 0, (B.6)
(ηθ)∗ = θ∗η∗. (B.7)

The second property is used to argue that any function of a Grassmann variable can be expanded
to a linear function in that variable. The argument being that all other terms in the Taylor series
is zero. The normalisation of integrals over Grassmann variables is a little ambiguous, but the
following definition is widely used, ∫

dθ (A+Bθ) = B, (B.8)
∫

dθ

∫
dη ηθ = 1. (B.9)
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Figure B.1: Contours circling the residues of g(p0).

Also here, a version of the Gaussian integrals are frequently encountered, therefore the one-dimensional
and n-dimensional results are given

∫
dθ∗dθ e−θ

∗bθ = b (B.10)
(∏

i

dθ∗i dθi

)
e−θ

∗
iBijθj = det(B) (B.11)

5 Matsubara sums

Throughout the thesis, the Matsubara sums appear multiple times, and we will therefore introduce
the contour trick for both bosons and fermions to evaluate them. The Matsubara sums are sums
on the form

∞∑

n=−∞
f(ωn),

{
ωn = 2πnT for bosons,
ωn = (2n+ 1)πT for fermions.

(B.12)

The contour trick is names so because it involves rewriting the sum as a contour integral over the
variable p0 = iωn,

∞∑

n=−∞
f(p0 = iωn) =

1

2πi

∮

C
dp0 f(p0)g(p0) (B.13)

g(p0) is some function with poles along the imaginary axis for values p0 = iωn and is normalised so
we regain the left hand side. C is a contour circling all these poles, example shown in Fig. B.1.

A convenient choice for g(p0) is

g(p0) =

{
1
2βcoth

(
1
2βp0

)
, for bosons,

1
2βtanh

(
1
2βp0

)
, for fermions,

(B.14)

which will be used here.
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Figure B.2: The new contour circling f(p0)’s residues.

The next step is to locate the poles of f(p0), and if these are not on the imaginary axis, we add
two new paths to the integral, and close it outside, picking up the poles of f(p0) instead. The new
contour is shown in the Fig. B.2. One should check that the contribution from the semicircles in
fact vanishes as its radius goes to infinity. For the example below this is easy.

The sum below is one of the most frequently encountered, therefore we will quickly calculate it,

F ≡ T
∞∑

n=−∞

1

ω2
n + ∆2

. (B.15)

This is rewritten using the contour trick to

F =
T

2πi

∮

C

dp0

∆2 − p2
0

1

2
βcoth

(
1
2βp0

)
. (B.16)

The function f(p0) has simple poles at p0 = ±∆, which are picked out by the new contour of Fig.
B.2. Using the residue theorem, this can be calculated to be

F =
1

2∆
coth

(
1
2β∆

)
=

1

2∆

[
1 + 2nB(∆)

]
. (B.17)

Where nB(∆) = (eβ∆− 1)−1 is the standard Bose-Einstein distribution. The fermionic counterpart
uses tanh instead of coth and is just as easily evaluated

F =
1

2∆
tanh

(
1
2β∆

)
=

1

2∆

[
1− 2nF (∆)

]
, (B.18)

and this time nF (∆) = (eβ∆ + 1)−1 is the Fermi-Dirac distribution. We will also encounter the sum
in Eq. (B.15) with a chemical potential included for fermions, meaning

F ≡ T
∞∑

n=−∞

1

(νn + iµ)2 + ∆2
, (B.19)
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where we have chosen to call the Fourier components νn instead of ωn to emphasise the use of
fermions. In this case we can redefine p0 and g(p0) to

p0 = i(νn + iµ), g(p0) = 1
2tanh

(
1
2(p0 + µ)β

)
, (B.20)

in which case we can use the same contour as in the previous calculations. This results in

F =
1

4∆

[
tanh

(
1
2(∆− µ)β

)
+ tanh

(
1
2(∆ + µ)β

)]
,

=
1

2∆

[
1− nF (∆, µ)− nF̄ (∆, µ)

]
, (B.21)

where nF (∆, µ) =
(
e(∆−µ)β + 1

)−1 is the fermion distribution function and nF̄ (∆, µ) = nF (∆,−µ)
is the anti fermion distribution function.

6 Fermion partition function

Similar to the calculation done in Seq. 2.2, we will here derive the partition function for two massless
fermionic fields coupled to one scalar meson field and three pseudo-scalar mesons fields, chemical
potential included. The result will be used in Chapter 3 when we find the chiral phase transition
in a mean-field approximation. The (TFT) Lagrangian (LE) is given by

L = ψ̄
[
γ0∂τ − i~γ · ∇+ g(σ + iγ5~τ · ~π)− µγ0

]
ψ, (B.22)

and its resulting partition function is

Z =

∫
DψDψ̄ exp

{
−
∫ β

0
dτ

∫

x
ψ̄(γ0∂τ − i~γ · ∇+ g(σ + iγ5~τ · ~π)− µγ0)ψ

}
. (B.23)

Again we Fourier transform the fields ψ and ψ̄

ψ(x) =
1√
V

∑

n

∑

p

ei(ωnτ+p·x)ψ(p), (B.24)

ψ̄(x) =
1√
V

∑

n

∑

p

e−i(ωnτ+p·x)ψ̄(p), (B.25)

the normalisation 1/
√
V chosen so the Fourier components are dimensionless numbers. Inserting

this into Eq. (B.23) and calculating the space-time integral, we are left with

Z =

∫ (∏

n,p

dψn,pdψ̄n,p

)
exp
{
− β

∑

n,p

ψ̄n,p(iγ0ωn + ~γ · p + g(σ + iγ5~τ · ~π)− µγ0)ψn,p

}
. (B.26)

Using the Gaussian Grassmann integral given in Eq. (B.11), we get

Z = det
[
β
(
iγ0(ωn + iµ) + ~γ · p + gσ + igγ5~τ · ~π

)]
. (B.27)

We can take the logarithm of both sides to find Helmholtz’ free energy, and use the trace-log identity

F = −T
∑

n,p

tr log
[
β
(
iγ0(ωn + iµ) + ~γ · p + gσ + igγ5~τ · ~π

)]
. (B.28)
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The trace is over both Dirac and flavour indices. It can be evaluated by first expanding the logarithm
around gσ and utilising that all the γ matrices are traceless. This results in

F = −2TNf

∑

n,p

log
[
β2
(
(ωn + iµ)2 + p2 + g2(σ2 + ~π2)

)]
, (B.29)

which can be rewritten to

F = −TNf

∑

n,p

log
[
β2
(
ω2
n + (ω + µ)2

)]
+ log

[
β2
(
ω2
n + (ω − µ)2

)]
, (B.30)

where ω2 = p2 + m2 and m2 = g2(σ2 + ~π2). The Matsubara sums of the logarithms can each be
evaluated in a similar way to how we did it for bosons, by rewriting the logarithms as integrals, and
using the contour tick introduced in the previous section. Rewriting the logarithms

log
[
β2(ω2

n + (ω + µ)2)
]

=

∫ β2(ω+µ)2

1

da2

β2ω2
n + a2

+ constant, (B.31)

and using the result from Eq. (B.18)

∑

n

1

β2ω2
n + a2

=
1

2a

[
1− 2nF (a/β)

]
, (B.32)

we end up with an integral on the form
∫ β(ω±µ)

1
da
[
1− 2

ea + 1

]
= β(ω ± µ) + 2 log

[
1 + e−β(ω±µ)

]
+ constant. (B.33)

Throwing away all constant terms, we finally get an expression for Helmholtz’ free energy of a free
gas of fermions,

F = −2NfV

∫
dp

(2π)3

{
ω + T log

[
1 + e−(ω+µ)β

]
+ T log

[
1 + e−(ω−µ)β

]}
. (B.34)

The first term in the integral is identified as the vacuum energy, and is commonly discarded.
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APPENDIX C

Additional Results

In this appendix additional results which were not included in the main chapters are presented and
discussed.

7 Mean-field meson masses

The meson masses in the LSMq model is defined as the curvature of thermodynamic potential at
the minimum

m2
φ =

∂2Ω

∂φ2

∣∣∣∣
φ0

. (C.1)

In the case of multiple fields φi, a mass matrix M can be constructed

Mij =
∂2Ω

∂φi∂φj

∣∣∣∣
φ0

, (C.2)

whose eigenvalues define the meson masses.

7.1 Two-flavour LSMq

In the two-flavour mean-field approximation, the mass matrix M is diagonal, and the sigma and
pion masses are simply given as

m2
σ = m2 + 3λσ2 +

6g2

π2

∫ ∞

0

p2dp

ω2

{
p2

ω

(
nq + nq̄

)
+ (gσ)2

(
mq +mq̄

)}
, (C.3)

m2
π = m2 + λσ2 +

6g2

π2

∫ ∞

0

p2dp

ω

(
nq + nq̄

)
(C.4)

where we have defined

mq =
∂nq
∂ω

= − 1

2T

1

1 + cosh
[
(ω − µ)/T

] , mq̄(T, µ) = mq(T,−µ). (C.5)

These equations has to be evaluated at the minimum, given by the solution of Eqs. (3.10,3.11).
In Fig. C.1 the pion and sigma masses has been plotted at zero chemical potential for increasing
temperature. It shows the position of the critical temperature (Tc), and beyond this point the sigma
and pion masses converge to the same curve. This mass degeneration is effectively a restoration of
chiral symmetry as their mass can only be equal if the condensates are equal as well.
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Figure C.1: Two-flavour meson masses at zero quark chemical potential, we have chosen mσ = 450 MeV
in vacuum.

7.2 Three-flavour LSMq

The procedure for calculating the meson masses in the tree flavour model is in principle the same
as in the two-flavour model, but as the mass matrix M is not diagonal, it is slightly more difficult.
Fortunately, it is block diagonal with only two 2×2 matrices mixing the mesons. One corresponding
to the mixing of the σ and the f0(1370) particles, and the other to the mixing of the η and η′

particles. One should also note that when evaluating the quark contribution, the quark basis must
be re diagonalised for every mass calculation. Analytic expressions for the double derivatives of the
potentials, as well as a more detailed approach to the mass calculations can be found in Ref. [45].

The resulting meson masses has been plotted in Figs. C.2 and C.3. We see that the meson pairs
plotted in Fig. C.2 both degenerate at T ≈ Tc just like we saw in Fig. C.1, while the masses in
Fig. C.3 degenerates a bit slower (even though a clear change is seen at Tc). The f0 mass is the
slowest to align with the other masses, happening in line with the phase transition for the strange
condensate rather than that of the u-d condensate. The inflection point of the strange condensate,
as shown in Fig. 3.6 is therefore also added, and it is interesting to see that this pseudocritical
temperature coincides with the intersection between the f0 mass and the other three meson masses.
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Figure C.2: Masses for the a0, η′, σ and π mesons at zero quark chemical potential.
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Figure C.3: Masses for the f0, κ, η and K particles at zero quark chemical potential.
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APPENDIX D

Computer code

The full code used to solve the RG equations will not be given as that would probably take more
than a hundred pages. Instead the code used to calculate the right hand side of the RG equation
will be given as that should be sufficient to reproduce the results using the algorithms described in
Chap. 5. It can also be easily modified, and then solved using e.g. the ODE solvers in numerical
libraries such as GSL.

In the following code Matrix containers have been used to save intermediate values of U as they
are renormalised. The data was ordered such that y[0][i] denotes the real part of U at ρ = ρi, and
y[1][i] are the imaginary part. It is assumed that external parameters has been passed in a different
manner, therefore the temperature (temp), chemical potential (mu), yukawa coupling constant (gf)
and the ρ interval (dRho) are all assumed to be set by other means.

void rightHandSide(const Matrix &y, Matrix &dy , double t){

// Constant factors
const double pi = 4.* atan (1.);
const double bosonPref = 1./(12.* pi*pi);
const double fermionPref = -2./( pi*pi);

// Temporary containers
double sigmaContrib [2], pionContrib [2];
double fermionContrib;

double n1[2], z[2];
double nF;
double reEn , imEn , reSqEn , imSqEn;

// Naming convention: S -> sigma
//P -> pion , SP -> sigma previous
//PP -> pion previous

double reSqS , imSqS , reSqSP , imSqSP;
double reSqP , imSqP , reSqPP , imSqPP;

// Calculate the derivative and double derivative of y with finite
// difference schemes , results saved in pre -declared Matrix
// variables dU and ddU. dRho is the spacing in rho -space
derivatives(y,dU,ddU ,dRho);

int n = y.sizeY(); // Returns the number of discrete rhos

for(int i=0; i<n; i++){
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double rho = i*dRho;

// Contribution from the sigma mesons
reEn = exp(2*t) + dU[0][i] + 2*rho*ddU [0][i];
imEn = dU[1][i] + 2*rho*ddU [1][i];

compelxSqrt(reEn ,imEn ,reSqS ,imSqS);

if((i != 0) and (fabs(reSqSP) >= fabs(imSqSP))){
// Function dsign takes in a double and returns its sign
int pSig = dsign(reSqP);
reSqS *= pSig;
imSqS *= pSig;

}else if(i!=0){
int sigIm = dsign(imSqS);
int pSig = dsign(imSqSP);
reSqS *= pSig*sigIm;
imSqS *= pSig*sigIm;

}

reSqSP = reSqS; imSqSP = imSqS;

r = 1./( reSqS*reSqS + imSqS*imSqS);
if(temp > 0.){

z[0] = reSqS /(temp);
z[1] = imSqS /(temp);
n1[0] = -sinh(z[0])/(cos(z[1]) - cosh(z[0]));
n1[1] = sin(z[1])/(cos(z[1]) - cosh(z[0]));

}else{
n1[0] = 1.;
n1[1] = 0.;

}

sigmaContrib [0] = r*( reSqS*n1[0] + imSqS*n1[1]);
sigmaContrib [1] = r*(-imSqS*n1[0] + reSqS*n1[1]);

// Contribution from the pion mesons
reEn = exp(2*t) + dU[0][i];
imEn = dU[1][n];

cmplxSqrt(reEn ,imEn ,reSqP ,imSqP);

if((i != 0) and (fabs(reSqPP) >= fabs(imSqPP))){
int pSign = dsign(reSqPP);
reSqP *= pSign;
imSqP *= pSign;

}else if(i!=0){
int sigIm = dsign(imSqP);
int pSign = dsign(imSqPP);
reSqP *= pSign*sigIm;
imSqP *= pSign*sigIm;

}

reSqPP = reSqP; imSqPP = imSqP;

r = 1./( reSqP*reSqP + imSqP*imSqP);
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if(temp > 0.){
z[0] = reSqP /(temp);
z[1] = imSqP /(temp);
n1[0] = -sinh(z[0])/(cos(z[1]) - cosh(z[0]));
n1[1] = sin(z[1])/(cos(z[1]) - cosh(z[0]));

}else{
n1[0] = 1.;
n1[1] = 0.;

}

pionContrib [0] = r*( reSqP*n1[0] + imSqP*n1[1]);
pionContrib [1] = r*(-imSqP*n1[0] + reSqP*n1[1]);

// Contribution from the fermions
r = sqrt(exp(2*t) + 2*gf*gf*rho);

if(temp > 0.){
nF = 0.5*( tanh( (r-mu) / (2* temp))+tanh( (r+mu) / (2* temp)));

}else{
nF = 1 - (double)(mu > r);

}

fermionContrib = nF/r;

dy[0][i] = exp (5*t)*( bosonPref *( sigmaContrib [0] + 3* pionContrib [0]) + ←↩
→ fermionPref*fermionContrib);

dy[1][i] = exp (5*t)*( bosonPref *( sigmaContrib [1] + 3* pionContrib [1]));

}

}
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